

University of Pennsylvania ScholarlyCommons

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2013

A Green Process for Niacinamide Production

Praveen Bains University of Pennsylvania

Ashley Clark University of Pennsylvania

Amber Lowey University of Pennsylvania

Jamie Soo University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr Part of the <u>Biochemical and Biomolecular Engineering Commons</u>

Bains, Praveen; Clark, Ashley; Lowey, Amber; and Soo, Jamie, "A Green Process for Niacinamide Production" (2013). *Senior Design Reports (CBE)*. 56. http://repository.upenn.edu/cbe_sdr/56

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/56 For more information, please contact libraryrepository@pobox.upenn.edu.

A Green Process for Niacinamide Production

Abstract

This project proposes a plant in which niacinamide can be produced with an environmentally green process. Specifically, it takes 2-methyl-1,5-pentanediamine (MPDA) as a starting reactant and converts it to picoline before subsequently converting it to niacinamide and purifying the final product. By following this particular reaction path, the process avoids the more classic method of preparation by which nicotine is oxidized with potassium dichromate, a reaction with considerably more toxic reactants and waste. Along with this more sustainable reaction path, care was taken to ensure the process was as green as possible at each step along the way.

The primary global supplier of niacin is Lonza, whose patent provided the base upon which this process was developed. Only preliminary data was furnished by the patent; the majority of the process presented within this portfolio was developed with limited information from the patent reference.

The base-case process presented in this project consists of three main sections; Block 100 involves the conversion of MPDA into picoline, Block 200 involves the formation of niacinamide from picoline, and Block 300 involves the separation and purification of the niacinamide into the final marketable product. A final purity of 97.7% by weight was achieved. Rigorous economic analysis was performed on the entirety of the process, yielding an NPV of \$4,932,800 after 20 years and an internal rate of return (IRR) of 16.82% after the third year. Although each of these indicate a positive return on investment, as the economic success of this process is highly subject to the market value of both the feedstock MPDA and product niacinamide, further investigation may be necessary before final project approval.

Disciplines

Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

A GREEN PROCESS FOR NIACINAMIDE PRODUCTION

Praveen Bains Ashley Clark Amber Lowey Jamie Soo

University of Pennsylvania School of Engineering and Applied Sciences Chemical and Biomolecular Engineering

April 9, 2013

University of Pennsylvania School of Engineering and Applied Science Department of Chemical and Biomolecular Engineering 220 South 33rd Street Philadelphia, PA 19104

April 9, 2013

Dear Mr. Fabiano and Dr. Holleran,

Enclosed is our proposed process design for the green production of niacinamide from an environmentally friendly facility, as specified in a problem statement by Mr. Fabiano. Our plant design entails two reaction sections and a separation train to obtain 97.7% by weight final product purity. We have also designed a Dowtherm distribution system to help achieve our heating requirements throughout the system.

Our finalized process includes three distinct sections. In the first, 2-methyl-1,5pentanediamine is converted to 3-picoline, in the second section 3-picoline is converted to the desired product niacinamide, and the third separates and purifies the final product. By utilizing the raw material of 2-methyl-1,5-pentanediamine, this process is able to avoid the formation of harsh intermediates like acrolein and is significantly more sustainable and environmentally conscientious than previous niacin production processes.

The following report details the specifics of the process, the equipment needs for each stage of the process, the estimated costs and power requirements of each piece of equipment, and a detailed economic analysis of the overall process.

Detailed economic analyses, including sensitivities to key costing parameters, have been included. Environmental concerns and waste streams have been evaluated. Overall, the process is profitable with a return on investment of approximately 11.09%. However, this analysis is very sensitive to the market prices of both 2-methyl-1,5-pentanediamine and niacinamide in addition to requiring 14 years before a return on the investment can be collected.

Sincerely,

Praveen Bains

Ashley Clark

Amber Lowey

Jamie Soo

Tab I.		of Contents BSTRACT
II.	In	TRODUCTION AND PROJECT CHARTER
А		PROJECT CHARTER
В		PROJECT MOTIVATION
С		Methods of Production
	Ra	aw Materials7
	Re	eaction
	Su	stainability
	Pl	ant Location
	Pl	ant Capacity
III.		INNOVATION MAP
IV.		CONCEPT STAGE
А		MARKET AND COMPETITIVE ANALYSIS
V.	PF	ROCESS DESIGN
А		PROCESS FLOW DIAGRAM AND MATERIAL BALANCES
	Bl	ock (100)
	Bl	ock (200)
	Bl	ock (300)
В		PROCESS DESCRIPTION
	Bl	ock (100): Reaction Train 1—MPDA to PIC
	Bl	ock (200): Reaction Train 2—PIC to Niacinamide
	Bl	ock (300): Niacinaide Purification
С		EQUIPMENT LIST AND UNIT DESCRIPTIONS
	Bl	ock (100)
	Bl	ock (200)
	Bl	ock (300)
D).	EQUIPMENT SPECIFICATION SHEETS
E	•	EQUIPMENT COST SUMMARY
F	•	FIXED-CAPITAL INVESTMENT SUMMARY
G	ŕ.	OTHER IMPORTANT CONSIDERATIONS
	Er	nvironmental and Safety Considerations
	Са	atalyst Regeneration

	Startup Considerations	
	Purity Improvement	
	Schedule	
	Miscellaneous	
Η	I. ENERGY BALANCE AND UTILITY REQUIREMENTS	
	Energy Balance	
	Utility Requirements	
I.	OPERATING COST AND ECONOMIC ANALYSIS	
	Operating Cost Summary	
	Cash Flow and Profitability Analysis	
J.	Sensitivity analyses	
	Product Price and Variable Costs	
	Feedstock Price	
	Inflation Rate	
	MPDA to Niacinamide Ratio	
VI.	CONCLUSIONS AND RECOMMENDATIONS	
VII.	ACKNOWLEDGMENTS	147
VIII	I. REFERENCES	
IX.	Appendix	
А	. PROBLEM STATEMENT	
В	. Relevant Patents	
С	ASPEN SIMULATIONS AND REPORTS	
D	D. SAMPLE DESIGN AND COST CALCULATIONS	
	Sample Catalyst Regeneration Oxygen Flow Calculations (R-101)	
	Sample Catalyst Price Calculations (R-101)	
	Sample Catalyst Price Calculations (R-102)	
	Sample Catalyst Price Calculations (R-201)	
	Sample Catalyst Price Calculations (R-202A, B, C)	
	Sample Adsorbent (Activated Carbon) Calculations (DC-301)	
	Refrigeration Power Requirements Chart	
	Sample Calculations: Dowtherm System	
	Sample Calculations: Distillation or Absorbing Column	
	Sample Agitator Calculations for R-202	

	Sample Blower Calculations (B-101)	.247
	Sample Compressor Calculations (C-101)	. 248
	Sample Vapor Liquid Separator Calculations	. 249
	Sample Heat Exchanger Calculations	. 250
	Sample Vertical Pressure Vessel Calculations	. 251
	Sample Pump Calculations	. 252
	Sample Reactor Calculations (R-202A, B, C)	. 253
	Sample Storage Vessel Calculations (T-101)	. 254
E	. PROFITABILITY ANALYSIS SPREADSHEET	.256
F.	MSDS AND COMPOUND DATA	. 262

I. ABSTRACT

A. ABSTRACT

This project proposes a plant in which niacinamide can be produced with an environmentally green process. Specifically, it takes 2-methyl-1,5-pentanediamine (MPDA) as a starting reactant and converts it to picoline before subsequently converting it to niacinamide and purifying the final product. By following this particular reaction path, the process avoids the more classic method of preparation by which nicotine is oxidized with potassium dichromate, a reaction with considerably more toxic reactants and waste. Along with this more sustainable reaction path, care was taken to ensure the process was as green as possible at each step along the way.

The primary global supplier of niacin is Lonza, whose patent provided the base upon which this process was developed. Only preliminary data was furnished by the patent; the majority of the process presented within this portfolio was developed with limited information from the patent reference.

The base-case process presented in this project consists of three main sections; Block 100 involves the conversion of MPDA into picoline, Block 200 involves the formation of niacinamide from picoline, and Block 300 involves the separation and purification of the niacinamide into the final marketable product. A final purity of 97.7% by weight was achieved. Rigorous economic analysis was performed on the entirety of the process, yielding an NPV of \$4,932,800 after 20 years and an internal rate of return (IRR) of 16.82% after the third year. Although each of these indicate a positive return on investment, as the economic success of this process is highly subject to the market value of both the feedstock MPDA and product niacinamide, further investigation may be necessary before final project approval.

II. INTRODUCTION AND PROJECT CHARTER

A. PROJECT CHARTER

Project Name	A Green Process for Niacinamide Production
Project Champion	Professor Leonard A. Fabiano, U. Penn
Project Advisor	Dr. Sean P. Holleran, U. Penn
Project Leaders	Praveen Bains, Ashley Clark, Amber Lowey, Jamie Soo
Specific Goals	Design and determine the economic viability of a plant that produces competitive amounts of niacinamide to capture an equivalent amount of market share of niacinamide as the Lonza company
Project Scope	 In Scope Determining the world market for niacin and the current worldwide production capacity Determining the selling price of niacin Developing a process design of a facility that produces 27.7 MM lbs/yr niacinamide based on the Lonza process Building upon and fully realize the existing process flowsheet described in Lonza's patent Completing approximate equipment sizing and costing Determining economic viability of the proposed facility Producing niacinamide of at least 95 weight % purity Out of Scope Verifying reaction kinetics, conversions, and yields proposed in the Lonza patent Developing wastewater treatment facilities, air scrubbing units, Dowtherm heating systems, and refrigeration systems Determining safety layout of facilities
Deliverables	 Full Plant Design Detailed Economic Analysis Approximate Equipment Sizing
Timeline	 Initial process design completed by February 19th, 2013 Initial equipment sizing completed by March 12th, 2013 Initial economic analysis completed by March 26th, 2013 Deliverables completed by April 9th, 2013

• Deliverables completed by April 9th, 2013

B. PROJECT MOTIVATION

This project has been commissioned to produce niacin on a scale capable of being competitive in the world markets and of comparable market share as primary producers such as Lonza or Jubilant. Additionally, this project is intended to explore various methods of reducing the environmental footprint of the overall process and improving its general sustainability. Niacin is important as a supplement for human consumption and as an additive to animal feed. Naturally, these markets have differing standards of purity. The importance of niacin is further discussed in the Market and Competitive Analysis in section IV Concept Stage.

The process that was developed was modeled on the Lonza process patent, a niacin production method which utilizes picoline as an intermediate reactant known for its "green chemistry". This additional step allows the use of acrolein to be avoided, thereby reducing the amount of hazardous intermediates involved. Aside from the reaction process itself, the Lonza process has also established a set of guidelines which encompass nearly every factor of production from choice of feedstock to treatment of wastes, aimed at minimizing the overall footprint of production.

Beyond the adoption of the use of picoline, the Lonza process takes many other green factors into account including the choice of feedstock, the reaction path, and the choice of catalyst. In keeping with these guidelines, manufacture of the process' feedstock should be environmentally friendly, a reaction path should be selected as to minimize the overall energy required by the reaction. The selection of catalyst takes into account means obtained, availability, cost, efficiency (frequency of replacement), and recyclability. In addition to the parameters outlined by the Lonza patent, this project made a specific effort to design a more efficient separation train, to minimize the amount of pollutants and waste streams, and to ensure the proper treatment and disposal of all auxiliary, side, and intermediate products.

Finally, to enter a pre-existing market, the economic feasibility of production must be analyzed. Taking into account overall market capacity, established market prices of both product and feedstock, operating

costs and initial capital investment for a determined ideal production rate, the final profitability and return on investment must be calculated.

The project aims to develop a process which improves the environmental impact of production and can thus be simultaneously profitable and environmentally sustainable.

C. METHODS OF PRODUCTION

Patent US5719045 from Lonza served as the basis for our process, providing the reaction pathway and reactor conditions necessary for niacinamide production. A separation and purification process was then designed to obtain the necessary purity for our targeted market of 95% for animal feed. The production begins with a series of four reactor systems: two tubular reactors, one packed-bed reaction, and continuously-stirred tank reactors (CSTRs) in series. The biocatalyst *Rhodococcus rhodocrous* is used in the CSTRs. Hydrogen is separated after the second reactor for use as the Dowtherm system fuel. The slurry product stream then undergoes a single distillation, two flash vaporizers, and concludes at a nitrogen-fed dryer. The result is a final product stream of niacinamide with 97.7 weight % purity as a powder. This is suitable for the animal feed market.

Raw Materials

The raw materials for the process include MPDA, water, oxygen, and nitrogen. The table below denotes the cost of each of these. The cost of MPDA was estimated by dividing the cost of MPDA from Sigma Aldrich by a factor of 10. This factor was determined by comparing bulk and non-bulk prices of other chemicals, such as niacinamide.

Raw Material	Price (\$ /lb)
MPDA	\$3.091
Process Water	$7.5 imes 10^{-4}$
Oxygen	\$0.035
Nitrogen	\$0.050

Table C1. Raw material prices for niacinamide production.

The catalysts were priced according to their composition and were chosen following the suggestions offered by Lonza's patent US5719045. Table C2 lists each catalysts and its price. Please refer to the Sample Catalyst Calculations in Appendix IX for catalyst costing methods.

Catalyst	Total Price (\$/)
HZSM-5 (Zeolite)	\$3,810
Pd-SiO ₂ /Al ₂ O ₃	\$783,300
V ₂ O ₅ /TiO ₂ /ZrO ₂ /MoO ₃	\$1,646,000
Rhodococcus rhodocrous	\$153,900

Table C2. Prices of catalysts used in niacinamide production.

Reaction

The reaction pathway proposed by Lonza in the patent US5719045 was followed to produce niacinamide. The Lonza method of niacin production follows two stages with two reactions in each. The first set produces the starting material for niacin production, 3-picoline. The second set oxidizes the picoline to form niacinamide and niacin.

The process begins with MPDA as the starting raw material, which is a byproduct of the nylon-6,6 industry. The liquid MPDA is first vaporized and is converted to 3-methylpiperidine (MPI) via deamination, resulting in a ring closure. This exothermic reaction takes place in the presence of the zeolite catalyst, HZSM-5:

$$[MPDA] \rightarrow [MPI] + [NH_3] \tag{1}$$

The methyl piperidine is then dehydrogenated endothermically to 3-picoline (PIC) over a $Pd-SiO_2/Al_2O_3$ catalyst:

$$[MPI] \rightarrow [PIC] + 3 [H_2]$$
(2)

During this step, a side reaction converts about 10% of the picoline into various byproducts:

2 [PIC] +
$$15\frac{1}{2}$$
 [O₂] \rightarrow [N₂] + 12 [CO₂] + 7 [H₂O] (3)

The remaining picoline undergoes an exothermic ammoxidation $V_2O_5/TiO_2/ZrO_2/MoO_3$ catalyst to form 3-cyanopyridine (CNP):

$$[PIC] + \frac{3}{2} [O_2] + [NH_3] \rightarrow [CNP] + 3 [H_2O]$$
(4)

Finally, a biocatalyst (nitrile hydratase produced by *Rhodococcus rhodocrous J1*) helps to convert the CNP into niacinamide via an enzymatic hydrolysis process.

$$[CNP] + [H_2O] \rightarrow [niacinamide]$$
(5)

The yields of niacinamide are determined by adjusting the pH of the fourth reactor, which consists of three CSTRs in series. The products then travel through a separation train to form a high purity, powdered form.

An overview of the reaction steps are shown below, reproduced from a paper written by Roderick Chuck from Lonza.

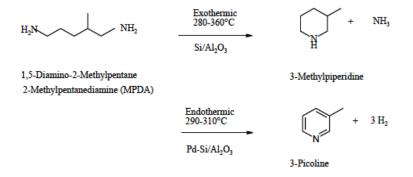


Figure 1. Conversion of MPDA to MPI and MPI to PIC.

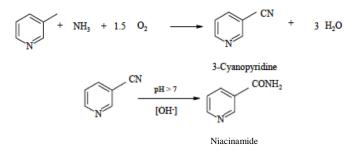
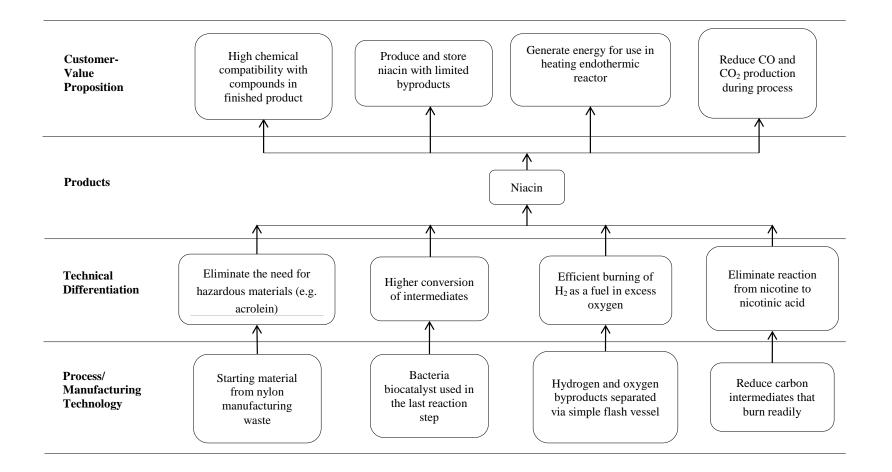


Figure 2. Conversion of PIC to CNP and then CNP to niacinamide.

Sustainability

As mentioned in the introduction, a main motivation for this project is incorporating green or sustainable methods with the process design. Roderick Chuck from Lonza in his paper entitled Technology Development in Nicotinate Production outlined key factors for the patented reaction pathway. The following green advantages were noted: use of air as an oxidant in lieu of another chemical, use of catalysts to increase reaction rate, reaction conditions that allow for the catalyst to be easily regenerated,

atmospheric pressure for each reaction, and recoverable energy from the exothermic reactions. While building the niacinamide production process, careful attention was given to increasing its sustainability. In the Lonza patent, the hydrogen gas was burned directly to evaporate the MPDA. In this project, the hydrogen byproduct is separated and sent to fuel a Dowtherm heating system. Dowtherm A is used as a heat transfer fluid that maintains the high temperatures required for the dehydrogenation reaction and other heat exchangers. Wet scrubbers are used to remove the minimal CO2 released during the process. Furthermore, the startup fuel chosen for the Dowtherm system is renewable natural gas, an upgraded version of biogas, which releases less CO2 than natural gas. Renewable natural gas does not require hydraulic fracturing as it is created from biomass. These aspects contribute to the overall sustainability of the niacinamide production process. Additionally, water is the only solvent required, and toxic chemical such as ammonia and Dowtherm A are recycled within the system.


Plant Location

The niacinamide production plant will be located in Michigan, due to its proximity to a producer of the raw material MPDA, Invista. Invista owns a manufacturing plant in Mississauga, Ontario, just across the lake. This will reduce cost of transportation greatly. The proximity of other chemical plants in the area also indicates the availability of utilities for running a process plant. For distribution of the product, this location also offers integration into an existing network of the targeted market, animal feedstock.

Plant Capacity

The plant will produce 3,452 lb/hr of niacinamide at 97.7% purity. The plant will be online for 335 days of the year for a total of 8,026 hours. This results in a yearly output of 27.7 million lbs. Additionally the plant will produce and separate 1.4 million lbs of hydrogen per year for use in the Dowtherm system. The remaining 30 days will be used for maintenance, safety inspections, and catalyst regeneration.

III. INNOVATION MAP

IV. CONCEPT STAGE

A. MARKET AND COMPETITIVE ANALYSIS

The term niacin is commonly used to describe both nicotinic acid and niacinamide. Both of these compounds are water-soluble and are part of the vitamin B group. Nicotinic acid and niacinamide are necessary for all living cells as they are essential contributors to proper carbohydrate, protein and lipid metabolism.

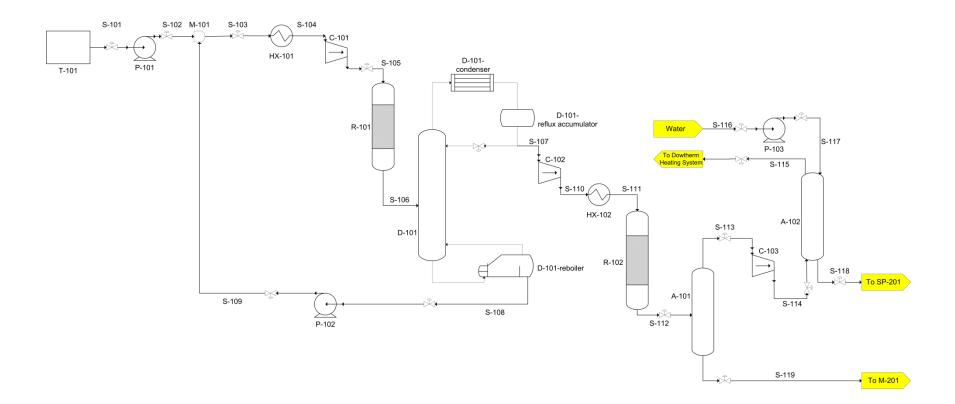
Niacinamide and nicotinic acid are components of the coenzymes niacinamide dinucleotide (NAD) and niacinamide adenine dinucleotide phosphate (NADP), which are both key intermediates in the metabolic process. More than 40 biochemical reactions have been identified that utilize these coenzymes, particularly in relation to the skin, gastrointestinal tract and nervous system. In humans, a deficiency of niacin can result in a wide variety of symptoms, from severe digestive system disorders, to weakness, skin discoloration, loss of appetite, and retarded growth.

Due to its great importance in biological functions, niacin is most commonly used in feed, food, and pharmaceutical industries. The global market size of niacin and niacinamide is over \$400 million USD, with an estimated production rate of 20,200 metric ton per year (TPA) or 44,603,000 lbs/yr (Lonza Group, Ltd., 2011). Its largest market demand is as a feed supplement feed for stock animals, accounting for 60-70% of the total market. The remaining 30-40% of the market is divided amongst human nutrition, cosmetics, pharmaceuticals, and other technical applications including the preparation of metal surfaces (Feedinfo News Services, 2012).

The purity necessitated by each of these applications varies greatly, with human consumption demanding the highest purity standards of 99.5%. The top markets, located in North America, Europe, and China, have seen significant growth over the past several years. The overall projected global demand niacin growth over the next few years is 5-7% (Feedinfo News Services, 2012).

The two primary competitors in niacin and niacinamide production are Lonza and Jubilant. Lonza, whose patent was used as a starting point for this project, controls a little more than half of the world's

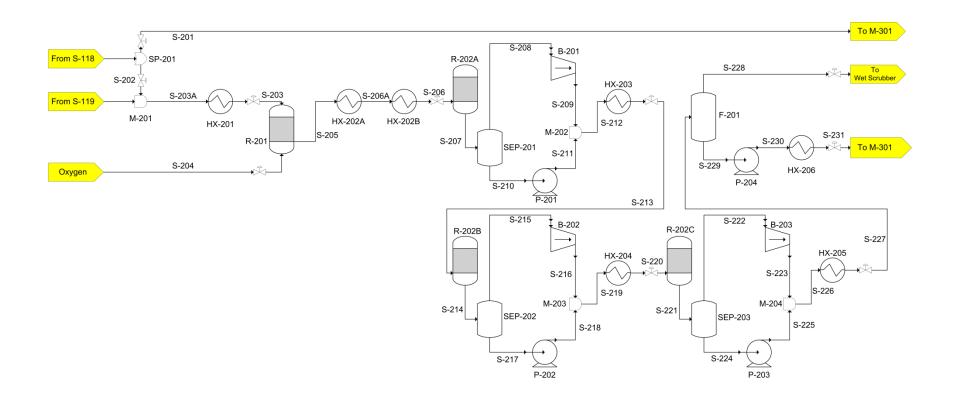
production with a production rate of 10,700 TPA (2,362,000 lbs/yr). Lonza controls three large-scale plants, one operating in Switzerland where the firm is based and two others operating in China (Pharmaceutical-Technology, 2011). Jubilant is based in India, and as of 2011, has a commercial production rate of 10,000 TPA niacinamide per year.


The plant designed in this report will produce 3,452 lb/hr of niacinamide at 97.7% by weight purity, targeting the animal nutrition industry as our primary consumer. This targeted output is intended to be competitive with Lonza and Jubilant but will not flood the market.

V. PROCESS DESIGN

A. PROCESS FLOW DIAGRAM AND MATERIAL BALANCES

Outlined below are the overall mass balance and stream properties. On the reactor-side of the process only preliminary mass balances were performed since separation mass balances were calculated using ASPEN simulations later in the design process. Microsoft EXCEL was used to make sure that the mass balanced with the reactions and side products that were made in the overall reaction train. This EXCEL sheet can be seen in Appendix C.


Block (100)

P	Block 100						Flow Rat	e (lb/hr)				
Name	Formula	MW(lb/lb _{mol})	S-101	S-102	S-103	S-104	S-105	S-106	S-107	S-108	S-109	S-110
Oxygen	O ₂	32	0	0	0	0	0	0	0	0	0	0
Hydrogen	H_2	2	0	0	0	0	0	0	0	0	0	0
Nitrogen	N ₂	28	0	0	0	0	0	0	0	0	0	0
Ammonia	NH ₃	17	0	0	2.00E-18	2.00E-18	2.00E-18	484.6719	484.6719	2.00E-18	2.00E-18	484.6719
Water	H ₂ O	18	0	0	0	0	0	0	0	0	0	0
Carbon Dioxide	CO ₂	44	0	0	0	0	0	0	0	0	0	0
Niacinamide	C ₆ H ₆ N ₂ O	122.1	0	0	0	0	0	0	0	0	0	0
Methylpentanediamine	C6H16N2	116.2	3306.93	3306.93	3340.33	3340.33	3340.33	33.40	0.00	33.40	33.40	0.00
Methylpiperidine	C ₆ H ₁₃ N	99.2	0	0	3.13E-03	3.13E-03	3.13E-03	2822.2775	2822.2744	3.13E-03	3.13E-03	2822.2744
3-Methylpyridine	C ₆ H ₇ N	93.1	0	0	0	0	0	0	0	0	0	0
3-Cyanopyridine	C ₆ H ₄ N ₂	104.1	0	0	0	0	0	0	0	0	0	0
	Tota	l Mass Flow (lb/hr)	3306.93	3306.93	3340.34	3340.34	3340.34	3340.35	3306.95	33.40	33.40	3306.95
		Temperature (F)	77	77.373	81.1415	527	560.2087	581	266.2846	402.3192	402.6851	393.1779
		Pressure (psia)	14.5038	43.5113	43.5113	33.5113	72.5189	71.6486	14.6959	20.5459	43.5113	72.5189
		Vapor Fraction	0	0	0	1	1	1	1	1.23E-08	0	1
		Liquid Fraction	1	1	1	0	0	0	0	1	1	0
		Enthalpy (BTU/hr)	-2.03E+06	-2.03E+06	-2.05E+06	-5.79E+05	-5.23E+05	-9.75E+05	-1.50E+06	-1.38E+04	-1.38E+04	-1.31E+06

Bloc	k 100 (con	t)		Flow Rate (lb/hr)										
Name	Formula	MW(lb/lb _{mol})	S-111	S-112	S-113	S-114	S-115	S-116	S-117	S-118	S-119			
Oxygen	O_2	32	0	0	0	0	0	0	0	0	0			
Hydrogen	H ₂	2	0	170.3884	170.3884	170.3884	170.3884	0	0	3.04E-14	1.55E-13			
Nitrogen	N ₂	28	0	0	0	0	0	0	0	0	0			
Ammonia	NH ₃	17	484.6719	484.6719	484.6719	484.6719	4.2846	0	0	480.3873	1.83E-06			
Water	H_2O	18	0	0	0	0	8.94E-10	1200	1200	1200	0			
Carbon Dioxide	CO ₂	44	0	0	0	0	0	0	0	0	0			
Niacinamide	C ₆ H ₆ N ₂ O	122.1	0	0	0	0	0	0	0	0	0			
Methylpentanediamine	C ₆ H ₁₆ N ₂	116.2	3.63E-03	3.63E-03	3.69E-17	3.69E-17	0	0	0	0	3.63E-03			
Methylpiperidine	C ₆ H ₁₃ N	99.2	2822.2744	28.2227	1.47E-04	1.47E-04	3.09E-06	0	0	1.44E-04	28.2226			
3-Methylpyridine	C ₆ H ₇ N	93.1	0	2623.8311	1.4148	1.4148	7.03E-06	0	0	1.4148	2622.4163			
3-Cyanopyridine	$C_6H_4N_2$	104.1	0	0	0	0	0	0	0	0	0			
	Tota	l Mass Flow (lb/hr)	3306.95	3307.12	656.48	656.48	174.67	1200.00	1200.00	1681.80	2650.64			
		Temperature (F)	554	554	5.9902	313.672	-117.8784	90	90.9526	224.717	366.2599			
		Pressure (psia)	62.5189	42.2136	40	170	170	15	170	170	40			
		Vapor Fraction	1	1	1	1	1	0	0	5.12E-06	4.44E-07			
		Liquid Fraction	0	0	0	0	0	1	1	1	1			
		Enthalpy (BTU/hr)	-1.02E+06	1.58E+06	-6.19E+05	-3.61E+05	-1.17E+05	-8.26E+06	-8.26E+06	-8.91E+06	1.08E+06			

Block (200)

228.908

30.2298

-3.71E+04

0

77

1

0

15.2298

-4.22E+04

77

0

1

15.2298

-1.66E+07

77.1252

30.2298

-1.66E+07

0

I	Block 200						Flow Rate	e (lb/hr)				
Name	Formula	MW(lb/lb _{mol})	S-201	S-202	S-203	S-203A	S-204	S-205	S-206	S-206A	S-207	S-208
Oxygen	O ₂	32	0	0	0	0	1481.4509	135.6763	135.6763	135.6763	135.6763	135.42
Hydrogen	H ₂	2	3.34E-16	3.00E-14	1.85E-13	1.85E-13	0	0	0	0	0	0
Nitrogen	N ₂	28	0	0	0	0	0	0.3946	0.3946	0.3946	0.3946	0.3945
Ammonia	NH ₃	17	5.2843	475.103	475.1031	475.1031	0	7.89E-02	7.89E-02	7.89E-02	7.89E-02	4.25E-03
Water	H ₂ O	18	13.2	1186.8	1186.8	1186.8	0	2696.0476	2696.0476	2696.0476	2198.5821	2.5583
Carbon Dioxide	CO_2	44	0	0	0	0	0	7.4396	7.4396	7.4396	7.4396	7.1777
Niacinamide	C ₆ H ₆ N ₂ O	122.1	0	0	0	0	0	0	0	0	3372.1643	2.08E-04
Methylpentanediamine	C6H16N2	116.2	0	0	3.63E-03	3.63E-03	0	3.63E-03	3.63E-03	3.63E-03	3.63E-03	1.56E-04
Methylpiperidine	C ₆ H ₁₃ N	99.2	1.58E-06	1.42E-04	28.2227	28.2227	0	28.2227	28.2227	28.2227	28.2227	2.0383
3-Methylpyridine	C ₆ H ₇ N	93.1	1.56E-02	1.3993	2623.8156	2623.8156	0	23.6143	23.6143	23.6143	23.6143	0.7393
3-Cyanopyridine	$C_6H_4N_2$	104.1	0	0	0	0	0	2903.918	2903.918	2903.918	29.0392	0.1032
	Total Mass Flow (lb/hr)			1663.30	4313.95	4313.95	1481.45	5795.40	5795.40	5795.40	5795.22	148.44
		Temperature (F)	224.717	224.717	626	158.8554	77	626	77	100	77	77
		Pressure (psia)	170	170	30	40	39.4503	29.1298	19.1298	24.1298	14.7298	14.7298
		Vapor Fraction	5.12E-06	5.1152E-06	1	0.060995	1	1	0.024904	0.025426	0.029574	1
		Liquid Fraction	1	1	0	0.939	0	0	0.9751	0.9746	0.9704	0
		Enthalpy (BTU/hr)	-9.80E+04	-8.81E+06	-5.13E+06	-7.73E+06	-4.45E+02	-1.10E+07	-1.55E+06	-1.54E+07	-1.66E+07	-4.28E+04
												1
Bloc	k 200 (cont		Flow Rate (lb/hr)									
Name	Formula	MW(lb/lb _{mol})	S-209	S-210	S-211	S-212	S-213	S-214	S-215	S-216	S-217	S-218
Oxygen	O ₂	32	135.42	0.2563	0.2563	135.6763	135.6763	135.6763	135.411	135.411	0.2654	0.2654
Hydrogen	H ₂	2	0	0	0	0	0	0	0	0	0	0
Nitrogen	N ₂	28	0.3945	8.58E-05	8.58E-05	0.3946	0.3946	0.3946	0.3945	0.3945	8.88E-05	8.88E-05
Ammonia	NH ₃	17	4.25E-03	7.47E-02	7.47E-02	7.89E-02	7.89E-02	7.89E-02	4.12E-03	4.12E-03	7.48E-02	7.48E-02
Water	H ₂ O	18	2.5583	2196.0238	2196.0238	2198.5821	2198.5821	2198.5821	2.4717	2.4717	2196.1104	2196.1104
Carbon Dioxide	CO ₂	44	7.1777	0.2619	0.2619	7.4396	7.4396	7.4396	7.1688	7.1688	0.2708	0.2708
Niacinamide	C ₆ H ₆ N ₂ O	122.1	2.08E-04	3372.1641	3372.1641	3372.1643	3372.1643	3372.1643	2.01E-04	2.01E-04	3372.1641	3372.1641
Methylpentanediamine	C ₆ H ₁₆ N ₂	116.2	1.56E-04	3.47E-03	3.47E-03	3.63E-03	3.63E-03	3.63E-03	1.51E-04	1.51E-04	3.47E-03	3.47E-03
Methylpiperidine	C ₆ H ₁₃ N	99.2	2.0383	26.1844	26.1844	28.2227	28.2227	28.2227	1.9747	1.9747	26.2481	26.2481
3-Methylpyridine	C ₆ H ₇ N	93.1	0.7393	22.875	22.875	23.6143	23.6143	23.6143	0.7153	0.7153	22.8991	22.8991
3-Cyanopyridine	$C_6H_4N_2$	104.1	0.1032	28.936	28.936	29.0392	29.0392	29.0392	9.98E-02	9.98E-02	28.9394	28.9394
	Tota	l Mass Flow (lb/hr)	148.44	5646.78	5646.78	5795.22	5795.22	5795.22	148.24	148.24	5646.98	5646.98

78.9689

29.7298

0.028952

-1.66E+07

0.971

77

19.7298

0.029258

-1.66E+07

0.9707

77

15.2298

0.9705

0.029534

-1.66E+07

249.416

31.8503

-3.69E+04

1

0

Temperature (F)

Pressure (psia)

Vapor Fraction

Liquid Fraction

Enthalpy (BTU/hr)

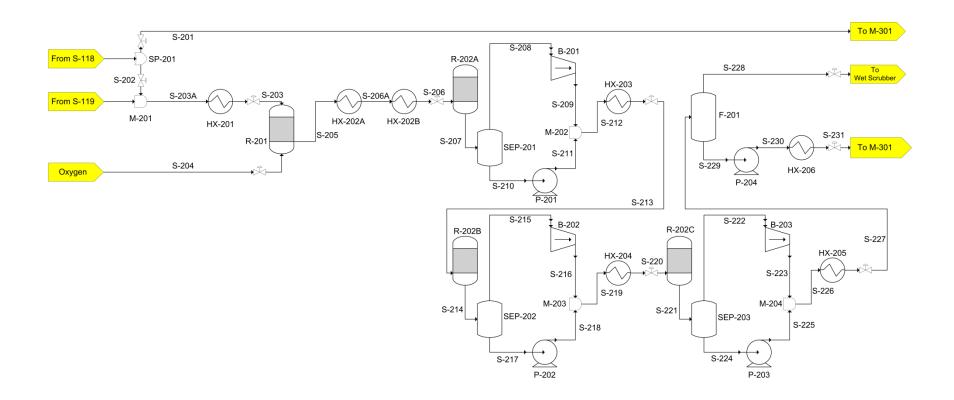
77

0

1

14.7298

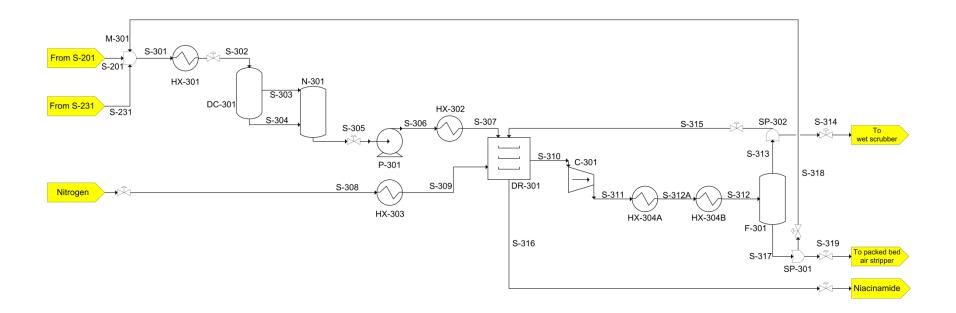
-1.66E+07


77.1252

29.7298

-1.66E+07

0


Block (200) (Streams continued)

Bloc	k 200 (cont	t)		Flow Rate (lb/hr)									
Name	Formula	MW(lb/lb _{mol})	S-219	S-220	S-221	S-222	S-223	S-224	S-225	S-226	S-227	S-228	
Oxygen	O ₂	32	135.6763	135.6763	135.6763	135.4019	135.4019	0.2744	0.2744	135.6763	135.6763	135.4641	
Hydrogen	H_2	2	0	0	0	0	0	0	0	0	0	0	
Nitrogen	N ₂	28	0.3946	0.3946	0.3946	0.3945	0.3945	9.18E-05	9.18E-05	0.3946	0.3946	0.3946	
Ammonia	NH ₃	17	7.89E-02	7.89E-02	7.89E-02	3.99E-03	3.99E-03	7.49E-02	7.49E-02	7.89E-02	7.89E-02	1.32E-03	
Water	H_2O	18	2198.5821	2198.5821	2198.5821	2.3908	2.3908	2196.1913	2196.1913	2198.5821	2198.5821	0.4615	
Carbon Dioxide	CO_2	44	7.4396	7.4396	7.4396	7.1599	7.1599	0.2797	0.2797	7.4396	7.4396	7.0928	
Niacinamide	$C_6H_6N_2O$	122.1	3372.1643	3372.1643	3372.1643	1.95E-04	1.95E-04	3372.1641	3372.1641	3372.1643	3372.1643	1.17E-05	
Methylpentanediamine	$C_6H_{16}N_2$	116.2	3.63E-03	3.63E-03	3.63E-03	1.46E-04	1.46E-04	3.48E-03	3.48E-03	3.63E-03	3.63E-03	6.52E-05	
Methylpiperidine	C ₆ H ₁₃ N	99.2	28.2227	28.2227	28.2227	1.915	1.915	26.3078	26.3078	28.2227	28.2227	1.1116	
3-Methylpyridine	C ₆ H ₇ N	93.1	23.6143	23.6143	23.6143	0.6927	0.6927	22.9216	22.9216	23.6143	23.6143	0.3275	
3-Cyanopyridine	$C_6H_4N_2$	104.1	29.0392	29.0392	29.0392	9.65E-02	9.65E-02	28.9426	28.9426	29.0392	29.0392	3.31E-02	
	Tota	l Mass Flow (lb/hr)	5795.22	5795.22	5795.22	148.06	148.06	5647.16	5647.16	5795.22	5795.22	144.89	
		Temperature (F)	78.7705	77	77	77	275.3011	77	77.2505	79.3753	32	32	
		Pressure (psia)	30.2298	20.2298	15.7298	15.7298	37.7298	15.7298	45.7298	37.7298	27.7298	15	
		Vapor Fraction	0.028936	0.029234	0.029496	1	1	0	0	0.028787	0.028529	1	
		Liquid Fraction	0.9711	0.9708	0.9705	0	0	1	1	0.9712	0.9715	0	
		Enthalpy (BTU/hr)	-1.66E+07	-1.66E+07	-1.66E+07	-4.17E+04	-3.50E+04	-1.66E+07	-1.66E+07	-1.66E+07	-1.68E+07	-3.16E+04	

Bloc	ek 200 (con	t)	F	low Rate (lb/hr	.)
Name	Formula	MW(lb/lb _{mol})	S-229	S-230	S-231
Oxygen	O_2	32	0.2122	0.2122	0.2122
Hydrogen	H_2	2	0	0	0
Nitrogen	N_2	28	5.32E-05	5.32E-05	5.32E-05
Ammonia	NH ₃	17	7.76E-02	7.76E-02	7.76E-02
Water	H_2O	18	2198.1206	2198.1206	2198.1206
Carbon Dioxide	CO ₂	44	0.3468	0.3468	0.3468
Niacinamide	C ₆ H ₆ N ₂ O	122.1	3372.1643	3372.1643	3372.1643
Methylpentanediamine	$C_6H_{16}N_2$	116.2	3.56E-03	3.56E-03	3.56E-03
Methylpiperidine	C ₆ H ₁₃ N	99.2	27.1112	27.1112	27.1112
3-Methylpyridine	C ₆ H ₇ N	93.1	23.2869	23.2869	23.2869
3-Cyanopyridine	$C_6H_4N_2$	104.1	29.0061	29.0061	29.0061
	Tota	l Mass Flow (lb/hr)	5650.33	5650.33	5650.33
		Temperature (F)	32	32.2422	90
		Pressure (psia)	15	45	35
		Vapor Fraction	0	0	0
		Liquid Fraction	1	1	1
		Enthalpy (BTU/hr)	-1.68E+07	-1.68E+07	-1.65E+07

Block (300)

I	Block 300						Flow Rat	e (lb/hr)				
Name	Formula	MW(lb/lb _{mol})	S-301	S-302	S-304	S-305	S-306	S-307	S-308	S-309	S-310	S-311
Oxygen	O ₂	32	0.2129	0.2129	0.2129	0.2129	0.2129	0.2129	0	0	2.1222	2.1222
Hydrogen	H_2	2	3.34E-16	3.34E-16	3.34E-16	0	0	0	0	0	0	0
Nitrogen	N ₂	28	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	2.09E-03	30.8796	30.8796	308.7963	308.7963
Ammonia	NH ₃	17	53.5941	53.5941	53.5941	53.5941	53.5941	53.5941	0	0	53.6188	53.6188
Water	H_2O	18	2.21E+04	2.21E+04	2.21E+04	2.21E+04	2.21E+04	2.21E+04	0	0	2.21E+04	2.21E+04
Carbon Dioxide	CO ₂	44	0.3659	0.3659	0.3659	0.3659	0.3659	0.3659	0	0	3.4681	3.4681
Niacinamide	C ₆ H ₆ N ₂ O	122.1	3372.1643	3372.1643	3372.1643	3372.1643	3372.1643	3372.1643	0	0	0	0
Methylpentanediamine	$C_6H_{16}N_2$	116.2	3.56E-03	3.56E-03	3.56E-03	3.56E-03	3.56E-03	3.56E-03	0	0	0	0
Methylpiperidine	C ₆ H ₁₃ N	99.2	27.1112	27.1112	27.1112	27.1112	27.1112	27.1112	0	0	0	0
3-Methylpyridine	C ₆ H ₇ N	93.1	23.3024	23.3024	23.3024	23.3024	23.3024	23.3024	0	0	0	0
3-Cyanopyridine	$C_6H_4N_2$	104.1	29.0061	29.0061	29.0061	29.0061	29.0061	29.0061	0	0	0	0
	Tota	l Mass Flow (lb/hr)	25618.76	25618.76	25618.76	25618.76	25618.76	25618.76	30.88	30.88	22481.01	22481.01
		Temperature (F)	30.9724	77	77.0265	77	76.9392	392	77	392	387.1028	887.2012
		Pressure (psia)	35	25	20	15	39.9465	29.9465	29.5007	19.5007	14.5007	68.0082
		Vapor Fraction	0.00034792	0.00026201	0.00030069	0.00035328	0	1	1	1	1	1
		Liquid Fraction	0.9997	0.9997	0.9997	0.9996	1	0	0	0	0	0
		Enthalpy (BTU/hr)	-1.55E+08	-1.54E+08	-1.54E+08	-1.54E+08	-1.54E+08	-1.25E+08	-5.9364	2425.2806	-0.3685	-1.19E+08

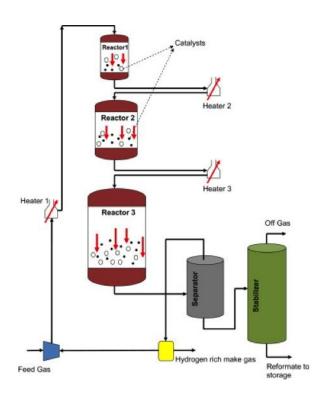
Bloc	t)	Flow Rate (lb/hr)									
Name	Formula	MW(lb/lb _{mol})	S-312	S-312A	S-313	S-314	S-315	S-316	S-317	S-318	S-319
Oxygen	O ₂	32	2.1222	2.1222	2.1214	0.2121	1.9093	0	7.50E-04	6.75E-04	7.50E-05
Hydrogen	H ₂	2	0	0	0	0	0	0	0	0	0
Nitrogen	N ₂	28	308.7963	308.7963	308.794	30.8794	277.9146	0	2.27E-03	2.04E-03	2.27E-04
Ammonia	NH ₃	17	53.6188	53.6188	2.73E-02	2.73E-03	2.46E-02	0	53.5914	48.2323	5.3591
Water	H ₂ O	18	2.21E+04	2.21E+04	0.2025	2.03E-02	0.1823	0	2.21E+04	1.99E+04	2211.3003
Carbon Dioxide	CO ₂	44	3.4681	3.4681	3.4469	0.3447	3.1022	0	2.12E-02	1.91E-02	2.12E-03
Niacinamide	C ₆ H ₆ N ₂ O	122.1	0	0	0	0	0	3372.1643	0	0	0
Methylpentanediamine	$C_6H_{16}N_2$	116.2	0	0	0	0	0	3.56E-03	0	0	0
Methylpiperidine	C ₆ H ₁₃ N	99.2	0	0	0	0	0	27.1112	0	0	0
3-Methylpyridine	C ₆ H ₇ N	93.1	0	0	0	0	0	23.3024	0	0	0
3-Cyanopyridine	$C_6H_4N_2$	104.1	0	0	0	0	0	29.0061	0	0	0
Total Mass Flow (lb/hr)			22481.01	22481.01	314.59	31.46	283.13	3451.59	22166.62	19950.25	2216.66
Temperature (F)		32	100	32	31.6692	31.6692	387.1028	32	32.0274	32.0274	
Pressure (psia) Vapor Fraction Liquid Fraction		58.0082	63.0082	58.0082	48.0082	48.0082	14.5007	58.0082	48.0082	48.0082	
		Vapor Fraction	0.009	0.0091	1	1	1	0	0	1	1
		Liquid Fraction	0.991	0.9909	0	0	0	1	1	0	0
Enthalpy (BTU/hr)			-1.54E+08	-1.52E+08	-1.81E+04	-1810.8	-1.63E+04	-1.17E+06	-1.54E+08	-1.38E+08	-1.54E+07

B. PROCESS DESCRIPTION

The proposed process is separated into three blocks. The first block (Block 100) involves the reaction train in which MPDA is converted to PIC. The second block (Block 200) involves the reaction train in which PIC is converted to the desired product: niacinamide. The last block (Block 300) includes the purification and separation of the niacinamide to give the desired end product.

Block (100): Reaction Train 1—MPDA to PIC

Summary


S-101 is the input for the process containing liquid MPDA. This stream undergoes a pressure increase and is then passed through a heat exchanger where the MPDA is vaporized. The MPDA is then compressed and passed through the first reactor. Reactor 1 converts the MPDA to methylpiperidine with a byproduct of ammonia. More information about reactor 1 can be found in the Reactor Design section. The distillation column that follows separates out the unreacted MPDA to be recycled back into the first reactor while the remaining organic compounds and the ammonia continue through the process. The stream is compressed again and fed into Reactor 2 which converts the methylpiperidine to 3-picoline with a byproduct of hydrogen gas.

The next vessel is an absorbing column that closely resembles a distillation tower. The distillate product is ammonia and hydrogen, which is fed into a second absorbing column where ammonia is absorbed into the incoming process water in stream S-116 and the hydrogen leaves the absorbing column via stream S-115. This hydrogen would then be used for the fuel required by the Dowtherm process illustrated later, which is burned in excess air. The remaining ammonia and water stream, S-118, is fed into a splitter to be fed into the second block of the process.

Reactor Design

Reactor Train 1 (R-101)

The first step in the process is the cyclization/deamination of MPDA to form MPI and ammonia as a byproduct. This takes place through a tubular reactor at temperatures and pressures in the range of $572 - 752^{\circ}F$ and 0 - 145 psia respectively over activated Al₂O₃/SiO₂ catalysts or zeolites. As the availability of information regarding the kinetics of the reaction is greatly limited, the initial basis of the reactor's design was based on the patent by Lonza (Heveling et al., 1998) in which a range of reaction conditions and their corresponding yields and conversions for a bench-scale set-up were documented. The optimal conditions that gave the highest conversion for the first reaction were found to occur at 581°F at a pressure of 72.5 psia with a mass hourly space velocity (MHSV) of 4.2 lb/lb-hr over HZSM-5 catalysts. The composition of HZSM-5 catalysts to be used is 54.5% of pentasil (Si/Al = 18) + 45.5% of binder.

were researched to find the best reactor for the unit. In drawing similarities between the first reaction in the train and that of commercial naphtha reforming (Figure 3) - where straight-chained organics are converted into more useful products, usually cyclic materials, (Fundamentals of Industrial Catalytic Processes) - it was found that a semi-regenerative unit containing the catalyst outlined by Lonza may provide the best conversion. Therefore, Reactor Train 1 is designed as a tubular reactor operating at 581°F at a pressure of 72.5 psia with a mass hourly space velocity (MHSV) of 0.6 lb/lb-hr over HZSM-5

For the design of Reactor Train 1, similar reactions

Figure 3. Schematic of the conventional catalytic naphtha reforming process. Source: Iranshahi, et al., 2009

catalysts. The percentage conversion given in the patent for MPDA to MPI is 99.6%. The reaction is

optimal at a temperature of 581°F, but the reaction is exothermic; therefore, the initial feed is sent through four reactors, each in increasing size, with a cooling unit between each reactor to keep a relatively constant temperature of 581°F. This allows the stream to stay within the range of optimal catalytic selectivity, overall conversion, and minimal catalyst degradation. By using this design, a similar conversion to that of what was expressed in the Lonza process with tubular reactors can be accomplished. Within each of these reactors, H-ZSM-5 would be used as the heterogeneous catalyst.

Reactor Sizing

Approximately 3,340 lb/hr of MPDA vapor at 560°F and 72.5 psia is fed into the first reactor of Reactor Train 1. When the MPDA vapor enters the first reactor, it reacts upon contact with the catalyst, increasing the temperature. It should then pass through the cooling unit before entering the next reactor of the reactor train, decreasing the reactor temperature. The resulting temperature profile would then have an approximate saw-tooth appearance. Overall the average temperature is approximately 581°F.

Amount of Catalyst

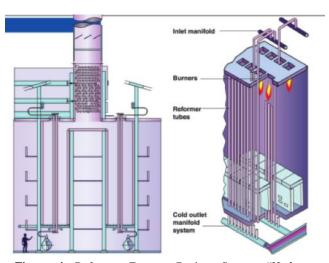
The volume of catalyst required was calculated via scaling up from the patent to determine the amount needed to convert 3,340 lb/hr of MPDA. With a MHSV of 0.6 lb/lb-hr, 5,600 lb of HZSM-5 catalyst were required for the entire reactor train. Assuming a catalyst density of 50 lb/ft³ and a void fraction of 0.5, the total volume of catalysts required would then be 224 ft³. The total price of the catalyst is \$3,810. Please reference page 234 for Sample Calculations.

Tube Dimensions and Number of Tubes

When choosing the tube dimensions, the main considerations were to maximize heat transfer across the tubes. This consideration advocated for a small tube diameter. Another consideration made was to minimize the difference between internal and external diameters of the tube to allow for more efficient heat conduction across the tube material. As such the catalyst was modeled in a ring form with a thickness

of 1 inch on each side. With a required catalyst volume of 224 ft³, this gave the overall tube length of 10,270 ft. A nominal pipe size of 6 inches was chosen for the tube. To account for a more manageable reactor length, fifteen tubes will be used, giving the length of one tube to be 685 ft, with the catalyst support accounted for. Using 15 tubes, the volumetric flow rate through one tube then becomes 1,010 ft³/hr, thereby giving a superficial velocity of 3.6 ft/s through one tube, a reasonable velocity for vapor through a tube to react. At these dimensions, the Reynolds number for flow through the tubes is small enough that the reactants can approximate plug-flow conditions. Since the overall catalyst requirement is 224 ft³, the reactor length ratio for each of the four reactors should be, in increasing order, 68: 103: 171: 342 ft. In addition, a recycled loop may be added to the overall system to increase the percent conversion of MPDA added into the system. In this manner, the reactor would be designed as a semi-regenerative reactor unit with four reactors and a large cooling unit integrated into the process to cool the reaction feeds since the overall reaction is exothermic (Askari, A., et al., 2012).

Pressure Drop


To estimate the pressure drop across the reactor, the Darcy–Weisbach equation was used. Operating at 72.5 psi at the above dimensions, the pressure drop across the tubes was 0.87 psi. The pressure is relatively small since it is a homogeneous tubular reactor. The pressure remains relatively constant throughout the process; therefore, this reaction train can operate at the specified 72.5 psia without significant pressure drop.

Heat Transfer Considerations

With a heat duty of -452,100 Btu/hr, it was determined that 15,118 lb/hr of cooling water was required as a cooling utility. Based on the volumetric ratios of the reactors, the ratio of cooling water required for each cooling section after each reactor is 1,505: 2,269: 3,781: 7,563 lb/hr. The overall heat transfer coefficient is set at 60 Btu/lb-hr-°F as per consultants' (Mr. Wismer and Mr. Kolesar) suggestion.

Reactor Train 2 (R-102)

The second step in the process is the endothermic dehydrogenation of MPI to PIC, producing hydrogen as a byproduct. According to Lonza's patent, the second reaction preferably takes place in a fixed-bed reactor filled with noble metals as catalysts, such as Pd or Pt, on a support at $428 - 752^{\circ}F$ and pressures of 0 - 145 psia. Again, based on the patent by Lonza (Heveling et al., 1998), the optimal conditions were found to occur at $554^{\circ}F$ at atmospheric pressure with 0.44 lb/lb-hr MHSV over 1% Pd-SiO₂/Al₂O₃ catalysts.

Figure 4. Reformer Furnace Design. Source: "Hydrogen Production by Steam Reforming", Ray Elshout, Chemical Engineering, May 2010

Reactor 2 is also designed using a reaction similar to one already present in commercial processing. In the Fischer-Tropsch process, which converts hydrogen and carbon monoxide to hydrocarbons, multi-tubular reactors are used to aid in the steam reforming piece of Fischer-Tropsch (Figure 4)(Elshout, R., 2010). In steam reforming, feed is run through a series of packed bed reactor tubes, which are heated by a fuel source or in this case, a Dowtherm heated material. The reaction tubes are

arranged such that the reactants are fed into the reactor at a much higher temperature than the exit so that the reaction can proceed throughout the entire tube length. For a typical process, approximately 2,000 tubes or more can be placed into one furnace. Each tube has a typical diameter of between 2.8 and 5.1 inches with a length of 39.4 ft. Residence times for these reactors would be 5 seconds per each tube. With this short residence time, pressure drop across the reactor is minimized and the reactor volume itself can also be decreased. (Bartholomew & Farrauto, 2005).

Amount of Catalyst

From S-111, approximately 3,310 lb/hr of material at 554°F at 40 psia is fed into Reactor 2 at 9,680 ft³/hr. Stream S-111 primarily consists of approximately 0.15 mass% of ammonia and 0.85 mass% of MPI. From the patent, the volume of catalyst required was calculated via scaling up to determine the amount needed to convert 2,822 lb/hr of MPI. With a MHSV of 0.44 lb/lb-hr, 6,410 lb of 1% Pd-SiO₂/Al₂O₃ catalysts were required for the entire reactor train. Assuming a weighted catalyst density of 211 lb/ft³ and a void fraction of 0.5, the total volume of catalysts required would then be 60 ft³. The total price of the catalyst is \$ 783,300. Please reference page 236 for Sample Calculations.

Reactor Sizing

Based on the volume of catalyst required, the conventional Fischer-Tropsch reactor would need to be scaled down to the following specifications: 40 tubes with a tube length of 20 ft and a diameter of 4 inches.

Pressure Drop

To estimate the pressure drop across the reactor, the Ergun equation for packed bed was used. The pressure drop across the 20-feet tubes was 4.5 psi. This pressure drop across the tubes is an industry practice upper bound.

Heat Transfer Requirements

With a heat duty of 2.602 MMBtu/hr, 10,408 lb/hr of Dowtherm A will be used as the heat transfer fluid used to supply the energy required to attain the operating temperature conditions. The overall heat transfer coefficient is set at 60 Btu/lb-hr-°F as per consultants' (Mr. Wismer and Mr. Kolesar) suggestion.

Process Modeling

To model the first block of the process, ASPEN V 7.3.1 was used. However, due to the complexity of the process, some simplifications and assumptions were made to use ASPEN to simulate the overall process. It is known that a separation column was used in Lonza's process to separate and divert the unreacted MPDA to be recycled back to the first reactor (ICIS.com, 1999). It is assumed that this separation unit was a distillation column. In ASPEN, this distillation column was modeled using RADFRAC, which did a relatively good job of calculating the energy and tray requirements for the separation. Additionally, there were two absorbers added to the process to help separate hydrogen from the system after the second reactor; by removing this stream, the hydrogen can be fed to a Dowtherm system as fuel, whereas the remainder of the units in the process could also be decreased in size due to the absence of hydrogen. In ASPEN, these two absorbers were modeled using the ABSRB1 and ABSRB2 subroutine under the RADFRAC unit, respectively. The second absorbing column, A-102, was used with water as the absorbing agent because ammonia dissolves readily in this solvent, leaving hydrogen in the other stream to be used later as a fuel.

Block (200): Reaction Train 2—PIC to Niacinamide

Summary

The second block was modeled in ASPEN V 7.3.1. Input into this block is a fraction of the ammonia and water mixture that was taken off of A-102. The stoichiometric ratio of ammonia was taken from the splitter to be heated and then added to the third reactor, R-201. The other stream heading to the reactor consists of 3-picoline and the unreacted methylpiperidine as well as trace amounts of other organics. This stream, S-119, is added to M-201 and mixed with the ammonia water mixture, heated, and fed to R-201. Stream S-204 is the feed stream of oxygen required to react with 3-picoline in the reactor. In R-201, 3-picoline reacts with oxygen and converts to 3-cyanopyridine with a byproduct of water. In addition, this reactor models the side reactions that would occur in the presence of oxygen; these side reactions take the organic molecules present in the reactors and convert them to nitrogen, carbon dioxide, and water. The

stream then continues to a two-stage heat exchanger to cool to more moderate operating conditions needed for the biocatalyst reactors. After this stream is cooled, it enters a CSTR reactor that contains the biocatalyst necessary to react 3-cyanopyridine with water to make niacinamide. The vapor and liquid streams from this reactor are moved by blowers and compressors, respectively, to the next reactor. This occurs for three CSTRs in series; three CSTRs in series not only increase the conversion but also allows for a longer residence time in each of the reactors.

After the final CSTR, stream S-226 is cooled down to help separate the vapor products present in the stream before the organic trace materials and the niacinamide continues to the third block in the process. S-228, the waste stream from the flash vessel, contains mostly oxygen, hydrogen, and water vapor. Some trace organics are present in this stream including CNP, PIC, and MPI. However, this stream will later be cleansed of these contaminants. Before being transferred to the third block, the stream containing mostly organics and water is heated and mixed in M-301 with the remainder of the ammonia and water mixture taken from the splitter in Block 100.

Reactor Design

Reactor Train 3

The third step in the process is the exothermic ammoxidation for the production of 3-cyanopyridines (and water as a byproduct) using ammonia and oxygen with PIC. The preferred design is that the reaction takes place at temperatures of $536 - 752^{\circ}$ F in a multi-tubular reactor over a catalyst consisting of oxides of vanadium, titanium, zirconium, and molybdenum at atmospheric pressure (Heveling et al., 1998). Two Lonza patents (Heveling et al., 1998 and Sembaev et al., 1997) determine that the optimal conditions are at 626°F and atmospheric pressure, with catalysts consisting of V₂O₅, TiO₂, and ZrO₂ in a 1:3:8 molar ratio and MoO₃ as 1.15 w% based on V₂O₅. The molar composition of the feed into Reactor 3 is ideally PIC:O₂:NH₃ = 1:40:1.3.

Reactor 3 is designed as a multitubular reactor as used in the Fischer-Tropsch synthesis. In the same manner as Reactor 2, a steam reforming reactor design can be implemented to increase the yield of the reaction. However, instead of using the Dowtherm to heat the reaction, a cooling fluid would flow through the reactor to decrease the temperature as necessary throughout the reactor. This reactor comprises a single shell compartment with 2,000 tubes filled with catalysts in the form of rings. Each individual tube will have an internal diameter of 1.8 in and a length of 42 ft as scaled up from *Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis* (Jess & Kern, 2009). The overall reactor geometry is similar to that of conventional shell-and-tube type heat exchangers, but with no tube zone in the center of the reactor. The reacting gas enters at the bottom of the unit. The optimal conditions are at $626^{\circ}F$ and atmospheric pressure, with catalysts consisting of V_2O_5 , TiO₂, ZrO₂, and MoO₃.

Amount of Catalyst

From S-203, approximately 4,314 lb/hr of material at 626°F at 30 psia is fed into Reactor 3 at 47,200 ft³/hr. Stream S-203 primarily consists of approximately 0.11 mass% of ammonia, 0.28 mass% of water, and 0.61 mass% of PIC. From the patent, the volume of catalyst required was calculated via scaling up to determine the amount needed to convert 2,624 lb/hr of PIC. With a MHSV of 5.24 lb PIC/ft³ catalyst-hr, and assuming a void fraction of 0.5, 1,000 ft³ of V₂O₅, TiO₂, ZrO₂, and MoO₃ catalysts were required for the entire reactor. For this volume, at the specified ratio, 90,500 lb of V₂O₅, 39,800 lb of TiO₂, 61,300 lb of ZrO₂, and 71,700 lb of MoO₃ would be required for a total of 263,300 lb of catalyst. The catalysts should be mixed well and formed into circular rings with a wall thickness of 0.4 inches that would line the inner diameter of the tubes. The total price of the catalyst is \$ 1,646,000. Please refer to page 237 for Sample Calculations.

Reactor Sizing

Based on the volume of catalyst required, the conventional Fischer-Tropsch reactor would need to be scaled down to the following specifications: 2,000 tubes with a tube length of 42 ft and diameter of 1.8 in.

Pressure Drop

To estimate the pressure drop across the reactor, the Darcy–Weisbach equation was used. At the reactor dimensions, the pressure drop across the tubes was 0.87 psi. The pressure is relatively small since it is a homogeneous tubular reactor. Since the pressure remains relatively constant throughout the process; therefore, there should be no issues in significant pressure drop.

Heat Transfer Requirements

With a heat duty of -5.88 MMBtu/hr, it was determined that 196,694 lb/hr of cooling water was required as a cooling utility to attain and maintain the operating temperature conditions. The overall heat transfer coefficient is set at 60 Btu/lb-hr-°F as per consultants' (Mr. Wismer and Mr. Kolesar) suggestion.

Reactor Train 4

The fourth step in the process is the enzymatic hydrolysis of 3-cyanopyridine to niacinamide in a continuous feed batch reactor cascade comprising of 2 - 5 connected stirred reactors, catalyzed by an enzyme produced by microorganisms of the species *Rhodococcus rhodochrous* J1, which is immobilized, over temperatures of $41 - 122^{\circ}F$ at atmospheric pressure. According to the Lonza patent (Heveling et al., 1998), the process is best carried out at ambient temperature and pressure using the species *Rhodococcus rhodochrous* J1 with the concentration of 3-cyanopyridine being 6.24 lb/ft³. Lonza Guangzhou Fine Chemicals (Guangzhou, China) uses a series of stirred-tank multi stage batch reactors with a continuous feed of 3-cyanopyridine at concentrations of between 10-20 wt% in the direction of process flow, and counter-current feed of biocatalyst immobilized in polyacrylamide particles. The enzymatic hydration produces the desired amide at >99.3% selectivity at 100% conversion. While usage of the biocatalyst does provide a high conversion rate, it has been noted that these selectivites and conversions are ideally high for large industrial processes. However, for this process design, these conversions were used to model the best case scenario. Lower conversions of MPDA to niacinamide are investigated in the Sensitivity Analysis section later in the report.

Reactor Train 4 is designed as adiabatic, stirred-tank reactors using immobilized whole cells of R. rhodochrous *J1* employed in three stages. Sizing of the reactor was done via scaling up of the bench-scale data from the Lonza patent. It was determined that the three reactor tanks for Reactor 4 (R-202A, R-202B, and R-202C) will each have a carbon steel construction, an agitation rate of 110 rpm, a volume of 6,975 ft3, and will be operating at room temperature and pressure. The residence time of the whole cascade will be 12 hours, with 4 hours for each vessel (Nagasawa et al., 1988).

Mass of Biocatalyst

The dry weight of whole cell biocatalyst *R. rhodochrous* J1 immobilized in polyacrylamide particles was calculated via scaling up of the bench-scale data from the patent. It was determined that each 6,975 ft³ tank would house 1,740 lb (dry weight) of the whole cell biocatalyst *R. rhodochrous* J1 immobilized in polyacrylamide particles. This is equivalent to 878.7 lb of immobilized enzyme, nitrile hydratase, NHase. The cell density of each reactor would then be 0.25 lb/ft^3 . The total price of the catalyst is \$153,910 for all three vessels. Refer to page 237 for Sample Calculations.

Cascade Choice

In terms of the cascade choice, Lonza investigated several process options including single-stage continuous fluidized bed, batch stirred tank, single-stage fed-batch stirred tank, single-stage continuous stirred tank, and multi-stage continuous stirred tank. Ultimately Lonza chose the multi-stage continuous stirred tank (Meyer & Ruesing, 2008). For this process, the reactor cascade will also be designed as such since Lonza has found that it optimizes the process.

Reactor Selection

Airlift reactors are unsuitable in this case because the airlift design could cause problems related to mixing and oxygen transfer especially when the polyacrylamide gels increase the weight and density of the biocatalysts. For this reason, the mechanically stirred tank design was used since it is usually preferred

for larger-scale operations, has the advantage of operating at a low substrate level, and is suitable for substrate-inhibition reactions.

Agitator

The agitation rate in the reactors will be limited at 110 rpm to not disturb cell growth profiles and prevent cell membrane damage as high agitation rates can shear the cells. Furthermore, research has shown that specific product formation for bioprocesses is generally higher at lower impeller speeds (Doble, 2006). Two pitched blade turbines as agitators would be required for each vessel, each operating at 35 hp.

Process Modeling

Another set of simplifications occurred when dealing with the reaction vessels. Since specifications were not given on any of the first three reactors, they were modeled using the RSTOIC block in ASPEN. These reactors had the respective reactions added into them, assuming a certain conversion of the reaction. For the side reactions that may occur in the process, the third reactor, R-201, had a fraction of the 3-methylpyridine that is produced in that reactor essentially combust and form nitrogen, carbon dioxide, and water. This effectively accounts for the product lost in the process as well as the energy associated with these side products in the third reactor.

For the fourth reactor, R-202 (A,B, and C), RSTOIC was used to model the reaction that occurs within the three CSTR's in series. Due to constraints associated with ASPEN, it is difficult to correctly illustrate the actual design of this fourth reactor. For each of these reactors in the series, the vapor/liquid mixture from the previous step in the process is fed from the bottom through the CSTR to create a bubbling effect that ideally transfers the stream through the biocatalyst in the reactor. The same issue in modeling occurred at the outlet. No reactor in ASPEN can model a vapor and liquid stream exiting from the reactor. Therefore, a separation vessel was used as a dummy unit to model the reactor streams separating into two streams, a liquid and a vapor, when they exit each CSTR in the series. To keep these reaction vessels as close to 1 atm and 77°F, a pump moves the liquid fraction from the reactor while a blower is added to move the vapor stream. Heat exchangers were placed after the pump and blower before entering into the next reaction vessel.

Block (300): Niacinaide Purification

Summary

The third block in the process models the purification of niacin. After M-301 mixes the ammonia and water stream from A-102 earlier with the recycled stream of ammonia and water, the remainder of the organic molecules from the previous block mixes in as well. From the mixer, the stream goes to a heat exchanger where the temperature of the stream is brought down to close to room temperature. The stream enters the decolorizing unit, where the red dye leftover from the biocatalyst in the fourth reactor is removed with activated carbon. This stream then travels to the neutralizer where a mixture of ammonia and ammonium chloride create a buffer solution that effectively neutralizes the niacinamide formed in previous stages. Following this step, the stream is increased in pressure with a pump and then heated up to mix with the nitrogen streams coming in. Stream S-305 is heated nitrogen coming in to act as a drying agent in the dryer. This nitrogen stream is heated before continuing to the bottom of the dryer, effectively removing all the water and ammonia in the stream. The organic products, including the desired product niacinamide, fall out of the dryer as a solid product while the water, ammonia, and hot nitrogen leave the spray out of the top. This hot stream of ammonia, water, and nitrogen is compressed and then cooled to be separated in a flash vessel. From here, a portion of the nitrogen stream from the top of the flash vessel is purged while the remainder is fed back into the stream entering the dryer to help with the removal of water and ammonia in the streams. The water and ammonia mixture is also recycled back, whereas a portion of the stream is purged. The remaining mixture, S-318, is added into M-301 to be used again for the separation processes.

Specialized Equipment

Decolorizing Unit

R. rhodochrous J1 has a red pigment (DiCosimo, R., 2006). The decolorizing unit is required to remove the red pigment leftover from the biocatalyst in the fourth reactor. As such, the patent entitled *Method for purifying amide compounds by reacting with activated carbon under acidic conditions* is referred to when designing the column filled with activated carbon (Abe, T., et al., 2001). The unit is essentially an adsorption column, modeled as a vertical pressure vessel, and is filled with activated carbon. Correlations from *Product and Process Design Principles* were used to size and cost the entire unit—column and activated carbon. Knowing the volumetric flow rate to be 7.74 ft³/min and assuming a 10 minute residence time in the column, the volume of material in the vessel is calculated to be 77 ft³. Adjusting the volume for potential dissolved vapor, sufficient volume occupied by the catalyst, and increases in production capacity, the vessel volume is now 199 ft³, and is thus sized as 4 ft in diameter and 16 ft in length. Void fraction of activated carbon is approximately 0.6. With this, the volume of activated carbon required is calculated and cost as shown in Sample Calculations page 239.

Dryer

Several different types of dryers were considered that would ultimately produce a final product that is of free-flowing powder, a form crucial for niacinamide packaging. The first type of dryer considered was a fluidized spray dryer. The continuous turbo-tray dryer (commercial Wyssmont TURBO-DRYER® system) was another such recommendation given by Mr. Fabiano. The Wyssmont TURBO-DRYER® can handle a range of materials including thick slurries continuously and is capable of providing a free-flowing product. Standard construction of the dryer can handle operating temperatures of up to 650°F, well above of our operating ranges. Furthermore, an advantage of the Wyssmont TURBO-DRYER® over fluidized spray drying equipment is that it can operate in a closed-circuit system. Size and costing was

scaled-up using information obtained from examples of performance data given in Perry's and is presented in Table B1 below (Perry & Green, 2008).

Material Dried	Niacinamide
Dried Product (lb/hr)	3372
Evaporation Rate (lb/hr)	650
Type of heating system	Steam
Heating medium	Hot gas
Drying medium	Inert gas
Materials of Construction	Stainless-steel interior
Dryer height (ft)	23
Dryer diameter (ft)	20
Recovery system	Shell-and-tube condenser
Condenser cooling medium	Chilled water
Location	Indoor
Purchase Cost	\$ 804,369
Dryer assembly	Packaged unit

Table B1. Wyssmont TURBO-DRYER® performance data

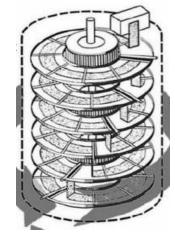


Figure 5. Wyssmont Turbo-Dryer; Source: Wyssmont Advertisement. <u>Chemical Engineering</u>, Access Intelligence. May 2010

Process Modeling

A decolorizer filled with activated carbon is needed for the third block of the process. However, ASPEN is unable to model a color change in the flowsheet, prompting the addition of a splitter with one of the streams equal to 0 fraction split. By doing this, the vessel could be sized and cost calculated given the ASPEN simulation results for the conditions into and out of the decolorizer. Directly after this vessel is a neutralizer, N-301. This RSTOIC models the reaction that takes the niacinamide that was produced earlier in the process and converts it, with water and ammonia, into the salt form of the niacin, ammonium nicotinate. A buffer solution consisting of NH₄Cl and NH₃ must be created in the vessel to properly neutralize the product. Because the only way to accurately calculate the components in the buffer solution, lab-scale analysis must be done while the process is running. Since the chloride present in the neutralizer would have little impact on the remainder of the process, it was left out of the ASPEN simulation. However, the neutralizer was modeled as an RSTOIC block to verify that the stoichiometric ratios of the

reaction are already satisfied with the water and ammonia already created in the overall process. This made sure that the process would, under the right pH conditions, form the salt ammonium nicotinate, effectively neutralizing the solution.

Finally, the dryer was modeled in ASPEN as a SEP block unit. Since the dryer block in ASPEN was unable to work with this particular process design, a series of trial and error simulations were done to find the best unit within ASPEN to model the dryer. After the dryer specific model in ASPEN did not converge, a hierarchy block was added to convert the organic compounds previously defined as conventional components to solids. Then, when the dryer still did not converge, the same was done with a flash vessel. However, the separation in the flash vessel did not correctly model the dryer since most of these components turned into liquids rather than solids when the necessary temperatures were reached, around 387°F, whereas these components would be solids and fall out of the evaporated water and ammonia in actuality. For rough estimates of purity and solid niacin chemical composition, a SEP unit was finally decided to most accurately model the conditions and separation fractions of a dryer. All organics in the stream leave as stream S-316 while the water, ammonia, and nitrogen are evaporated to leave from the top of the vessel. The hot nitrogen mixture that enters through the bottom of the dryer evaporates water and ammonia leaving behind the remainder of the organics; this SEP unit, as compared to the rest of the models used in ASPEN, most closely resembles the lab-scale composition attained in patent references.

C. EQUIPMENT LIST AND UNIT DESCRIPTIONS

Block (100)

Table C1. A list of equipment used in the process for Block (100).

Unit #	Equipment Type	Function	Operating T (°F)	Operating P (psia)
A-101	Absorber	Separates mainly H ₂ and NH ₃ from vapor stream (S-112) into S-113	C = 6 $R = 366$	40
A-102	Absorber	Separates mainly H2 from S-114 to S- 115 via extraction with water in S-117	C = -118 R = 225	170
C-101	Compressor	Increases pressure of S-104 before running through R-101	560	$\Delta P=39$ Discharge P=73
C-102	Compressor	Increase pressure of distillate (S-107) of D-101 before feeding it to R-102	393	$\Delta P=58$ Discharge P=73
C-103	Compressor	Increase pressure of S-113 before running through A-102	314	$\Delta P=130$ Discharge P=170
D-101	Distillation Column	Separate MPDA from S-106 to be recycled	D = 266 $B = 379$	15
HX-101	Heat Exchanger	Increases temperature of S-103 for feed into R-101	527	34
HX-102	Heat Exchanger	Increases temperature of S-110 for feed into R-102	554	63
M-101	Mixer	Mixes streams S-102 and S-109 for feed into HX-101	81	44
P-101	Pump	Pumps S-101 to then run through HX- 101 for MPDA vaporization	77	$\Delta P=29$ Discharge P=44
P-102	Pump	Pumps bottoms of D-101 (S-108) for MPDA recycle	380	$\Delta P=29$ Discharge P=44
P-103	Pump	Increases pressure of S-116 before running through A-102	91	$\Delta P=155$ Discharge P = 170
R-101	Tubular Reactor	Converts MPDA to 3-methylpiperidine	581	72
R-102	Packed Bed Reactor	Converts 3-methylpiperidine to 3- picoline	554	42
T-101	Storage Tank	Stores the liquid MPDA as feed to the process	77	15
WS-102	Wet Scrubber	Removes NO_X and residual NH_3 out of the burning of S-115 so it can be vented to the atmosphere	210	48

Absorber (A-101)

A-101 is a 20-stage column for separating mainly the hydrogen and ammonia from vapor stream S-112 into S-113. The inlet stream enters at Stage 17. Temperature varies in the column from 266° F in the condenser (top stage) to 402° F in the reboiler (bottom stage).

The condenser is a partial-vapor fixed tube sheet heat exchanger that decreases the temperature of the overhead before sending it through a compressor (C-103). The hot stream on the shell side is cooled from $274^{\circ}F$ (Stage 2) to $6^{\circ}F$ (Stage 1/S-113). 6,411,900 lb/hr of refrigerant, R-134a, enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 2,632 Btu/hr-ft²- $^{\circ}F$ respectively, leading to a total heat transfer area of 226 ft². The total heat duty is -2.8 MMBtu/hr. There are 44 tubes of 20 ft. with an outer diameter of 1 in. The shell is 20 ft. in length and has a diameter of 10 in. with 16 baffles. With a carbon steel construction, the total bare-module cost of the condenser is \$65,870.

The reboiler is a U-tube kettle vaporizer that uses high-pressure steam to vaporize a portion of the liquid bottoms product of the column. The distillate on the tube side is heated from $366^{\circ}F$ (Stage 20) to $444^{\circ}F$. 1,401 lb/hr of steam at 450 psia enters the shell side to heat the cold streams. The tube and shell side heat transfer coefficients are 1,000 and 200 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 202 ft². The total heat duty is 1.7 MMBtu/hr. There are 39 tubes of 20 ft. with an outer diameter of 1 in. The shell is 13 ft. in length and has a diameter of 21 in. with 9 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$55,480.

With a carbon steel construction, the total bare-module cost of the entire unit is \$3,291,000. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Absorber (A-101) specification sheet on page 66 and in Appendix IX on page 241.

Absorber (A-102)

A-102 is a 10-stage column for separating mainly hydrogen from S-114 to S-115 via extraction with water in S-117. The inlet stream S-114 enters at Stage 8 while the inlet stream S-117 enters at Stage 2. Temperature varies in the column from -118°F in the condenser (top stage) to 225°F in the reboiler (bottom stage). The column manages to remove all of the hydrogen and recovers >99% by mass of the ammonia in the inlet stream.

The condenser is a partial-vapor fixed tube sheet heat exchanger that decreases the temperature of the overhead before sending it through a compressor (C-103). It has a reflux ratio of 1. The hot stream on the shell side is cooled from 90°F (Stage 2) to -118°F (Stage 1/S-115). 2,799,830 lb/hr of refrigerant, ethylene, enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 1,019 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 177 ft². The total heat duty is - 1.2 MMBtu/hr. There are 34 tubes of 20 ft. with an outer diameter of 1 in. The shell is 20 ft. in length and has a diameter of 10 in. with 16 baffles. With a carbon steel construction, the total bare-module cost of the condenser is \$73,300.

The reboiler is a U-tube kettle vaporizer that uses high-pressure steam to vaporize a portion of the liquid bottoms product of the column. The distillate on the tube side is heated from $146^{\circ}F$ (Stage 9) to $225^{\circ}F$ (Stage 10). 682 lb/hr of steam at 450 psia enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 526 Btu/hr-ft²- $^{\circ}F$ respectively, leading to a total heat transfer area of 202 ft². The total heat duty is 0.8 MMBtu/hr. There are 6 tubes of 20 ft. with an outer diameter of 1 in. The shell is 13 ft. in length and has a diameter of 9 in. with 9 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$42,560.

With a carbon steel construction, the total bare-module cost of the entire unit is \$2,284,000. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using

ASPEN Process Economic Analyzer (IPE). Please refer to the Absorber (A-102) specification sheet on page 67 and in Appendix IX on page 241.

Compressor (C-101)

C-101 is a rotary twin-screw compressor used to increase the pressure of the vapor stream S-104 by 39 psi, from 33.5 psia to 72.5 psia in S-105 before it is sent to the first reactor (R-101). The inlet volumetric flow rate is 144 ft³/min. The power consumption of the unit is 25.3 HP. The compressor is powered using an electric motor drive that consumes 17 kW. With a cast-iron construction, the total bare-module cost of the unit is \$86,720. Please refer to the Compressor (C-101) specification sheet on page 73 and the Sample Calculations in Appendix IX on page 248.

Compressor (C-102)

C-102 is a rotary twin-screw compressor used to increase the pressure of the vapor stream S-107 by 57.8 psi, from 14.7 psia to 72.5 psia in S-110 before it is sent to the heat exchanger (HX-102) to be heated. The inlet volumetric flow rate is 495 ft³/min. The power consumption of the unit is 81.6 HP. The compressor is powered using an electric motor drive that consumes 55 kW. With a cast-iron construction, the total bare-module cost of the unit is \$202,400. Please refer to the Compressor (C-102) specification sheet on page 74 and the Sample Calculations in Appendix IX on page 248.

Compressor (C-103)

C-103 is a rotary twin-screw compressor used to increase the pressure of the vapor stream S-113 by 130 psi, from 40 psia to 170 psia in S-114 before it is sent to absorber (A-102). The inlet volumetric flow rate is 235 ft³/min. The power consumption of the unit is 111.5 HP. The compressor is powered using an electric motor drive that consumes 75 kW. With a cast-iron construction, the total bare-module cost of the unit is \$253,750. Please refer to the Compressor (C-103) specification sheet on page 75 and the Sample Calculations in Appendix IX on page 248.

Distillation Column (D-101)

D-101 is a 40-stage column for separating out the leftover MPDA from S-106 to be recycled back through S-108. The inlet stream enters at Stage 33. Temperature varies in the column from 266°F in the condenser (top stage) to 402°F in the reboiler (bottom stage). The column recovers >99.9% by mass of the MPDA in the inlet stream. The number of stages required for the distillation column was obtained through ASPEN simulations. A purity for MPDA removal was specified and operating conditions for the column were optimized within ASPEN.

The condenser is a partial-vapor fixed tube sheet heat exchanger that decreases the temperature of the overhead before sending it through a compressor (C-102). The hot stream on the shell side is cooled from 306°F (Stage 2) to 266°F (Stage 1/S-107). 231,890 lb/hr of cooling water enters the tube side to cool the streams. The total heat duty is -6.9 MMBtu/hr. There are 52 tubes of 20 ft. with an outer diameter of 1 in. The shell is 20 ft. in length and has a diameter of 12 in. with 16 baffles. With a carbon steel construction, the total bare-module cost of the condenser is \$59,060.

The reboiler is a U-tube kettle vaporizer that uses high-pressure steam to vaporize a portion of the liquid bottoms product of the distillation column. The distillate on the tube side is heated from 318°F (Stage 40) to 402°F (S-108). 5,368 lb/hr of steam at 450 psia enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 200 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 143 ft². The total heat duty is 6.4 MMBtu/hr. There are 176 tubes of 20 ft. with an outer diameter of 1 in. The shell is 13 ft. in length and has a diameter of 39 in. with 9 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$85,980.

With a carbon steel construction, the total bare-module cost of the entire unit is \$4,023,800. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Distillation Column (D-101) specification sheet on page 77 in Appendix IX on page 241.

Heat Exchanger (HX-101)

HX-101 is a floating head shell-and-tube heat exchanger that models an evaporator that increases the temperature of the stream entering the first reactor R-101. S-103 on the tube side is heated from 81°F (S-103) to 527°F (S-104). 5,872 lb/hr of Dowtherm A enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 200 and 175 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 143 ft². The total heat duty is 1.5 MMBtu/hr. There are 27 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 10 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$243,000. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-101) specification sheet on page 83 in Appendix IX on page 250.

Heat Exchanger (HX-102)

HX-102 is a floating head shell-and-tube heat exchanger that increases the temperature of the stream entering the second reactor R-102. S-110 on the tube side is heated from 393°F (S-110) to 554°F (S-111). 1,172 lb/hr of Dowtherm A enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 100 and 175 Btu/hr-ft2-°F respectively, leading to a total heat transfer area of 104 ft2. The total heat duty is 0.3 MMBtu/hr. There are 20 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 8 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$236,800. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-102) specification sheet on page 84 in Appendix IX on page 250.

Pump (**P-101**)

P-101 is a centrifugal pump used to pump the liquid MPDA from storage tank T-101 through stream S-101 to S-102 to the mixer (M-101) and heat exchanger (HX-101) to be vaporized. For a pressure change of 29 psi, the head developed is 68 ft, and the net work required is 0.38 HP. With a carbon steel construction, the total bare-module cost of the unit is \$100,806. Please refer to the Centrifugal Pump (P-101) specification sheet on page 98 and the Sample Calculations in Appendix IX on page 252.

Pump (P-102)

P-102 is a centrifugal pump used to pump the bottoms from distillation column D-101 through stream S-108 to S-109 to the mixer (M-101) to be recycled. For a pressure change of 23 psi, the head developed is 67 ft, and the net work required is 0.0038 HP. With a carbon steel construction, the total bare-module cost of the unit is \$100,426. Please refer to the Centrifugal Pump (P-102) specification sheet on page 99 and the Sample Calculations in Appendix IX on page 252.

Pump (*P-103*)

P-103 is a centrifugal pump used to pump water through S-116 to the absorber (A-102) to absorb the ammonia incoming from S-114. For a pressure change of 155 psi, the head developed is 362 ft, and the net work required is 0.74 HP. With a carbon steel construction, the total bare-module cost of the unit is \$138,090. Please refer to the Centrifugal Pump (P-103) specification sheet on page 100 and the Sample Calculations in Appendix IX on page 252.

Reactor 1 – Tubular Reactor (R-101)

In Reactor 1, the cyclization/deamination of MPDA to produce MPI with ammonia as a byproduct takes place at an overall conversion of 99 %. R-101 is comprised of four multitubular vessels with 15 tubes 685 ft in total length and nominal diameters of 6 inches, operating at 581°F and a pressure of 72.5 psia with a mass hourly space velocity (MHSV) of 0.6 lb/lb-hr over HZSM-5 catalysts. With a stainless steel shell-and-tube heat exchanger construction, the total heat transfer surface area is 17,800 ft². The total bare-module cost of the unit is \$2,567,280. Please refer to the Reactor 1 (R-101) specification sheet on page 106.

Reactor 2 – Packed Bed Reactor (R-102)

In Reactor 2, the MPI produced in R-101 is converted to PIC at an overall conversion of 99% in an endothermic dehydrogenation reaction. Aforementioned this conversion is idealized; this conversion was only used because it is based on the experimental data given from the bench scale experiments for the process. R-102 is comprised of 40 tubes 20 ft in total length and nominal diameters of 4 inches, operating at 554°F and a pressure of 42 psia over 1% Pd-SiO2/Al2O3 catalysts. With a stainless steel shell-and-tube heat exchanger construction, the total heat transfer surface area is 838 ft2. The total bare-module cost of the unit is \$97,360. Please refer to the Reactor 2 (R-102) specification sheet on page 107.

Feed Storage Tank (T-101)

T-101 is a floating roof storage tank that stores the liquid MPDA feed at ambient temperature and pressure. The tank has a storage capacity of 113,000 gallons of MPDA with a residence time of 7 days. MPDA is fed continuously from the tank to the system via S-101. The choice of the floating-roof tank is in compliance with current EPA regulations that dictate its usage for when, at the maximum atmospheric temperature at the plant site, the vapor pressure of the liquid is greater than 0.75 psia for storage of more than 40,000 gal. In our case, the vapor pressure is 2.5 psi at 275°F for 77,000 gallons. Using a cast-iron construction, the total bare-module cost of the unit is \$629,610. Please refer to the Feed Storage Tank specification sheet on page 110 and the Sample Calculations in Appendix IX on page 254.

Block (200)

Table C2. A list of equipment used in the process for the 200 block.

Unit #	Equipment Type	Function	Operating T (°F)	Operating P (psi)
B-201	Blower	Increases pressure of S-208 before running through R-202B	251	$\Delta P=17$ Discharge P = 32
B-202	Blower	Increases pressure of S-215 before running through R-202C	230	$\Delta P=15$ Discharge P = 30
B-203	Blower	Increases pressure of S-220 before running through F-201	276	$\Delta P=22$ Discharge P=38
F-201	Flash Vessel	Initial separation of organic compounds from vapor products in S- 227	32	15
HX-201	Heat Exchanger	Increases temperature of streams fed into R-201	626	30
HX-202A	Heat Exchanger	Decreases temperature of S-205 for feed into R-202A	100	19
HX-202B	Heat Exchanger	Decreases temperature of S-205 for feed into R-202A	77	19
HX-203	Heat Exchanger	Decreases temperature of S-212 before running through R-202B	77	20
HX-204	Heat Exchanger	Decreases temperature of S-219 before running through R-202C	77	20
HX-205	Heat Exchanger	Decreases temperature of S-226 before running through F-201	32	28
HX-206	Heat Exchanger	Increases temperature of S-230 before being fed into M-301	90	35
M-201	Mixer	Mixes streams S-119 and S-202 for subsequent feed into HX-201	79	30
M-202	Mixer	Mixes streams S-209 and S-211 for subsequent feed into HX-203	79	30
M-203	Mixer	Mixes streams S-216 and S-218 for subsequent feed into HX-204	79	38
M-204	Mixer	Mixes streams S-223 and S-225 for subsequent feed into HX-205	79	38
P-201	Pump	Increases pressure of S-210 before running through R-202B	77	$\Delta P=15$ Discharge P = 30
P-202	Pump	Increases pressure of S-217 before running through R-202C	77	$\Delta P=15$ Discharge P = 30
P-203	Pump	Increases pressure of S-224 before running through F-201	77	$\Delta P=30$ Discharge P = 46

Unit #	Equipment Type	Function	Operating T (°F)	Operating P (psi)
P-204	Pump	Increases pressure of S-229 before running through HX-206	32	$\Delta P=30$ Discharge P=45
R-201	Tubular Reactor	Converts 3-picoline to 3- cyanopyridine and water	626	29
R-202A	Semi-continuous stirred tank reactor	Converts 3-cyanopyridine to niacinamide (niacin)	77	15
R-202B	Semi-continuous stirred tank reactor	Converts 3-cyanopyridine to niacinamide (niacin)	77	15
R-202C	Semi-continuous stirred tank reactor	Converts 3-cyanopyridine to niacinamide (niacin)	77	16
SP-201	Splitter	Models the control valves used to split the flow of S-118	225	170

Blower (B-201)

B-201 is a centrifugal blower used to increase the pressure of the vapor stream S-208 by 17.3 psi, from 14.6 psia to 31.9 psia in S-209 before it is sent to the heat exchanger HX-203 to be slightly cooled. The power consumption of the unit is 2.8 HP. With a cast-iron construction, the total bare-module cost of the unit is \$5,490. Please refer to the Blower (B-201) specification sheet on page 70 and the Sample Calculations in Appendix IX on page 247.

Blower (B-202)

B-202 is a centrifugal blower used to increase the pressure of the vapor stream S-215 by 15 psi, from 15.1 psia to 30.1 psia in S-216 before it is sent to the heat exchanger HX-204 to be slightly cooled. The power consumption of the unit is 2.5 HP. With a cast-iron construction, the total bare-module cost of the unit is \$4,950. Please refer to the Blower (B-202) specification sheet on page 71 and the Sample Calculations in Appendix IX on page 247.

Blower (**B-203**)

B-203 is a centrifugal blower used to increase the pressure of the vapor stream S-222 by 22 psi, from 15.6 psia to 37.6 psia in S-223 before it is sent to the heat exchanger HX-205 to be slightly cooled. The power consumption of the unit is 3.2 HP. With a cast-iron construction, the total bare-module cost of the unit is

\$6,080. Please refer to the Blower (B-203) specification sheet on page 72 and the Sample Calculations in Appendix IX on page 247.

Flash Vessel (F-201)

F-201 is a vertical flash vessel for the separation of organic compounds from vapor products (mainly O_2) in S-227. The unit operates at 32°F and 15 psia with a residence time of 5 minutes. The height and diameter of the vessel is 12 and 3 ft respectively. With a steel (ASTM A516) construction, the total bare-module cost of the unit is \$535,640. Please refer to the Flash Vessel (F-201) specification sheet on page 81 and the Sample Calculations in Appendix IX on page 249.

Heat Exchanger (HX-201)

HX-201 is a floating head shell-and-tube heat exchanger that increases the temperature of the stream entering the third reactor R-201. S-203 on the tube side is heated from 159°F (S-203A) to 626°F (S-203). 10,400 lb/hr of Dowtherm A enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 200 and 143 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 209 ft². The total heat duty is 2.6 MMBtu/hr. There are 40 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 10 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$424,600. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-201) specification sheet on page 85 in Appendix IX on page 250.

Heat Exchanger (HX-202A)

HX-202A is a floating head shell-and-tube heat exchanger that models a partial condenser that decreases the temperature of the stream entering the first vessel of reaction train 4 (R-202A). The hot stream on the shell side is cooled from 626°F (S-205) to 100°F (S-206A). 146,390 lb/hr of cooling water enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 1,050 and 1,020 Btu/hr-ft²- °F respectively, leading to a total heat transfer area of 146 ft². The total heat duty is -4.4 MMBtu/hr.

There are 28 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 10 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$330,700. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-202A) specification sheet on page 86 in Appendix IX on page 250.

Heat Exchanger (HX-202B)

HX-202B is a floating head shell-and-tube heat exchanger that again models a partial condenser that further decreases the temperature of the stream entering the first vessel of reaction train 4 (R-202A). The hot stream on the shell side is cooled from 100°F (S-206A) to 77°F (S-206). 2,170,000 lb/hr of refrigerant enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 1,050 and 470 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 224 ft². The total heat duty is - 95,180 Btu/hr. There are 43 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 12 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$244,500. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-202B) specification sheet on page 87 in Appendix IX on page 250.

Heat Exchanger (HX-203)

HX-203 is a floating head shell-and-tube heat exchanger that models a partial condenser which decreases the temperature of the stream entering the second vessel of reactor train 4 (R-202B). The hot stream on the shell side is cooled from $79^{\circ}F$ (S-212) to $77^{\circ}F$ (S-213). 16,580 lb/hr of refrigerant enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 303 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 5 ft². The total heat duty is -7,220 Btu/hr. There is one 20 ft. tube with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 3 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$182,700. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-203) specification sheet on page 88 in Appendix IX on page 250.

Heat Exchanger (HX-204)

HX-204 is a floating head shell-and-tube heat exchanger that decreases the temperature of the stream, acting as a partial condenser, entering the third vessel of reactor train 4 (R-202C). The hot stream on the shell side is cooled from 79°F (S-219) to 77°F (S-220). 14,830 lb/hr of refrigerant enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 303 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 5 ft². The total heat duty is -6,460 Btu/hr. There is one 20 ft. tube with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 3 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$182,700. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-204) specification sheet on page 89 in Appendix IX on page 250.

Heat Exchanger (HX-205)

HX-205 is a floating head shell-and-tube heat exchanger that models a partial condenser that decreases the temperature of the stream entering the vapor liquid separator (F-201). The hot stream on the shell side is cooled from 79°F (S-226) to 32°F (S-227). 422,000 lb/hr of refrigerant enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 470 Btu/hr-ft2-°F respectively, leading to a total heat transfer area of 28 ft2. The total heat duty is -185,800 Btu/hr. There are five 20 ft. tubes with outer diameters of 1 in. The shell is 22 ft. in length and has a diameter of 6 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$230,200. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-205) specification sheet on page 90 in Appendix IX on page 250.

Heat Exchanger (HX-206)

HX-206 is a floating head shell-and-tube heat exchanger that increases the temperature of the bottoms leaving the vapor liquid separator (F-201). S-230 on the tube side is heated from 32°F (S-230) to 90°F (S-231). 185 lb/hr of hot water at 100°F enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 303 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 6 ft². The total heat duty is 223,490 Btu/hr. There is one 20 ft. tube with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 3 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$169,200. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-206) specification sheet on page 91 in Appendix IX on page 250.

Pump (P-201)

P-201 is a centrifugal pump used to pump liquid stream S-210 to be mixed, cooled, and sent to the second reactor in the cascade of reaction train 4. For a pressure change of 15 psi, the head developed is 29 ft, and the net work required is 0.28 hp. With a carbon steel construction, the total bare-module cost of the unit is \$113,740. Please refer to the Centrifugal Pump (P-201) specification sheet on page 101 and the Sample Calculations in Appendix IX on page 252.

Pump (P-202)

P-202 is a centrifugal pump used to pump liquid stream S-217 to be mixed, cooled, and sent to the third reactor in the cascade of reaction train 4. For a pressure change of 15 psi, the head developed is 29 ft, and the net work required is 0.28 hp. With a carbon steel construction, the total bare-module cost of the unit is \$113,740. This pump has the same specifications as P-201. Therefore, two of the same pumps can be purchased for P-201 and P-202. Please refer to the Centrifugal Pump (P-202) specification sheet on page 102 and the Sample Calculations in Appendix IX on page 252.

Pump (P-203)

P-203 is a centrifugal pump used to pump liquid stream S-224 to be mixed, cooled, and sent to the vapor liquid separator (F-201). For a pressure change of 30 psi, the head developed is 58 ft, and the net work required is 0.56 hp. With a carbon steel construction, the total bare-module cost of the unit is \$113,740. Please refer to the Centrifugal Pump (P-203) specification sheet on page 103 and the Sample Calculations in Appendix IX on page 252.

Pump (P-204)

P-204 is a centrifugal pump used to pump liquid stream S-229 to be heated through by the heat exchanger (HX-206). For a pressure change of 30 psi, the head developed is 57 ft, and the net work required is 0.55 hp. With a carbon steel construction, the total bare-module cost of the unit is \$103,090. This pump has the same specifications as P-203. Therefore, two of the same pumps can be purchased for P-203 and P-204. Please refer to the Centrifugal Pump (P-204) specification sheet on page 104 and the Sample Calculations in Appendix IX on page 252.

Reactor 3 (R-201)

In the third reactor, the exothermic ammoxidation to produce 3-cyanopyridines (and water as a byproduct) using ammonia and oxygen with PIC takes place at an overall conversion of 99%. As mentioned before, the high conversion rates are taken as an ideal case for the design process. These conversion rates were seen in the bench-scale experiments for the Lonza patent process. R-201 is comprised of 2,000 tubes 42 ft in total length and diameters of 1.8 inches, operating at 554°F and a pressure of 42 psia over V_2O_5 , TiO₂, ZrO₂, and MoO₃ catalysts. With a stainless steel shell-and-tube heat exchanger construction, the total heat transfer surface area is 39,580 ft². The total bare-module cost of the unit is \$2,286,270. Please refer to the Reactor 3 (R-201) specification sheet on page 108.

Reactor 4 (R-202A,B,C)

In Reactor 4, the biohydrolysis of 3-cyanopyridine produces niacinamide and water as a byproduct with an overall conversion of 99%. R-202A is the first in a series of three stirred-tank semi-batch reactors with a continuous feed of 3-cyanopyridine via S-206 at concentrations of between 10–20 wt% in the direction of process flow. The reactor also houses the whole cell biocatalyst *R. rhodochrous* J1 immobilized in polyacrylamide particles. The enzymatic hydration produces the desired amide at >99.3% selectivity at 100% conversion. The reactors have a volume of 6,975 ft³ each and a residence time of 4 hours each, and will operate at 77°F and 15 psia. Each vessel will be equipped with two turbine agitators with an agitation rate of 110 rpm for each impeller. With a carbon steel (SA-285 Grade C) construction, the total bare-module cost of one unit is \$918,160 making the total bare-module cost of the entire cascade to be \$2,754,480. Please refer to the Stirred Tank Reactor specification sheet on page 109 and the Sample Calculations in Appendix IX on page 253.

Block (300)

Table C3. A list of equipment used in the process for the 300 block.

Unit #	Equipment Type	Function	Operating T (°F)	Operating P (psi)
AS-301	Packed Bed Air Stripper	Removes NH3 from S-319 so that the excess water can be release to surroundings	68	15
C-301	Compressor	Increases pressure of S-310 before entering HX-304	887	∆P=54 Discharge P=68
DC-301	Decolorizing Unit	Removed red dye leftover from biocatalyst in R-202	77	20
DR-301	Dryer	Allows heated nitrogen to separate the mixture in S-307 to product in S-316 and recycled S-310	387	15
F-301	Flash Vessel	Separate N2 for recycle to the dryer; remainder to stream to liquid recycle, feed is S-312	32	58
HX-301	Heat Exchanger	Increases temperature of S-301 before running through DC-301	77	25
HX-302	Heat Exchanger	Increases temperature of S-306 before running through DR-301	392	30
HX-303	Heat Exchanger	Increases temperature of S-308 before running through DR-301	392	20
HX-304A	Heat Exchanger	Decreases temperature of S-311 before entering F-301	100	63
HX-304B	Heat Exchanger	Decreases temperature of S-311 before entering F-302	32	58
M-301	Mixer	Mixes the streams entering (S-201, S-231, S-318)	31	35
P-301	Pump	Increases pressure of S-305 before running through HX-302	77	ΔP=25 Discharge P=40
SP-301	Splitter	Models the control valves used to split S- 317 into a purge and recycled stream	32	48
SP-302	Splitter	Models the control valves used to split S- 313 into a purge and recycled stream	32	48
T-301	Storage Tank	Stores the free-flowing powder form of the niacinamide product exiting S-316	77	15
WS-301	Wet Scrubber	Cleans ammonia out of S-314 so it can be vented to the atmosphere	210	48

Compressor (C-301)

C-301 is a centrifugal compressor used to increase the pressure of the vapor stream S-310 by 53.5 psi, from 14.5 psia to 68 psia in S-311 before it is sent to the heat exchanger (HX-304A). The inlet volumetric flow rate is 12,915 ft³/min. The power consumption of the unit is 2,253 HP. With a cast-iron construction, the total bare-module cost of the unit is \$2,331,340. Please refer to the Compressor (C-301) specification sheet on page 76 and the Sample Calculations in Appendix IX on page 248.

Decolorizing Unit (DC-301)

DC-301 is a vertical vessel filled with activated carbon that acts as an adsorption column to remove the red pigment found in S-302. The unit operates at 77°F and 25 psia. The unit was modeled as a vertical pressure vessel. The height and diameter of the vessel is 16 and 4 ft respectively. With a carbon steel (SA-285 Grade C) construction, the total bare-module cost of the unit is \$149,787. Please refer to the Decolorizing Unit (DC-301) specification sheet on page 79 and the Sample Calculations in Appendix IX on page 239 and page 251.

Dryer (DR-301)

DR-301 is a commercial Wyssmont TURBO-DRYER® system that dries the wet stream of niacinamide (S-307) to its final form of free-flowing powder (S-316). The drying medium used is a hot inert stream of nitrogen gas from S-309. The system has an evaporation rate of 650 lb/hr. With a stainless steel interior, the total bare-module cost of the unit is \$1,657,000. Please refer to the Dryer specification sheet on page 80.

Flash Vessel (F-301)

F-301 is a vertical flash vessel to separate the nitrogen to be recycled back via S-313 and ammonia and water to be recycled back via S-317. The unit operates at 32°F and 58 psia with a residence time of 5 minutes. The height and diameter of the vessel is 12 and 4 ft respectively. With a steel (ASTM A516)

construction, the total bare-module cost of the unit is \$479,540. Please refer to the Flash Vessel (F-301) specification sheet on page 82 and the Sample Calculations in Appendix IX on page 249.

Heat Exchanger (HX-301)

HX-301 is a floating head shell-and-tube heat exchanger that increases the temperature of stream S-302 entering the decolorizing unit (DC-301). S-301 on the tube side is heated from 31°F (S-301) to 77°F (S-302). 1,020 lb/hr of hot water at 100°F enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 1,050 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 21 ft². The total heat duty is 1.24 MMBtu/hr. There are four 20 ft. tubes with outer diameters of 1 in. The shell is 22 ft. in length and has a diameter of 4 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$210,100. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-301) specification sheet on page 92 in Appendix IX on page 250.

Heat Exchanger (HX-302)

HX-302 is a floating head shell-and-tube heat exchanger that models an evaporator which increases the temperature of stream S-307 entering the dryer (DR-301). S-306 on the tube side is heated from 77°F (S-306) to 392°F (S-307). 24,000 lb/hr of steam at 450 psia enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 530 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 950 ft². The total heat duty is 28.9 MMBtu/hr. There are 182 tubes of 20 ft. in length with outer diameters of 1 in. The shell is 22 ft. in length and has a diameter of 20 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$391,400. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-302) specification sheet on page 93 in Appendix IX on page 250.

Heat Exchanger (HX-303)

HX-303 is a floating head shell-and-tube heat exchanger that increases the temperature of stream S-309 entering the dryer (DR-301). S-308 on the tube side is heated from 77°F (S-308) to 392°F (S-309). 2 lb/hr of steam at 450 psia enters the shell side to heat the streams. The tube and shell side heat transfer coefficients are 1,000 and 30 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 5 ft². The total heat duty is 2,430 Btu/hr. There is one 20 ft. tube with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 3 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$180,100. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-303) specification sheet on page 94 in Appendix IX on page 250.

Heat Exchanger (HX-304A)

HX-304A is a floating head shell-and-tube heat exchanger, modeling a partial condenser, decreases the temperature of the stream leaving the dryer (DR-301). The hot stream on the shell side is cooled from 887°F (S-311) to 100°F (S-312A). S-311 is at an unusually high temperature because the compressor preceding this heat exchanger increases the temperature of the stream from 387°F to 887°F with the pressure increase of 53.5 psi. 1,099,000 lb/hr of cooling water enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 1050 and 265 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 1411 ft². The total heat duty is -32.8 MMBtu/hr. There are 270 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 24 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$802,500. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-304A) specification sheet on page 95 in Appendix IX on page 250.

Heat Exchanger (HX-304B)

HX-304B is a floating head shell-and-tube heat exchanger that also acts as a partial condenser which further decreases the temperature of the stream leaving the dryer (DR-301) before it enters the vapor liquid separator (F-301). The hot stream on the shell side is cooled from 100°F (S-312A) to 32°F (S-312). 3,997,250 lb/hr of refrigerant enters the tube side to cool the streams. The tube and shell side heat transfer coefficients are 250 and 470 Btu/hr-ft²-°F respectively, leading to a total heat transfer area of 242 ft². The total heat duty is -1.75 MMBtu/hr. There are 47 tubes of 20 ft. with an outer diameter of 1 in. The shell is 22 ft. in length and has a diameter of 12 in. with 18 baffles. With a carbon steel construction, the total bare-module cost of the unit is \$280,300. All calculations were performed using ASPEN Plus Exchanger Design and Rating (EDR) and cost using ASPEN Process Economic Analyzer (IPE). Please refer to the Heat Exchanger (HX-304B) specification sheet on page 96 and in Appendix IX on page 250.

Neutralizer (N-301)

N-301 is a vertical vessel that neutralizes the product stream, forming a slurry of ammonium nicotinate that dissolves in ammonia. The unit operates at 77°F and 20 psia. The unit was modeled as a vertical pressure vessel with agitators. The height and diameter of the vessel is 14.2 and 3.5 ft respectively. The vessel is fitted with two pitched blade turbines, each requiring a power of 2.89 hp, rotating at 200 rpm to mix the contents of the vessel well, ensuring thorough solubility. With a carbon steel (SA-285 Grade C) construction, the total bare-module cost of the unit is \$142,700. Please refer to the Neutralizer (N-301) specification sheet on page 97 and the Sample Calculations in Appendix IX on page 251 and page 245.

Centrifugal Pump (P-301)

P-301 is a centrifugal pump used to pump liquid stream S-305 from the neutralizer to be heated through by the heat exchanger (HX-302) before being sent to the dryer. For a pressure change of 25 psi, the head developed is 56 ft, and the net work required is 1.7 hp. With a carbon steel construction, the total baremodule cost of the unit is \$120,600. Please refer to the Centrifugal Pump (P-301) specification sheet on page 105 and the Sample Calculations in Appendix IX on page 252.

Product Storage Bin (T-301)

T-301 is a cone roof storage bin for the free-flowing powder form of the niacinamide product at ambient temperature and pressure. The bin has a storage capacity of 93,000 gallons of niacinamide with a residence time of 7 days. Niacinamide enters the bin continuously via S-316. Using a carbon steel construction, the total bare-module cost of the unit is \$434,000. Please refer to the Product Storage Tank specification sheet on page 111 and the Sample Calculations in Appendix IX on page 254.

Mixers (M-101, M-201, M-202, M-203, M-204, M-301) and Splitters (SP-201, SP-301, SP-302)

All the mixers and splitters in the process are T's in the pipeline. No purchase cost is associated with the splitters and mixers as they are merely pipeline.

Mixers are used to mix multiple streams together before they are fed into unit equipment:

M-101 mixes S-102 and S-109 for feed into HX-101;

M-201 mixes streams S-119 and S-202 for subsequent feed into HX-201;

M-202 mixes streams S-209 and S-211 for subsequent feed into HX-203;

M-203 mixes streams S-216 and S-218 for subsequent feed into HX-204;

M-204 mixes streams S-223 and S-225 for subsequent feed into HX-205;

M-301 combines split stream S-201, S-231, and recycle stream S-318 to be fed into HX-301.

Splitters are used to redirect part of a well flow fluid circulation from its regular practice to smaller pipelines by managing a sequence of control valves:

SP-201 splits S-118 into two streams (S-201, fraction of 0.011, and S-202, fraction of 0.989) in which S-202 contains the excess flow of reactants not needed in the reaction;

SP-301 splits S-317 to a purge (S-319, fraction of 0.1) and recycle stream (S-318, fraction of 0.9);

SP-302 splits S-313 to a purge (S-314, fraction of 0.1) and recycle stream (S-315, fraction of 0.9).

D. EQUIPMENT SPECIFICATION SHEETS

The following pages list the specification sheets that detail each unit in the process.

Page	Unit #	Equipment
66	A-101	Absorber
67	A-101	Condenser, Reboiler
68	A-102	Absorber
69	A-102	Condenser, Reboiler
70	B-201	Blower
71	B-202	Blower
72	B-203	Blower
73	C-101	Compressor
74	C-102	Compressor
75	C-102	Compressor
76	C-301	Compressor
77	D-101	Distillation
78	D-101	Condenser, Reboiler
79	D-101	Decolorizer
80	DR-301	Dryer
80	F-201	Flash Vaporizer
82	F-301	Flash Vaporizer
83	HX-101	Heat Exchanger
84	HX-101 HX-102	
85		Heat Exchanger
	HX-201	Heat Exchanger
86	HX-202A	Heat Exchanger
87	HX-202B	Heat Exchanger
88	HX-203	Heat Exchanger
89	HX-204	Heat Exchanger
90	HX-205	Heat Exchanger
91	HX-206	Heat Exchanger
92	HX-301	Heat Exchanger
93	HX-302	Heat Exchanger
94	HX-303	Heat Exchanger
95	HX-304A	Heat Exchanger
96	HX-304B	Heat Exchanger
97	N-301	Neutralizer
98	P-101	Pump
99	P-102	Pump
100	P-103	Pump
101	P-201	Pump
102	P-202	Pump
103	P-203	Pump
104	P-204	Pump
105	P-301	Pump
106	R-101	Tubular Reactor
107	R-102	Packed Bed Reactor
108	R-201	Tubular Reactor
109	R-202A,B,C	Stirred-Tank Rectors in Series
110	T-101	Storage Tank
111	T-301	Storage Tank

		Absorbe	r		
Identification:	Item:	Absorber			
	Item No.:	A-101		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/Al
	C _p (\$):	791,116*		С _{вм} (\$):	3,291,044
Function: Separates O ₂ , H ₂ and	d N ₂ from ammonia	a, water, niacinami	de and the remaining he	avy components	in the bottoms.
Operation: Continuous					
	S-112	Bottoms S-119	Overhead S-113		
	Inlet	Outlet	Outlet		
Materials Handled:					
Total Flow (lb/hr):	3,307	2,650	656		
Volumetric Flow (ft ³ /hr):	36,436	54	14,104		
Component Flows (lb/hr):					
O_2	0	0	0		
H_2	170	Trace	170		
N_2	0	0	0		
Ammonia	485	Trace	485		
H_2O	0	0	0		
CO_2	0	0	0		
MPDA	0.002	0.002	Trace		
3-methylpiperidine	28	0.07	28		
3-picoline	2,624	2,624	1		
3-cyanopyridine	0	0	0		
Niacinamide	0	0	0		
Temperature (°F):	554	366	6		
Pressure (psi):	42.2	40	40		
Vapor Fraction:	1	< 0.001	1		
Design Data:					
- Type:	Absorption Colu	mn			
Material:	Carbon Steel				
Length (ft):	20.0				
Diameter (in):	10.0				
Number of stages:	20				
Utilities:					
450 psi Steam (lb/hr):	1,401				
Refrigeration (ton/day):	76,943				

		Conden	ser			
Identification:	Item:	Fixed Tube Sh	eet Heat Exchanger			
	Item No.:	A-101-conden	ser		Date:	4/10/13
	No. Required:	1			By:	JS/AC/PB/AL
					C _{BM} (\$):	65,870
Design Data:						
Туре:	Heat Exchange	r	Tube			
Refux Ratio:	1		Number of tubes:	44		
$T_{h,i}$ (°F):	274	Stage 2	Length (ft):	20		
$T_{h,o}$ (°F):	6	Stage 1 / S-113	D_{o} (in):	1		
Tube side h (Btu/hr-ft ²):	250		Shell			
Shell side h (Btu/hr-ft ²):	2632		Length (ft):	20		
Total heat transfer A (ft ²):	226		D (in):	10		
Total heat duty (MMBtu/hr):	-2.8		Number of baffles:	16		
Material:	Carbon Steel					

		Reboile	er			
Identification:	Item: Item No.:		1		Date:	4/10/13
	No. Required:				Ву: С _{вм} (\$):	JS/AC/PB/AL 55,480
Design Data:						
Type:	Heat Exchange	r	<u>Tube</u> Number of tubes:	39		
T _{c,i} (°F):	366	Stage 20	Length (ft):	20		
$T_{c,o}$ (°F):	444	-	D_{o} (in):	1		
Tube side h (Btu/hr-ft ²):	1000		Shell			
Shell side h (Btu/hr-ft ²):	200		Length (ft):	13		
Total heat transfer A (ft^2) :	202		D (in):	21		
Total heat duty (MMBtu/hr):	1.7		Number of baffles:	9		
Material:	Carbon Steel					

		Absorbe	er		
Identification:	Item:	Absorber			
	Item No.:	A-102		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C_{p} (\$):	548,989		C _{BM} (\$):	2,283,795
Function: Separates H ₂ via ex	traction with water				
Operation: Continuous			8		
	Inlet (S-114)	Inlet (S-117)	<i>Outlet (S-118)</i>	Outlet (S-115)	
Materials Handled:	111101 (15-11-4)	Inter (5-117)	<i>Ounce</i> (5-110)	<i>Ounce</i> (5-115)	
Total Flow (lb/hr):	656	1,200	1682	175	
Volumetric Flow (ft ³ /hr):	5,536	1,200	35	1845	
Component Flows (lb/hr):	5,550	19	55	1045	
O_2	0	0	0	0	
H_2	170	0	Trace	170	
N_2	0	0	0	0	
Ammonia	485	0	481	4	
H_2O	0	1200	1200	Trace	
CO_2	0	0	0	0	
MPDA	Trace	0	0	0	
3-methylpiperidine	Trace	0	Trace	Trace	
3-picoline	1	0	1	Trace	
3-cyanopyridine	0	0	0	0	
Niacinamide	0	0	0	0	
Temperature (°F):	314	91	225	-118	
Pressure (psi):	170	170	170	170	
Vapor Fraction:	1	0	< 0.001	1	
Design Data:					
Type:	Absorption Colu	ımn			
Material:	Carbon Steel				
Length (ft):	20.0				
Diameter (in):	10.0				
Number of stages:	10				
¥7,•1•,•					
Utilities:	(0)				
450 psi Steam (lb/hr):	682 33 508				
Refrigeration (ton/day): Comments: * cost reflects em	33,598				

		Conden	ser			
Identification:	Item: Item No.: No. Required:	A-102-conden	neet Heat Exchanger nser		Date: By: C _{BM} (\$):	4/10/13 JS/AC/PB/AL 73,300
Design Data:						
Type:	Heat Exchange	r	Tube			
Refux Ratio:	1		Number of tubes:	34		
$T_{h,i}$ (°F):	90	Stage 2	Length (ft):	20		
$T_{h,o}$ (°F):	-118	Stage 1 / S-113	D_{o} (in):	1		
Tube side h (Btu/hr-ft ²):	250		Shell			
Shell side h (Btu/hr-ft ²):	1019		Length (ft):	20		
Total heat transfer A (ft ²):	177		D (in):	10		
Total heat duty (MMBtu/hr):	-1.2		Number of baffles:	16		
Material:	Carbon Steel					

		Reboile	r			
Identification:	Item:	: U-tube kettle v	aporizer			
	Item No.:	: A-102-reboiler			Date:	4/10/13
	No. Required:	: 1			By:	JS/AC/PB/AL
					C _{BM} (\$):	42,560
Design Data:						
Type:	Heat Exchange	er	Tube			
			Number of tubes:	6		
T _{c,i} (°F):	146	Stage 9	Length (ft):	20		
$T_{c,o}$ (°F):	225	Stage 10	D_o (in):	1		
Tube side h (Btu/hr-ft ²):	1000		Shell			
Shell side h (Btu/hr-ft ²):	526		Length (ft):	13		
Total heat transfer A (ft^2):	202		D (in):	9		
Total heat duty (MMBtu/hr):	0.8		Number of baffles:	9		
Material:	Carbon Steel					

	(Centrifugal Blo	wer		
Identification:	Item:	Blower			
	Item No.:	B-201		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	2,555		C _{BM} (\$):	5,492
Function: Maintains pressure f					
Operation: Continuous					
	S-208	S-209			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	148	148			
Volumetric Flow (ft ³ /hr):	1,802	1,096			
Component Flows (lb/hr):					
O_2	135	135			
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.004	0.004			
H_2O	3	3			
CO_2	7	7			
MPDA	Trace	Trace			
3-methylpiperidine	2	2			
3-picoline	0.7	0.7			
3-cyanopyridine	0.1	0.1			
Niacinamide	Trace	Trace			
Temperature (°F):	77	251			
Pressure (psi):	14.6	31.9			
Vapor Fraction:	1	1			
Design Data:					
Material:	Cast Iron				
Net Work Requirement (hp):	2.8				
Δ Pressure (psi):	17.3				
Compression Ratio:	2.2				
Utilities:					
Electricity (kW):	1.7				
Comments:					
Community.					

	Centrifugal Blower						
Identification:	Item:	Blower					
	Item No.:	B-202		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AL		
	C_{p} (\$):	2,304		С _{вм} (\$):	4,954		
Function: Maintains pressure	for stream S-215.						
Operation: Continuous							
	S-215	S-216					
	Inlet	Outlet					
Materials Handled:							
Total Flow (lb/hr):	148	148					
Volumetric Flow (ft ³ /hr):	1,740	1,123					
Component Flows (lb/hr):							
O_2	135	135					
H_2	0	0					
N_2	0.4	0.4					
Ammonia	0.004	0.004					
H_2O	3	3					
CO_2	7	7					
MPDA	Trace	Trace					
3-methylpiperidine	2	2					
3-picoline	0.7	0.7					
3-cyanopyridine	0.1	0.1					
Niacinamide	Trace	Trace					
Temperature (°F):	77	230					
Pressure (psi):	15.1	30.1					
Vapor Fraction:	1	1					
Design Data:							
Material:	Cast Iron						
Net Work Requirement (hp):	2.5						
Δ Pressure (psi):	15						
Compression Ratio:	2.0						
-							
Utilities:							
Electricity (kW):	1.5						
• · · ·							
Comments:							

	(Centrifugal Bl	ower		
Identification:	Item:	Blower			
	Item No.:	B-203		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	2,828		C _{BM} (\$):	6,080
Function: Maintains pressure f	for stream S-208.				
Operation: Continuous					
	S-222	S-223			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	148	148			
Volumetric Flow (ft ³ /hr):	1,682	959			
Component Flows (lb/hr):					
O_2	135	135			
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.004	0.004			
H_2O	3	3			
CO_2	7	7			
MPDA	Trace	Trace			
3-methylpiperidine	2	2			
3-picoline	0.7	0.7			
3-cyanopyridine	0.1	0.1			
Niacinamide	Trace	Trace			
Temperature (°F):	77	276			
Pressure (psi):	15.6	37.6			
Vapor Fraction:	1	1			
Design Data:					
Material:	Cast Iron				
Net Work Requirement (hp):	3.2				
Δ Pressure (psi):	22				
Compression Ratio:	2.4				
Utilities:	2.0				
Electricity (kW):	2.0				
Comments:					

	Cei	ntrifugal Con	npressor		
Identification:	Item:	Compressor	•		
	Item No.:	C-101		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	40,335		C _{BM} (\$):	86,719
Function: Maintains pressure	for stream S-104.				
Operation: Continuous					
	S-104	S-105			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	3,340	3,340			
Volumetric Flow (ft ³ /hr):	8,642	3,915			
Component Flows (lb/hr):					
O_2	0	0			
H_2	0	0			
N_2	0	0			
Ammonia	Trace	Trace			
H_2O	0	0			
CO_2	0	0			
MPDA	3,340	3,340			
3-methylpiperidine	0.002	0.002			
3-picoline	0	0			
3-cyanopyridine	0	0			
Niacinamide	0	0			
Temperature (°F):	527	560			
Pressure (psi):	33.5	72.5			
Vapor Fraction:	1	1			
Design Data:					
Material:	Cast Iron				
Net Work Requirement (hp):	25.3				
Δ Pressure (psi):	39				
Compression Ratio:	2.2				
Utilities: Electricity (kW):	16.5				
Commenter					
Comments:					

	Cei	ntrifugal Compresson	r	
Identification:	Item:	Compressor		
	Item No.:	C-102	Date:	4/10/13
	No. Required:	1	By:	JS/AC/PB/AI
	C _p (\$):	94,138	C _{BM} (\$):	202,397
Function: Maintains pressure f	for stream S-104.			
Operation: Continuous				
	S-107	S-110		
	Inlet	Outlet		
Materials Handled:				
Total Flow (lb/hr):	3,307	3,307		
Volumetric Flow (ft ³ /hr):	30,087	7,563		
Component Flows (lb/hr):				
O_2	0	0		
H_2	0	0		
N_2	0	0		
Ammonia	485	485		
H_2O	0	0		
CO_2	0	0		
MPDA	0.002	0.002		
3-methylpiperidine	2,822	2,822		
3-picoline	0	0		
3-cyanopyridine	0	0		
Niacinamide	0	0		
Temperature (°F):	266	393		
Pressure (psi):	14.7	72.5		
Vapor Fraction:	1	1		
Design Data:				
Material:	Cast Iron			
Net Work Requirement (hp):	81.6			
Δ Pressure (psi):	17.3			
Compression Ratio:	4.9			
Utilities:				
Electricity (kW):	54.6			
Comments:				

Centrifugal Compressor								
Identification:	Item:	Compressor						
	Item No.:	C-103			Date:	4/10/13		
	No. Required:	1			By:	JS/AC/PB/AL		
	C _p (\$):	118,025			C _{BM} (\$):	253,753		
Function: Maintains pressure								
Operation: Continuous								
	S-113	S-114						
	Inlet	Outlet						
Materials Handled:								
Total Flow (lb/hr):	656	656						
Volumetric Flow (ft ³ /hr):	14,104	5,536						
Component Flows (lb/hr):								
O_2	0	0						
H_2	170	170						
N_2	0	0						
Ammonia	485	485						
H_2O	0	0						
CO_2	0	0						
MPDA	Trace	Trace						
3-methylpiperidine	Trace	Trace						
3-picoline	1	1						
3-cyanopyridine	0	0						
Niacinamide	0	0						
Temperature (°F):	6	314						
Pressure (psi):	40	170						
Vapor Fraction:	1	1						
Design Data:								
Material:	Cast Iron							
Net Work Requirement (hp):	111.5							
Δ Pressure (psi):	17.3							
Compression Ratio:	4.3							
Utilities:	75.0							
Electricity (kW):	/3.0							
Comments:								
Comments.								

Centrifugal Compressor								
Identification:	Item:	Compressor	-					
	Item No.:	C- 301		Date:	4/10/13			
	No. Required:	1		By:	JS/AC/PB/AL			
	C_{p} (\$):	1,084,345		C _{BM} (\$):	2,331,342			
Function: Maintains pressure f	for stream S-310.							
Operation: Continuous			*					
	S-310	S-311						
	Inlet	Outlet						
Materials Handled:								
Total Flow (lb/hr):	22,481	22,481						
Volumetric Flow (ft ³ /hr):	774,892	262,832						
Component Flows (lb/hr):		2						
O_2	2	2						
H_2	0	0						
N_2	309	309						
Ammonia	54	54						
H_2O	22,113	22,113						
CO_2	3	3						
MPDA	0	0						
3-methylpiperidine	0	0						
3-picoline	0	0						
3-cyanopyridine	0	0						
Niacinamide	0	0						
Temperature (°F):	387	887						
Pressure (psi):	14.5	68						
Vapor Fraction:	1	1						
Design Data:								
Material:	Cast Iron							
Net Work Requirement (hp):	2253.0							
Δ Pressure (psi):	17.3							
Compression Ratio:	4.7							
Utilities:	1562 1							
Electricity (kW):	1563.1							
Comments:								

Distillation Tower								
Identification:	Item:	Distillation						
	Item No.:	D-101		Date:	4/10/13			
	No. Required:	1		By:	JS/AC/PB/AI			
	C_{p} (\$):	967,255		C _{BM} (\$):	4,023,779			
Function: Separates MPDA fro	om ammonia and 3	methylpiperidine for	or recycling.					
Operation: Continuous								
	S-106	Overhead S-107	Bottoms S-108					
	Inlet	Outlet	Outlet					
Materials Handled:								
Total Flow (lb/hr):	3,340	3,307	33					
Volumetric Flow (ft ³ /hr):	8,707	29,720	0.7					
Component Flows (lb/hr):								
O_2	0	0	0					
H_2	0	0	0					
N_2	0	0	0					
Ammonia	485	485	Trace					
H_2O	0	0	0					
CO_2	0	0	0					
MPDA	33	Trace	33					
3-methylpiperidine	2,822	2,822	Trace					
3-picoline	0	0	0					
3-cyanopyridine	0	0	0					
Niacinamide	0	0	0					
Temperature (°F):	581	266	379					
Pressure (psi):	71.6	14.7	14.7					
Vapor Fraction:	1	1	< 0.001					
Design Data:								
Type:	Pressure Vessel							
Material:	Carbon Steel							
Length (ft):	20.0							
Diameter (ft):	1.0							
Number of stages:	40							
Utilities: Cooling Water (lb/hr):	231,886							
450 psi Steam (lb/hr):	5,304							
Comments: * cost reflects emt	,							

		Condens	ser			
Identification:	Item:	Fixed Tube Sh	neet Heat Exchanger			
	Item No.:	D-101-conden	iser		Date:	4/10/13
	No. Required:	1			By:	JS/AC/PB/AL
	-				C _{BM} (\$):	59,060
Design Data:						
Tupor	Uast Eysbongs		Tuba			
Type:	Heat Exchange	ſ	<u>Tube</u>			
Refux Ratio:	1		Number of tubes:	52		
$T_{h,i}$ (°F):	306	Stage 2	Length (ft):	20		
$T_{h,o}$ (°F):	266	Stage 1 / S-107	D_{o} (in):	1		
Total heat duty (MMBtu/hr):	-6.9		Shell			
Material:	Carbon Steel		Length (ft):	20		
			D (in):	12		
			Number of baffles:	16		

		Reboile	r			
Identification:	Item:	U-tube kettle v	aporizer			
	Item No.:	D-101-reboiler			Date:	4/10/13
	No. Required:	1			By:	JS/AC/PB/AL
	_				C _{BM} (\$):	85,980
Design Data:						
Type:	Heat Exchange	r	Tube			
			Number of tubes:	176		
T _{c,i} (°F):	318	Stage 40	Length (ft):	20		
$T_{c,o}$ (°F):	402	S-108	D_{o} (in):	1		
Tube side h (Btu/hr-ft ²):	1000		Shell			
Shell side h (Btu/hr-ft ²):	200		Length (ft):	13		
Total heat transfer A (ft ²):	143		D (in):	21		
Total heat duty (MMBtu/hr):	6.4		Number of baffles:	9		
Material:	Carbon Steel					

Item:Item No.:Io. Required: C_p (\$):niacin product.S-302Inlet	S-304	Date: By: C _{BM} (\$):	4/10/13 JS/AC/PB/A1 149,787
Io. Required: C _p (\$): niacin product. S-302	1 38,089 S-304	By:	JS/AC/PB/Al
C _p (\$): niacin product.	38,089 S-304	-	
s-302	S-304	С _{ВМ} (\$):	149,787
S-302	S-304		
8			
8		5	
Inlet	×		
8	Outlet		
25,619	25,619		
465	465		
	1		
0.02	0.02		
Trace	Trace		
0.002	0.002		
54	54		
22,113	22,113		
0.4	0.4		
0.002	0.002		
27	27		
23	23		
29	29		
3,372	3,372		
77	77		
< 0.001	< 0.001		
°	¥	`	
urbon steel			
)			
.9			
9			
I			
	465 0.02 Trace 0.002 54 22,113 0.4 0.002 27 23 29 3,372 77 25	465 465 0.02 0.02 Trace Trace 0.002 0.002 54 54 $22,113$ $22,113$ 0.4 0.4 0.002 0.002 27 27 23 23 29 29 $3,372$ $3,372$ 77 77 25 20 <0.001 <0.001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Identification:	Item:	uous Turbo- Dryer			
Identification:	Item No.:	Dryer DR-301		Date	: 4/10/13
	No. Required:	1		By	
	-	-		•	
	C _p (\$):	804,369		C _{BM} (\$):	1,657,000
Function: Dries off ammonia a	and water, leaving a	dry powdered forr	n of niacinamide p	roduct	
Operation: Continuous			8	1	8
	Inlet (S-309)	Inlet (S-315)	Inlet (S-307)	<i>Outlet (S-310)</i>	Outlet (1-316)
Materials Handled:	, í				
Total Flow (lb/hr):	31	283	25,619	22,481	3,452
Volumetric Flow (ft ³ /hr):	517	1,104	380,573	774,892	$\begin{array}{c} 3,452\\ 44\\ \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $
Component Flows (lb/hr):					
O_2	0	2	0.2	2	0
H_2	0	0	0	0	0
N_2	31	278	0.002	309	0
Ammonia	0	0.03	54	54	0
H_2O	0	0.2	22,113	22,113	0
CO_2	0	3	0.4	3	0
MPDA	0	0	0.002	0	0.002
3-methylpiperidine	0	0	27	0	27
3-picoline	0	0	23	0	23
3-cyanopyridine	0	0	29	0	29
Niacinamide	0	0	3372	0	3372
Temperature (°F):	392	32	392	387	387
Pressure (psi):	19.5	48	29.9	14.5	14.5
Vapor Fraction:	1	1	1	1	0
Design Data:					
Evaporation Rate (lb/hr):	650.0				
Material:	Stainless steel				
Diameter (ft):	20				
Height (ft):	23				
Utilities:					
Comments:					

	Va	por Liquid Se	eparator		
Identification:	Item:	Flash	•		
	Item No.:	F-201		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	128,760		C _{BM} (\$):	535,640
Function: Separates O2, H2 ar		ia, water, niacinami	de and the remaining		in the bottoms.
Operation: Continuous					
Operation: Continuous	S-227	Overhead S-228	Bottoms S-229		
	Inlet	Outlet	Outlet		
Materials Handled:	met	Ounci	Ounce		
Total Flow (lb/hr):	5,795	145	5,650		
Volumetric Flow (ft^3/hr):	917	1,563	75		
Component Flows (lb/hr):		-,			
O_2	136	135	0.2		
H_2	0	0	0		
N_2	0.4	0.4	Trace		
Ammonia	0.08	0.001	0.08		
H_2O	2,199	0.5	2,198		
CO_2	7	7	0.3		
MPDA	0.002	Trace	0.002		
3-methylpiperidine	28	1	27		
3-picoline	24	0.3	23		
3-cyanopyridine	29	0.03	29		
Niacinamide	3372	Trace	3372		
Temperature (°F):	32	32	32		
Pressure (psi):	27.6	15	15		
Vapor Fraction:	0.029	1	0		
Design Data:					
Type:	Pressure Vessel				
Material:	Carbon Steel				
Length (ft):	12.0				
Diameter (ft):	3.0				
Utilities:					
Comments:					

	Va	por Liquid Se	parator		
Identification:	Item:	Flash	•		
	Item No.:	F-301		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	115,273		С _{вм} (\$):	479,535
Function: Separates 3-methylp	piperidine, 3-picolii	ne and 3-cyanopyric	line from stream O ₂ ,		CO ₂ effluent
Operation: Continuous					
-1	S-312	Overhead S-313	Bottoms S-317		
	Inlet	Outlet	Outlet		
Materials Handled:					
Total Flow (lb/hr):	22,481	315	22,166		
Volumetric Flow (ft ³ /hr):	1,365	1,016	349		
Component Flows (lb/hr):	ŕ				
O_2	2	2	0.001		
H_2	0	0	0		
N_2	309	309	0.002		
Ammonia	54	0.03	54		
H_2O	22,113	0.2	22,113		
CO_2	3	3	0.02		
MPDA	0	0	0		
3-methylpiperidine	0	0	0		
3-picoline	0	0	0		
3-cyanopyridine	0	0	0		
Niacinamide	0	0	0		
Temperature (°F):	32	32	32		
Pressure (psi):	58	58	58		
Vapor Fraction:	0.009	1	0		
Design Data:		· · · · ·	· · ·	,	
Туре:	Pressure Vessel				
Material:	Carbon Steel				
Length (ft):	12.0				
Diameter (ft):	4.0				
Utilities:					
Comments:					

		Heat Exchan	ger		
Identification:	Item:	Floating head she			
	Item No.:	HX-101		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C _p (\$):	76,656		C _{BM} (\$):	243,001
Function: Preheater for MPDA	-	-		- bin (+).	,
Operation: Continuous	~				
	S-103	S-104			
	Cold In	Cold Out			
Materials Handled:					
Total Flow (lb/hr):	3,340	3,340			
Volumetric Flow (ft ³ /hr):	55	8,642			
Component Flows (lb/hr):					
O_2	0	0			
H_2	0	0			
N_2	_0	0			
Ammonia	Trace	Trace			
H_2O	0	0			
CO_2	0	0			
MPDA	3,340	3,341			
3-methylpiperidine	Trace	Trace			
3-picoline	0	0			
3-cyanopyridine	0	0			
Niacinamide	0	0			
Temperature (°F):	81	527			
Pressure (psi):	43.5	33.5			
Vapor Fraction:	0	1			
Design Data:					
Q (Btu/hr):	1,468,101		$T_{h,i}$ (°F):	712.9	
U_0 (Btu/hr-ft ² -°F):	175.0		$T_{h,o}$ (°F):	400.0	
U_i (Btu/hr-ft ² -°F):	200.0		$T_{c,i}$ (°F):	81.0	
A_0 (ft ²):	143		$T_{c,o}$ (°F):	527.0	
Material:	Carbon Steel		ΔT_{lm} (°F):	246.5	
Utilities:					
Dowtherm A (MMBTU/hr):	1.47				
Dowtherm A (lb/hr):	5,872				

Identification: Item: Floating head shell-and-tube Item No.: $HX-102$ Date: $4/10/13$ No. Required: 1 By: $JS:AC/PBA$ C_p (\$): 74.697 C_{BM} (\$): $236,789$ Operation: Continuous Materials Handled: S-110 S-111 Cold Out Total Flow (lb/hr): 0.307 $3,307$ $3,307$ 0.808 Volumetric Flow (ft/hr): $6,848$ $9,682$ 0.60 0.6 M_2 0 0 0.6 0.6 0.6 0.6 M_2 0 0 0.6 </th <th></th> <th colspan="9">Heat Exchanger</th>		Heat Exchanger								
Item No.: $HX-102$ Date: $4/10/13$ No. Required: 1 By: $JS/AC/PB/A$ C_p (s): 74,697 C_{not} (s): 236,789 Function: Preheater for feed to second reactor. Operation: Continuous Materials Handled: Total Flow (lb/hr): S-110 S-111 Cold Out Materials Handled: Total Flow (lb/hr): G O O O O O O O O O O O O O O O O O O O O O O O O O O O O O <th>Identification:</th> <th>Item:</th> <th></th> <th></th> <th></th> <th></th>	Identification:	Item:								
C_p (\$): 74.697 C_{BM} (\$): 236,789 Function: Preheater for feed to second reactor. Operation: Continuous Materials Handled: S-110 Cold Out Cold Out Materials Handled: Cold In Cold Out Cold Out Total Flow (lb/hr): 3,307 3,307 Component Flows (lb/hr): 6,848 9,682 Component Flows (lb/hr): 0 0 0 0 0 N2 0 0 0 0 0 Mammonia 485 485 1 0 0 N2 0 0 0 0 0 MPDA 0,002 0,002 3-methylpiperidine 2822 2822 3-picoline 0 0 3-picoline 0		Item No.:	0		Date:	4/10/13				
Function: Preheater for feed to second reactor. Operation: Continuous S-110 S-111 Cold In Cold Out Materials Handled: Total Flow (lb/hr): Operation: Cold Out Total Flow (lb/hr): O_2 O O O_2 O O O O_2 O O O O_2 O O O O_2 O O O M_2 O O O O M_2 O O O O M_2 O O O O M_2 M_2 M_2 M_2 <th< th=""><th></th><th>No. Required:</th><th>1</th><th></th><th>By:</th><th>JS/AC/PB/A</th></th<>		No. Required:	1		By:	JS/AC/PB/A				
Function: Preheater for feed to second reactor. Operation: Continuous S-110 S-111 Cold In Cold Out Materials Handled: Total Flow (lb/hr): Operation: Cold Out Total Flow (lb/hr): O 0 0 D 0 0 M2 0 0 Mamonia 485 485 H2 0 0 O 0 0 Mamonia 485 485 H2 0 0 O 0 0 M2 0 0 M3 0 0 M4PDA 0.002 0.002 J-picoline 0 0 J-picoline 0 0 J-picoline 0 0 J-gegin Data: T 1 1 Design Data: T T T 1 Ui (Btu/hr: ft ² - P): 100 T T		C_{p} (\$):	74.697		Свм (\$):	236.789				
S.110 S.111 Cold In Cold Out Materials Handled: 3,307 Total Flow (lb/hr): 3,307 Oz 0 Oz 0 Mamonia 485 Hz 0 Oz 0 Nz 0 Mamonia 485 HzO 0 Mamonia 485 HzO 0 Oz 0 Ammonia 485 HzO 0 O 0 MPDA 0.002 3-reathylpiperidine 2822 3-picoline 0 O 0 Nacinamide 0 O 0 Vapor Fraction: 1 I 1 Design Data: 1 Q (Btu/hr-ft ² -F): 175 Material: Carbon steel Material: Carbon steel Material: Carbon steel <td< td=""><td>Function: Preheater for feed to</td><td></td><td>,</td><td></td><td>- DM (+).</td><td></td></td<>	Function: Preheater for feed to		,		- DM (+).					
S.110 S.111 Materials Handled: Cold In Cold Out Total Flow (lb/hr): 3,307 3,307 Volumetric Flow (lb/hr): 6,848 9,682 Component Flows (lb/hr): 0 0 Q_2 0 0 M_2 0.002 0.002 M_2 M_2 M_2 M_2 M_2 M_2 M_2 M_2 M_2										
Cold In Cold Out Materials Handled: 3,307 3,307 Total Flow (lb/hr): 3,307 3,307 Volumetric Flow (tf')hr): 6,848 9,682 O_2 0 0 H_2 0 0 N_2 0 0 M_2 0 0 M_2 0 0 M_1 0 0 M_2 0.0002 0.0002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 Temperature (PF): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 U_0 (Btu/hr-ft^2-P):<	Operation: Continuous	G 110	C 111							
Materials Handled: Total Flow (lb/hr): 3,307 3,307 Volumetric Flow (lb/hr): 6,848 9,682 Component Flows (lb/hr): 0 0 D_2 0 0 M_2 0 0 N_2 0 0 M_2 2822 2822 $3-picoline$ 0 0 $Niacinamide$ 0 0 $Macinamide$ 0 0 M_2 1 1 1 $Design Data: Q (Btu/hr: 2*P): 100 T_{co} (P): <$		2	8							
Total Flow (lb/hr): 3,307 3,307 Volumetric Flow (ltb/hr): 6,848 9,682 O_2 0 0 H_2 0 0 N_2 0 0 $Ammonia$ 485 485 H_2O 0 0 O_2 0 0 $MPDA$ 0.002 0.002 $3-methylpiperidine$ 2822 2822 $3-picoline$ 0 0 $N_{acinamide}$ 0 0 Niacinamide 0 0 Napor Fraction: 1 1 Design Data: 1 1 U ₀ (Btu/hr:ft ² -FF): 175 T _{ha} (°F): 712.9 U ₀ (Btu/hr:ft ² -FF): 100 T _{ca} (°F): 400.0 U _i (Btu/hr:ft ² -FF): 100 T _{ca} (°F): 393.0 A_0 (ft ²): 104 T _{ca} (°F): 554.0 Material: Carbon steel ΔT_{im} (°F): 48.6	M. 4. 1. 1. II II. I.	Cold In	Cold Out							
Volumetric Flow (ft ³ /hr): 6,848 9,682 O_2 0 0 O_2 0 0 H_2 0 0 N_2 0 0 M_2 0 0 CO_2 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 N_3 compyridine 0 0 N_4 0 0 Nacinamide 0 0 Design Data: 72.5 62.5 V_0 (Btu/hr-ft ² -P): 175 T_{h_0} (°F): 712.9 U_0 (Btu/hr-ft ² -P): 100 T_{e_0} (°F): 393.0 A_0 (ft ²): 104 T_{e_0} (°F): 393.0 A_0 (ft ²): 104 T_{e_0} (°F): 48.6 D	8	2 207	2 207							
Component Flows (lb/hr): 0 0 O_2 0 0 H_2 0 0 N_2 0 0 $Ammonia$ 485 485 H_2O 0 0 $OO(C_Q_2$ 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 3 -cyanopyridine 0 0 Niacinamide 0 0 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 202,9247 Thi (°F): 712.9 U ₀ (Btu/hr.ft ² -SP): 100 Thi (°F): 93.0 A_0 (ft ²): 104 T _{co} (°F): 554.0 Material: Carbon steel Δ T _{lm} (°F): 48.6			· · · · · · · · · · · · · · · · · · ·							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0,040	9,082							
H_2 0 0 N_2 0 0 $Ammonia$ 485 485 H_2O 0 0 CO_2 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 3 -cyanopyridine 0 0 $Niacinamide$ 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: Q (Btu/hr): 292.947 T_{hi} (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 T_{ho} (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 T_{ci} (°F): 393.0 A_0 (ft ²): 104 T_{co} (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6		0	0							
N_2 0 0 Ammonia 485 485 H_2O 0 0 CO_2 0 0 $MPDA$ 0.002 0.002 3-methylpiperidine 2822 2822 3-picoline 0 0 $N_{acinamide}$ 0 0 Nacinamide 0 0 Vapor Fraction: 1 1 Design Data: Q (Btu/hr:ft ² -°F): 175 Thi (°F): 712.9 U ₀ (Btu/hr:ft ² -°F): 175 Thi (°F): 712.9 U ₀ (Btu/hr:ft ² -°F): 100 Tci (°F): 393.0 A ₀ (ft ²): 104 Tco (°F): 393.0 A ₀ (ft ²): 104 Tco (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6		- <u>8</u>	8							
Ammonia 485 485 H_2O 0 0 OCO_2 0 0 OCO_2 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 3 -cyanopyridine 0 0 $Niacinamide$ 0 0 Niacinamide 0 0 Vapor Fraction: 1 1 Design Data: Q (Btu/hr; 292,947 Thi (°F): 712.9 U_0 (Btu/hr:ft ² -°F): 175 Thio (°F): 400.0 U_i (Btu/hr:ft ² -°F): 100 Tei (°F): 393.0 A_0 (ft ²): 104 Teo (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6	8									
H_2O 0 0 CO_2 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 3 -cyanopyridine 0 0 3 -cyanopyridine 0 0 3 -cyanopyridine 0 0 $Niacinamide$ 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: Q (Btu/hr): 292,947 T_{hi} (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 T_{ho} (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 T_{ci} (°F): 393.0 A_0 (ft ²): 104 T_{co} (°F): 554.0 Material: Carbon steel ΔT_{im} (°F): 48.6	5	~ (8							
CO_2 0 0 $MPDA$ 0.002 0.002 3 -methylpiperidine 2822 2822 3 -picoline 0 0 3 -cyanopyridine 0 0 3 -cyanopyridine 0 0 3 -cyanopyridine 0 0 3 -cyanopyridine 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: Q (Btu/hr): 292,947 T_{hi} (°F): 712.9 U_0 (Btu/hr:ft ² -°F): 100 T_{ci} (°F): 400.0 U_i (Btu/hr:ft ² -°F): 100 T_{ci} (°F): 554.0 A_0 (ft ²): 104 T_{co} (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6	8		8							
MPDA 0.002 0.002 3-methylpiperidine 2822 2822 3-picoline 0 0 3-cyanopyridine 0 0 Niacinamide 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 2 $(Btu/hr: 292,947)$ $T_{h.i}$ (°F): 712.9 U_0 (Btu/hr: 292,947 $T_{h.i}$ (°F): 400.0 $T_{c.i}$ (°F): 393.0 M_0 (ft ²): 104 $T_{c.o}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c.o}$ (°F): 554.0 Material: Carbon steel ΔT_{Im} (°F): 48.6	8		5							
3-methylpiperidine 2822 2822 3-picoline 0 0 3-cyanopyridine 0 0 Niacinamide 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 20 Thi (°F): 712.9 U0 (Btu/hr-ft ² -°F): 175 Tho (°F): 400.0 Ui (Btu/hr-ft ² -°F): 100 Tci (°F): 393.0 A0 (ft ²): 104 Tco (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6	8		. 8							
3 -picoline 0 0 3 -cyanopyridine 0 0 Niacinamide 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 1 1 Q (Btu/hr): 292,947 Thid (°F): 712.9 U ₀ (Btu/hr-ft ² -°F): 175 Tho (°F): 40.0 U _i (Btu/hr-ft ² -°F): 100 Tci (°F): 393.0 A ₀ (ft ²): 104 Tco (°F): 554.0 Material: Carbon steel $\Delta T_{\rm im}$ (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172			8							
3 -cyanopyridine 0 0 Niacinamide 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 1 1 Q (Btu/hr): 292,947 T _{hi} (°F): 712.9 U ₀ (Btu/hr): 292,947 T _{ho} (°F): 400.0 U _i (Btu/hr-ft ² -°F): 175 T _{ho} (°F): 400.0 U _i (Btu/hr-ft ² -°F): 100 T _{ci} (°F): 393.0 A ₀ (ft ²): 104 T _{co} (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 0.29 Dowtherm A (lb/hr): 1172 0 0		8	5							
Niacinamide 0 0 Temperature (°F): 393 554 Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: 1 1 Q (Btu/hr): 292,947 T_{hi} (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 T_{ho} (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 T_{ci} (°F): 393.0 A_0 (ft ²): 104 T_{co} (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 0.29 Dowtherm A (lb/hr): 1172 1172		0	0							
Pressure (psi): 72.5 62.5 Vapor Fraction: 1 1 Design Data: I I I Q (Btu/hr): 292,947 $T_{h,i}$ (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 $T_{h,o}$ (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 $T_{c,i}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c,o}$ (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172		0	0							
Vapor Fraction: 1 1 Design Data: Q (Btu/hr): 292,947 $T_{h.i}$ (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 $T_{h.o}$ (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 $T_{c.i}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c.o}$ (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172	Temperature (°F):	393	554							
Design Data: Q (Btu/hr): 292,947 $T_{h.i}$ (°F): 712.9 U_0 (Btu/hr-ft ² -°F): 175 $T_{h.o}$ (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 $T_{c.i}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c.o}$ (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172	Pressure (psi):	72.5	62.5							
Q (Btu/hr): 292,947 T_{hi} (°F): 712.9 U ₀ (Btu/hr-ft ² -°F): 175 T_{ho} (°F): 400.0 U _i (Btu/hr-ft ² -°F): 100 T_{ci} (°F): 393.0 A ₀ (ft ²): 104 T_{co} (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172		1	1							
U_0 (Btu/hr-ft ² -°F): 175 T_{ho} (°F): 400.0 U_i (Btu/hr-ft ² -°F): 100 $T_{c,i}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c,o}$ (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
U_i (Btu/hr-ft ² -°F): 100 $T_{c,i}$ (°F): 393.0 A_0 (ft ²): 104 $T_{c,o}$ (°F): 554.0 Material: Carbon steel ΔT_{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
A ₀ (ft ²): 104 T _{co} (°F): 554.0 Material: Carbon steel ΔT _{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Material: Carbon steel ΔT _{lm} (°F): 48.6 Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Utilities: Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172	Material:	Carbon steel		ΔT_{lm} (°F):	48.6					
Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Dowtherm A (MMBTU/hr): 0.29 Dowtherm A (lb/hr): 1172										
Dowtherm A (lb/hr): 1172										

		Heat Exchan	ger		
Identification:	Item:	Floating head sh			
	Item No.:	HX-201		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C _p (\$):	133,947		C _{BM} (\$):	424,612
Function: Heater for feed to th	-				
Or					
Operation: Continuous	S-203A	S-203			
	Cold In	Cold Out			
Materials Handled:	Colu In	Colu Oui			
Total Flow (lb/hr):	3,307	3,307			
Volumetric Flow (ft ³ /hr):	47,740	41,773			
Component Flows (lb/hr):	17,770	11,775	l		
O_2	0	0			
H_2	Trace	Trace			
N_2	0	0			
Ammonia	Trace	475			
H_2O	0	0	l		
CO_2	0	0			
MPDA	0.002	0			
3-methylpiperidine	28	0			
3-picoline	2,622	1			
3-cyanopyridine	0	0			
Niacinamide	0	0			
Temperature (°F):	366	224			
Pressure (psi):	40	170			
Vapor Fraction:	< 0.001	< 0.001			
Design Data:					
Q (Btu/hr):	2,600,308		$T_{h,i}$ (°F):	712.9	
U_0 (Btu/hr-ft ² -°F):	143		$T_{h,o}$ (°F):	400.0	
U_i (Btu/hr-ft ² -°F):	200		T _{c,i} (°F):	224.0	
A_0 (ft ²):	209		$T_{c,o}$ (°F):	366.0	
Material:	Carbon steel		ΔT_{1m} (°F):	251.9	
Utilities:					
Dowtherm A (MMBTU/hr):	2.60				
Dowtherm A (lb/hr):	10400				

		Heat Exchan	ger		
Identification:	Item:	Floating head she	ell-and-tube		
	Item No.:	HX-202A		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C _p (\$):	104,322		С _{вм} (\$):	330,700
Function: Cooler for feed to fin		10 1,022			
Quantian Continuous					
Operation: Continuous	S-205	S-206A			
	Hot In	Hot Out			
Materials Handled:	1101 11	1101 Out			
Total Flow (lb/hr):	5,795	5,795			
Volumetric Flow (ft ³ /hr):	72,571	1,245			
Component Flows (lb/hr):	12,511	1,275			
O_2	136	136			
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.08	0.08			
H_2O	2,696	2,696			
CO_2	7	7			
MPDA	0.002	0.002			
3-methylpiperidine	28	28			
3-picoline	24	24			
3-cyanopyridine	2,904	2,904			
Niacinamide	0	0			
Temperature (°F):	626	100			
Pressure (psi):	29.1	24.1			
Vapor Fraction:	1	0.025			
Design Data:					
Q (Btu/hr):	4,376,826		T _{h,i} (°F):	626.0	
U_0 (Btu/hr-ft ² -°F):	1019.0		$T_{h,o}$ (°F):	100.0	
U_i (Btu/hr-ft ² -°F):	1,053		T _{c,i} (°F):	90.0	
A_0 (ft ²):	146		T _{c,o} (°F):	120.0	
Material:	Carbon Steel		ΔT_{lm} (°F):	126.4	
Utilities:					
Cooling water (lb/hr):	146,388				

Heat Exchanger							
Identification:	Item:	Floating head she					
	Item No.:	HX-202B		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AI		
	C _p (\$):	77,117		C _{BM} (\$):	244,462		
Function: Cooler for feed to fin					,		
Operation: Continuous							
operation: continuous	S-206A	S-206					
	Hot In	Hot Out					
Materials Handled:	1101 11	1101 Out					
Total Flow (lb/hr):	5,795	5,795					
Volumetric Flow (ft ³ /hr):	1,245	1,457					
Component Flows (lb/hr):	1,210	1,107					
O_2	136	136					
H_2	0	0					
N_2	0.4	0.4					
Ammonia	0.08	0.08					
H_2O	2,696	2,696					
CO_2	7	7					
MPDA	0.002	0.002					
3-methylpiperidine	28	28					
3-picoline	24	24					
3-cyanopyridine	2,904	2,904					
Niacinamide	0	0					
Temperature (°F):	100	77					
Pressure (psi):	24.1	19.1					
Vapor Fraction:	0.025	0.025					
Design Data:							
Q (Btu/hr):	-951,843		T _{h,i} (°F):	625.0			
U_0 (Btu/hr-ft ² -°F):	469.0		$T_{h,o}$ (°F):	77.0			
U_i (Btu/hr-ft ² -°F):	1053		T _{c,i} (°F):	-14.0			
A_0 (ft ²):	224		$T_{c,o}$ (°F):	-11.7			
Material:	Carbon Steel		ΔT_{lm} (°F):	280.5			
Utilities:							
Refrigeration (ton/day):	26,057						
Comments: Cold stream is on	the shell side and he	ot stream is on the tu	be side.				

		Heat Exchange	ger		Heat Exchanger							
Identification:	Item:	Floating head she										
	Item No.:	HX-203		Date:	4/10/13							
	No. Required:	1		By:	JS/AC/PB/A							
	C _p (\$):	57,636		С _{вм} (\$):	182,707							
Function: Cooler for feed to se												
Operation: Continuous												
	S-212	S-213										
	Hot In	Hot Out										
Materials Handled:												
Total Flow (lb/hr):	5,795	5,795										
Volumetric Flow (ft ³ /hr):	950	1,405										
Component Flows (lb/hr):												
O_2	136	136										
H_2	0	0										
N_2	0.4	0.4										
Ammonia	0.08	0.08										
H_2O	2,199	2,199										
CO_2	7	7										
MPDA	0.002	0.002										
3-methylpiperidine	28	28										
3-picoline	24	24										
3-cyanopyridine	2,904	2,904										
Niacinamide	0	0										
Temperature (°F):	79	77										
Pressure (psi):	29.6	19.6										
Vapor Fraction:	0.029	0.029										
Design Data: Q (Btu/hr):	-7,284		T (9E).	79.0								
U_0 (Btu/hr-ft ² -°F):	303.0		$T_{h,i}$ (°F):	79.0								
	250		$T_{h,o}$ (°F):									
U_i (Btu/hr-ft ² -°F): A ₀ (ft ²):	250 5.23		$T_{c,i}$ (°F):	-14.0 -11.7								
A_0 (ft ⁻): Material:	5.23 Carbon Steel		$T_{c,o}$ (°F):	-11.7 90.9								
wraterial:	Carbon Steel		ΔT_{lm} (°F):	70.7								
Utilities:												
Refrigeration (ton/day):	199											

dentification: Function: Cooler for feed to thi Operation: Continuous	Item: Item No.: No. Required: C _p (\$): rd CSTR.	Heat Exchan Floating head sho HX-204 I 57,636		Date:	4/10/13
	No. Required: C _p (\$):	HX-204 1			4/10/13
	C _p (\$):	-			
		57,636		By:	JS/AC/PB/A
				С _{вм} (\$):	182,707
Operation: Continuous					
-					
	S-219	S-220			
	Hot In	Hot Out			
Materials Handled:					
Total Flow (lb/hr):	5,795	5,795			
Volumetric Flow (ft ³ /hr):	1,245	1,457			
Component Flows (lb/hr):					
O_2	136	136			
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.08	0.08			
H_2O	2,199	2,199			
CO_2	7	7			
MPDA	0.002	0.002			
3-methylpiperidine	28	28			
3-picoline	24	24			
3-cyanopyridine	2,904	2,904			
Niacinamide	0	0			
Temperature (°F):	79	77			
Pressure (psi):	30.1	20.1			
Vapor Fraction:	0.029	0.029			
Design Data: Q (Btu/hr):	-6,495		T (°E).	79.0	
U_0 (Btu/hr-ft ² -°F):	-6,495 303.0		$T_{h,i}$ (°F):		
U_0 (Btu/hr-ft ² -°F): U_i (Btu/hr-ft ² -°F):	303.0 250		$T_{h,o}$ (°F):	77.0 -14.0	
U_i (Btu/nr-rt - F): A ₀ (ft ²):	250 5.23		T _{c,i} (°F): T _{c,o} (°F):	-14.0 -11.7	
A_0 (II): Material:	Carbon Steel		ΔT_{lm} (°F):	-11.7 90.9	
iviaterial:	Carbon Steel		$\Delta \mathbf{I}_{lm} (\mathbf{F}):$	20.2	
Utilities:					
Refrigeration (ton/day):	178				

		Heat Exchan	ger		
Identification:	Item:	Floating head she			
	Item No.:	HX-205		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C _p (\$):	72,622		C _{BM} (\$):	230,211
Function: Cooler for feed to fin	-				
Operation: Continuous					
· .	S-226	S-227			
	Hot In	Hot Out			
Materials Handled:					
Total Flow (lb/hr):	5,795	5,795			
Volumetric Flow (ft ³ /hr):	761	917			
Component Flows (lb/hr):					
O_2	136	136			
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.08	0.08			
H_2O	2,199	2,199			
CO_2	7	7			
MPDA	Trace	Trace			
3-methylpiperidine	28	28			
3-picoline	24	24			
3-cyanopyridine	29	29			
Niacinamide	3372	3372			
Temperature (°F):	79	32			
Pressure (psi):	37.6	27.6			
Vapor Fraction:	0.029	0.029			
Design Data:	105 052		T (9E).	70.0	
Q (Btu/hr): U_0 (Btu/hr-ft ² -°F):	-185,853 469.0		$T_{h,i}$ (°F):	79.0 32.0	
U_0 (Btu/hr-ft - F): U_i (Btu/hr-ft ² -°F):	250		$T_{h,o}$ (°F):		
U_i (Btu/nr-It - F): A ₀ (ft ²):	250 28.5		$T_{c,i}$ (°F):	-14.0 -11.7	
A_0 (it). Material:	Carbon Steel		$T_{c,o}$ (°F):	65.9	
Material:	Carbon Steel		ΔT_{lm} (°F):	03.9	
Utilities: Refrigeration (ton/day):	5,064				
itemiseration (ton/day).	5,004				

Heat Exchanger							
Identification:	Item:	Floating head she					
	Item No.:	HX-206		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AL		
	C _p (\$):	53,371		С _{вм} (\$):	169,187		
Function: Heater for S-230.							
Operation: Continuous							
	S-230	S-231					
	Cold In	Cold Out					
Materials Handled:							
Total Flow (lb/hr):	5,650	5,650					
Volumetric Flow (ft ³ /hr):	75	77					
Component Flows (lb/hr):							
O_2	0.2	0.2					
H_2	0	0					
N_2	Trace	Trace					
Ammonia	0.08	0.08					
H_2O	2,199	2,199					
CO_2	0.3	0.3					
MPDA	0.002	0.002					
3-methylpiperidine	27	27					
3-picoline	23	23					
3-cyanopyridine	29	29					
Niacinamide	3,372	3,372					
Temperature (°F):	32	90					
Pressure (psi):	45	35					
Vapor Fraction:	0	0					
Design Data:		· · · ·	· · ·	n			
Q (Btu/hr):	223,486		$T_{h,i}$ (°F):	100.0			
U_0 (Btu/hr-ft ² -°F):	303.0		$T_{h,o}$ (°F):	90.0			
U_i (Btu/hr-ft ² -°F):	1000		$T_{c,i}$ (°F):	32.2			
A_0 (ft ²):	5.96		$T_{c,o}$ (°F):	90.0			
Material:	Carbon Steel		ΔT_{lm} (°F):	27.2			
				27.2			
Utilities:							
100 °F Water (lb/hr):	185						
Comments: Hot stream is on the	he shell side and col	d stream is on the tu	be side.				

Heat Exchanger							
Identification:	Item:	Floating head she	ell-and-tube				
	Item No.:	HX-301		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AI		
	C_{p} (\$):	66,282		C _{BM} (\$):	210,113		
Function: Preheater for feed to	decolorizing unit.						
Operation: Continuous							
	S-301	S-302					
	Cold In	Cold Out					
Materials Handled:							
Total Flow (lb/hr):	25,619	25,619					
Volumetric Flow (ft ³ /hr):	433	465					
Component Flows (lb/hr):							
O_2	0.2	1.2					
H_2	Trace	Trace					
N_2	0.002	0.002					
Ammonia	54	54					
H_2O	22,113	22,113					
CO_2	0.4	0.4					
MPDA	0.002	0.002					
3-methylpiperidine	27	27					
3-picoline	23	23					
3-cyanopyridine	29	29					
Niacinamide	3372	3372					
Temperature (°F):	31	77					
Pressure (psi):	35	25					
Vapor Fraction:	< 0.001	< 0.001					
Design Data:		ъ.		· · · · ·			
Q (Btu/hr):	1,238,182		$T_{h,i}$ (°F):	100.0			
U_0 (Btu/hr-ft ² -°F):	1053.0		$T_{h,o}$ (°F):	90.0			
U _i (Btu/hr-ft ² -°F):	1000		$T_{c,i}$ (°F):	31.0			
	20.6						
	Carbon Steel						
A ₀ (ft ²): Material:	20.6 Carbon Steel		$T_{c,o}$ (°F): ΔT_{lm} (°F):	77.0 38.2			
Utilities: 100 °F Water (lb/hr):	1,021						

		Heat Exchanger							
Identification:	Item:	Floating head she							
	Item No.:	HX-302		Date:	4/10/13				
	No. Required:	1		By:	JS/AC/PB/AI				
	C _p (\$):	123,457		C _{BM} (\$):	391,359				
Function: Preheater for slurry									
Operation: Continuous									
	S-306	S-307							
	Cold In	Cold Out							
Materials Handled:									
Total Flow (lb/hr):	25,619	25,619							
Volumetric Flow (ft ³ /hr):	400	380,573							
Component Flows (lb/hr):									
O_2	0.2	0.2							
H_2	0	0							
N_2	0.002	0.002							
Ammonia	54	54							
H_2O	22,113	22,113							
CO_2	0.4	0.4							
MPDA	0.002	0.002							
3-methylpiperidine	27	27							
3-picoline	23	23							
3-cyanopyridine	29	29							
Niacinamide	3,372	3,372							
Temperature (°F):	77	392							
Pressure (psi):	39.9	29.9							
Vapor Fraction:	0	1							
Design Data:									
Q (Btu/hr):	28,922,227		$T_{h,i}$ (°F):	460.0					
U_0 (Btu/hr-ft ² -°F):	526.0		$T_{h,o}$ (°F):	460.0					
U_i (Btu/hr-ft ² -°F):	1000		T _{c,i} (°F):	77.0					
A_0 (ft ²):	948		T _{c,o} (°F):	392.0					
Material:	Carbon Steel		ΔT_{lm} (°F):	182.2					
Utilities:									
450 psi Steam (lb/hr):	24,002								
Comments: Hot stream is on the	a shall side and1	d atraam is on the to	hasida						
Comments: Hot stream is on th	ie shell side and col	u stream is on the tu	ibe side.						

Heat Exchanger							
Identification:	Item:	Floating head she					
	Item No.:	HX-303		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/A		
	C _p (\$):	56,829		C _{BM} (\$):	180,149		
Function: Preheater for N ₂ fee	d to spray dryer.						
Operation: Continuous							
	S-308	S-309					
	Cold In	Cold Out					
Materials Handled:							
Total Flow (lb/hr):	31	31					
Volumetric Flow (ft ³ /hr):	215	517					
Component Flows (lb/hr):							
O_2	0	0					
H_2	0	0					
N_2	31	31					
Ammonia	0	0					
H_2O	0	0					
CO_2	0	0					
MPDA	0	0					
3-methylpiperidine	0	0					
3-picoline	0	0					
3-cyanopyridine	0	0					
Niacinamide	0	0					
Temperature (°F):	77	392					
Pressure (psi):	29.5	19.5					
Vapor Fraction:	1	1					
Design Data:		· · ·					
Q (Btu/hr):	2,431		$T_{h,i}$ (°F):	460.0			
U_0 (Btu/hr-ft ² -°F):	30.0		$T_{h,o}$ (°F):	460.0			
U_i (Btu/hr-ft ² -°F):	1000		$T_{c,i}$ (°F):	77.0			
A_0 (ft ²):	5.24		$T_{c,o}$ (°F):	392.0			
Material:	Carbon Steel		ΔT_{lm} (°F):	182.2			
Utilities:							
450 psi Steam (lb/hr):	2						
Comments: Hot stream is on the	ne shell side and col	d stream is on the tu	be side.				

Heat Exchanger							
Identification:	Item:	Floating head she					
	Item No.:	HX-304A		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AI		
	C _p (\$):	253,139		С _{вм} (\$):	802,450		
Function: Cooler for feed to th	-						
Operation: Continuous							
operation continuous	S-311	S-312A					
	Hot In	Hot Out					
Materials Handled:							
Total Flow (lb/hr):	22,481	22,481					
Volumetric Flow (ft ³ /hr):	262,833	1,440					
Component Flows (lb/hr):	ŕ	, i i i i i i i i i i i i i i i i i i i					
O_2	2	2					
H_2	0	0					
N_2	309	309					
Ammonia	54	54					
H_2O	22,113	22,113					
CO_2	3	3					
MPDA	0	0					
3-methylpiperidine	0	0					
3-picoline	0	0					
3-cyanopyridine	0	0					
Niacinamide	0	0					
Temperature (°F):	887	100					
Pressure (psi):	68	63					
Vapor Fraction:	1	0.009					
Design Data:							
Q (Btu/hr):	-32,862,364		$T_{h,i}$ (°F):	887.0			
U_0 (Btu/hr-ft ² -°F):	265.0		$T_{h,o}$ (°F):	100.0			
U_i (Btu/hr-ft ² -°F):	1053		$T_{c,i}$ (°F):	90.0			
A_0 (ft ²):	1411		$T_{c,o}$ (°F):	120.0			
Material:	Stainless Steel		ΔT_{lm} (°F):	174.4			
Utilities: Cooling water (lb/hr):	1,099,120						
Cooming water (10/111):	1,077,120						
Comments: Cold stream is on	the shell side and h	ot stream is on the tu	be side.				

Heat Exchanger							
Identification:	Item:	Floating head sh					
	Item No.:	HX-304B		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/A		
	C _p (\$):	88,414		С _{вм} (\$):	280,273		
Function: Cooler for feed to th		301).					
Operation: Continuous							
	S-312A	S-312					
	Hot In	Hot Out					
Materials Handled:							
Total Flow (lb/hr):	22,481	22,481					
Volumetric Flow (ft ³ /hr):	1,440	1,365					
Component Flows (lb/hr):							
O_2	2	2					
H_2	0	0					
N_2	309	309					
Ammonia	54	54					
H_2O	22,113	22,113					
CO_2	3	3					
MPDA	0	0					
3-methylpiperidine	0	0					
3-picoline	0	0					
3-cyanopyridine	0	0					
Niacinamide	0	0					
Temperature (°F):	100	32					
Pressure (psi):	63	58					
Vapor Fraction:	0.009	0.009					
Design Data:							
Q (Btu/hr):	-1,752,229		$T_{h,i}$ (°F):	100.0			
U_0 (Btu/hr-ft ² -°F):	469.0		$T_{h,o}$ (°F):	32.0			
U_i (Btu/hr-ft ² -°F):	250		$T_{c,i}$ (°F):	-14.0			
A_0 (ft ²):	242		$T_{c,o}$ (°F):	-11.7			
Material:	Carbon Steel		ΔT_{lm} (°F):	74.1			
Utilities:							
Refrigeration (ton/day):	47,967						
Comments: Cold stream is on	the shell side and he	ot stream is on the t	ube side.				

Neutralizer							
Identification:	Item:	Neutralizer					
	Item No.:	N-301		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AL		
	C _p (\$):	45,900		С _{вм} (\$):	142,736		
Function: Neutralizes S-304 ir	buffer solution for	ming a salt and th	en a mixed solution.				
Operation: Continuous							
operation comments	S-304	S-305	1				
	Inlet	Outlet					
Materials Handled:							
Total Flow (lb/hr):	25,619	25,619					
Volumetric Flow (ft ³ /hr):	496	556					
Component Flows (lb/hr):							
O_2	0.2	0.2					
H_2	Trace	0					
N_2	0.002	0.002					
Ammonia	54	54					
H_2O	22,113	22,113					
CO_2	0.4	0.4					
MPDA	0.004	0.004					
3-methylpiperidine	27	27					
3-picoline	23	23					
3-cyanopyridine	29	29					
Niacinamide	3,372	3,372					
Ammonium Nicotinate	0	0					
Temperature (°F):	77	77					
Pressure (psi):	20	15					
Vapor Fraction:	< 0.001	< 0.001					
Design Data:							
Material:	Carbon Steel						
Diameter (ft):	3.5						
Length (ft):	14.2						
Residence time (hr):	0.167						
Volume (ft ³):	140						
Utilities:							
Comments: Modeled as vertic	al pressure vessel w	ith turbine agitate	ors				

Centrifugal Pump								
Identification:	Item:	Pump	•					
	Item No.:	P-101	Date:	4/10/13				
	No. Required:	1	By:	JS/AC/PB/AL				
	C _p (\$):	30,547	C _{BM} (\$):	100,806				
Function: MPDA feed pump.								
Operation: Continuous								
	S-101	S-102						
	Inlet	Outlet						
Materials Handled:								
Total Flow (lb/hr):	3,307	3,307						
Volumetric Flow (ft ³ /hr):	54	54						
Component Flows (lb/hr):								
$\hat{O_2}$	0	0						
H_2	0	0						
N_2	0	0						
Ammonia	0	0						
H_2O	0	0						
CO_2	0	0						
Niacinamide	0	0						
MPDA	3,307	3,307						
3-methylpiperidine	0	0						
3-picoline	0	0						
3-cyanopyridine	0	0						
Ammonium Nicotinate	0	0						
Temperature (°F):	77	77						
Pressure (psi):	14.5	43.5						
Vapor Fraction:	0	0						
Design Data:		r						
Flow Rate (gpm):	7.39							
ΔP (psi):	29.0							
Pump Head (ft):	68.2							
Material:	Cast Steel							
Speed:	3600 rpm							
$P_{c}(hp)$:	0.5							
Efficiency:	0.296							
Utilities:								
Electricity (kW):	0.3							
Comments:								

Centrifugal Pump							
Identification:	Item:	Pump					
	Item No.:	P-102		Date:	4/10/13		
	No. Required:	1		By:	JS/AC/PB/AL		
	C _p (\$):	30,432		C _{BM} (\$):	100,426		
Function: MPDA recycle stream							
Operation: Continuous							
· ·	S-108	S-109					
	Inlet	Outlet					
Materials Handled:							
Total Flow (lb/hr):	33	33					
Volumetric Flow (ft ³ /hr):	0.7	0.7					
Component Flows (lb/hr):							
O_2	0	0					
H_2	0	0					
N_2	0	0					
Ammonia	Trace	Trace					
H_2O	0	0					
CO_2	0	0					
Niacinamide	0	0					
MPDA	33	33					
3-methylpiperidine	0.002	0.002					
3-picoline	0	0					
3-cyanopyridine	0	0					
Ammonium Nicotinate	0	0					
Temperature (°F):	379	380					
Pressure (psi):	14.5	43.5					
Vapor Fraction:	< 0.001	0					
Design Data:				^			
Flow Rate (gpm):	0.093						
ΔP (psi):	29.0						
Pump Head (ft):	67						
Material:	Cast Steel						
Speed:	3600 rpm						
P_{c} (hp):	0.125						
Efficiency:	0.296						
Utilities:							
Electricity (kW):	0.003						
Comments:							

Centrifugal Pump						
Identification:	Item:	Pump	*			
	Item No.:	P-103	Date:	4/10/13		
	No. Required:	1	By:	JS/AC/PB/AL		
	C _p (\$):	41,844	С _{вм} (\$):	138,085		
Function: Pump water into the				100,000		
-						
Operation: Continuous						
	S-116	S-117				
	Inlet	Outlet				
Materials Handled:						
Total Flow (lb/hr):	1,200	1,200				
Volumetric Flow (ft ³ /hr):	19	19				
Component Flows (lb/hr):						
O_2	0	0				
H_2	0	0				
N_2	0	0				
Ammonia	0	0				
H_2O	1,200	1,200				
CO_2	0	0				
Niacinamide	0	0				
MPDA	0	0				
3-methylpiperidine	0	0				
3-picoline	0	0				
3-cyanopyridine	0	0				
Ammonium Nicotinate	0	0				
Temperature (°F):	90	91				
Pressure (psi):	15	170				
Vapor Fraction:	0	0				
Design Data:		<u> </u>				
Flow Rate (gpm):	2.67					
ΔP (psi):	155.0					
Pump Head (ft):	363					
Material:	Cast Steel					
Speed:	3600 rpm					
P _c (hp):	1					
Efficiency:	0.296					
Utilities:						
Electricity (kW):	0.5					
Comments:						

		Centrifugal P	ump		
Identification:	Item:	Pump	•		
	Item No.:	P-201		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	34,467		С _{вм} (\$):	113,740
Function: Pump liquid product				C BM (4).	110,770
Operation: Continuous					
	S-210	S-211			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	5,647	5,647			
Volumetric Flow (ft ³ /hr):	76	76			
Component Flows (lb/hr):					
O_2	0.3	0.3			
H_2	0	0			
N_2	Trace	Trace			
Ammonia	0.8	0.8			
H_2O	2,196	2,196			
CO_2	0.3	0.3			
Niacinamide	3,372	3,372			
MPDA	0.002	0.002			
3-methylpiperidine	26	26			
3-picoline	23	23			
3-cyanopyridine	29	29			
Ammonium Nicotinate	0	0			
Temperature (°F):	77	77			
Pressure (psi):	14.6	29.6			
Vapor Fraction:	0	0			
Design Data:					
Flow Rate (gpm):	10.5				
$\Delta P (psi)$:	15.0				
Pump Head (ft):	29.2				
Material:	Cast Steel				
Speed:	3600 rpm				
P_{c} (hp):	0.33				
Efficiency:	0.296				
Utilities:	0.2				
Electricity (kW):	0.2				
Comments: Similar to P-202					

		Centrifugal F	Pump		
Identification:	Item:	Pump	A		
	Item No.:	P-202		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	34,467		C _{BM} (\$):	113,740
Function: Pump liquid product					110,770
i unetioni i unip nquiu product					
Operation: Continuous					
	S-217	S-218			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	5,647	5,647			
Volumetric Flow (ft ³ /hr):	76	76			
Component Flows (lb/hr):					
O_2	0.3	0.3			
H_2	0	0			
N_2	Trace	Trace			
Ammonia	0.8	0.8			
H_2O	2,196	2,196			
CO_2	0.3	0.3			
Niacinamide	3,372	3,372			
MPDA	0.002	0.002			
3-methylpiperidine	26	26			
3-picoline	23	23			
3-cyanopyridine	29	29			
Ammonium Nicotinate	0	0			
Temperature (°F):	77	77			
Pressure (psi):	15.1	30.1			
Vapor Fraction:	0	0			
Design Data:	•	ř	· · · · ·	· ·	
Flow Rate (gpm):	10.5				
ΔP (psi):	15.0				
Pump Head (ft):	29.2				
Material:	Cast Steel				
Speed:	3600 rpm				
P_{c} (hp):	0.33				
Efficiency:	0.296				
Utilities:					
Electricity (kW):	0.2				
Comments: Similar to P-201					

Centrifugal Pump						
Identification:	Item:	Pump	^			
	Item No.:	P-203	Date:	4/10/13		
	No. Required:	1	By:	JS/AC/PB/AI		
	C _p (\$):	34,467	С _{вм} (\$):	113,740		
Function: Pump liquid product	-		C BM (4).	110,770		
Operation: Continuous	~ • • • • • •	~ ~ ~ *	8 8			
	S-224	S-225				
	Inlet	Outlet				
Materials Handled:						
Total Flow (lb/hr):	5,647	5,647				
Volumetric Flow (ft ³ /hr):	76	76				
Component Flows (lb/hr):						
O_2	0.3	0.3				
H_2	0	0				
N_2	Trace	Trace				
Ammonia	0.8	0.8				
H_2O	2,196	2,196				
CO_2	0.3	0.3				
Niacinamide	3,372	3,372				
MPDA	0.002	0.002				
3-methylpiperidine	26	26				
3-picoline	23	23				
3-cyanopyridine	29	29				
Ammonium Nicotinate	0	0				
Temperature (°F):	77	77				
Pressure (psi):	15.6	45.6				
Vapor Fraction:	0	0				
Design Data:		•				
Flow Rate (gpm):	10.5					
ΔP (psi):	30.0					
Pump Head (ft):	58.5					
Material:	Cast Steel					
Speed:	3600 rpm					
P _c (hp):	0.75					
Efficiency:	0.296					
Utilities:						
Electricity (kW):	0.4					
Comments:						

		Centrifugal P	ump		
Identification:	Item:	Pump	A		
	Item No.:	P-204		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AL
	C _p (\$):	31,239		C _{BM} (\$):	103,088
Function: S-229 pump.	F XV				
Operation: Continuous					
•	S-229	S-230			
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	5,650	5,650			
Volumetric Flow (ft ³ /hr):	75	75			
Component Flows (lb/hr):					
O_2	0.2	0.2			
H_2	0	0			
N_2	Trace	Trace			
Ammonia	0.08	0.08			
H_2O	2,198	2,198			
CO_2	0.3	0.3			
Niacinamide	3,372	3,372			
MPDA	0.002	0.002			
3-methylpiperidine	27	27			
3-picoline	23	23			
3-cyanopyridine	29	29			
Ammonium Nicotinate	29	29			
Temperature (°F):	32	32			
Pressure (psi):	15	45			
Vapor Fraction:	0	0			
Design Data:					
Flow Rate (gpm):	10.3				
ΔP (psi):	30.0				
Pump Head (ft):	57.3				
Material:	Cast Steel				
Speed:	3600 rpm				
P_{c} (hp):	0.75				
Efficiency:	0.296				
Utilities:					
Electricity (kW):	0.4				
Comments:					

Centrifugal Pump						
Identification:	Item:	Pump	- -			
	Item No.:	P-301		Date:	4/10/13	
	No. Required:	1		By:	JS/AC/PB/AL	
	C _p (\$):	36,541		C _{BM} (\$):	120,587	
Function: S-305 pump.						
Operation: Continuous						
-	S-305	S-306				
	Inlet	Outlet				
Materials Handled:						
Total Flow (lb/hr):	25,619	25,619				
Volumetric Flow (ft ³ /hr):	556	400				
Component Flows (lb/hr):						
O_2	0.02	0.02				
H_2	0	0				
N_2	0.002	0.002				
Ammonia	54	54				
H_2O	22,113	22,113				
CO_2	0.4	0.4				
Niacinamide	3,372	3,372				
MPDA	0.002	0.002				
3-methylpiperidine	28	28				
3-picoline	23	23				
3-cyanopyridine	29	29				
Ammonium Nicotinate	0	0				
Temperature (°F):	77	77				
Pressure (psi):	15	40				
Vapor Fraction:	< 0.001	0				
Design Data:						
Flow Rate (gpm):	54.8					
ΔP (psi):	25.0					
Pump Head (ft):	56.2					
Material:	Cast Steel					
Speed:	3600 rpm					
P_c (hp):	2					
Efficiency:	0.44					
Utilities:						
Electricity (kW):	1.2					
Comments:						

dentification: Function: Converts MPDA feed Operation: Continuous	Item: Item No.: No. Required: C _p (\$): to 3-methylpiperio	RSTOIC Reactor R-101 1 810,184	Date:	4/10/13
	No. Required: C _p (\$):	1		4/10/13
	C _p (\$):		П	
	C _p (\$):	010 101	By:	JS/AC/PB/AI
		0111104	С _{вм} (\$):	2,568,283
	to b memjipipen		Свм (Ф).	2,500,205
Operation: Continuous		F		
2		<u>×</u>		
	S-105	S-106		
	Inlet	Outlet		
Materials Handled:				
Total Flow (lb/hr):	3,340	3,340		
Volumetric Flow (ft ³ /hr):	3,915	8,707		
Component Flows (lb/hr):	_	_		
O_2	0	0		
H_2	0	0		
N_2	0	0		
Ammonia	Trace	485		
H_2O	0	0		
CO_2	0	0		
MPDA	3,340	33		
3-methylpiperidine	0.002	2,822		
3-picoline	0	0		
3-cyanopyridine	0	0		
Niacinamide	0	0		
Temperature (°F):	560	581		
Pressure (psi):	72.5	71.6		
Vapor Fraction:	1	1		
Design Data:	^			
	Stainless Steel			
Number of Parallel Tubes:	15			
Tube Diameter (in):	6.625			
Tube Length (ft):	685.0			
Shell Diameter (ft):	1.87			
Heat Transfer Area (ft ²):	17,800			
Catalyst:	HZSM-5			
Cutty of.				
Utilities:				
Cooling Water (lb/hr):	15,118			

	Р	acked-Bed Reactor		
Identification:	Item:	RSTOIC Reactor		
	Item No.:	R-102	Date:	4/10/13
	No. Required:	1	By:	JS/AC/PB/Al
	C _p (\$):	30,713	C _{BM} (\$):	97,359
Function: Converts 3-methylp				
Operation: Continuous				
	S-111	S-112	1	
	Inlet	Outlet		
Materials Handled:				
Total Flow (lb/hr):	3,307	3,307		
Volumetric Flow (ft ³ /hr):	15,136	76,860		
Component Flows (lb/hr):				
O_2	0	0		
H_2	0	170		
N_2	0	0		
Ammonia	485	485		
H_2O	0	0		
CO_2	0	0		
MPDA	0.002	0.002		
3-methylpiperidine	2,822	28		
3-picoline	0	2,624		
3-cyanopyridine	0	0		
Niacinamide	0	0		
Temperature (°F):	554	554		
Pressure (psi):	62.5	42.2		
Vapor Fraction:	1	1		
Design Data:		• •		
Material:	Stainless Steel			
Number of Parallel Tubes:	40			
Tube Diameter (in):	4.0			
Tube Length (ft):	20.0			
Shell Diameter (ft):	1.87			
Heat Transfer Area (ft ²):	838			
Catalyst:	Pd-SiO ₂ /Al ₂ O ₃			
Utilities:				
Dowtherm A (MMBTU/hr):	2.6			
Dowtherm A (lb/hr):	10,408			

		Tubular Rea	ctor		
Identification:	Item:	RSTOIC Reactor	r		
	Item No.:	R-201		Date:	4/10/13
	No. Required:	1		By:	JS/AC/PB/AI
	C _p (\$):	721,219		C _{BM} (\$):	2,286,265
Function: Converts 3-picoline	-	dine product			
Operation: Continuous					
	S-203	S-204	S-205		
	Inlet	Inlet (O_2)	Outlet		
Materials Handled:	I				
Total Flow (lb/hr):	4,314	1,481	5,795		
Volumetric Flow (ft ³ /hr):	47,201	6,748	72,571		
Component Flows (lb/hr):					
O_2	0	1,481	136		
H_2	Trace	0	0		
N_2	0	0	0.4		
Ammonia	475	0	0.08		
H_2O	1,186	0	2,696		
CO_2	0	0	7		
MPDA	0.002	0	0.002		
3-methylpiperidine	28	0	28		
3-picoline	2,624	0	24		
3-cyanopyridine	0	0	2,904		
Niacinamide	0	0	0		
Temperature (°F):	626	77	626		
Pressure (psi):	30	39.5	29.1		
Vapor Fraction:	1	1	1		
Design Data:				·	
Material:	Stainless Steel				
Number of Parallel Tubes:	2,000				
Tube Diameter (in):	1.8				
Tube Length (ft):	42.0				
Shell Diameter (ft):	1.87				
Heat Transfer Area (ft ²):	39,580				
Catalyst:	V_2O_5 , TiO ₂ , ZrO ₂	in a 1:3:8 molar ra	tio and MoO ₃ as 1.15	5 wt% based on V ₂	O ₅
Utilities:					
Cooling Water (lb/hr):	196,694				

	Stirreo	I-Tank React	ors in Series		
Identification:	Item:	RSTOIC Reacto	r		
	Item No.:	R-202A,B,C		Date:	4/10/13
	No. Required:	3		By:	JS/AC/PB/AL
	C _p (\$):	268,719		C _{BM} (\$):	918,160*
Function: Converts feed 3-cya	anopyridine to niaci	namide product			
Operation: Semi-continuous					
Operation. Semi-continuous	S-206, 213, 220	S-207, 214, 221		1	
	Inlet	Outlet			
Materials Handled:					
Total Flow (lb/hr):	5,795	5,795			
Volumetric Flow (ft ³ /hr):	1,457	1,878			
Component Flows (lb/hr):				1	
O_2	136	136		1	
H_2	0	0			
N_2	0.4	0.4			
Ammonia	0.08	0.08			
H_2O	2,696	2,199		1	
CO_2	7	7			
MPDA	0.002	0.002			
3-methylpiperidine	28	28			
3-picoline	24	24			
3-cyanopyridine	2,904	29			
Niacinamide	0	3,372			
Temperature (°F):	77	77			
Pressure (psi):	19.1	14.6			
Vapor Fraction:	0.025	0.03			
Design Data:				÷	
Material:	Carbon Steel (S	A-285 Grade C)			
Stirrer Speed (rpm):	110				
Volume (ft ³):	6,975				
Diameter (ft)	13.6				
Residence time per tank (hrs):	4				
Catalyst:		rhodochrous J1 bio	catalyst in polyacr	ylamide gels	
Utilities:					
Refrigeration (ton/day):	30,876				
Comments: Three stirred tank					
*Cost per tank, includes 2 imp	ellers (turbines)				

]	Feed Storage Tank		
Identification:	Item:	Floating Roof Storage Tank		
	Item No.:	T-101	Date:	4/10/13
	No. Required:	1	By:	JS/AC/PB/AL
	C _p (\$):	206,429	C _{BM} (\$):	629,609
Function: MPDA feed storage	tank.			
Operation: Continuous				
	S-101			
	Outlet			
Materials Handled:				
Total Flow (lb/hr):	3,307			
Volumetric Flow (ft ³ /hr):	54			
Component Flows (lb/hr):	_			
O_2	0			
H_2	0			
N_2	0			
Ammonia	0			
H_2O	0			
CO_2	0			
MPDA	3,307			
3-methylpiperidine	0			
3-picoline	0			
3-cyanopyridine	0			
Niacinamide	0			
Temperature (°F):	77			
Pressure (psi):	14.5			
Vapor Fraction:	0			
Design Data:	55 000			
V (gallons):	77,000			
τ (hr):	168.0			
Туре:	Floating Roof			
Material:	Stainless Steel			
Utilities:				
Comments:				
Comments:				

	Product Storage Tank						
Identification:	Item:	Cone-roof storage tank					
	Item No.:	T-301	Date:	4/10/13			
	No. Required:	1	By:	JS/AC/PB/Al			
	C _p (\$):	104,337	C _{BM} (\$):	434,044			
Function: Niacinamide produc	et storage tank.						
Operation: Continuous							
	S-316						
	Inlet						
Materials Handled:							
Total Flow (lb/hr):	3,453						
Volumetric Flow (ft ³ /hr):	44						
Component Flows (lb/hr):	l						
O_2	0						
H_2	0						
N_2	0						
Ammonia	0						
H_2O	0						
CO_2	0.2						
MPDA	Trace						
3-methylpiperidine	28						
3-picoline	24						
3-cyanopyridine	29						
Niacinamide	3,372						
Temperature (°F):	77						
Pressure (psi):	14.5						
Vapor Fraction:	0						
Design Data:		•					
V (gallons):	93,000						
τ (hr):	168						
Туре:	Cone-Roof						
Material:	Carbon Steel						
Utilities:							
<u> </u>							
Comments:							

E. EQUIPMENT COST SUMMARY

The table below outlines all of the bare-module costs for the equipment used in this process. A majority of the purchase costs were found using ASPEN IPE, which used 2010 cost indices. The cost was updated to reflect 2013 cost indices before being added into the table. For most of the heat exchangers, compressors, blowers, neutralizer, and storage tanks, correlations present in *Product and Process Design Principles* were used to find the cost of the vessel. Purchase costs were then converted from the 2006 values (CE=500) to 2013 values (CE=570). Sample calculations can be found in Appendix IX. The cost of the reactors and the decolorizing unit were found using correlations associated with the vessel size and standard equipment that closely modeled the units. To find the total cost of the equipment, the purchase cost was multiplied by the bare module factor. Equipment unit numbers marked with an asterisk indicate that the bare module cost is a combination of equipment with different bare module factors, and hence does not follow the purchase cost of installation materials, installation labor, freight, taxes, insurance, construction overhead, and contractor engineering expenses, is specific to each type of equipment and may be found in Table 22.11 of *Product and Process Design Principles*. Total bare module cost for all of the equipment pieces is \$34 million, which includes the cost for spare pumps for the process.

	Equipment Cost Summary						
Unit #	Equipment Type	Costing Method	Purchase Cost	F _{BM}	Свм		
A-101	Absorber	IPE	791,116	4.16	3,291,044		
A-102	Absorber	IPE	548,989	4.16	2,283,795		
B-201	Blower	Seider	2,555	2.15	5,492		
B-202	Blower	Seider	2,304	2.15	4,954		
B-203	Blower	Seider	2,828	2.15	6,080		
C-101	Compressor	Seider	40,335	2.15	86,719		
C-102	Compressor	Seider	94,138	2.15	202,397		
C-103	Compressor	Seider	118,025	2.15	253,753		
C-301	Compressor	Seider	1,084,345	2.15	2,331,342		

Table E1. Equipment Cost Summary

	Equipment Cost Summary (continued 1)						
Unit #	Equipment Type	Costing Method	Purchase Cost	F _{BM}	C _{BM}		
D-101	Distillation Column	IPE/Seider	967,255	4.16	4,023,779		
DC-301*	Decolorizing Unit	Correlations	38,089	4.16	149,787		
DR-301	Dryer	Vendor	804,369	2.06	1,657,000		
F-201	Flash Vessel	IPE	128,760	4.16	535,640		
F-301	Flash Vessel	IPE	115,273	4.16	479,535		
HX-101	Heat Exchanger	IPE	76,656	3.17	243,001		
HX-102	Heat Exchanger	IPE	74,697	3.17	236,789		
HX-201	Heat Exchanger	IPE	133,947	3.17	424,612		
HX-202A	Heat Exchanger	IPE	104,322	3.17	330,700		
HX-202B	Heat Exchanger	IPE	77,117	3.17	244,462		
HX-203	Heat Exchanger	IPE	57,636	3.17	182,707		
HX-204	Heat Exchanger	IPE	57,636	3.17	182,707		
HX-205	Heat Exchanger	IPE	72,622	3.17	230,211		
HX-206	Heat Exchanger	IPE	53,371	3.17	169,187		
HX-301	Heat Exchanger	IPE	66,282	3.17	210,113		
HX-302	Heat Exchanger	IPE	123,457	3.17	391,359		
HX-303	Heat Exchanger	IPE	56,829	3.17	180,149		
HX-304A	Heat Exchanger	IPE	253,139	3.17	802,450		
HX-304B	Heat Exchanger	IPE	88,414	3.17	280,273		
N-301*	Neutralizer	Seider	45,900	4.16	142,736		
P-101	Pump	Seider	30,547	3.30	100,806		
P-102	Pump	Seider	30,432	3.30	100,426		
P-103	Pump	Seider	41,844	3.30	138,085		
P-201	Pump	Seider	34,467	3.30	113,740		
P-202	Pump	Seider	34,467	3.30	113,740		
P-203	Pump	Seider	34,467	3.30	113,740		
P-204	Pump	Seider	31,239	3.30	103,088		
P-301	Pump	Seider	36,541	3.30	120,587		
R-101	Tubular Reactor	Correlations	810,184	3.17	2,568,283		
R-102	Packed Bed Reactor	Correlations	30,713	3.17	97,359		
R-201	Tubular Reactor	Correlations	721,219	3.17	2,286,265		
R-202A*	Semi-continuous stirred tank reactor	Correlations	268,719	3.17	918,160		
R-202B*	Semi-continuous stirred tank reactor	Correlations	268,719	3.17	918,160		
R-202C*	Semi-continuous stirred tank reactor	Correlations	268,719	3.17	918,160		
T-101	Storage Tank	Seider	206,429	3.05	629,609		
T-301	Storage Tank	Seider	104,337	4.16	434,044		
PS-101	Spare Pump	IPE	30,547	3.30	100,806		
PS-102	Spare Pump	IPE	30,432	3.30	100,426		

	Equipment Cost Summary (continued 2)						
Unit #	nit # Equipment Type Costing Purchase Method Cost				Свм		
PS-103	Spare Pump	IPE	41,844	3.30	138,085		
PS-201	Spare Pump	IPE	34,467	3.30	113,740		
PS-202	Spare Pump	IPE	34,467	3.30	113,740		
PS-203	Spare Pump	IPE	34,467	3.30	113,740		
PS-204	Spare Pump	IPE	31,239	3.30	103,088		
PS-301	Spare Pump	IPE	36,541	3.30	120,587		
Total Bare-Module Cost \$					33,769,035		

F. FIXED-CAPITAL INVESTMENT SUMMARY

The fixed costs for the plant stem from mostly the equipment costs, previously reported by unit in the equipment costs summary in Section E: Table E1. Other factors that influence that total permanent investment are summarized in Table F1. The fixed capital investment, summarized in Table F2, details the capital investment required for the entire process. The direct permanent investment, C_{DPI} is the sum of the total bare-module equipment costs, the site preparation costs, the service facilities costs and allocated costs. From table E1, the total Bare-Module Cost is \$33,700,000, which includes the cost of storage tanks and process machinery and the spare pumps for the process.

Table F1. Summary of Total Permanent Investment, TPI factors

Cost of Site Preparations:	5%	of Total Bare Module Costs
Cost of Service Facilities:	5%	of Total Bare Module Costs
Allocated Costs for utility plants and related facilities:	\$500,000	
Cost of Contingencies and Contractor Fees:	18%	of Direct Permanent Investment
Cost of Land:	2%	of Total Depreciable Capital
Cost of Royalties:	2%	of Total Depreciable Capital
Cost of Plant Start-Up:	10%	of Total Depreciable Capital

The costs of site preparation and service facilities are estimated to be 5.00% of the total bare-module cost as recommended in *Product and Process Design Principles*. This estimate is considered conservative for most plant setups and locations. While some utilities are readily available onsite (for example the cooling water, steam, hot water) others like Dowtherm heating system and the refrigeration system are not; thus the allocated costs of \$500,000 for utility plants and related facilities for the two heating and refrigeration

systems will be set aside. As previously mentioned, the Dowtherm system was priced at around \$700,000. However, the two refrigeration systems that will need to be put into the plant will be less expensive than this Dowtherm system. Therefore a rough estimate of \$500,000 is used to cover the cost of these refrigeration units.

The cost of contingencies and contractor fees, accounted for in the total depreciable capital, C_{TDC} , at 18%, is a combination of a 15% allowance for direct permanent investment (DPI) for contingencies and a 3% allowance for contractor fees. Contingencies are estimated at 15% of the DPI because the technologies throughout the process are readily available, except for the biocatalyst present in the fourth reactor. 15% of the DPI allocated to contingencies is reasonable to cover any expenses associated with unplanned events. Allocating 2% of the TDC toward land is reasonable since this plant and the equipment is relatively available and should not have issues securing land in regions close to MPDA production for the feedstock. Additionally, 2% of the TDC is allocated to royalties, as recommended in *Product and Process Design Principles* because this process is based on a patent currently owned by Lonza. As for the startup costs, 10% is used because fuel for the Dowtherm is required as well as startup capital needed for MPDA storage at the plant.

Listed below is the overall fixed capital investment summary, taking into account the above considerations. Table F2 outlines the total permanent investment.

Table F2. Summary of Fixed Capital Investment

\$ 16,672,036	
\$ 3,794,948	
\$ 904,211	
\$ 1,063,653	
\$ 8.747.659	
\$	
\$ -	
-	\$ 33,769,035
\$ 1,688,452	
, ,	
\$ 500,000	
-	\$ 37,645,938
\$ 6,776,269	
-	\$ 44,422,207
\$ 888,444	
0	
\$ 4,442,221	
	\$ 49,752,872
	1.00
	\$ 49,752,872
•	· · · · · ·
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ 3,794,948 904,211 1 1,063,653 1,063,653 1,063,6528 2,586,528 1,688,452 1,688,454 1,688,452 1,688,454 1,688,452 1,688,454 1,688,452 1,688,454 1,688,444 1,688,44 1,688,44 1,688,44 1,688,44 1,688,44 1,688,44 1,688,44

G. OTHER IMPORTANT CONSIDERATIONS

Environmental and Safety Considerations

Given the nature of the project, environmental considerations are important to the overall sustainability of this process. Waste treatments and chemical leakage are two leading concerns. The waste products include CO_2 , a small amount of NOx, as well as the organic compounds left in the purge stream after leaving the dryer. The first two will be rectified using wet scrubbers at the exits of the streams. Additionally, although the amount of CO_2 produced by the biocatalysts was not determined due to insufficient data, wet scrubbers will be placed at the vents of each CSTR. Regeneration of the catalysts also produces CO_2 , which will be redirected to one of the wet scrubber units. Finally, the organic compounds in the wastewater will be treated at an off-site facility.

The environmental impact of a chemical process can be quantified via the Waste Reduction (WAR) algorithm, made available by the U.S. Environmental Protection Agency (USEPA). The WAR algorithm utilizes life cycle analysis and investigates areas such as human toxicity, ozone depletion, global warming and terrestrial toxicity potentionals when calculating the overall potential environmental impact (PEI). The lower the PEI, the less impact the process has on the environment. The total rate of PEI leaving a system per hour is defined as I_{out} (Fermeglia et al, 2007). Using the WAR software downloaded from the EPA website, the authors attempted a preliminary environmental assessment to evaluate the I_{out}. I_{out} for the production of niacinamide was calculated to be 35 PEI/hr. When compared to other PEI values, all within the range of 35 to 160 PEI/hr, this process rates well, validating its overall sustainability (Fermeglia et al, 2007; Gangadharan et al, 2012; Seay and Gish, 2010).

The high-pressure hydrogen system designed to vaporize the Dowtherm A is another point of caution. Given its high flammability potential upon leaking, extra care must be exercised when performing leak tests on this part of the process. In addition, leaks can be guarded against via welded joints and shut-off valves periodically placed within the piping. The two most toxic chemicals in our process are Dowtherm A and ammonia. In both cases, stringent leak and purge tests will be performed prior to starting production. Moreover, control equipment including valves, feedback loops, and computer regulation will be used to monitor the Dowtherm A and ammonia content in the air surrounding relevant vessels and piping, to ensure safe working conditions for operators.

Dust explosions and fires are a potential hazard with regard to the handling of niacinamide in powder form. Larger particles (greater than 50 μ m) are desired to reduce the risk of explosions, as higher surface areas result in greater exposure to heat and oxygen and thus greater potential to ignite. To best assess the risk of explosion, the volume (electrical) resistivity of the powder should be measured. The lower the resistivity, the lower the risk of explosion (Lonza Plant Safety, 2012).

Finally, transient operating conditions during startup and shutdowns may lead to undesirable and unsafe changes in process variables such as temperature and pressure, especially with regard to the Dowtherm A furnace and the exothermic tubular reactors. After startup, there is still the concern of high temperatures and possibly high pressures, but the safety issues associated with these are usually much less. To avoid issues such as thermal runaway, the process and controls will be closely monitored during startup and shutdown. Detailed process safety management plans will be disseminated throughout the plant for each process unit. Pressure and temperature controls as well as pressure-relief valves will be located throughout the process, including vaporizers and heat exchangers with large temperature changes.

A quantitative analysis of the safety of the process and its chemicals may be performed using one of several methods, including the Dow Fire and Explosion Hazard Index, Hazard and Operability Analysis (HAZOP), and the Prototype Index of Inherent Safety (PIIS) (Gangadharan et al, 2012).

Necessary personal protective equipment such as gloves, goggles, lab coats, face-masks and close-toe shoes will be required to prevent harm from contact with any of the organic compounds in the process, as most are corrosive and toxic if skin-contacted or inhaled. Please refer to the MSDS sheets in Appendix IX for further information.

Catalyst Regeneration

Catalysts eventually become deactivated via various methods, the most common being carbon deposits (coking), sintering and poisoning. Coking is the main concern within this process. There are two main options for handling deactivated catalysts: discarding the catalyst completely and purchasing new catalyst each cycle, and regenerating the catalyst on-site every cycle. There are two further options associated with the latter. First, an extra reactor may be purchased to allow for continuous operation; while one reactor is being regenerated, the other remains running. Second, more commonly, the plant may be shut down as necessary to regenerate the catalyst periodically.

To remain sustainable in this process, whenever possible it is desirable to regenerate the catalysts. Due to the low concentration of hydrocarbons in the process, the catalysts in the first and third reactors only require regeneration every six months, entailing on-site regeneration in the form of taking each reactor off-line and combusting off the coke. It was deemed too costly to buy an entire duplicate reactor solely for regeneration purposes. The entire regeneration process is estimated to take one day. Oxygen will be pumped through the reactor and combusted with the carbon, following the simple reaction:

$$C + O_2 \rightarrow CO_2 \tag{7}$$

Due to limited information from the patents, other literature references were sought to determine the required flow of oxygen assuming that carbon would account for 3% of the catalyst's original mass (Trimm, 2001). Oxygen flow rates of 448 lbs/6 months and 21,048 lbs/6 month were calculated for the first and third reactors, respectively.

Since the third reactor contains the precious metal Palladium, Pd, and also has an activation life of at least one year according to the Lonza patent, it will be removed and replaced with new catalyst once every year, again requiring a one day shutdown. However, according to one of our industrial consultants, Mr. Kolesar, we will be able to recover roughly 70% of the catalysts cost. Considering the Pd-SiO₂/Al₂O₃ costs 783,000 to purchase, we will be able to recover 548,000 each year, yielding a net cost of 235,000.

Finally, due to the nature of biocatalysts, once they have died they must be discarded and new ones purchased. We will renew the biocatalysts in reactor four once per year. All regenerations will be performed in conjunction with required safety and maintenance plant shutdowns to reduce the amount of off-line time for the plant. Refer to page 234 for Sample Calculations for catalyst regeneration.

Startup Considerations

There are several key issues to consider during start up. First, an inert gas must be run through the process to test for leaks. Controlled process variables such as temperature, pressure, inventory (material level in storage tanks), material composition, and flow are often not at their steady-state value during startup – extra caution must be exercised. Operation conditions may also need to be adjusted initially; for example, the exothermic tubular reactors may need to run at higher initial temperatures to yield the same conversion to obtain the appropriate product quality. Furthermore, bypass pipes may be needed until the desired steam compositions are reached for proper produce quality. Finally, units such as the distillation tower and flash vaporizers may initially need water or steam injected in until the correct operating conditions are reached. (Verwijs, 1995). Many of these considerations can be furthered specified after a pilot plant has been constructed.

For the plant to run properly during initial startup as well as after any stop in niacin production for necessary maintenance or catalyst regeneration, the furnace for the Dowtherm system must have a feed stock other than the hydrogen produced in the process. To keep with the overarching theme of environmental cleanliness, the feed stock chosen will reduce emissions of "green-house" gases such as carbon monoxide and carbon dioxide. Natural gas, the conventional fuel of choice, was not chosen for this startup process due to its negative effects on the environment. The startup fuel chosen is renewable natural gas, a type of biogas upgraded to natural gas quality (BioSNG, 2007). Biogas is captured from the decomposition of organic material in places such as landfills, sewage treatment facilities, and farms (animal byproducts). Impurities such as carbon dioxide, water, and hydrogen sulfide are then removed from the raw biogas. Once upgraded, biogas may be substituted directly for natural gas (Alternative Fuels

Data Center, 2013). The cost for renewable natural gas is around \$9.75-\$11/MMBtu, adjusted for 2013 prices (Rutledge, 2005). Though this up-production makes renewable natural gas more expensive than traditional natural gas, the environmental benefits further enhance the green nature of our process.

Additionally, we will be shipping our supply of MPDA from Invista, a company located nearby the plant in Ontario. Given the volume we will require for storage, ISO containers will be used during shipping (Invista, 3).

Finally, upon process startup, there will be a minimum delay of at least 12 hours to account for the fourhour residence times for each CSTR.

Purity Improvement

To improve the purity of the niacinamide, a similar separation scheme utilized by Lonza's plant in Guangzhou, China could be used, in which a toluene extraction unit is placed after the third reactor to retain and extract the 3-cyanopyridine that is produced in that reaction (ICIS.com, 1999). In doing so, the remainder of the materials are recycled back into the third reactor. This not only simplifies the separation later on in the synthesis, but also increases the rate of conversion of the previous products into 3-cyanopyridine. This solution may then be distilled yielding a pure 3-cyanopyridine product and toluene, which can be recycled back into the extraction column. The timeline for this project did not allow for the investigation of this particular purification step; however, if this separation scheme were pursued further, not only would it increase the conversion of the other intermediates, but it would also increase the purity of the niacinamide after the final drying process, as there will be less organic compound impurities present in the niacinamide powder mixture. Although toluene is a toxic organic molecule that would make the process less green, it would operate in a closed loop such that only trace amounts of toluene would escape, limiting the waste released.

121

Schedule

The plant is expected to operate 335 days per year, allowing 30 days of down time. The process must be shut down periodically to allow for safety inspections, maintenance, catalyst regeneration, and CSTR cleaning. The CSTRs must be taken off-line and given steam-in-place (SIP) treatments as well as clean-in-place (CIP) treatments, which can be completed within one working day. To minimize the amount of off-line time, the catalyst regeneration and cleaning of the CSTRs will occur simultaneously (Wildy, 2003).

Miscellaneous

To best prepare for issues outside of our control, several contingency plans will be implemented. Firstly, bypass lines will be built into the CSTR reactor set in the case that one reactor fails. Residence times will be adjusted accordingly. Secondly, pressure and temperature controls will dictate the maximum pressures and temperature differences allowed before safety systems are implemented. Once the process plant is built, it will be easier to identify possible problem areas and adjust accordingly.

Due to the slurry mixtures involved in our process streams, it should be noted that to prevent clogs and pump failure, it is necessary to fit the pipes with filters. If further research into this process is desired, it is recommended that filters be included in the pressure drop calculations for equipment specifications. Solids complicate the flow within a process, and there must always be enough liquid to ensure proper flow through pipes and vessels. Accordingly, spare pumps (one for each size) will be stored onsite in the case of equipment failure.

Lastly, it was proposed that the excess hydrogen in our process be used to power a fuel cell to generate electricity rather than fuel the Dowtherm system. However, the 2.5% impurities within the hydrogen stream are too high for a fuel cell membrane to function properly and efficiently. Although it would have increased the sustainability of our project, in the end it was not feasible.

122

H. ENERGY BALANCE AND UTILITY REQUIREMENTS

Energy Balance

This section illustrates the energy balance and necessary utility requirements of the niacinamide production plant. However, this section does not include a detailed description of the energy consumption or utility requirements of the dryer due to limited data. For this unit, a rough estimate has been made based on data found on other similar spray drying processes. In addition, the energy balance and utility requirements of the decolorizer and neutralizer in the process were not calculated and have been assumed to be negligible in the overall process. This production plant as a whole requires a 20 MMBTU/hr addition with a net electricity requirement of 2,321 HP. The unit number, equipment type, energy requirements, and possible methods to satisfy the energy requirement of the equipment are listed in the table below. The units are grouped according to number and method used to satisfy the energy requirements.

Unit #	Equipment Type	Energy Requirement	Methods to Satisfy Energy Requirement
B-201	Blower	2.3 HP	Electricity
B-202	Blower	2.0 HP	Electricity
B-203	Blower	2.6 HP	Electricity
C-101	Compressor	22.3 HP	Electricity
C-102	Compressor	73.7 HP	Electricity
C-103	Compressor	101.3 HP	Electricity
C-301	Compressor	2,112.3 HP	Electricity
P-101	Pump	0.4 HP	Electricity
P-102	Pump	0.005 HP	Electricity
P-103	Pump	0.7 HP	Electricity
P-201	Pump	0.3 HP	Electricity
P-202	Pump	0.3 HP	Electricity
P-203	Pump	0.6 HP	Electricity
P-204	Pump	0.6 HP	Electricity
P-301	Pump	1.7 HP	Electricity
A-102	Dowtherm Process	-8 MMBTU/hr	Hydrogen Fuel
D-101	Condenser	-6.9 MMBTU/hr	Cooling Water
HX-202A	Heat Exchanger	-4.4 MMBTU/hr	Cooling Water
HX-304A	Heat Exchanger	-33 MMBTU/hr	Cooling Water
R-101	Reactor	-0.45 MMBTU/hr	Cooling Water
R-201	Reactor	-5.9 MMBTU/hr	Cooling Water
A-101	Condenser	-2.8 MMBTU/hr	Suva Refrigeration
A-102	Condenser	-1.2 MMBTU/hr	Ethylene Refrigeration
HX-202B	Heat Exchanger	-0.95 MMBTU/hr	Suva Refrigeration
HX-202D HX-203	Heat Exchanger	-0.007 MMBTU/hr	Suva Refrigeration
HX-204	Heat Exchanger	-0.006 MMBTU/hr	Suva Refrigeration
HX-205	Heat Exchanger	-0.19 MMBTU/hr	Suva Refrigeration
HX-304B	Heat Exchanger	-1.7 MMBTU/hr	Suva Refrigeration
R-202A	CSTR in Series Reactor	-1.1 MMBTU/hr	Suva Refrigeration
UV 204	Host Evolor cor		Hot Water
HX-206 HX-301	Heat Exchanger	0.22 MMBTU/hr 1.2 MMBTU/hr	Hot Water Hot Water
HA-301	Heat Exchanger	1.2 MIVIBIU/fit	Hot water
A-101	Reboiler	1.7 MMBTU/hr	Steam
A-102	Reboiler	0.82 MMBTU/hr	Steam
D-101	Reboiler	6.4 MMBTU/hr	Steam
HX-302	Heat Exchanger	29 MMBTU/hr	Steam
HX-303	Heat Exchanger	0.002 MMBTU/hr	Steam
HX-101	Heat Exchanger	1.5 MMBTU/hr	Dowtherm
HX-102	Heat Exchanger	0.29 MMBTU/hr	Dowtherm
HX-201	Heat Exchanger	2.6 MMBTU/hr	Dowtherm
R-102	Packed Bed Reactor	2.6 MMBTU/hr	Dowtherm

Table H1. Utility descriptions based on unit number.

Utility Requirements

In an attempt to reduce cost and increase plant efficiency, the utility requirements were integrated as much as possible throughout the process. By integrating available heat from the Dowtherm cycle into the heat exchangers and reactors that need a net input of heat, the utilities necessary from outside of the plant decrease significantly. The 8 MMBTU/hr available by burning the hydrogen created in the process can be used to heat the Dowtherm cycle and in turn be distributed to multiple heat exchangers and R-102 for heating. Since data was not available on the decolorizer and the neutralizer, and these vessels operate at room temperature and atmospheric pressure, these units have been again left out of the utility requirement calculations.

Utilities are calculated based on the assumption that they can be purchased directly from utility companies in the plant region. Prices are estimated using Table 23.1 of Product and Process Design Principles with adjusted prices from 2006 (CE=500) to 2013 (CE=570). The prices were adjusted from the table accordingly. Outlined below are short descriptions of each utility required followed by tables illustrating the required energy according to units.

Electricity

The overall process requires 2,321 HP to pumps and compressors. Electricity is assumed to be available at a price of \$0.068/kW-hr, adjusted for 2013. The infrastructure associated with electricity totals to around \$942,900, or around 19% of the total cost for utilities.

Cooling Water

Cooling water is assumed to be used at an inlet pressure of 65 psi and inlet temperature of 90°F with an exit temperature of 120°F. This process requires 1,690,000 lb/hr of cooling water in total. This water is available for \$0.0855/1,000 lb, as adjusted to reflect prices for 2013. 120°F reflects the maximum outlet temperature allowed for cooling water without further processing necessary. To work in the heat exchangers, a minimum temperature difference of 10° is used. Cooling water will cost \$1,159,000 in utilities, accounting for 23% of the total cost.

Dowtherm

Hydrogen created during the process will be separated out and account for the fuel necessary to heat the Dowtherm process. 8 MMBTU/hr is generated assuming a 99% conversion of the hydrogen. This heat will be transferred to the heat exchangers HX-101, HX-102, and HX-201 and reactor R-102. Dowtherm A was chosen for this process, which is a eutectic mixture of biphenyl and diphenyl oxide. An MSDS report for this chemical is presented in Appendix IX. The cost of this process is included as a whole in the utilities. Sample calculations for this system are present in the Appendix IX page 240.

Refrigeration

The coolant used for the refrigeration in the process was -15 °F cooling fluid. R-134a, also know from DuPont as Sura-134a, is used as the refrigerant due to its temperature range for the process, at the lowest temperature, -15 °F. This is the closest available refrigerant that meets the needs of process cooling. In accordance with green principles, this refrigerant does not propagate a flame under normal conditions and also shows no evidence of toxicity below 400 ppm, while also not depleting the ozone layer. For these calculations, the overall cost of refrigeration also includes the electricity needed to pump and cool the refrigerant. Appendix IX outlines the chart used to calculate the needed amount , per ton, of refrigeration.

The MSDS for Sura-134a is given in Appendix IX. The refrigeration process used for A-102 at the condenser, however, needs to be at a lower temperature to achieve the desired separation. Ethylene is chosen for this process due to its low temperature range of -100 to -150°F; the condenser needs to be cooled from 90°F to a temperature of -117°F. Overall the process requires 220,800 ton-day of refrigeration. Both ethylene and R-134a are assumed to be taken from offsite refrigeration systems; the cost of these systems is incorporated into the overall cost per lb of the refrigerants. To refrigerate, the cost of cooling is \$2.44 per ton-day for R-134a whereas the cost for ethylene refrigeration is \$3.99 per ton-day. The total cost for refrigeration is \$590,900, which is approximately 12% of the total utility cost. Please refer to page 239 for Refrigeration Power Requirements chart to calculate energy requirements.

Hot Water

For two of the heat exchangers in the process, streams need to be heated to well below the operation temperatures of steam. Therefore, two streams for HX-206 and HX-301 of hot water are used as utilities, at 100F. This hot water accounts for 1,453,000 BTU/hr at a cost of \$0.855 per lb, scaled to 2013 costing. This totals the annual cost to \$8,300, which is around 0.2% of the total cost for utilities.

Steam

The steam selected for the heating of HX-108 and the reboiler of D-101 is used to vaporize the streams and increase the temperature. High pressure steam had to be used, with a saturation temperature of 450 psig steam at 460°F, which is higher than any of the stream temperatures that use steam for heating. The heating value is assumed to be 1205 BTU/lb steam. The cost for steam is around \$7.52/1,000 lbs, which would total to \$1,900,000, or about 39% of the total utility costs. This accounts for the largest cost contribution for utilities in this process.

Wastewater

The wastewater streams generated in this process include mostly ammonia as contaminants. Because ammonia is listed as a toxin in water, the EPA has strict standards and regulations on what concentration ammonia is able to be released from chemical plants (Srinivasan et al., 2008). A packed bed air stripping unit must be added to remove the ammonia present in the wastewater stream. Therefore, costs were not calculated based on the weight of contaminant but instead based on the operating costs of an air stripping unit for the wastewater stream (Stocking, et al, 2000). In this unit, air is fed in large excess to remove ammonia from the water and usually adsorb into the packing material of the stripping unit (Lantec, 2004 and Huang & Shang, 2006). EPA regulations specify that wastewater can have a maximum of 0.14 mg ammonia/L (200 ppm) (EPA Emergency Management, 2004). The overall cost is \$239,065 for the first year to remove ammonia from the wastewater stream S-319. In subsequent years, the cost of this unit will only be upkeep. This is around 5% of the total cost of utilities.

Waste Gas

Two streams may require treatment in the process. S-314 is the nitrogen purge from the nitrogen recycle stream. However, EPA regulations allow between 2 and 10 PPM ammonia as slip levels (US EPA, 2001 and Phillips, 1995). In this process, ammonia appears as 87 PPM in the nitrogen purge stream. The only other components present are oxygen, water vapor, and small amount of hydrogen. Therefore this stream requires further processing before it can be vented to the atmosphere. The other stream, S-115, which would later result in the byproduct of burning hydrogen for the Dowtherm heating cycle, ammonia is theoretically in upwards of 35 PPM with carbon dioxide at 914 PPM. Depending on the operating conditions and the flow rate of the excess air in the process, NOx will also form in the process since air is added to burn the hydrogen feed. Although there are no regulations on carbon dioxide, ammonia and NOx byproducts must be removed from the stream. The best choice to clean both of these streams is a wet scrubber (Phillips, 1995 and Ohio EPA, 1993) which effectively removes NOx and ammonia from the waste gas stream. The overall cost of \$80,000 is outlined in the table and is based on the cost of operation to remove NOx, ammonia, and pretreating costs before the streams can be introduced into the wet scrubber. These two units account for around 2% of the utility cost.

	Electricity					
Unit #	Usage (kW)	Duty (HP)	Cost (\$/hr)	Annual Cost (\$)		
B-201	1.7	2.3	0.12	938		
B-202	1.5	2.0	0.10	819		
B-203	2.0	2.6	0.13	1,071		
C-101	16.5	22.3	1.13	9,068		
C-102	54.6	73.7	3.73	29,952		
C-103	75.0	101.3	5.13	41,153		
C-301	1,563.1	2,112.3	106.92	858,109		
P-101	0.3	0.4	0.02	156		
P-102	0.003	0.005	0.000	2		
P-103	0.5	0.7	0.04	302		
P-201	0.2	0.3	0.01	120		
P-202	0.2	0.3	0.01	114		
P-203	0.4	0.6	0.03	229		
P-204	0.4	0.6	0.03	224		
P-301	1.2	1.7	0.08	671		
Total	1,718	2,321	117.48	942,929		

Table H2. Utility usage and costs by utility type.

	Cooling Water					
Unit #	Usage (lb/hr)	Duty (BTU/hr)	Cost (\$/hr)	Annual Cost (\$)		
D-101	231,886	-6,933,102	19.83	159,125		
HX-202A	146,388	-4,376,827	12.52	100,455		
HX-304A	1,099,120	-32,862,379	93.97	754,242		
R-101	15,118	-452,000	1.29	10,374		
R-201	196,694	-5,880,900	16.82	134,976		
Total	1,689,205	-50,505,208	144.43	1,159,171		

	Dowtherm A					
Unit #	Duty (MMBTU/hr)	Annual Cost (\$)				
HX-101	1.468					
HX-102	0.293					
HX-201	2.600					
R-102	2.602					
Total	6.963	722,207				

Refrigeration						
Unit #	Usage (ton-day)	Duty (BTU/hr)	Cost (\$/ton-day)	Annual Cost (\$)		
A-101	76,943	-2,810,700	2.44	187,710		
A-102	33,598	-1,227,340	3.99	134,058		
HX-202B	26,057	-951,843	2.44	63,568		
HX-203	199	-7,284	2.44	486		
HX-204	178	-6,495	2.44	434		
HX-205	5,064	-185,000	2.44	12,355		
HX-304B	47,967	-1,752,230	2.44	117,021		
R-202A	30,876	-1,127,900	2.44	75,326		
Total	220,883	-8,068,792	2.44	590,958		

Hot Water (100 F)					
Unit #	Usage (lb/hr)	Duty (BTU/hr)	Cost (\$/hr)	Annual Cost (\$)	
HX-206	185	223,000	0.16	1,270	
HX-301	1,021	1,230,000	0.87	7,005	
Total	1,206	1,453,000	1.03	8,275	

Steam (450 psi)					
Unit #	Usage (lb/hr)	Duty (BTU/hr)	Cost (\$/hr)	Annual Cost (\$)	
A-101	1,401	1,687,610	10.54	84,573	
A-102	682	821,359	5.13	41,162	
D-101	5,304	6,391,715	39.91	320,316	
HX-302	24,002	28,922,000	180.59	1,449,403	
HX-303	2	2,431	0.02	122	
Total	31,390	37,825,115	236.18	1,895,576	

Wastewater Treatment				
Stream	Unit Cost (\$)	Cost (\$/year)	Annual Cost (\$)	
S-319	125,000	114,065	239,065	
Total	125,000	114,065	239,065	

Wastegas Treatment					
Stream	Unit Cost (\$)	Cost (\$/year)	Annual Cost (\$)		
S-314	35,000	5,000	40,000		
S-115	35,000	5,000	40,000		
Total	70,000	10,000	80,000		
To	tal Utilities		\$4,911,573		
Dowt	herm System		\$722,207		

I. OPERATING COST AND ECONOMIC ANALYSIS

The economic analysis is based on results calculated using the Profitability Analysis Spreadsheet 3.0 provided by *Seider et al., 2009.* Table I.1 is a summary of an operating time-table and assumptions that are used to perform the analysis. An overall inflation rate of 2% is assumed.

Table I.1. Summary of Econo	omic Analysis Inputs
-----------------------------	----------------------

General Info	ormation				
	Process Title:	Green Process to Produce	Niacin		
	Product Niacinamide				
	Plant Site Location:	ution: Michigan			
	Site Factor:	1.00			
C	Operating Hours per Year:	8026			
(Operating Days Per Year:	334			
	Operating Factor:				
Product Info	ormation				
This Process	will Yield				
		3,452 lb of Niacina	mide per hour		
		82,836 lb of Niacina	mide per day		
		27,701,739 lb of Niacina	mide per year		
	Price	\$4.43 /lb			
Chronology	1				
		Distribution of	Production	Depreciation	Product Price
<u>Year</u>	Action	Permanent Investment	<u>Capacity</u>	5 year MACRS	
	Design		0.0%		
	Construction	100%	0.0%		
	Production	0%	45.0%	20.00%	\$4.43
2016	Production	0%	67.5%	32.00%	\$4.52
2017	Production	0%	90.0%	19.20%	\$4.61
	Production		90.0%	11.52%	\$4.70
2019	Production		90.0%	11.52%	\$4.80
2020	Production		90.0%	5.76%	\$4.89
2021	Production		90.0%		\$4.99
2022	Production		90.0%		\$5.09
2023	Production		90.0%		\$5.19
2024	Production		90.0%		\$5.30
	Production		90.0%		\$5.40
			00.00/		\$5.51
2026	Production		90.0%		
	Production Production		90.0%		\$5.62
2027			90.0% 90.0%		\$5.62 \$5.73
2027 2028	Production		90.0%		\$5.62
2027 2028 2029	Production Production		90.0% 90.0%		\$5.62 \$5.73
2027 2028 2029 2030	Production Production Production		90.0% 90.0% 90.0%		\$5.62 \$5.73 \$5.85

Operating Cost Summary

Variable Costs

Variable costs for the plant include raw materials, utilities, and other expenses. The variable cost does not include revenue from selling value-added byproducts since this process does not generate them. Other expenses include, but are not limited to, management incentives, administrative expenses, research and laboratory costs, and sales and marketing expenses. Also, since this process is based off a patent by Lonza, research must be done to improve the process and equipment. Direct research is then estimated at 4.8% of the sales cost and allocated research at 0.5%.

MPDA is the primary raw material used in this process. Oxygen, nitrogen, and process water, which was also priced on a basis of one pound of niacinamide produced, are other necessary raw materials. MPDA is around \$3.09 per pound, or \$31 per tonne of liquid raw material. This price has included pipeline costs and any other transportation fees that may be associated with the MPDA. For each pound of niacinamide produced, 0.96 pounds of MPDA are required. As for oxygen and nitrogen, these will be brought to the plant on trailers which contain 20 MT. Assuming a cost of \$200 per megaton with a 10% variable on the costing, which would include the storage tank, pump, and ambient vaporizer, 0.43 pounds of oxygen per pound of niacinamide is needed. The same process is true for nitrogen; this would come to the plant for \$70/MT plus 10% variable cost. For every pound of product produced, 0.0090 pounds of nitrogen is needed. As for process water, 0.35 pounds of water are necessary for every pound of product. The process water comes at a cost of \$0.75 per pound.

Utilities are another concern in terms of the variable cost. This were discussed in a previous section titled Utilities and Energy Balances. All utility costs have been obtained from Product and Process Design Principles as mentioned below. Outlined in Table I.2 below is the total variable cost of the process. Table I.2. Summary of Variable Cost

Variable Cost Summary Variable	Costs at 100% Capacity:		
General	<u>Expenses</u>		
	Selling / Transfer E	xpenses:	\$ 3,683,072
	Direct Research:		\$ 5,892,915
	Allocated Research	1:	\$ 613,845
	Administrative Expe	ense:	\$ 2,455,381
	Management Incen	tive Compensation:	\$ 1,534,613
Total G	eneral Expenses		\$ 14,179,828
<u>Raw Ma</u>	terials	\$2.96 per lb of Niacinamide	\$82,042,348
<u>Byprod</u>	ucts	\$0 per lb of Niacinamide	\$0
Utilities		\$0.17 per lb of Niacinamide	\$4,590,451
<u>Total Va</u>	riable Costs		\$ 100,812,627

Fixed Costs

Fixed costs include those incurred by the process but are not based on the amount of product produced from the plant. These include salaries and benefits, overhead operation costs, insurance, taxing, and maintenance cost for the equipment and the plant itself. Table H3 below outlines the total fixed costs of the project.

Table I3. Summary of Fixed Cost

Fixed Cost Summary			
<u>Operations</u>			
	Direct Wages and Benefits	\$	364,000
	Direct Salaries and Benefits	\$	54,600
	Operating Supplies and Services	\$	21,840
	Technical Assistance to Manufacturing	\$	-
	Control Laboratory	\$	-
	Total Operations	\$	440,440
Maintenance			
	Wages and Benefits	\$	1,998,999
	Salaries and Benefits	\$	499,750
	Materials and Services	\$	1,998,999
	Maintenance Overhead	\$	99,950
	Total Maintenance	\$	4,597,698
Operating Ov	<u>erhead</u>		
	General Plant Overhead:	\$	207,132
	Mechanical Department Services:	\$	70,016
	Employee Relations Department:	\$	172,124
	Business Services:	\$	215,884
	Total Operating Overhead	\$	665,156
Property Taxe	es and Insurance		
	Property Taxes and Insurance:	\$	888,444
Other Annual	Expenses		
	Rental Fees (Office and Laboratory Space):	\$	-
	Licensing Fees:	\$	-
	Miscellaneous:	\$ \$	-
	Total Other Annual Expenses	\$	-
<u>Total Fixed C</u>	<u>osts</u>	\$	6,591,738

Working Capital

Working capital is the sum of cash reserves, inventory, and accounts receivable minus accounts payable. Accounts payable, accounts receivable, and cash reserves are all assumed to be 30 days' worth. Seven days of MPDA, the raw material, is stored on site while two days' worth of the product, niacinamide, is stored at the plant site as well. A summary of the working capital for the first three years of actual plant operation is given below. The total capital investment, based on previous assumptions and calculations, is around \$54,105,000.

Working Capital				
		<u>2014</u>	<u>2015</u>	<u>2016</u>
	Accounts Receivable	\$ 4,540,774	\$ 2,270,387	\$ 2,270,387
	Cash Reserves	\$ 413,588	\$ 206,794	\$ 206,794
	Accounts Payable	\$ (3,204,227)	\$ (1,602,113)	\$ (1,602,113)
	Niacinamide Inventory	\$ 302,718	\$ 151,359	\$ 151,359
	Raw Materials	\$ 708,037	\$ 354,018	\$ 354,018
	Total	\$ 2,760,890	\$ 1,380,445	\$ 1,380,445
	Present Value at 15%	\$ 2,400,774	\$ 1,043,815	\$ 907,665
Total Capital Investment			\$ 54,105,125	

Table I4. Summary	of Working Capital
-------------------	--------------------

Cash Flow and Profitability Analysis

Profitability and feasibility of the project are based on several measures, including return on investment (ROI), investor's return on investment (IRR), net present value (NPV), and the depreciation of the plant over the 20 year lifetime. As a base case, the plant has allocated 1 year for design, 1 year for construction, and 18 years of operating the plant. Based on this operation schedule, after the third production year, the ROI is 11.09% whereas the IRR is 16.82%, and the NPV, assuming 15% discount rate, is \$4,932,800 at the end of the 20 year period. The table below summarized the cash flow sheet for the 20 year lifetime of the plant.

Table I6. Summary of Cash Flow

							С	ash Flow Sum	imary						
	Percentage of	Product								Depletion					Cumulative Net
Year	Design Capacity	Unit Price	Sales	Capital Costs	Working Capital	Var Costs	Fixed Costs	Total Costs	Depreciation	Allowance	Taxible Income	Taxes	Net Earnings	Cash Flow	Present Value at 15%
2013	0%		-	-	-	-	-	-	-	-	-	-	-	-	-
2014	0%		-	(49,752,900)	(2,760,900)	-	-	-	-	-	-	-	-	(52,513,761)	(45,664,100)
2015	45%	\$4.43	55,246,082	-	(1,380,400)	(45,365,700)	(6,591,738)	(51,957,420)	(8,884,400)	-	(5,595,780)	2,070,400	(3,525,341)	3,978,655	(42,655,700)
2016	68%	\$4.52	84,526,505	-	(1,380,400)	(69,409,500)	(6,723,573)	(76,133,067)	(14,215,100)	-	(5,821,668)	2,154,000	(3,667,651)	9,167,010	(36,628,200)
2017	90%	\$4.61	114,956,047	-	-	(94,396,900)	(6,858,044)	(101,254,956)	(8,529,100)	-	5,172,027	(1,913,700)	3,258,377	11,787,441	(29,888,700)
2018	90%	\$4.70	117,255,168	-	-	(96,284,800)	(6,995,205)	(103,280,055)	(5,117,400)	-	8,857,674	(3,277,300)	5,580,335	10,697,773	(24,570,100)
2019	90%	\$4.80	119,600,271	-	-	(98,210,500)	(7,135,109)	(105,345,656)	(5,117,400)	-	9,137,177	(3,380,800)	5,756,421	10,873,860	(19,869,000)
2020	90%	\$4.89	121,992,277	-	-	(100,174,800)	(7,277,812)	(107,452,569)	(2,558,700)	-	11,980,988	(4,433,000)	7,548,022	10,106,742	(16,069,500)
2021	90%	\$4.99	124,432,122	-	-	(102,178,300)	(7,423,368)	(109,601,621)	-	-	14,830,501	(5,487,300)	9,343,216	9,343,216	(13,015,200)
2022	90%	\$5.09	126,920,765	-	-	(104,221,800)	(7,571,835)	(111,793,653)	-	-	15,127,111	(5,597,000)	9,530,080	9,530,080	(10,306,100)
2023	90%	\$5.19	129,459,180	-	-	(106,306,300)	(7,723,272)	(114,029,526)	-	-	15,429,654	(5,709,000)	9,720,682	9,720,682	(7,903,300)
2024	90%	\$5.30	132,048,364	-	-	(108,432,400)	(7,877,737)	(116,310,117)	-	-	15,738,247	(5,823,200)	9,915,095	9,915,095	(5,772,100)
2025	90%	\$5.40	134,689,331	-	-	(110,601,000)	(8,035,292)	(118,636,319)	-	-	16,053,012	(5,939,600)	10,113,397	10,113,397	(3,881,900)
2026	90%	\$5.51	137,383,117	-	-	(112,813,000)	(8,195,998)	(121,009,046)	-	-	16,374,072	(6,058,400)	10,315,665	10,315,665	(2,205,300)
2027	90%	\$5.62	140,130,780	-	-	(115,069,300)	(8,359,918)	(123, 429, 227)	-	-	16,701,553	(6,179,600)	10,521,979	10,521,979	(718,200)
2028	90%	\$5.73	142,933,395	-	-	(117,370,700)	(8,527,116)	(125,897,811)	-	-	17,035,584	(6,303,200)	10,732,418	10,732,418	600,700
2029	90%	\$5.85	145,792,063	-	-	(119,718,100)	(8,697,658)	(128,415,767)	-	-	17,376,296	(6,429,200)	10,947,066	10,947,066	1,770,600
2030	90%	\$5.96	148,707,905	-	-	(122,112,500)	(8,871,612)	(130,984,083)	-	-	17,723,822	(6,557,800)	11,166,008	11,166,008	2,808,200
2031	90%	\$6.08	151,682,063	-	-	(124,554,700)	(9,049,044)	(133,603,764)	-	-	18,078,298	(6,689,000)	11,389,328	11,389,328	3,728,500
2032	90%	\$6.21	154,715,704	-	5,521,800	(127,045,800)	(9,230,025)	(136,275,840)	-	-	18,439,864	(6,822,700)	11,617,115	17,138,894	4,932,800

J. SENSITIVITY ANALYSES

After the base case for the process was determined, detailed analysis into the profitability of the plant as dependent on variables estimated in the overall NPV of the plant was completed. Many sensitivity analyses were performed to accurately predict how the plant's value and capacity may change as a function of pricing.

Product Price and Variable Costs

The most important sensitivity analysis looks at the effect of varying the annual variable cost and the product price. The cost of niacinamide may vary slightly since the feedstock to this process is a byproduct of another manufacturing process: the production of nylon-6,6; therefore, a sensitivity analysis is conducted to determine how the results would change with price fluctuations of niacinamide. The cost of this feedstock was varied from \$2.22 to \$6.65 per pound, which is \pm 50% of the input value for the estimated cost of bulk niacinamide. To account for variations in the total operating and variable costs associated with the plant, the variable cost is assumed to also be \pm 50% of the input value. These prices both increase by 2% with inflation and the analysis is done for the first year of production only. The table following illustrates the IRR for these variable costs.

Table J.1. Sensitivity Analysis of IRR towards niacinamide Price and Variable Cost

							Variable Costs					
		\$50,406,314	\$60,487,576	\$70,568,839	\$80,650,102	\$90,731,365	\$100,812,627	\$110,893,890	\$120,975,153	\$131,056,416	\$141,137,678	\$151,218,941
	\$2.22	1.38%	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR				
	\$2.66	19.39%	5.82%	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
	\$3.10	31.05%	21.42%	9.23%	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
e	\$3.55	40.94%	32.56%	23.31%	12.08%	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
Price	\$3.99	49.90%	42.19%	34.01%	25.08%	14.57%	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
nct	\$4.43	58.24%	50.96%	43.39%	35.40%	26.75%	16.82%	2.98%	Negative IRR	Negative IRR	Negative IRR	Negative IRR
odt	\$4.88	66.10%	59.15%	51.99%	44.56%	36.74%	28.34%	18.87%	6.60%	Negative IRR	Negative IRR	Negative IRR
P	\$5.32	73.58%	66.89%	60.04%	52.99%	45.68%	38.03%	29.86%	20.78%	9.56%	Negative IRR	Negative IRR
	\$5.76	80.75%	74.27%	67.66%	60.90%	53.96%	46.78%	39.28%	31.31%	22.56%	12.13%	Negative IRR
	\$6.20	87.65%	81.35%	74.94%	68.42%	61.75%	54.91%	47.84%	40.48%	32.70%	24.24%	14.42%
	\$6.65	94.32%	88.17%	81.93%	75.60%	69.15%	62.57%	55.83%	48.88%	41.65%	34.04%	25.84%

As seen in the table, the current price of niacinamide can produce a positive IRR. However, as the cost of the variable costs increase, the IRR decreases with respect to a constant product price. Additionally as the cost of the product decreases, IRR becomes negative relatively quickly, assuming the variable cost calculated previously. This trends as expected for general chemical engineering process plants.

Feedstock Price

Feedstock prices for MPDA are based on the scaling of chemicals from specialty suppliers. Assuming that the cost is about 10 times less expensive than small quantities, the cost is \$6.80 per pound of MPDA. However, due to fluctuations in the production of nylon-6,6 (where MPDA is a byproduct) the price of MPDA may change dependent on the current nylon-6,6 production market. To account for these changes, the price of MPDA was varied $\pm 10\%$ of the current projected cost. Outlined in the table below are the findings.

Table J2. Summary of ROI and IRR for MPDA Price Changes

MPDA Price (\$/lb)	2.03	2.25	2.50	2.78	3.09	3.40	3.74	4.11	4.53	4.98
IRR	40.97%	36.47%	31.20%	24.86%	16.82%	6.31%	Negative	Negative	Negative	Negative
ROI	40.04%	34.04%	27.29%	19.68%	11.09%	2.36%	-7.42%	-18.40%	-30.74%	-44.65%

As evident by the deviation from the projected price of MPDA chart, if the cost of MPDA increases by more than 20% the current cost, this process will have a negative return on the investment, making it an undesirable process to invest in. However, if the cost of MPDA decreases, the return on investment increases by almost ten percent as the cost of the feedstock decreases by ten percent. Close to the "breaking even" point for this process is a fifteen percent increase from the current calculated price for MPDA. Here, the cost IRR and ROI are very close to 0% for both.

Based on this analysis, this project is highly sensitive to the feedstock prices for MPDA, due in part because MPDA is generally the most expensive and the only large-scale feedstock needed for the process to producing niacinamide.

Inflation Rate

The inflation rate used for the previous base case calculations was determined using predictions for the next few years. Since this project continues for 20 years, though, the inflation rate may change year to year. If this changes, the overall IRR, ROI, and NPV will change accordingly due to the increase in the cost of the plant and the feedstock. Yet at the same time the selling price of the product will also increase. Below is a table that summarizes the overall IRR, ROI, and NPV that occurs when the inflation rate of the total system changes.

Table J3. Summary of ROI, IRR, and NPV for Inflation Rate Changes

Inflation Rate (%)	0	1	2	3	4	5	6
IRR	15.04%	15.93%	16.82%	17.71%	18.61%	19.52%	20.42%
ROI	10.49%	10.79%	11.09%	11.40%	11.71%	12.03%	12.34%
NPV	\$ 92,600	\$ 2,413,200	\$4,932,800	\$ 7,671,200	\$ 10,650,500	\$ 13,895,000	\$ 17,431,600

Currently, the inflation rate was selected to be 2%. When the inflation rate decreases, however, the overall NPV and rate of returns decrease. When the inflation rate is increased, the net present value and rate of return on the investment increases. This trend appears because the value of the equipment purchased increases as the years progress; therefore, over a longer period of time, the net present value of the process would be greater with a greater inflation rate due to the net worth of the equipment present in the process. The return of investment changes by 0.3% when the inflation rate changes by a percent in either direction. Although the ROI doesn't change significantly between the inflation rates, the NPV does change drastically, increasing as the inflation rate increases. With this, it is evident that the ROI, IRR, and NPV of the process is significantly dependent on the inflation rate of the entire system.

MPDA to Niacinamide Ratio

Currently, the percent conversion the authors have used are very ideal estimates. In this case, the yield per pound of MPDA will change with a decrease in the conversion of each reaction vessel. To account for this, a sensitivity analysis of the pound MPDA versus pound niacinamide was analyzed. The table below illustrates the drastic effects that MPDA has on the overall IRR, ROI, and NPV of the process. Table J4. Summary of lb MPDA vs. lb Niacinamide

lb MPDA/lb Niacinamide	0.958	1.054	1.159	1.275	
IRR	16.82%	6.31%	Negative IRR	Negative IRR	
ROI	11.09%	2.36%	-7.42%	-18.40%	
NPV	\$ 4,932,800	\$ (19,717,000)	\$ (46,831,800)	\$ (76,658,100)	

Based on these calculations, the amount of MPDA per pound of niacinamide greatly influences the ROI, IRR, and NPV. If the process as a whole is decreased just 10%, the NPV becomes negative after 20 years rather than a positive as seen with the current calculations. Therefore the calculations made previously in the process, wherein the reactors had very large conversion rates, would significantly affect the IRR, ROI, and NPV of the entire process if conversions of these magnitude could not be reached.

VI. CONCLUSIONS AND RECOMMENDATIONS

Overall, the base-case design for the production of niacinamide from MPDA, a byproduct of nylon-6,6 manufacturing, was designed, analyzed, and priced under a variety of economic considerations. The entire system provides a green process to producing niacinamide in relatively high purity, around 97.7%. After analyzing the base-case design and economic analysis of this process, it has been found that this venture will be profitable within 14 years, with an ROI of 11.09% and an IRR of 16.82% after the third year. The NPV after 20 years is \$4,932,800. Since the NPV is positive when taken to have a 20 year lifetime, it may be a profitable investment if investors do not require an immediate return on the investment. However, since there are more pieces of equipment and research to be done to provide niacinamide that is of competitive purity, it may be unwise to continue investing time and money to pursue this process, unless the capital investment available is relatively large.

If the process were to be built upon and improved, the return on investment may outweigh the cost of the initial investment. With an increased purity, and therefore an increased selling price for niacinamide, the process would yield a better return on the initial investment earlier in the project lifetime. Also due to the increases in federal regulations over the past few years, it is difficult to predict what future regulations may entail. Regulations for water and air quality will increase, leading to issues surrounding the possible leakage of harsh, carcinogenic chemicals produced as intermediates in previous pathways to niacinamide production. In this case an increase in regulations would benefit this process, favoring it over the conventional production process. Since the process requires very little toxic intermediates and relatively simple exhaust gas and waste water clean-up, federal regulations would make other less environmentally friendly processes more costly because of increased costs in cleaning streams.

The significant obstacle to commercialization of this process is the large capital investment. In reference to the Lonza process, this company is able to afford this new technology because they have already captured a market for niacinamide, being the world's leading producer of niacin. In addition, around 2005 the relationship between this company and China was relatively good. They seized the opportunity to create a process that would use government incentives and regulations to benefit the overall process

design and cost. However, if no infrastructure has been developed beforehand, this project would be an extremely risky investment venture.

Without the variable costs and large degree of necessary heat integration, the process may have been most cost effective. If the process was able to use less equipment and utilities, the overall cost of the process may yield better returns on investment since the general idea not only decreases the amount of CO and CO₂ emitted to the atmosphere, but it also eliminates harmful chemicals that are considered carcinogens. To increase the yield and purity of this product, more distillation columns, extraction units, and separation processes must be implemented. After the 14 years it takes to gain a return on the investment, the technology available for the production of niacinamide will also have changed drastically. This makes analyzing the profitability and lifetime of the plant difficult.

This process is not recommended for continued design research. In 1999, Lonza ventured to set up its first niacinamide production plant in China because the North American and European markets for nicotinates were "saturated" (Tremblay, 1999). At that time the Southeast Asian market was expected to grow 8 to 10% annually (Tremblay, 1999). However, in the past ten years, a great number of production plants, especially in India, have emerged, utilizing a different green process to niacin production. This would further saturate the market making it more difficult to design a process where the technology may already be outdated. As seen in Table J4, the relatively low return on investment, the potentially large fluctuations in the cost of MPDA and subsequent decrease in return, and the impedingly large amount of capital are all unfavorable to a new company. The technology used in this process may already be surpassed by another technology not yet commercially available, especially due to the biocatalyst present in the system. In conclusion, it has been determined that this process is better than the classical method of niacin production using permanganate, chromic acid, and other metal oxides. However, it is not recommended to use this process for a company that does not already have a portion of the niacin market.

VII. ACKNOWLEDGMENTS

The authors would like to thank Mr. Leonard Fabiano, for his help with the Dowtherm system and his knowledge of industrial experience. He should also be thanked for taking the time out of his busy schedule to meet with the authors to discuss issues pertaining to the project.

The authors would also like to thank Dr. Sean Holleran for bringing his experience in chemical engineering principles and advice to structuring and formatting the design. We also wish to thank Dr. Holleran for his constant efforts to keep the group on track towards completion of the project.

In addition, the numerous consultants that helped through the entire project should also be recognized. The authors wish to thank Mr. Adam Brostow from Air Products, Mr. David Kolesar from Dow Chemical, Mr. John Wismer from Arkema, and Mr. Richard Bockrath for providing additional consulting information when needed. Finally the authors would also like to thank Dr. Daeyeon Lee for his help in understanding the separation processes associated with the process design at the beginning of the project.

VIII.REFERENCES

- (FEEDAP), EFSA Panel on Additives and Products or Substances used in Animal Feed. (2012). Scientific Opinion on the safety and efficacy of niacin (nicotinic acid and nicotinamide) as a feed additive for all animal species based on a dossier submitted by Lonza Benelux BV. *EFSA Journal 2012*, *10*(7), 19. doi: doi:10.2903/j.efsa.2012.2788
- Abe, T., Itou, K., Sasaki, K., Watanabe, S., Asano, T., Abe, G., & Ito, K. WO200153253-A;
 WO200153253-A1; JP2001270857-A; EP1167345-A1; CN1319585-A; KR2001102572-A;
 US2003104586-A1; TW553922-A; CN1194961-C; KR482686-B; EP1167345-B1; DE60133691-E; DE60133691-T2; US7700330-B2; JP4959059-B2.
- Abuschinow, M., Hussain, D., & Wu, K. (2009). *Hydrogenation of Maleic Acid to Tetrahydrofuran*.
 B.S.E. Chemical Biomolecular Engineering Senior Design Report, University of Pennsylvania. Retrieved from http://repository.upenn.edu/cbe_sdr/1/
- Acros Organics. (2011, May 9). 3-Cyanopyridine [Material Safety Data Sheet]. Retrieved from http://www.acros.com/Ecommerce/msds.aspx?PrdNr=11086&Country=NULL&Language= EN
- Alternative Fuels Data Center, U.S. Department of Energy. (March 29, 2013). Renewable Natural Gas (Biogas). Retrieved from http://www.afdc.energy.gov/fuels/emerging_biogas.html
- Andersen, T. M. (Accessed March 27, 2012). CIP Cycle Development: Manual to Automated Cleaning, McFlusion Inc. Retrieved from http://www.morkusa.com/images/CIP_Cycle_Development_INTERPHEX_060120.pdf
- Askari, Aboalfaz, Karimi, Hajir, Rahimi, M. Reza, & Ghanbari, Mehdi. (2012). Simulation and Modeling of Catalytic Reforming Process. *Petroleum & Coal*, 54(1), 76-84.
- B, S. Kumar A and B. V. Babu. (2008). Process Intensification of Nicotinic Acid Production via Enzymatic Conversion using Reactive Extraction. *Chemical and Biochemical Engineering Quarterly*.
- Bartholomew, Calvin H., & Farrauto, Robert J. (2005). Hydrogen Production and Synthesis Gas Reactions *Fundamentals of Industrial Catalytic Processes* (pp. 339-486): John Wiley & Sons, Inc.
- Beschke, H., Friedrich, H., & Heilos, J. JP93000096-B2; EP59414-B1; EP59414-A2; EP59414-A; DE3107755-A; JP57156038-A; CA1164437-A; US4447612-A; EP59414-B; DE3267083-G; SU1189327-A; JP93000096-B.
- BioSNG. (2007, June 4, 2007) Retrieved March 25, 2013, from http://www.biosng.com/
- Bondareva, V. M., Ovchinnikova, E. V., & Andrushkevich, T. V. (2008). Kinetics of β-picoline oxidation to nicotinic acid over vanadia-titania catalyst. 3. The oxidation of nicotinic acid. *Reaction Kinetics and Catalysis Letters*, *94*(2), 327-335. doi: 10.1007/s11144-008-5356-9
- Cantarella, L., Gallifuoco, A., Malandra, A., Martínková, L., Spera, A., & Cantarella, M. (2011). Highyield continuous production of nicotinic acid via nitrile hydratase–amidase cascade reactions using cascade CSMRs. *Enzyme and Microbial Technology*, *48*(4–5), 345-350. doi: http://dx.doi.org/10.1016/j.enzmictec.2010.12.010

- Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Martínkovà, L. (2012). Nicotinic acid bioproduction by Microbacterium imperiale CBS 489-74: Effect of 3-cyanopyridine and temperature on amidase activity. *Process Biochemistry*, 47(7), 1192-1196. doi: http://dx.doi.org/10.1016/j.procbio.2012.03.010
- Carlson, L. A. (2005). Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. *Journal of Internal Medicine*, 258(2), 94-114. doi: 10.1111/j.1365-2796.2005.01528.x
- Chesalov, Yu A., Ovchinnikova, E. V., Chernobay, G. B., Popova, G. Ya, & Andrushkevich, T. V. (2010). Mechanism of the oxygen involvement in nicotinic acid formation under β-picoline oxidation on V-Ti-O catalyst. *Catalysis Today*, 157(1–4), 39-43. doi: http://dx.doi.org/10.1016/j.cattod.2010.01.065
- Chuck, R. J., Zacher, U., Roderick, J. C., Chaque, R. J., & Cahel, U. EP919548-A; EP919548-A1;
 CZ9803816-A3; SK9801581-A3; NO9805489-A; JP11217373-A; CA2253615-A1; CN1222511-A; US6077957-A; KR99045503-A; HU9802719-A1; NO311887-B1; US6376677-B1;
 TW495503-A; MX9809833-A1; IL127201-A; EP919548-B1; DE59811380-G; ES2221110-T3;
 SK284427-B6; MX230893-B; CZ296894-B6; CZ296940-B6; HU225089-B1; CN1272321-C;
 SK285375-B6; CN1900062-A; KR611542-B1; HU226169-B1; CA2253615-C; MX251718-B;
 CN100478332-C; IN187776-B; JP4586214-B2.
- Chuck, Roderick. (2005). Technology development in nicotinate production. *Applied Catalysis A: General, 280*(1), 75-82. doi: http://dx.doi.org/10.1016/j.apcata.2004.08.029
- Chuck, Roderick. (2009). Green Sustainable Chemistry in the Production of Nicotinates Sustainable Industrial Chemistry (pp. 541-550): Wiley-VCH Verlag GmbH & Co. KGaA.
- DiCosimo, Robert. (2006). Nitrilases and Nitrile Hydratases *Biocatalysis in the Pharmaceutical and Biotechnology Industries*: CRC Press.
- Dieudonné, Batsy, Charles, Solvason, Norm, Sammons, Virginie, Chambost, David, II, Mario, Eden, . . . Paul, Stuart. (2012). Product Portfolio Selection and Process Design for the Forest Biorefinery *Integrated Biorefineries* (pp. 3-36): CRC Press.
- Doble, Mukesh. (2006). Avoid the pitfalls of bioprocess development. *Chemical Engineering Progress*, 102, 34 41.
- DuPont. (2011, November 1). *DOWTHERM A* [Material Safety Data Sheet]. Retrieved from http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08a5/0901b803808a5b98.pd f?filepath=heattrans/pdfs/noreg/176-01463.pdf&fromPage=GetDoc
- DuPont. (1997, March). *DOWTHERM A Heat Transfer Fluid* [Product Technical Data]. Retrieved from http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0030/0901b803800303cd.pd f?filepath=/heattrans/pdfs/noreg/176-01337.pdf&fromPage=GetDoc
- DuPont. (2011, September 12). SUVA® 134a refrigerant [Material Safety Data Sheet]. Retrieved from http://msds.dupont.com/msds/pdfs/EN/PEN_09004a358054797d.pdf
- Elshout, Ray. (2010). Hydrogen Production by Steam Reforming. *Chemical Engineering, May 2010*, 34-38.

- EPA Emergency Management (2004). Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants. General Risk Management Program Guidance, EPA.
- Feedinfo News Services (July 16, 2012). Interview: Vitamin B3 Jubilant Well-Positioned to Cater for Global Demand. Retrieved from http://www.feedinfo.com/console/PageViewer.aspx?page=3098557
- Fermeglia M., Longo, G., and Letitia, T (2007). A Hierarchical approach for the estimation of environmental impact of a chemical process: from molecular modeling to process simulation. *European Symposium on Computer Aided Process Engineering*, 5. Retrieved from http://institute.unido.org/documents/M8_LearningResources/ICS/24.%20A%20Hierarchical%20 Approach%20for%20the%20Estimation%20of%20Environmental%20Impact%20of%20a%20Ch emical%20Process-%20from%20Molecular%20Modeling%20to%20Process%20Simulation.pdf
- Gangadharan, P., Zanwar, A., Zheng, K., Gossage, H. (April 20120). Sustainability assessment of polygeneration processes based on syngas derived from coal and natural gas, *Computers & Chemical Engineering*, 39, (105-117). doi: http://dx.doi.org/10.1016/j.compchemeng.2011.10.006
- Gay, M., Pope, B., & Wharton, J. (2011). Propylene from Biomass. B.S.E. Chemical Biomolecular Engineering Senior Design Report, University of Pennsylvania. Retrieved from http://repository.upenn.edu/cbe_sdr/23/
- Ghisalba, Oreste, Meyer, Hans-Peter, Wohlgemuth, Roland, & Flickinger, Michael C. (2009). Industrial Biotransformation *Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology* (pp. 1-34): John Wiley & Sons, Inc.
- Gonçalves, Elsa M., & Minas da Piedade, Manuel E. (2012). Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide. *The Journal of Chemical Thermodynamics*, 47(0), 362-371. doi: http://dx.doi.org/10.1016/j.jct.2011.11.023
- Heveling, J., Armbruster, E., Siegrist, W., & Slegrist, W. WO9422824-A; EP691955-A; WO9422824-A1; AU9465376-A; ZA9402303-A; TW239129-A; FI9504660-A; NO9503896-A; BR9405915-A; CH686135-A5; EP691955-A1; SK9501226-A3; CZ9502542-A3; JP8510447-W; EP691955-B1; AU678232-B; DE59402925-G; HU72028-T; ES2104377-T3; US5714610-A; NO303937-B1; IL109173-A; RU2127726-C1; HU217780-B; MX192306-B; CZ287321-B6; SK281702-B6; KR276748-B; RO117914-B1; CA2159586-C; FI112473-B1; JP3520519-B2; RO121267-B1.
- Huang, J.-C., & Shang, C. (2006). Air Stripping. In L. Wang, Y.-T. Hung & N. Shammas (Eds.), *Advanced Physicochemical Treatment Processes* (Vol. 4, pp. 47-79): Humana Press.
- Invista. (2012, March 15). DYTEK® 2-Methylpentamethylenediamine (MPMD) (DYTEK® A amine) [Technical Data Sheet]. Retrieved from http://www.dytek.invista.com/documents/tds/DYTEK%C2%AE%20A%20Amine%20Tech nical%20Data%20Sheet.pdf
- Invista. (2012). Global Locations. Retrieved from http://www.invista.com/en/insideinvista/locations.html.
- Iranshahi, Davood, Bahmanpour, Ali Mohammad, Pourazadi, Ehsan, & Rahimpour, Mohammad Reza. (2010). Mathematical modeling of a multi-stage naphtha reforming process using novel thermally

coupled recuperative reactors to enhance aromatic production. *International Journal of Hydrogen Energy*, 35(20), 10984-10993. doi: http://dx.doi.org/10.1016/j.ijhydene.2010.07.077

- Ishige, Takeru, Honda, Kohsuke, & Shimizu, Sakayu. (2005). Whole organism biocatalysis. *Current Opinion in Chemical Biology*, 9(2), 174-180. doi: http://dx.doi.org/10.1016/j.cbpa.2005.02.001
- Jess, A., & Kern, C. (2009). Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis. *Chemical Engineering & Technology*, 32(8), 1164-1175. doi: 10.1002/ceat.200900131
- Joseph, Abhinav, Bernardes, Carlos E. S., & Minas da Piedade, Manuel E. (2012). Heat capacity and thermodynamics of solid and liquid pyridine-3-carboxylic acid (nicotinic acid) over the temperature range 296 K to 531 K. *The Journal of Chemical Thermodynamics*, 55(0), 23-28. doi: http://dx.doi.org/10.1016/j.jct.2012.06.010
- Lantec Products Inc. (2004). Ammonia Removal Water Purification in Packed Bed Air Stripper. *Case Study*. Retrieved from http://www.lantecp.com/casestudy/cs49.pdf

Lonza Engineering, Ltd. (2012). Lonza Engineering. In L. E. Ltd (Ed.). http://www.lonza.com: Lonza.

- Lonza Group, Ltd. (2011). Lonza Activities 2010. Basel, Switzerland. Retrieved from http://www.lonza.com/about-lonza/media-center/news/2011/lonza-celebrates-40-years-asleading-producer-of-vitamin-b3.aspx
- Lonza Group, Ltd. (2012). Lonza Annual Report 2011. Retrieved from http://ir2.flife.de/data/lonza1/igb_html/index.php?bericht_id=1000003&lang=ENG
- Lonza Group, Ltd. (2012). Plant Safety, Explanation of Customer Needs Clusters, Niacin and Niacinamide Differentiation. Retrieved from http://www.lonza.com/products-services/nutrition/animal-nutrition/niacin-niacinamide-differentiation.aspx
- Ludwig. P.E, Ernest E. (2001). Chapter 11 Refrigeration systems. In E. E. Ludwig. P.E (Ed.), *Applied Process Design for Chemical & Petrochemical Plants* (Vol. Volume 3, pp. 289-367): Gulf Professional Publishing.
- Martin, A., Janke, C., & Kalevaru, V. N. (2010). Ammoxidation of 3-picoline to nicotinonitrile over VPO catalysts. *Applied Catalysis A: General*, *376*(1–2), 13-18. doi: http://dx.doi.org/10.1016/j.apcata.2009.09.043
- Mathew, C. D., Nagasawa, T., Kobayashi, M., & Yamada, H. (1988). Nitrilase-Catalyzed Production of Nicotinic Acid from 3-Cyanopyridine in Rhodococcus rhodochrous J1. *Appl Environ Microbiol*, 54(4), 1030-1032.
- Meyer, H. P. & Ruesing, M. (2008, April). Examples of bioprocesses for the production of nutraceuticals [PowerPoint slides]. Retrieved from Lonza Ltd, Visp and Basel, Switzerland website: http://bio.lonza.com/uploads/tx_mwaxmarketingmaterial/Lonza_PowerpointSlidesCollections_H PM_MR_2008_Chicago_Neutraceuticals.pdf
- Murphy, Annabel C. (2011). Metabolic engineering is key to a sustainable chemical industry. *Natural Product Reports*, 28(8), 1406-1425.

- Perry, R. & Green, D. (2008). Perry's Chemical Engineers' Handbook. New York: McGraw-Hill.
- Pharmaceutical-technology.com. (2011). Lonza Niacinamide Production Facility, China. Retrieved from http://www.pharmaceutical-technology.com/projects/lonza-niacinamide-production-guangzhou/
- Phillips, J. (1995). *Control and pollution prevention options for ammonia emissions*. Research Triangle Park, NC: Control Technology Center, U.S. Environmental Protection Agency.
- Nagasawa, T., & Yamada, H. EP307926-B; EP307926-A2; DD274631-B; JP94055148-B; EP307926-A; NO8804114-A; BR8804804-A; DK8805166-A; FI8804279-A; PT88540-A; HU50215-T; JP2000470-A; CN1032436-A; DD274631-A; CA1298222-C; RO101578-A; EP307926-B1; DE3877869-G; ES2043752-T3; JP94055148-B2; NO175489-B; US5334519-A; FI93858-B; SU1838416-A3; KR134094-B1; DK174516-B.
- Ohio EPA. (1993) "Wet Scrubbers". Ohio EPA's Operation and Maintenance Guidelines for Air Pollution Control Equipment. Retrieved from http://www.epa.state.oh.us/portals/27/engineer/eguides/scrubbers.pdf
- Ovchinnikova, E. V., Chumachenko, V. A., Vernikovskaya, N. V., Kashkin, V. N., & Andrushkevich, T. V. (2010). A study of nicotinic acid synthesis on a pilot installation and its simulation. *Russian Journal of Applied Chemistry*, 83(5), 846-853. doi: 10.1134/s1070427210050162
- Ovchinnikova, E. V., Vernikovskaya, N. V., Andrushkevich, T. V., & Chumachenko, V. A. (2011). Mathematical modeling of β-picoline oxidation to nicotinic acid in multitubular reactor: Effect of the gas recycle. *Chemical Engineering Journal*, *176–177*(0), 114-123. doi: http://dx.doi.org/10.1016/j.cej.2011.06.047
- Ovchinnikova, ElenaV, Popova, GalinaYa, & Andrushkevich, TamaraV. (2009). Kinetics of oxidation of β-picoline to nicotinic acid over vanadia-titania catalyst. 4. Kinetic model. *Reaction Kinetics and Catalysis Letters*, 96(1), 91-100. doi: 10.1007/s11144-009-5461-4
- Powell, K. A., Ramer, S. W., Del Cardayre, S. B., Stemmer, W. P., Tobin, M. B., Longchamp, P. F., & Huisman, G. W. (2001). Directed Evolution and Biocatalysis. *Angew Chem Int Ed Engl*, 40(21), 3948-3959.
- Raja, Robert, Adams, Richard D., Blom, Douglas A., Pearl, William C., Gianotti, Enrica, & Thomas, John Meurig. (2009). New Catalytic Liquid-Phase Ammoxidation Approach to the Preparation of Niacin (Vitamin B3). *Langmuir*, 25(13), 7200-7204. doi: 10.1021/la900803a
- Rutledge, B. (April 2005). California Biogas Industry Assessment White Paper, *WetStart-CALSTART*, 3-27. Retrieved from http://www.calstart.org/Libraries/Publications/California_Biogas_Industry_Assessment_White_P aper.sflb.ashx
- Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. *Nature*, 409(6817), 258-268.
- Seay, J. and Gish, J. (2010) Educational Module: A Sustainable Design Project for the Process Separations Class, University of Kentucky. Retrived from http://lcs.syr.edu/centers/SustainableEngineering/modules/10-21_Seay.pdf

- Seider, W. D., Seader, J. D., Lewin, D. R., Widagdo, S. (2009) Product and Process Design Principles: Synthesis, Analysis and Design, 3rd Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA.
- Sembaev, D. C., Ivanovskaya, F. A., Guseinov, E. M., Chuck, R. J., Sembaev, D., Ivanovskaya, F., ...
 Chuck, J. R. WO9532055-A; WO9532055-A1; AU9527356-A; NO9604989-A; EP760709-A1;
 FI9604650-A; SK9601497-A3; CZ9603384-A3; BR9507744-A; US5698701-A; HU76438-T;
 AU688059-B; JP10504489-W; KR97703199-A; EP760709-B1; DE69509519-E; ES2130621-T3;
 MX9605500-A1; RU2123880-C1; MX190865-B; CN1150393-A; CZ288617-B6; SK282311-B6;
 NO313272-B1; RO118052-B1; KR361060-B; HU222377-B1; CN1087190-C; CA2188797-C;
 JP3941121-B2; FI120292-B1.
- Sharma, Nitya Nand, Sharma, Monica, Kumar, Harish, & Bhalla, Tek Chand. (2006). Nocardia globerula NHB-2: Bench scale production of nicotinic acid. *Process Biochemistry*, 41(9), 2078-2081. doi: http://dx.doi.org/10.1016/j.procbio.2006.04.007
- Sie, S.T. (April 30, 2001). Consequences of catalysts deactivation for process design and operation. *Applied Catalysis A: General*, 212, p.129-151. http://dx.doi.org/10.1016/S0926-860X(00)00851-6
- Sigma-Aldrich. (2012, December 12). *1,5-Diamino-2-methylpentane* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/329665?lang=en®ion=US
- Sigma-Aldrich. (2013, January 15). *3-Pyridinecarbonitrile* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/c94807?lang=en®ion=US
- Sigma-Aldrich. (2013, February 20). *3-Methylpiperidine* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/m73001?lang=en®ion=US
- Sigma-Aldrich. (2013, February 22). *3-Picoline* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/p42053?lang=en®ion=US
- Sigma-Aldrich. (2012, April 25). *Aluminum oxide* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/sial/11028?lang=en®ion=US
- Sigma-Aldrich. (2012, December 5). *Ammonia* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/294993?lang=en®ion=US
- Sigma-Aldrich. (2012, December 5). *Carbon Dioxide* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/295108?lang=en®ion=US
- Sigma-Aldrich. (2012, October 10). *Dowtherm*® A [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/44570?lang=en®ion=US
- Sigma-Aldrich. (2012, October 29). *Ethylene* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/fluka/03484?lang=en®ion=US
- Sigma-Aldrich. (2012, December 5). *Hydrogen* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/295396?lang=en®ion=US

- Sigma-Aldrich. (2012, November 13). *Nicotinamide (Niacinamide)* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/supelco/47865u?lang=en®ion=US
- Sigma-Aldrich. (2012, December 5). *Nitrogen* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/295574?lang=en®ion=US
- Sigma-Aldrich. (2012, December 5). *Oxygen* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/295604?lang=en®ion=US
- Sigma-Aldrich. (2009, July 8). *ThalesNano CatCart*® *catalyst cartridge system*, 30 mm L, 10% *Pd/Al2O3* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/295604?lang=en®ion=US
- Sigma-Aldrich. (2012, September 9). *Vanadium(V) oxide* [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/204854?lang=en®ion=US
- Sigma-Aldrich. (2012, July 3). Water [Material Safety Data Sheet]. Retrieved from http://www.sigmaaldrich.com/catalog/product/sigma/w3500?lang=en®ion=US
- Srinivasan, A., Chowdhury, P., & Viraraghavan, T. (2008). Air Stripping in Industrial Waste Water Treatment, in Waste Water Treatment Technologies, edited by S Vigneswaran, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, http://www.eolss.net
- Sterile Processing University. (2007). Steam Sterilization. Retrieved from http://www.spdceus.com/steam_sterilization.htm
- Stocking, A.J., Eylers, H.E., Wooden, M., Kavanaugh, M.C. (2000). "Air Stripping." Treatment Technologies for Removal of MTBE from Drinking Water: Air Stripping, Advanced Oxidation Processes, Granular Activated Carbon, Synthetic Resin Sorbents. Melin, Gina (Ed). MTBE Research Partnership. National Water Research Institute. Available at: http://www.nwriusa.org/asp/BooksList.asp?id=4&main=m4&sub=s4&CtgID=12
- Thomas, Stuart M., DiCosimo, Robert, & Nagarajan, Vasantha. (2002). Biocatalysis: applications and potentials for the chemical industry. *Trends in Biotechnology*, 20(6), 238-242. doi: http://dx.doi.org/10.1016/S0167-7799(02)01935-2
- Tremblay, Jean-François. (1999). Lonza niacinamide plant opens in China. *Chemical & Engineering News Archive*, 77(43), 24. doi: 10.1021/cen-v077n043.p024
- Trimm, D. L. (2001). The regeneration or disposal of deactivated heterogeneous catalysts. *Applied Catalysis A: General*, 212(1–2), 153-160. doi: http://dx.doi.org/10.1016/S0926-860X(00)00852-8
- Tufvesson, Pär, Lima-Ramos, Joana, Nordblad, Mathias, & Woodley, John M. (2010). Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes. Organic Process Research & Development, 15(1), 266-274. doi: 10.1021/op1002165

- US EPA. (2001) "Air Pollution Control Technology Fact Sheet: Selective Non-Catalytic Reduction". *Air Pollution Control Technology Handbook*. Retrieved from http://www.epa.gov/ttn/catc/dir1/fsncr.pdf
- US EPA (2008). Waste Reduction Algorithm. Retrieved from http://www.epa.gov/nrmrl/std/war/sim_war.htm
- Van Pelt, Sander. (2010). *The Application of Nitrile Hydratases in Organic Synthesis*. (Dissertation), Delft University of Technology. Retrieved from http://repository.tudelft.nl/view/ir/uuid:b2057153-c80d-4e32-93a4-a503389df8d9/ Institutional Repository database.
- Verwijs, J.W., Kosters, P.H., van den Berg, H & Westerterp, K.R. (January 1995). Reactor Operating Procedures for Startup of Continuously-Operated Chemical Plants. American Institute of Chemical Engineerings, Reactors, Kinetics and Catalysis, 41, 148-158. Retrieved from http://doc.utwente.nl/71197/1/Verwijs95reactor.pdf
- Vitamin venture sustains Asia. (1999, October 1). ICIS.com: Chemical Industry News & Chemical Market Intelligence. Retrieved from http://www.icis.com/Articles/1999/10/01/102438/vitamin-venture-sustains-asia.html
- Watanabe, I., & Okumura, M. EP188316-A2; EP188316-A; JP61162193-A; FI8600058-A; CN8600062-A; SU1512488-A; JP92004873-B; US5179014-A; EP188316-B1; DE3689196-G.

Wildy, F. (2003) "Fired Heater Optimization". AMETEK, Process Instrument, Pittsburgh, U.S.A, 1-4.

Wyssmont Turbo Dryer Advertisement - RESEARCH RESULTS. (1963). Industrial & Engineering Chemistry, 55(2), 83-87. doi: 10.1021/ie50638a013

Zenklusen, A., & Pianzola, D. WO2011045003-A2; US2011092710-A1; EP2319833-A1; WO2011045003-A3; CA2774888-A1; MX2012004463-A1; AU2010306132-A1; KR2012087149-A; EP2488498-A2; CN102574802-A.

IX. APPENDIX

A. PROBLEM STATEMENT A Green Process to Produce Niacin (Recommended by Leonard A. Fabiano, U. Penn)

The co-enzyme nicotinamide-adenine (NAD) and co-enzyme nicotinamide-adenine dinucleotide phosphate (NADP) are required by all living cells. They enable both the conversion of carbohydrates into energy and the metabolism of proteins and fats. Both nicotinamide and nicotinic acid (niacin) are building blocks for these co-enzymes. Niacin, the common name for a vitamin, supplements the intake of nicotinic acid in foodstuffs. Although the latter is found naturally in wheat, yeast, pork, and beef liver, synthetic niacin production has increased worldwide to significantly decrease deaths due to the vitamin deficiency disease, pellagra.

Your design team represents an engineering consulting firm that has been engaged by a potential producer of niacin. They are estimating the capital and production costs of several processes that incorporate the Lonza process to produce nicotinic acid, which involves the direct air oxidation of picoline, whose "green chemistry" is more environmentally safe for the processing plant and its surrounding area.

Reference 1 describes the methods used to produce niacin using the Lonza process. Together with the patent in reference 2, this will provide the background your team will need to begin its design. Additional information is provided in the references cited therein.

The following definition of a green process is included in [1]:

"We cannot agree that the acceptability of a process is governed solely by its cost. An economic process is not necessarily green, especially if waste treatment is ignored or neglected. An industrial process may contravene one or more green principles, and yet still make money, even if complex waste treatment adds to the costs and diminishes economic viability. But, the cost of energy today is extremely low, considering the fact that our present utilizable energy resources are limited. Thus, for a given product, the following guidelines should govern the choice of route:

Choice of feedstock (costs are relevant of course, but also total resources, energy, waste, etc., in the manufacture of the given feedstock are important factors)

Choice of reaction path (minimize energy requirements by use of selective catalysts).

Choice of catalyst (efficiency, separation from product, recycling of catalyst).

Downstream processing/unit operations (minimizing the number of stages necessary to obtain the product in the state desired by the customer).

Minimizing not only the amount of pollutants, but also the volume of waste streams (effluent off-gases and solid waste).

Recycling of auxiliary, side, and intermediate products into the process."

Your mission will include, but will not be limited to:

Determining the world market for niacin and the current production capacity worldwide.

Determining the selling price of niacin to consumers.

Based on worldwide production capacity and market consumption, deciding on the likely economic production rate. For new entries to many markets, care must be taken not to overload the markets, hurting the potential for market-share capture. A value of 5-10% increase is a typical target. Can your team determine otherwise?

Designing a facility and estimating capital and operating costs. Is there another capacity that would be more economical? Would your team propose a larger capacity to achieve these results? If so, on what basis?

Starting with a simplified process flow-sheet, are there processing improvements that you can develop? Be certain that your final process is "green" – compared to existing processes.

References

Chuck, R., "A Catalytic Green Process for the Production of Niacin" – see WDS for a copy of the unpublished paper.

Heveling et al., U. S. Patent 5,719,045, "Process for Preparing Nicotamide," Feb. 17,1998 – see WDS for a copy.

B. RELEVANT PATENTS

United	States	Patent	[19]
Heveling e	t al.		

- [54] PROCESS FOR PREPARING NICOTINAMIDE
- [75] Inventors: Josef Heveling; Erich Armbruster, both of Naters; Lukas Utiger, Termen; Markus Rohner, Kourim; Hans-Rudolf Dettwiler; Roderick J. Chuck, both of Brig-Glis, all of Switzerland
- [73] Assignee: Lonza AG, Gampel/Valais, Switzerland
- [21] Appl. No.: 741,806
- [22] Filed: Oct. 31, 1996

[30] Foreign Application Priority Data

Nov. 1, 1995	ICHI	Switzerland	 3090/95

[51]	Int. Cl.6	 C12P 17/12
[52]	U.S. CI.	 435/122; 435/129; 435/170;
		435/252.1

[56] References Cited

U.S. PATENT DOCUMENTS

5,179,014 1/1993 Watanabe et al. 435/129

[11]	Patent Number:	5,719,045
[45]	Date of Patent:	Feb. 17, 1998

 5,258,305
 11/1993
 Yamada et al.
 435/280

 5,334,519
 8/1994
 Yamada et al.
 435/129

FOREIGN PATENT DOCUMENTS

0188316	8/1986	European Pat. Off.
0307926	3/1989	European Pat. Off
WO 94/22824	10/1994	WIPO .
WO 95/32055	11/1995	WIPO .

OTHER PUBLICATIONS

Ullmann's Encyklopädie der technischen Chemie, 4th edition, vol. 23, pp. 708 ff. Ullmann's Encyklopädie der technischen Chemie, 4th edi-

Ullmann's Encyklopädie der technischen Chemie, 4th edition, vol. 19, pp. 602 ff.

Primary Examiner-Herbert J. Lilling Attorney, Agent, or Firm-Fisher, Christen & Sabol

[57] ABSTRACT

A process for preparing nicotinamide, wherein, in the first stage, 2-methyl-1.5-diaminopentane is catalytically converted into 3-picoline, then the 3-picoline is converted via an ammonoxidation into 3-cyanopyridine and, finally, the 3-cyanopyridine is converted microbiologically into the nicotinamide.

26 Claims, No Drawings

1 FOP P

PROCESS FOR PREPARING NICOTINAMIDE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a new process for preparing nicotinamide.

2. Background Art

Numerous processes are known for the preparation of 10 nicotinamide, which is one of the B-group vitamins essential to man and beast. Essentially only two processes have achieved industrial importance, namely, the nitric acid oxidation of alkylpyridines and the ammonoxidation of alkylpyridines (cf. Ullmann's Encyklopädie der technischen 15 Chemie, 4th edition, Vol. 23, pp. 708 ff. and Vol. 19, pp. 602 ff.).

Although the nitric acid oxidation, specifically of 2-methyl-5-ethylpyridine, is a very selective process, it incorporates a risk potential for the minimization of which highly qualified personnel, optimum infrastructure and a high standard of know-how are indispensable prerequisites. Such process of nitric acid oxidation is, therefore, unsuitable for technology transfer, for example to places where the prerequisites mentioned can only be realized in part.

The ammonoxidation, specifically of 3-picoline, has not previously come close to the industrial importance of the nitric acid oxidation, although numerous publications describe quantitative conversions with yields of over 90 percent (cf. Ullmann's Encyklopädie der technischen Chemie, 4th Edition, Vol. 19, pp. 602 ff.). Essential prerequisites for an industrially usable catalyst are not only its degree of conversion and its selectivity, but likewise are the achievable space velocity over the catalyst (amount of starting material/catalyst volume/time=kg $1^{-1}h^{-1}$) and its operating life. Particularly in respect of the last two criteria, the known ammonoxidation catalysts from the prior art are not satisfactory.

BROAD DESCRIPTION OF THE INVENTION

An object of the invention is to provide an industrially usable process which, on the one hand, is based on a technology which is relatively simple to master and, on the other hand, meets all of the criteria and requirements of an economical process. Other objects and advantages of the invention are set out herein or are obvious herefrom to one skilled in the art.

The objects and advantages of the invention are achieved by the process of the invention.

According to the process of the invention for preparing nicotinamide, In the first stage:

(a) 2-methyl-1.5-diaminopentane in the gas phase at 300° to 400° C. and at 0 to 10 bar gauge pressure is converted into 3-methylpiperidine by passing it over a catalyst containing as the active component at least one oxide of Al and/or Si, having at the surface a ratio of acid centers to basic centers of more than 2 and having a specific surface area of more than 40 m²⁷g, and, immediately afterwards, the 3-methylpiperidine is passed at 220° to 400° C. over a dehydrogenation catalyst and is converted into 3-picoline, then in the second stage:

(b) 3-picoline is, in the presence of ammonia and an oxygen-containing gas, passed at 280° to 400° C. over an ammonoxidation catalyst comprising the oxides of 65 vanadium, itianium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO₂ to ZiO₂ of from 1:1:2, respectively, to

2

1:12:25, respectively, and having an MoO_3 content, based on the $V_2O_5,$ of from 0.54 percent by weight to 2.6 percent by weight,

and, finally, in the third stage:

(c) the resultant 3-cyanopyridine is converted by means of microorganisms of the genus Rhodococcus into the end product.

DETAILED DESCRIPTION OF THE INVENTION

The first process stage, viz. the preparation of 3-picoline from 2-methyl-1,5-diaminopentane, is comprehensively described in (a) PCT Published Application WO 94/22824, and (b) U.S. patent application Ser. No. 08/525,744.

U.S. patent application Ser. No. 08/525.744, applicants: Josef Heveling, et al., entilded: "Process For The Preparation Of 3-Methyl piperidine and 3-Methyl piperidine and 3-Methyl Pyridine by catalytic cyclization of 2-methyl-1.5-Diaminopentane", filed on Oct. 2, 1995, is commonly owned with this application. The pertinent portions of U.S. patent application Ser. No. 08/525.744 are incorporated herein by reference.

U.S. patent application Ser. No. 08/525,744 discloses a process for the preparation of 3-methylpyridine (that is, 3-picoline), wherein, first, 3-methylpiperidine is prepared 25 from 2-methyl-1,5-diaminopentane in the gas phase at 300° to 400° C. and at 0 to 10 bar above atmospheric by passing the starting material over a catalyst which contains, as the active component, at least one oxide of Al and/or Si. which has a ratio between acid and basic centers on the surface of greater than 2 and has a specific surface area of greater than 40 m²/g, and the resultant 3-methylpiperidine is subsequently passed over a dehydrogenation catalyst, preferably at 220° to 400° C. The dehydrogenation catalyst used is a noble metal, such as, palladium or platinum, on a support. The dehydrogenation catalyst preferably is palladium on an amorphous silicon/aluminum oxide which has been prepared by ion exchange with a soluble palladium complex.

The term "oxides of Al and/or Si" is taken to mean the individual oxides, such as Al₂O₃, mixed oxides of Al₂O_{3/} 40 SiO₂ and crystallized compounds thereof, such as aluminum silicates, in particular zeolites. It is important that they have a predominantly acidic character and a specific surface area of greater than 40 m²g. The acidic character arises from the ratio between acidic and basic centers on the surface, which must, in accordance with the invention, be greater than 2. The acidic centers are determined analytically by irreversible adsorption of NH₃ at 80° C., and the basic centers by irreversible adsorption of CO2 at 80° C. Preferred catalysts 50 for the novel process are activated Al₂O₃, mixed oxides of Al₂O₃,SiO₂, or zeolites. Zeolites are crystalline natural or synthetic aluminum silicates which have a highly ordered structure with a rigid three-dimensional network of SiO4 and AlO₄ tetrahedra connected by common oxygen atoms. The ratio between the number of Si and Al atoms and oxygen is 1:2. The electrovalence of the aluminum-containing tetrahedra is compensated by inclusion of cations in the crystal. for example, alkali metal or hydrogen ions. Cation exchange is possible. The spaces between the tetrahedra are occupied by water molecules before dehydration by drying or calcination.

If the zeolite, owing to its preparation method, is not in the catalytically active, acidic H form, but instead, for example, in the Na form, it can be converted fully or partially into the desired H form by ion exchange, for example with ammonium ions, followed by calcination or by treatment with acids.

3

The catalysts are preferably employed as fixed-bed catalysts, and the starting material is expediently passed through the catalyst using hydrogen or an inert gas, such as nitrogen. as carrier gas.

The reaction temperature is set at 300° to 400° C. 5 preferably at 305° to 375° C. The pressure is 0 to 10 bar, preferably 0 to 5 bar, above atmospheric.

A measure of the flow rate over catalysts is the mass hourly space velocity (MHSV). In the present case, an MHSV of 2.1 to 4.2 g of starting material per g of catalyst and per hour is advantageously maintained. The vapor-form starting material can be diluted, preferably with N_2 or H_2 .

3-Methylpiperidine can be converted into 3-picoline by known dehydrogenation processes. The 3-methylpiperidine stream produced by the process of the invention can be passed directly over a dehydrogenation catalyst, so that the dehydrogenation takes place immediately after the cyclization. This is possible because the 3-methylpiperidine is produced in unusually high purity and in particular now contains virtually no MPDA, which has been found greatly to impair the activity of dehydrogenation catalysts.

The dehydrogenation catalysts used are preferably noble metals, such as, for example, Pd or Pt, on a support. Particularly advantageous dehydrogenation catalysts have been found to be those obtainable from amorphous silicon aluminum oxides by ion exchange with soluble palladium complexes, such as $[Pd(NH_3)_4]Cl_2$. The amorphous silicon aluminum oxides are advantageously first dewatered and charged with ammonia. The ion exchange with the soluble palladium complex can take place by suspension of the amorphous oxide in a solution of the complex. Alternatively, a solution of the complex can be passed through a packing of the amorphous oxide, but, in contrast to the former method, uniform loading can only be achieved by complete exchange.

The above methods also allow palladium contents of up to 5 percent by weight or more to be achieved in one step using relatively dilute solutions, for example, 0.01 mol/l of [Pd $(NH_3)_4$]Cl₂.

The reaction temperature during the dehydrogenation is preferably 220° to 400° C. In one embodiment, the cyclization catalyst is applied directly to the dehydrogenation catalyst bed, and the 2-methyl-1.5-diaminopentane is passed in from above. In a preferred embodiment, the catalysts are introduced into separate reactors. This allows independent temperature control and, if desired, independent catalyst regeneration.

The 3-picoline obtained can, without intermediate purification, be fed directly to the ammonoxidation stage. However, it is preferably subjected to, for example, an $_{50}$ intermediate purification by distillation, which has a positive effect on the catalyst life in the next (second) stage.

The ammonoxidation in the second stage is the subjectmatter of (a) PCT Published Application WO 95/32055 (PCT/EP 95/0 1945) and (b) U.S. patent application Ser. No. 08/732.343. U.S. patent application Ser. No 08/732.343, applicants: SEMBAEV et at., entitled: "Catalytic Composition For The Oxidative Ammonolysis Of Alkylpyridines", filed on the same date as this application, is commonly owned with this application. The pertinent portions of U.S. 60 patent application Ser. No. 08/732,343 are incorporated herein by reference.

U.S. patent application Ser. No. 08/732.343 discloses a catalyst composition of the oxides of vanadium, titanium, zirconium and molybdenum, for use in the oxidative 65 ammonolysis of alkylpyridines, for example, 3-methylpyridine to the corresponding 3-cyanopyridine.

4

As the ammonoxidation catalyst, preference is given to using a catalyst composition comprising the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO_2 to ZrO_2 of from 1.3:4, respectively, to 1:8:16, respectively, and having a MOO₃ content, based on V_2O_3 , of from 0.54 percent by weight to 1.20 percent by weight. The preparation of the catalyst is comprehensively described in the above-mentioned PCT application PCT/EP 95/01945.

As the oxygen-containing gas, preference is given to using air since air has the advantage that the oxygen is already diluted with inert gases. However, the partial pressure of oxygen can be further regulated by mixing in inert gas such as nitrogen or oxygen-free process gases obtained by recycling.

The reactants 3-picoline, ammonia and oxygencontaining gas (calculated as O_2) are advantageously passed in gas form and in a molar ratio of from 1:1:1.5, respectively, to 1:8.5:60, respectively, at 280° to 400° C, preferably 310° to 380° C, over the catalyst. The preferred molar composition of the feed gas is 3-picoline, ammonia and oxygencontaining gas (calculated as O_2) in a ratio of from 1:1:1.5, respectively, to 1:4:25, respectively.

Water can have a favorable influence on the activity of the catalyst and is advantageously passed over the catalyst in a molar ratio of water to 3-picoline of up to, and including,

5:1, respectively, and preferably about 1.5:1, respectively. In this second stage, yields of 3-cyanopyridine of up to 99 percent are achieved at a space velocity over the catalyst of from 50 to 150 $(gl^{-1}h^{-1})$ of 3-picoline. The catalyst life is

from 50 to 150 $(gl^{-1}h^{-1})$ of 3-picoline. The catalyst life is likewise extraordinarily high and is at least one year. As compared with the prior art, the present ammonoxi-

As compared with the prior art, the present animonoxidation process, as a constituent part of the process of the invention, made it possible to develop a process which satisfies all of the criteria of an industrial reaction.

The resultant 3-cyanopyridine can be fed to the biohydrolysis in the form of an aqueous solution, either directly or after a work-up step, e.g., a crystallization, extraction or distillation. A preferred work-up comprises countercurrent extraction of the 3-cyanopyridine with toluene, for example, and subsequent vacuum distillation. The solvent used, e.g., toluene, can be completely recycled.

The biohydrolysis of 3-cyanopyridine as substrate to give nicotinamide is advantageously carried out using microorganisms of the species Rhodococcas rhodochrous, Rhodococcus sp. S - 6 or Rhodococas equi, preferably using microorganisms of the species Rhodococcus sp. S - 6 (FERM BP-687), Rhodococas rhodochrous J1 (FERM BP-1478) or Rhodococcus equi TG328 (FERM BP-3791). In particular, the reaction is carried out by means of microorganisms of the species Rhodococcus rhodochrous (FERM BP-1478). The three species mentioned above were deposited by Nitto Chemical Industry Co., Ltd. in the Fermentation Research Institute, Agency of Industrial Science & Technology, Ministry of International Trade and Industry, Japan, according to the rules of the Budapest Treaty. The FERM BP-numbers are the official deposit numbers. The microorganisms of the species Rhodococcus sp. S - 6, Rhoclococcus rhodochrous J1 and Rhodococcus equi TG328 are microorganisms described in the literature. Rhodocoous rhodochrous J1(FERM BP-1478) is comprehensively described in (a) European Published Patent Application No. B 307,926, and (b) U.S. Pat. No. 5,334,519, Rhodococcus sp. S - 6 (FERM BP-687) in (a) European Published Patent Application No. A 0,188,316 and (b) U.S. Pat. No. 5,179,014, and and Rhodococcus equi TG328 (FERM BP-379 1) in U.S. Pat. No. 5,258,305.

5,719.045

10

The pertinent portions of U.S. Pat. No. 5,179,014 are incorporated herein by reference. U.S. Pat. No. 5,179,014 discloses and described Rhodococcus sp. S - 6, and its morphology, growth state in various culture media (30° C.), physiological characteristics and chemical composition of cells.

5

The pertinent portions of U.S. Pat. No. 5,334,519 are incorporated herein by reference. U.S. Pat. No. 5,334,519 discloses and describes Rhodococcus rhodochrous sp. J - 1, and its morphology.

The pertinent portions of U.S. Pat. No. 5,258,305 are incorporated herein by reference. U.S. Pat. No. 5,258,305 discloses and describes Rhodococcus equi TG328, and its morphology, growth on culture media (at 30° C.) and physiological properties.

Likewise suitable for the process are the functionally equivalent variants and routants of these microorganisms. For the purposes of the present invention, "functionally equivalent variants and mutants" are microorganisms which have essentially the same properties and functions as the original microorganisms. Such variants and mutants can arise by chance, for example, by means of UV irradiation.

The microorganisms are usually cultured (grown) and the effective enzymes induced prior to the actual biotransfor- 25 mation as described in European Published Patent Application No. B 307,928. The biotransformation is preferably carried out using, as is customary in the art, immobilized microorganism cells.

The biotransformation is advantageously carried out in a 30 pH range of from 6 to 10, preferably in a pH range of from 6.5 to 8.5. The pH is here advantageously set using a suitable phosphate buffer.

The biotransformation can be carried out at a temperature 35 of from 5° to 50° C., preferably from 15° to 30° C.

Preferably, the biohydrolysis of the 3-cyanopyridine, which is advantageously present in aqueous solution in a concentration of from 5 to 30 percent by weight, is carried out in a reactor cascade comprising from 2 to 5 connected stirred reactors which each contain the biocatalyst. Particular preference is given to using cascades comprising 3 or 4 stirred vessels. The 3-cyanaopyridine content of the aqueous solution particularly preferably fluctuates between 10 and 20 percent by weight.

After a residence time of from 5 to 30 hours, the nicotinamide can be isolated from the product stream, for example, by crystallization. Preferably, the reaction solution is purified over activated carbon or a polystyrene resin (e.g., Amberlite) and the nicotinamide is isolated from the aqueous phase in a conventional manner

The conversion in the biohydrolysis is virtually quantitative and gives a nicotinamide having a purity of over 99.5 percent.

The most preferred embodiments of the invention are set 55 out in the following examples.

EXAMPLE 1a

MPDA (methytdiaminopentane) to 3-picoline

A reactor (13 mm ϕ) was charged with 4 g of a Pd catalyst $(1\% \text{ Pd/Al}_2O_3)$ and, on top of that, 3 g of H-ZSM-5 [54.5% of pentasil (Si/Al=18) plus 45.5% of binder]. (The starting material was always fed into the reactor from the top.) The reaction conditions were: temperature: 305° to 320° C., 15 ml/min of N2, and pressure: 5 bar. In a temperature range of 305° to 320° C. and at an MHSV (mass hourly space

6

velocity over the catalyst) of 0.6 g/ (g.h), yields of up to 97 percent of 3-picoline were achieved, with the only further product found being 2.9 percent of MPI (methylpiperadine). Thus, complete conversion of the MPDA to desired products took place. No deactivation of the catalysts were observed over a period of 10 days. H₂ can be used as the carrier gas in place of N2.

EXAMPLE 1b

Preparation of 3-picoline Using Two Separate Reactors and Commercial MPDA (MPDA to 3picoline in 2 Stages With Isolation of MPI)

1st Stage: A reactor (13 mm ϕ) was charged with 3 g of ¹⁵ ZSM-5 in the ammonium form (particle size: 0.5 to 1 mm). MPDA was vaporized and, together with a carrier gas stream of 15 ml/minute of N_2 , was passed at a pressure of 5 bar and a temperature of 335° C. over the catalyst. The MHSV was 4.2 g of MPDA per gram of catalyst per hour. The MPDA used was a commercial product obtainable from DuPont de Nemours under the trade name Dytek A. The experiment ran for 280 hours. A deactivation of the catalyst was not observed. The product was condensed and the ammonia formed was able to escape. The yields of MPI were virtually quantitative (>99.5 percent).

2nd Stage: A reactor (13 mm) was charged with 10 g of a Pd-MgCl₂,Al₂O₃ dehydrogenation catalyst. The MPI from the first stage was passed in vapor form together with a carrier gas stream of 15 ml/minute of N2 at a pressure of 1 bar and a temperature of 280° C. over the catalyst. The MHSV was 0.23 g of MPI per gram of catalyst per hour. The experiment ran for 190 hours. A deactivation of the catalyst was not observed. After 190 hours, the following product composition was determined by gas chromatography: 99.3 percent of 3-picoline, and 0.4 percent of MPI.

EXAMPLE 1c

Preparation of 3-picoline Using Two Separate Reactors and Commercial MPDA (MPDA to 3picoline in 2 Stages Without Isolation of MPI)

A reactor (13 mm) was charged with 3 g of NH₄-ZSM-5 (particle size: 0.5 to 1 mm). MPDA was vaporized and, together with a carrier gas stream of 15 ml/minute of $N_{2,}$ passed at a pressure of about 1 bar and a temperature of 320° C. over the catalyst. The MHSV was between 1 and 2 g of MPDA per gram of ZSM-5 per hour. The MPDA used was a commercial product obtainable from DuPont de Nemours under the trade name Dytek A. The product from the cyclization reactor was kept in the gas phase and conveyed directly to a second reactor. This reactor contained 12 g of a alehydrogenation catalyst composed of Pd and MgCl₂ on an Al₂O₃ support (particle size: 0.32 to 1 mm). The reaction conditions were 280° C. and about 1 bar. The condensate from the dehydrogenation reactor contained, after a reaction time of 220 hours, 99.1 percent of 3-picoline and 0.9 percent of MPI (by gas chromatography). A deactivation of the two catalysts over the reaction time was not observed.

EXAMPLE 1d

2-Methyl-1,5-daiminopentane (MPDA) to 3picoline Continuously in Two Stages

A reactor (13 mm ϕ) was charged with 3 g of SiO₂,Al₂O₃ granules (Si-HP-87-069 T from Engelhard) having a particle size of 0.315 to 1 mm. MPDA was vaporized and, together

50

60

20

25

with a carrier gas stream of 15 ml/minute of H2, passed at a pressure of about 1 bar and a reactor temperature of 320° C. over the catalyst and cyclized to form MPL. The MPDA used was a commercial product obtainable from DuPont de Nemours under the trade name Dytek A. The product from the cyclization reactor was kept in the gas phase and conveyed directly to a second reactor. This reactor contained 3 g of the dehydrogenation catalyst from Example 18 of WO 94/22824 (particle size: 0.32 to 1 mm). The reactor temperature was 280° C., the pressure was 1 bar. During the 10 course of the experiment, the starting material MPDA was converted into MPI and then into a crude product (3-MP crude) consisting of a mixture having the following composition: 74.9 percent of MPL, 13.9 percent of MPDA, 5.1 percent of organic impurities (mainly 15 methylcyclopentanediamines) and 6.1 percent of water. The results together with the associated MHSVs (MHSV based on Reactor 1) are shown in the following table:

7

Starting	MHSV	GC %	by area	Running Time	Deacti- vation	
Material	[1/h]	PIC	MPI	[h]		
Dytek A	2.1	99.7		71	0	
Dytek A	3.15	99.6	0.2	25	0	
Dytek A	4.2	98.6	1.4	48	0	
MPI	4.1	95.2	3.8	3		
MPI	3.52	98.6	0.6	92	0	
3-MP crude	4.2	93.9	1.5	170	0.0172	

EXAMPLE 2a

Ammonoxidation of 3-picoline to 3-cyanopyridine

36.4 g of vanadium pentoxide, 48.0 g of titanium dioxide, 197.2 g of zirconium dioxide and 0.42 g of molybdenum trioxide were milled in a ball mill. The molar ratio of V2O5:TiO2:ZrO2 was 1:3:8, respectively, and the MoO3 content was 1.15 percent by weight, based on V205. Pellets 40 having dimensions of 5×5 mm were formed from the mixture. These were subjected to a heat treatment (100° to 120° C., for 6 hours in a stream of air). 60 cm³ (82 g) of the cataiyst thus pretreated were placed in a tube reactor (stainless steel, internal diameter 20 mm, length 1,000 mm). 45 At a catalyst bed temperature of 330° C., a mixture of 3-picoline, air and ammonia was then passed over the catalyst at a feed rate of (g per 1 of catalyst per hour=gl⁻ h^{-1}) 84 gl⁻¹h⁻¹ of 3-picoline; 2,000 gl⁻¹h⁻¹ of air; and 9.92 gl⁻¹h⁻¹ of ammonia. The molar composition of the feed gas 50 was 3-picoline:O2:NH3=1:40:1.3. Accordingly, 25.5 g of 3-picoline was passed over the catalyst in 10 hours. The conversion was 100 percent. 26.8 g of 3-cyanopyridine was obtained, which corresponds to a yield of 95.0 percent. 55

EXAMPLE 2b

Ammonoxidation of 3-picoline to 3-cyanopyridine (in a Multitube Reactor Without Additional Thermal Treatment of the Catalyst)

11.67 kg of vanadium pentoxide, 25.12 kg of titanium oxide as metatitanic acid, 63.22 kg of zirconium oxide and 1124 g of molybdenum trioxide (as ammonium 8

paramolybdate) were milled in a ball mill. The molar ratio of V_2O_5 :TiO₂:ZrO₂ was 1:4:8. respectively, and the MoO₃ content was 1.13 percent, based on V_2O_5 . Pellets having dimensions of 6×6 mm were formed from the mixture. These were subjected to a heat treatment (100° to 120° C., for 6 hours in a stream of air).

A quantity (72 kg, 53 liters) was placed in a tube reactor (stainless steel, internal diameter 21 mm, length 3,000 mm, number of tubes 51). At a catalyst bed temperature of 340° C., a mixture of 3-picoline, air, recirculated waste gas and ammonia was then passed over the catalyst at a feed rate of (g per 1 of catalyst per hour=gl⁻¹h⁻¹) 3.1 kgh⁻¹ of 3-picoline (60 gl⁻¹h⁻¹), 7.6 kgh⁻¹ of air, 67.0 kgh⁻¹ of waste gas, and 0.84 kgh⁻¹ of ammonia. The molar composition of the feed gas was 3-picoline:O₂:NH₃=1:1.9:1.5, respectively. Accordingly, 1.860 kg of 3-picoline was obtained, which corresponds to a yield of 90.4 percent.

EXAMPLE 2c

Ammonoxidation of 3-picoline to 3-cyanopyridine (in a Single-tube Reactor with Additional Thermal Treatment of the Catalyst)

A quantity of the catalyst obtained in Example 2b (135 cm³, 160 g) was treated thermally at 620° C. for 6 hours in a stream of air. This was subsequently placed in a tube reactor (internal diameter 21 mm, length 1,000 mm). At a catalyst bed temperature of 375° C., a mixture of 3-picoline, air, nitrogen and ammonia was passed over the catalyst. The feed rate was 11 gh⁻¹ of 3-picoline (corresponds to 81 g of picoline per liter of catalyst per hour), 30 lh⁻¹ of air, 285 lh⁻¹ of nitrogen, and 4 gh⁻¹ of ammonia, corresponding to a molar ratio of 3-picoline:O₂:NH₃ of 1:2:2.6, respectively. After 24 hours, 264 g of picoline had been passed over the 40 catalyst bed. The conversion was 99 percent. 261 g of 3-cyanopyridine was obtained, viz. a yield of 89 percent. The productivity of 3-cyanopridine was 80 gl⁻¹h⁻¹.

EXAMPLE 2d

Ammonoxidation of 3-picoline to 3-cyanopyridine (in a Single-tube Reactor with Smaller Pellets and Higher Picoline Productivity)

⁵⁰ Pellets having dimensions between 3 and 4 mm were formed from the catalyst obtained in Example 2b. A quantity (1 liter, 1.5 kg) was placed in a tube reactor (stainless steel, internal diameter 21 mm, length 3,000 mm). A mixture of ⁵⁵ 3-picoline, air, nitrogen and ammonia was passed over the catalyst at a catalyst bed temperature of 353°C. The feed rate was 96 gh⁻¹ of 3-picoline (corresponds to 96 g of picoline per liter of catalyst per hour), 210 lh⁻¹ of air, 1,340 lh⁻¹ of nitrogen, and 60 gh⁻¹ of ammonia. Accordingly, 60 2,305 g of 3-picoline were passed over the catalyst bed in 24 hours. 2,380 g of 3-eyanopyridine was obtained, which

hours. 2,380 g of 3-cyanopyridine was obtained, which corresponds to a yield of 90 percent. The 3-picoline conversion was 97.5 percent.

10

		Catalys	at Com	% by weight based on	Ga	s feed in g/l catalyst/				З-Суа	nopyridine Productivity	
	in mol		V ₂ O ₅	Air or air			Temperature	Conversion	Molar	in g/l of		
Example	V205	TiO ₂	ZrO ₂	MoO ₃	3-Pic	mixture	Ammonia	°C.	%	Yield %	catalyst/h	
2a	1	3	8	1.15	84	1667	9.9	330°	100	95	89.3	
2b	1	4	8	1.13	60	1407	15.8	340°	100	90.4	60.7	
2c	1	4	8	1.13	81	1944	29.6	375°	99	89.0	80.6	
2d	1	4	8	1.13	96	1550	60.0	353°	97.5	90.0	96.6	

EXAMPLE 3a

9

Preparation of Nicotinamide (NA) from 3cyanopyridine

In a cascade comprising a 1.125 I reactor and two 0.375 I reactors, a 10 percent strength solution of 3-cyanopyridine was converted into NA. At a throughput rate of 300 ml/hr of stating material solution, cyanopyridine was converted 25 quantitatively into NA; the first reactor contained 45 g of immobilized microorganisms. The biocatalyst remained in the respective reactors during the entire experiment. The biocatalyst contained immobilized microorganisms of the species Rhodococcus rhodochrous J1.

The reaction occurred at a temperature of 25°±1° C. and a pH of from 8 to 8.5. The pH was set using phosphoric acid and sodium hydroxide solution. In this experiment, the reaction of cyanopyridine proceeded for 2,400 hours, without the product stream containing more than 0.05 percent of 35 cyanopyridine, which corresponds to a conversion of >99.5 percent. The activity of the catalyst was exhausted after this time.

Product solution containing from 14 to 15 percent of NA 40 was filtered through a 0.2 µm sterilizing filter. The clear product solution obtained was subsequently evaporated to dryness. The product obtained contained >99.7 percent of NA (titration) and corresponded to pharmaceutical quality.

EXAMPLE 3b

Preparation of NA from 3-cyanopyridine

In a cascade comprising a 150 1 reactor and two 45 1 reactors, a 15 percent strength solution of 3-cyanopyridine was converted into NA. At a throughput rate of 25 1/h of 50 then in a second stage starting material solution, cyanopyridine was quantitatively converted into NA; the first reactor contained 6 kg of immobilized microorganisms (dry weight) and the two further reactors each contained 0.9 kg (dry weight) of immobilized microorganisms. The biocatalyst remained in the 55 respective reactors during the entire experiment. The biocatalyst contained immobilized microorganisms of the species Rhodococcus rhodochrous J1.

The reaction occurred at a temperature of 24°±2° C. and a pH of from 7 to 8.5. The pH was set using phosphoric acid $_{60}$ and sodium hydroxide solution, with potassium dihydrogen phosphate also being used for buffering (1 to 3 mg/l).

In this experiment, the reaction of cyanopyridine proceeded for 1.800 hours, without the product stream containing more than 0.1 percent of cyanopyridine, which corre- 65 sponds to a conversion of >99.0 percent. The activity of the biocatalyst was exhausted after this time.

Product solution containing from 18 to 20 percent of NA was subsequently purified continuously in fixed-bed adsorb-20 ers (each having a volume of 15.7 l), with from 0.5 to 4 percent of activated carbon (based on amount of product) and from 0.5 to 2 percent of Amberlite XAD2 being used.

Additionally purified NA solution was subsequently filtered continuously. Use was made of a three-stage filtration system in which the product solution was first fed to a GAF filter (10 to 30 µm pore size), subsequently to a sterilizing filter (pore size 0.2 µm) and finally to an ultrafiltration (pore size from 10,000 to 30,000 Dalton).

The filtered product solution was concentrated in a falling-film evaporator to from 60 to 80 percent of NA. Water removed from the product could be recirculated to the biohydrolysis. The product was isolated in a spray dryer having an integrated fluidized bed (fluidized spray dryer).

The product obtained contained >99.7 percent of NA (titration) and corresponded to pharmaceutical quality.

What is claimed is:

1. Process for preparing nicotinamide, comprising: in a first stage

(a) 2-methyl-1.5-diaminopentane in the gas phase at 300° to 400° C. and at 0 to 10 bar gauge pressure is converted into 3-methylpiperidine by passing it over a catalyst containing as active component at least one oxide of Al and/or Si, having at the surface a ratio of acid centers to basic centers of more than 2 and having a specific surface area of more than 40 m²/g, and, immediately afterwards, the 3-methylpiperidine is passed at 220° to 400° C. over a dehydrogenation catalyst and is converted into 3-picoline,

45

(b) the 3-picoline is, in the presence of ammonia and an oxygen-containing gas, passed at 280° to 400° C. over an ammonoxidation catalyst comprising the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO₂ to ZrO₂ of from 1:1:2, respectively, to 1:12:25, respectively, and having a MoO₃ content, based on V_2O_5 , of from 0.54 percent by weight to 2.6 percent by weight,

and, finally, in a third stage

(c) the resultant 3-cyanopyridine is converted by means of microorganisms of the genus Rhodococcus into nicotinamide.

2. The process according to claim 1, wherein the dehydrogenation catalyst used in the first stage is a noble metal catalyst on a support.

3. The process according to claim 2, wherein the ammonoxidation catalyst used is a catalyst composition comprising

the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO₂ to ZrO₂ of from 1:3:4, respectively, to 1:8: 16, respectively, and having a MoO₃ content, based on V_2O_5 , of from 0.54 percent by weight to 1.20 percent by weight.

11

4. The process according to claim 3, wherein, in the second stage, 3-picoline, ammonia and the oxygencontaining gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:1.5, respectively, to 1:8.5:60, respectively, at 310° to 380° C. over the catalyst. 10

5. The process according to claim 4, wherein 3-picoline, ammonia and the oxygen-containing gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:10, respectively, to 1:4:60, respectively, at from 310° to 380° C. over the catalyst.

6. The process according to claim 5, wherein the microbiological reaction in the third stage is carried out using microorganisms of the species *Rhodococcus rhodochrous* or using mutants thereof.

7. The process according to claim 6, wherein immobilized 20 microorganisms of the species *Rhodococcus rhodochrous* are used.

8. The process according to claim 7, wherein the microbiological reaction in the third stage is carried out at a pH of from 6 to 10 and a temperature of from 5° to 50° C. 25

9. The process according to claim 8, wherein the microbiological reaction in the third stage is carried out in a reactor cascade comprising from 2 to 5 connected stirred reactors.

10. The process according to claim 1, wherein the 30 ammonoxidation catalyst used is a catalyst composition comprising the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of Vhd $2O_5$ to TiO_2 to ZrO_2 of from 1.3:4, respectively, to 1:8:16, respectively, and having a MoO₃ content, based on V₂O₅, of from 0.54 35 percent by weight to 1.20 percent by weight.

11. The process according to claim 1, wherein, in the second stage, 3-picoline, ammonia and the oxygencontaining gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:1.5, respectively, to 1:8.5:60, 40 respectively, at 310° to 380° C. over the catalyst.

12. The process according to claim 1, wherein the microbiological reaction in the third stage is carried out using microorganisms of the species *Rhodococcus rhodochrous* or using mutants thereof.

13. The process according to claim 1, wherein the microbiological reaction in the third stage is carried out at a pH of from 6 to 10 and a temperature of from 5° to 50° C.

14. The process according to claim 1, wherein the microbiological reaction in the third stage is carried out in a 50 reactor cascade comprising from 2 to 5 connected stirred reactors.

15. Process for preparing nicotinamide, comprising passing 3-picoline, in the presence of ammonia and an oxygencontaining gas, at 280° to 400° C. over an ammonoxidation catalyst comprising the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO_2 to ZrO_2 of from 1:1:2, respectively, to 1:12:25, respectively, and having a MoO₃ content, based on V_2O_5 , of from 0.54 percent by weight to 2.6 percent by weight, and subsequently converting the resultant 3-cyanopyridine by means of microorganisms of the genus Rhodococcus into nicotinamide.

12

16. The process according to claim 15, wherein the ammonoxidation catalyst used is a catalyst composition comprising the oxides of vanadium, titanium, zirconium and molybdenum in a molar ratio of V_2O_5 to TiO₂ to ZrO₂ of from 1:3:4, respectively, to 1:8:16, respectively, and having a MoO₃ content, based on V_2O_5 , of from 0.54 percent by weight to 1.20 percent by weight.

17. The process according to claim 16, wherein 3-picoline, ammonia and the oxygen-containing gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:1.5, respectively, to 1:8.5:60, respectively, at 310° to 380° C. over the catalyst.

18. The process according to claim 17, wherein 3-picoline, ammonia and the oxygen-containing gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:10, respectively, to 1:4:60, respectively, over the catalyst.

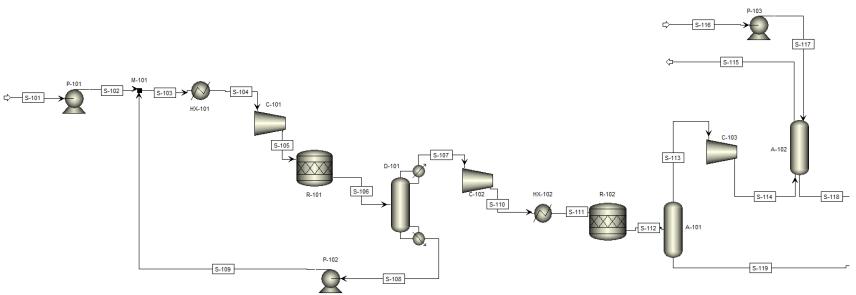
19. The process according to claim 18, wherein the microbiological reaction is carried out using microorganisms of the species *Rhodococcus rhodochrous* or using mutants thereof.

20. The process according to claim 19, wherein immobilized microorganisms of the species *Rhodococcus rhodoch*rous are used.

21. The process according to claim 20, wherein the microbiological reaction is carried out at a pH of from 6 to 10 and a temperature of from 5° to 50° C.

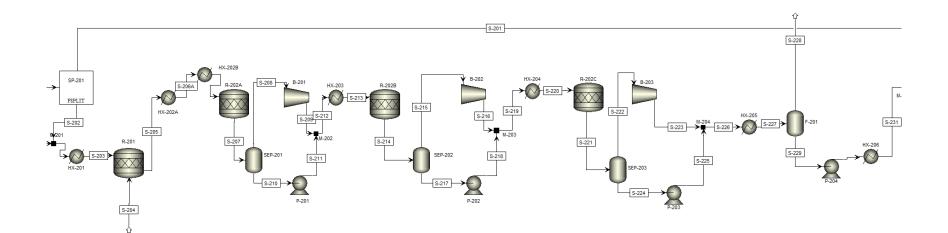
22. The process according to claim 21, wherein the microbiological reaction is carried out in a reactor cascade comprising from 2 to 5 connected stirred reactors.

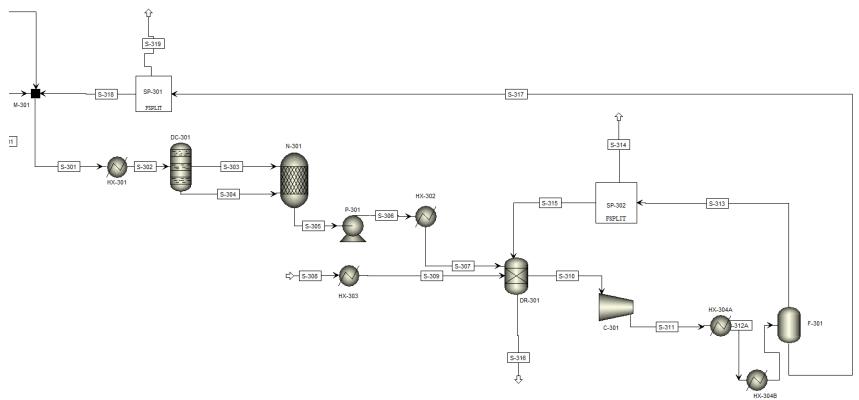
23. The process according to claim 15, wherein 3-picoline, ammonia and the oxygen-containing gas, which is calculated as O_2 , are passed in a molar ratio of from 1:1:1.5. respectively, to 1:8.5:60, respectively, at 310° to 380° C. over the catalyst.


24. The process according to claim 15, wherein the 45 microbiological reaction is carded out using microorganisms of the species *Rhodococcus rhodochrous* or using mutants thereof.

25. The process according to claim 15, wherein the microbiological reaction is carried out at a pH of from 6 to 10 and a temperature of from 5° to 50° C.

26. The process according to claim 15, wherein the microbiological reaction is carried out in a reactor cascade comprising from 2 to 5 connected stirred reactors.


* * * * *


C. ASPEN SIMULATIONS AND REPORTS

Section 100

Section 300

ASPEN Simulation Results:	ASPEN PLUS	PLAT: WIN32	NIACIN	0 PRODUCTION EET SECTION	03,	/27/2013 PAGE 2
ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 1 NIACIN PRODUCTION RUN CONTROL SECTION	FLOWSHEET	CONNECTIVITY	BY STREAMS			
RUN CONTROL INFORMATION	STREAM S-204 S-101 S-104	SOURCE HX-101	DEST R-201 P-101 C-101	STREAM S-308 S-116 S-106	SOURCE R-101	DEST HX-303 P-103 D-101
THIS COPY OF ASPEN PLUS LICENSED TO UNIVERSITY OF PENNSYLVAN	S-104 S-112 S-207	R-101 R-202A	A-101 SEP-201	S-205 S-309	R-201 HX-303	D-101 HX-202A DR-301
TYPE OF RUN: NEW	S-301 S-313	M-301 F-301	HX-301 SP-302	S-305 S-317	N-301 F-301	P-301 SP-301
INPUT FILE NAME: _3810jxn.inm	S-310 S-315	DR-301 SP-302	C-301 DR-301	S-316 S-314	DR-301 SP-302	
OUTPUT PROBLEM DATA FILE NAME: _3810jxn LOCATED IN:	S-105 S-303 S-206A	C-101 DC-301 HX-202A	R-101 N-301 HX-202B	S-304 S-302 S-110	DC-301 HX-301 C-102	N-301 DC-301 HX-102
PDF SIZE USED FOR INPUT TRANSLATION: NUMBER OF FILE RECORDS (PSIZE) = 0 NUMBER OF IN-CORE RECORDS = 256 PSIZE NEEDED FOR SIMULATION = 256	S-319 S-307 S-227 S-312A S-103	SP-301 HX-302 HX-205 HX-304A M-101	DR-301 F-201 HX-304B HX-101	S-318 S-311 S-102 S-109 S-230	SP-301 C-301 P-101 P-102 P-204	M-301 HX-304A M-101 M-101 HX-206
CALLING PROGRAM NAME: apmain LOCATED IN: C:\PROGRA~2\ASPENT~1\ASPENP~2.3\Engine\xeq	S-306 S-203 S-210	P-301 HX-201 SEP-201	HX-302 R-201 P-201	S-111 S-208 S-211	HX-102 SEP-201 P-201	R-102 B-201 M-202
SIMULATION REQUESTED FOR ENTIRE FLOWSHEET	S-212 S-221	M-202 R-202C	HX-203 SEP-203	S-214 S-222	R-202B SEP-203	SEP-202 B-203
DESCRIPTION	S-224 S-217 S-226	SEP-203 SEP-202 M-204	P-203 P-202 HX-205	S-215 S-219 S-218	SEP-202 M-203 P-202	B-202 HX-204 M-203
General Simulation with Metric Units : C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr. Property Method: None Flow basis for input: Mole Stream report composition: Mole flow	S-225 S-216 S-213 S-228 S-113 S-115 S-114 S-201 S-117 S-312 S-108	P-203 B-202 HX-203 F-201 A-101 A-102 C-103 SP-201 P-103 HX-304B D-101	M-204 M-203 R-202B C-103 A-102 M-301 A-102 F-301 P-102	S-209 S-223 S-220 S-119 S-118 S-202 S-231 S-206 S-107 S-203A	B-201 B-203 HX-204 F-201 A-101 A-102 SP-201 HX-206 HX-202B D-101 M-201	M-202 M-204 R-202C P-204 M-201 SP-201 M-201 M-301 R-202A C-102 HX-201
	FLOWSHEET	CONNECTIVITY	BY BLOCKS			
	BLOCK HX-101	INLETS S-103			TLETS 104	

BLOCK	INLEIS	OUILEIS
HX-101	S-103	s-104
R-101	S-105	S-106
R-102	S-111	S-112
R-201	s-203 s-204	s-205
R-202A	s-206	S-207
HX-303	S-308	s-309
м-301	S-231 S-318 S-201	S-301
N-301	s-304 s-303	s-305
F-301	S-312	S-313 S-317
DR-301	s-309 s-315 s-307	S-310 S-316
SP-302	S-313	S-315 S-314

Bains, Clark, Lowey, So	0	
-------------------------	---	--

ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUCTIO FLOWSHEET SECTI		03/27/2013	page 3
$\begin{array}{c} \text{C-101} \\ \text{DC-301} \\ \text{HX-301} \\ \text{HX-202A} \\ \text{C-102} \\ \text{SP-301} \\ \text{HX-302} \\ \text{C-301} \\ \text{HX-205} \\ \text{P-101} \\ \text{HX-304A} \\ \text{P-102} \\ \text{M-101} \\ \text{HX-304A} \\ \text{P-102} \\ \text{HX-201} \\ \text{SEP-201} \\ \text{HX-201} \\ \text{SEP-201} \\ \text{HX-201} \\ \text{SEP-202} \\ \text{R-202cB} \\ R-202$	S-104 S-302 S-301 S-205 S-107 S-317 S-306 S-310 S-226 S-101 S-210 S-229 S-305 S-110 S-203A S-203 S-210 S-210 S-210 S-210 S-210 S-211 S-214 S-216 S-217 S-214 S-216 S-217 S-223 S-217 S-224 S-215 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-225 S-217 S-218 S-218 S-217 S-218 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-218 S-217 S-227 S-217 S-228 S-217 S-228 S-217 S-228 S-217 S-228 S-217 S-228 S-217 S-228 S-217 S-228 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-229 S-218 S-2228 S-2228 S-2228 S-2228 S-2228 S-2228 S-22	LOCKS (CONTINUED)	S-105 S-304 S-303 S-302 S-206A S-110 S-319 S-318 S-307 S-311 S-227 S-102 S-312A S-109 S-103 S-230 S-230 S-230 S-230 S-214 S-211 S-212 S-214 S-211 S-212 S-214 S-221 S-221 S-221 S-221 S-221 S-221 S-225 S-213 S-226 S-213 S-220 S-228 S-223 S-220 S-228 S-223 S-220 S-228 S-223 S-220 S-228 S-223 S-220 S-228 S-223 S-220 S-228 S-223 S-220 S-228 S-220 S-213 S-210 S-213 S-210 S-228 S-220 S-228 S-220 S-213 S-210 S-213 S-210 S-213 S-210 S-228 S-220 S-228 S-209 S-216 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-213 S-210 S-21	5) - -	
CONVERGENCE	STATUS SUMMARY				

CONVERGENCE STATUS SUMMARY

TEAR STREAM SUMMARY

STREAM ID	MAXIMUM ERROR	TOLERANCE	MAXIMUM ERR/TOL	VARIABLE ID	STAT	CONV BLOCK
s-108	0.13483E-27	0.14781E-27	0.91223	AMMONIA MOLEF	 LOW #	\$OLVER01

ASPEN PLUS PLAT: W	N	ER: 25.0 IACIN PROU FLOWSHEET	DUCTION SECTION		03/27/201	3 PAGE 4			
CONVERGENCE STATUS S S-317 0.190028 S-313 0.140738	E-13 0.396	49E-08 0	.47926E-05 .99363	5 AMMONIA WATER M	MOLEFLOW DLEFLOW	# \$OLVER02 # \$OLVER02			
<pre># = CONVERGED * = NOT CONVERGED CONVERGENCE BLOCK:</pre>									
Tear Stream : Tolerance used: Trace molefrac: Trace substr-2:	0.100D-04 0.100D-06 0.100D-06								
MAXIT= 50 WAI QMAX = 0.0 METHOD: WEGSTEI TOTAL NUMBER OF	N STAT ITERATIONS	5.0 US: CONVER	RGED	ERATING					
VAR# TEAR STREAM VA				ATTRIBUT	ELEMENT	UNIT	VALUE	PREV VALUE	ERR/TOL
1 TOTAL MOLEFLOW 2 TOTAL MOLEFLOW 3 SUBS-ATTR-VA 4 SUBS-ATTR-VA 5 SUBS-ATTR-VA 6 SUBS-ATTR-VA 7 SUBS-ATTR-VA 8 SUBS-ATTR-VA 9 SUBS-ATTR-VA 10 SUBS-ATTR-VA 11 SUBS-ATTR-VA 12 SUBS-ATTR-VA 13 MOLE-FLOW 14 MOLE-FLOW 15 MOLE-FLOW 16 MOLE-FLOW 17 MOLE-FLOW 18 MOLE-FLOW 20 MOLE-FLOW 21 MOLE-FLOW 21 MOLE-FLOW 22 MOLE-FLOW 23 MOLE-FLOW 23 MOLE-FLOW 24 MOLE-FLOW	S-108 S-108	MIXED CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD CIPSD MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED	OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01	PSD PSD PSD PSD PSD PSD PSD PSD PSD	FRAC1 FRAC2 FRAC3 FRAC4 FRAC5 FRAC6 FRAC7 FRAC7 FRAC7 FRAC7 FRAC7 FRAC10	LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR	0.2875 0.0 MISSING MISSING MISSING MISSING MISSING MISSING MISSING 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PREV VALUE 0.2875 0.0 MISSING MISSING MISSING MISSING MISSING MISSING MISSING MISSING 0.0 0.0 0.0 1.1731-19 0.0 0.0 0.0 0.2874 3.1607-05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} -1.1589-06\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$

ASPEN PLUS PLAT: W	NIACIN PR		03/27/2013 PAGE 5			
CONVERGENCE BLOCK:	\$OLVER01 (CONTINUE	D)				
34 MOLE-FLOW	S-108 CIPSD	METDIAMI	LBMOL/HR	0.0	0.0	0.0
35 MOLE-FLOW	S-108 CIPSD	METHYLPI	LBMOL/HR	0.0	0.0	0.0
36 MOLE-FLOW	S-108 CIPSD	3-MET-01	LBMOL/HR	0.0	0.0	0.0
37 MOLE-FLOW	S-108 CIPSD	NICOT-01	LBMOL/HR	0.0	0.0	0.0
38 MOLE-FLOW	S-108 CIPSD	AMMONICO	LBMOL/HR	0.0	0.0	0.0
39 PRESSURE	S-108 CIPSD		PSIA	20.5459	20.5459	0.0
40 MASS ENTHALPY	S-108 CIPSD		BTU/LB	0.0	0.0	0.0

*** ITERATION HISTORY ***

TEAR STREAMS AND TEAR VARIABLES:

ITERATION	MAX-ERR/TOL	STREAM ID	VARIABLE	SUBSTREA	COMPONEN	ATTRIBUT	ELEMENT
1	0.1100E+08	S-108	MOLE-FLOW	MIXED	METHYLPI		
2	48.29	S-108	MOLE-FLOW	MIXED	METHYLPI		
3	-3.039	S-108	MOLE-FLOW	MIXED	METHYLPI		
4	-0.9122	s-108	MOLE-FLOW	MIXED	AMMONIA		

CONVERGENCE BLOCK: \$0LVER02

Tear Stream :	S-317	S-313
Tolerance used:	0.100D-04	0.100D-04
Trace molefrac:	0.100D-06	0.100D-09
Trace substr-2:	0.100D-06	0.100D-09

*** FINAL VALUES ***

VAR#	TEAR STREAM VAR	STREAM	SUBSTREA	COMPONEN	ATTRIBUT	ELEMENT	UNIT	VALUE	PREV VALUE	ERR/TOL
1	TOTAL MOLEFLOW	s-317	MIXED				LBMOL/HR	1230.6056	1230.6056	-3.2597-08
2	TOTAL MOLEFLOW	S-317	CIPSD				LBMOL/HR	0.0	0.0	0.0
3	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC1		MISSING	MISSING	0.0
4	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC2		MISSING	MISSING	0.0
5	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC3		MISSING	MISSING	0.0
6	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC4		MISSING	MISSING	0.0
7	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC5		MISSING	MISSING	0.0
8	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC6		MISSING	MISSING	0.0
9	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC7		MISSING	MISSING	0.0
10	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC8		MISSING	MISSING	0.0
11	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC9		MISSING	MISSING	0.0
12	SUBS-ATTR-VA	S-317	CIPSD		PSD	FRAC10		MISSING	MISSING	0.0
13	TOTAL MOLEFLOW	S-313	MIXED				LBMOL/HR	11.1805	11.1805	4.0035-02
14	TOTAL MOLEFLOW	s-313	CIPSD				LBMOL/HR	0.0	0.0	0.0
15	SUBS-ATTR-VA	S-313	CIPSD		PSD	FRAC1		MISSING	MISSING	0.0
16	SUBS-ATTR-VA	S-313	CIPSD		PSD	FRAC2		MISSING	MISSING	0.0
17	SUBS-ATTR-VA	S-313	CIPSD		PSD	FRAC3		MISSING	MISSING	0.0

ASPEN PLUS PLAT:	NIA	R: 25.0 ACIN PRODUCTION LOWSHEET SECTION	03/27/2013	B PAGE 6			
CONVERGENCE BLOCK: 18 SUBS-ATTR-VA 19 SUBS-ATTR-VA 20 SUBS-ATTR-VA 21 SUBS-ATTR-VA 22 SUBS-ATTR-VA 23 SUBS-ATTR-VA 24 SUBS-ATTR-VA 25 MOLE-FLOW 26 MOLE-FLOW 27 MOLE-FLOW 28 MOLE-FLOW 30 MOLE-FLOW 30 MOLE-FLOW 31 MOLE-FLOW 31 MOLE-FLOW 33 MOLE-FLOW 34 MOLE-FLOW 35 MOLE-FLOW 36 MOLE-FLOW 37 PRESSURE 38 MASS ENTHALPY 39 MOLE-FLOW 40 MOLE-FLOW 41 MOLE-FLOW 41 MOLE-FLOW 42 MOLE-FLOW 43 MOLE-FLOW 44 MOLE-FLOW 44 MOLE-FLOW 45 MOLE-FLOW 46 MOLE-FLOW 47 MOLE-FLOW 48 MOLE-FLOW 48 MOLE-FLOW 49 MOLE-FLOW 40 MOLE-FLOW 40 MOLE-FLOW 40 MOLE-FLOW 41 MOLE-FLOW 42 MOLE-FLOW 43 MOLE-FLOW 44 MOLE-FLOW 45 MOLE-FLOW 45 MOLE-FLOW 50 MOLE-FLOW 51 PRESSURE 52 MASS ENTHALPY 53 MOLE-FLOW 54 MOLE-FLOW 55 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 57 MOLE-FLOW 58 MOLE-FLOW 59 MOLE-FLOW 50 MOLE-FLOW 50 MOLE-FLOW 50 MOLE-FLOW 50 MOLE-FLOW 50 MOLE-FLOW 51 MOLE-FLOW 52 MASS ENTHALPY 53 MOLE-FLOW 54 MOLE-FLOW 55 MOLE-FLOW 56 MOLE-FLOW 56 MOLE-FLOW 57 MOLE-FLOW 57 MOLE-FLOW 58 MOLE-FLOW 59 MOLE-FLOW 50 MOLE	NTA FL \$0LVER02 (CO S-313 CO S-313 CO S-313 CO S-313 CO S-313 CO S-313 CO S-313 CO S-317 M S-317 CO S-317 CO S-313 M S-313 M S-313 M S-313 M S-313 M S-313 M	ACIN PRODUCTION LOWSHEET SECTION ONTINUED) CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD PSD CIPSD NYGEN MIXED NITROGEN MIXED NITROGEN MIXED NITROGEN MIXED NIACINAM MIXED METDIAMI MIXED NIACINAM MIXED NICOT-01 MIXED NICOT-01 MIXED AMMONIA MIXED CARBO-01 CIPSD NICOT-01 MIXED S-MET-01 MIXED CIPSD NICOT-01 CIPSD NICOT-01 CIPSD NICOT-01 CIPSD NIACINAM CIPSD NIACINAM CIPSD NICOT-01 CIPSD NIACINAM CIPSD NIACINAM CIPSD NIACINAM CIPSD NIACINAM CIPSD NIACINAM CIPSD NIACINAM CIPSD NIACINAM CIPSD METHOLAMI CIPSD METHOLAMI CIPSD METHOLAMI CIPSD METHOLAMI MIXED NITROGEN MIXED NIACON MIXED NIACINAM MIXED NIACINAM MIXED NIACINAM MIXED NIACINAM MIXED NIACINAM MIXED NIACINAM MIXED METHOLAMI MIXED METHIAMI MIXED AMMONICO MIXED AMMONICO MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED METHIAMI MIXED MIX	D FRAC4 D FRAC5 D FRAC7 D FRAC7 D FRAC7 D FRAC7 D FRAC10 D FRAC10	LBMOL/HR LBMOL/HR	MISSING MISSING MISSING MISSING MISSING 2.3426-05 0.0 8.0927-05 3.1468 1227.4582 4.8173-04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MISSING MISSING MISSING MISSING MISSING 2.3426-05 0.0 8.0927-05 3.1468 1227.4582 4.8173-04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
67 MOLE-FLOW 68 MOLE-FLOW 69 MOLE-FLOW 70 MOLE-FLOW 71 MOLE-FLOW 72 MOLE-FLOW	S-313 C S-313 C S-313 C S-313 C	CIPSD OXYGEN CIPSD HYDROGEN CIPSD NITROGEN CIPSD AMMONIA CIPSD WATER CIPSD CARBO-01		LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR	0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$

ASPEN PLUS PLAT:	NI	R: 25.0 ACIN PRODUC LOWSHEET SE	CTION	03/27/2013	PAGE 7			
CONVERGENCE BLOCK:	\$OLVER02 (C	ONTINUED)						
73 MOLE-FLOW	S-313	CIPSD NI	IACINAM	L	BMOL/HR	0.0	0.0	0.0
74 MOLE-FLOW	S-313	CIPSD ME	ETDIAMI	L	BMOL/HR	0.0	0.0	0.0
75 MOLE-FLOW		CIPSD ME	ETHYLPI	L	BMOL/HR	0.0	0.0	0.0
76 MOLE-FLOW	S-313	CIPSD 3-	-мет-01	L	BMOL/HR	0.0	0.0	0.0
77 MOLE-FLOW		CIPSD N3	ICOT-01	L	BMOL/HR	0.0	0.0	0.0
78 MOLE-FLOW		CIPSD AM	MMONICO	L	BMOL/HR	0.0	0.0	0.0
79 PRESSURE		CIPSD		P	SIA	58.0082	58.0082	0.0
80 MASS ENTHALPY	S-313	CIPSD		В	TU/LB	0.0	0.0	0.0

*** ITERATION HISTORY ***

TEAR STREAMS AND TEAR VARIABLES:

ITERATION	MAX-ERR/TOL	STREAM ID	VARIABLE	SUBSTREA	COMPONEN	ATTRIBUT	ELEMENT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	$\begin{array}{c} 0.1000E+09\\ 0.9000E+08\\ 0.5625E+07\\ 0.1702E+07\\ 0.6113E+06\\ 0.6743E+06\\ 0.1268E+07\\ 0.5034E+06\\ 0.1221E+06\\ 0.3252E+05\\ 0.1221E+06\\ 0.3252E+05\\ 0.1959E+05\\ 5268.\\ 2295.\\ -1224.\\ 702.0\\ 147.4\\ 91.00\\ 21.63\\ -43.42\\ 11.37\\ 1.487\\ \end{array}$	$\begin{array}{c} \text{S-313} \\ \mbox{S-313} \\ \mbox{S-313}$	VARIABLE 	SUBSTREA TIPSD MIXED	OXYGEN WATER AMMONIA AMMONIA AMMONIA AMMONIA WATER AMMONIA WATER AMMONIA AMMONIA WATER AMMONIA WATER AMMONIA WATER AMMONIA AMMONIA	PSD	FRAC1
23	-0.9936	S-313	MOLE-FLOW	MIXED	WATER		

3-MEI-UL NICOT-01 AMMONICO TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HR)

FEED STREAMS CO2E PRODUCT STREAMS CO2E

NET STREAMS COZE PRODUCTION UTILITIES COZE PRODUCTION TOTAL COZE PRODUCTION

142.468 6019.26 -0.102940E+08

*** CO2 EQUIVALENT SUMMARY *** 0.00000 LB/HR 02E 7.43964 LB/HR PRODUCTION 7.43964 LB/HR 0DUCTION 0.00000 LB/HR TION 7.43964 LB/HR

241.818 6019.27 -0.167061E+08

ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUCTIO FLOWSHEET SECT) N	27/2013 PAGE 8	ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION PHYSICAL PROPERTIES SI	
COMPUTATION	AL SEQUENCE				COMPONENTS			
\$OLVER01 (RETURN 5 C-102 HX HX-202B F P-202 M-7 HX-206 \$OLVER02 C-301 (RETURN 5	101 HX-303 P-102 M-101 HX- \$0LVER01) -102 R-102 A-101 R-202A SEP-201 B 203 HX-204 R-202 SP-302 SP-301 M HX-304A HX-304B	101 C-101 R-101 D C-103 A-102 SP-20 -201 P-201 M-202 D C SEP-203 B-203 P I-301 HX-301 DC-30 F-301	01 M-201 HX-201 HX-203 R-202B SE -203 M-204 HX-20	Р-202 В-202 5 F-201 Р-204	OXYGEN HYDROGEN NITROGEN AMMONIA	C H2 C N2 C H3N C H2O C C02 C NIACINA C MPDA C METHYLF C C6H7N-T C C6H7N-T	MPDA PIPER METHYLPIPER D2 3-METHYLPYRIDI NICOTINONITRILI	NE
	*** V	IASS AND ENERGY BAI	_ANCE ***					
	ONAL COMPONENTS	IN (I BMOL /HR)	OUT	RELATIVE DIFF.				
OXYGEN HYDRO NITRO AMMONI WATER CARBO NIACII METDI METDI 3-MET- NICOT- AMMONI TOTAL BAI	N GEN GEN IA -01 NAM AMI -01 -01 ICO	$\begin{array}{c} 46.2971\\ 0.00000\\ 1.10231\\ 0.00000\\ 66.6101\\ 0.00000\\ 0.00000\\ 28.4590\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ \end{array}$	4.24004 84.5231 1.11640 0.566499 122.773 0.169045 27.6135 0.311977E-04 0.253735 0.278925 0.00000	$\begin{array}{c} 0.908417\\ -1.00000\\ -0.126183E-01\\ -1.00000\\ -0.457451\\ -1.00000\\ 0.999999\\ -1.00000\\ -1.00000\\ -1.00000\\ -1.00000\\ 0.00000\\ \end{array}$				

-0.410845 -0.634129E-06 0.383822

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 10	ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTIO	03/27/2013 PAGE 11
BLOCK: A-101 MODEL: RADFRAC		BLOCK: A-101 MODEL: RADF	RAC (CONTINUED)	
INLETS - S-112 STAGE 17 OUTLETS - S-113 STAGE 1		**** COL-SPECS ****		
S-119 STAGE 20 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATI	DN OF STATE	MOLAR VAPOR DIST / TOTAL I MOLAR REFLUX RATIO DISTILLATE TO FEED RATIO	DIST	1.00000 1.00000 0.79890
*** MASS AND ENERGY BALANCE *** IN OUT	RELATIVE DIFF.	**** PROFILES ****		
TOTAL BALANCE MOLE(LBMOL/HR) 141.441 141.44 MASS(LB/HR) 3307.12 3307.1 ENTHALPY(BTU/HR) 0.158151E+07 458444 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR	2 -0.508771E-14	****	PRES, PSIA ************************************	40.0000
PRODUCT STREAMS CO2E 0.000000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR		*** COMPONENT SPLIT FRACT	TIONS *** DUTLET STREAMS	
			S-119	
**************************************		COMPONENT: HYDROGEN 1.0000 (AMMONIA 1.0000 METDIAMI .10179E-13 METHYLPI .52024E-05	0.0000 .37851E-08 1.0000 .99999 .99946	
NUMBER OF STAGES ALGORITHM OPTION	20 STANDARD	*** SUMMARY OF KEY RESU	LTS ***	
ABSORBER OPTION INITIALIZATION OPTION HYDRAULIC PARAMETER CALCULATIONS INSIDE LOOP CONVERGENCE METHOD DESIGN SPECIFICATION METHOD MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS MAXIMUM NO. OF INSIDE LOOP ITERATIONS MAXIMUM NUMBER OF FLASH ITERATIONS FLASH TOLERANCE OUTSIDE LOOP CONVERGENCE TOLERANCE	NO STANDARD NO BROYDEN NESTED 25 10 30 0.000100000 0.000100000	TOP STAGE TEMPERATURE BOTTOM STAGE TEMPERATURE TOP STAGE LIQUID FLOW BOTTOM STAGE LIQUID FLOW TOP STAGE VAPOR FLOW BOILUP VAPOR FLOW MOLAR REFLUX RATIO MOLAR BOILUP RATIO CONDENSER DUTY (W/O SUBCOO REBOILER DUTY **** MAXIMUM FINAL RELATION	BTU/HR IVE ERRORS **** 0.29148	5.99019 366.260 112.997 28.4438 112.997 109.989 1.00000 3.86689 -2,810,550. 1,687,480.
		BUBBLE POINT COMPONENT MASS BALANCE ENERGY BALANCE	0.22573	STAGE= 2 STAGE= 13 COMP=HYDROGEN

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 12	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 13 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: A-101 MODEL: RAD	FRAC (CONTINUED)		BLOCK: A-101 MODEL: RADFRAC (CONTINUED)
**** PROFILES ****			**** MASS FLOW PROFILES ****
NOTE REPORTED VALUES FROM THE STAGE I	FOR STAGE LIQUID AND VAPOR I NCLUDING ANY SIDE PRODUCT.	RATES ARE THE FLOWS	STAGE FLOW RATE FEED RATE PRODUCT RATE LB/HR LB/HR LB/HR LIQUID VAPOR LIQUID VAPOR MIXED LIQUID VAPOR
STAGE TEMPERATURE PRESSUR F PSIA	ENTHALPY E BTU/LBMOL LIQUID VAPOR	HEAT DUTY BTU/HR	STAGE FLOW RATE FEED RATE PRODUCT RATE LB/HR LB/HR LB/HR LB/HR LB/HR LIQUID VAPOR LIQUID VAPOR MIXED LIQUID VAPOR 15 0.1481E+05 0.1547E+05 3307.1178 IQUID VAPOR 16 0.1136E+05 0.1023E+05 3307.1178 17 0.1288E+05 8708. 18 0.1290E+05 0.1023E+05 20 2651. 0.1025E+05 20 2651. 0.1025E+05
1 5.9902 40.000 2 274.09 40.000 7 323.08 40.000	9932.9 -5484.0 33923. 14662. 36404. 29345.	28105+07	19 0.1290E+05 0.1025E+05 20 2651. 0.1025E+05 2651. 0.1025E+05 2650.6425
9 323.09 40.000 10 323.09 40.000 15 323.15 40.000 16 323.17 40.000 17 365.80 40.000 18 366.20 40.000 19 366.23 40.000 20 366.26 40.000 STAGE FLOW RATE LBM0L/HR LIQUID VAPOR 1 113.0 113.0 2 145.5 226.0 7 159.5 272.4 8 159.5 272.5 9 159.5 272.5	36367. 29340. 36340. 29327. 36040. 29189. 35922. 29135. 38156. 53303. 38127. 53586. 38041. 53527. 37904. 53419. FEED RATE LBMOL/HR LIQUID VAPOR MIXED	.16875+07 PRODUCT RATE LBMOL/HR LIQUID VAPOR 112.9972	STAGE HYDROGEN AMMONIA METDIAMI METHYLPI 3-MET-01 1 0.22988E-03 0.26347 0.81560E-15 0.10944E-03 0.73619 2 0.26305E-03 0.79574E-02 0.49564E-14 0.19282E-03 0.99159 7 0.33770E-03 0.32509E-02 0.49564E-14 0.19282E-03 0.99573 8 0.33778E-03 0.32495E-02 0.4200E-10 0.87216E-03 0.99554 9 0.33778E-03 0.32495E-02 0.43208E-10 0.11190E-02 0.99529 10 0.33788E-03 0.32495E-02 0.15548E-09 0.14356E-02 0.99143 15 0.33809E-03 0.32493E-02 0.33637E-06 0.63814E-02 0.99143 16 0.33818E-03 0.32491E-02 0.33037E-06 0.68584E-02 0.99320 17 0.58234E-06 0.10987E-03 0.32087E-06 0.68584E-02 0.99226 18 0.97070E-09 0.35849E-05 0.36128E-06 0.73383E-02 0.99266 19 0.16180E-11 0.11690E-06 </td
16 122.3 272.5 17 138.3 93.84 18 138.4 109.8 19 138.4 110.0 20 28.44 110.0 ***** MASS FLOW PROFILES	***	28.4437 PRODUCT RATE	STAGE HYDROGEN AMMONIA METDIAMI METHYLPI 3-MET-01 1 0.74801 0.25186 0.28103E-20 0.13103E-07 0.13445E-03 2 0.37412 0.25766 0.40780E-15 0.54726E-04 0.36816 7 0.31052 0.10639 0.54206E-12 0.30997E-03 0.58279 8 0.31039 0.10634 0.19520E-11 0.39786E-03 0.58287 9 0.31036 0.10634 0.25291E-10 0.65498E-03 0.58283 10 0.31039 0.10634 0.15238E-07 0.22735E-02 0.58099 16 0.31040 0.10634 0.15238E-07 0.29145E-02 0.58099 16 0.31040 0.40635 0.54781E-07 0.29145E-02 0.58099 18 0.73316E-06 0.13832E-03 0.11991E-06 0.58260E-02 0.99004 19 0.12217E-08 0.45109E-05 0.117100E-06 0.66486E-02 0.99335 20 0.20357E-11 0.14615E-06 0.364040E-06 0.79489E
LB/HR LIQUID VAPOR 1 8255. 656.5 2 0.1346E+05 8912. 7 0.1481E+05 0.1546E+05 8 0.1481E+05 0.1547E+05 9 0.1481E+05 0.1547E+05 10 0.1481E+05 0.1547E+05	FEED RATE LB/HR LIQUID VAPOR MIXED	LB/HR LIQUID VAPOR 656.4752	STAGE HYDROGEN AMMONIA METDIAMI METHYLPI 3-MET-01 1 3251.8 0.95583 0.34477E-05 0.11976E-03 0.18268E-03 2 1101.1 25.071 0.63709E-01 0.21977 0.28749 7 918.83 32.718 0.16262 0.45615 0.58543 8 918.64 32.725 0.16266 0.45625 0.58556 10 918.65 32.720 0.16266 0.45625 0.58557 15 917.99 32.726 0.16281 0.45658 0.58601 16 917.72 32.729 0.16286 0.45671 0.58618 17 756.74 38.535 0.32995 0.79019 0.99682

ASPEN PLI	JS PLAT: WIN3	NIACIN	.0 PRODUCTION LOCK SECTION	03/27/20	013 PAGE 14	ASPE
BLOCK:	A-101 MODEL:	RADFRAC (CON	TINUED)			BLOG
STAGE 18 19 20	HYDROGEN 755.29 755.09 754.83	**** K-VAL AMMONIA 38.586 38.589 38.591	UES METDIAMI 0.33196 0.33210 0.33224	**** METHYLPI 0.79393 0.79420 0.79447	3-MET-01 1.0014 1.0017 1.0021	
		**** MASS-2	X-PROFILE	****		F
STAGE 1 2 7 8 9 10 15 16 17 18 19 20	HYDROGEN 0.63430E-05 0.57328E-05 0.73315E-05 0.73330E-05 0.73330E-05 0.73392E-05 0.73393E-05 0.12601E-07 0.21002E-10 0.35005E-13 0.58341E-16	AMMONIA 0.61417E-01 0.14651E-02 0.59625E-03 0.59598E-03 0.59598E-03 0.595980E-03 0.59570E-03 0.20085E-04 0.65526E-06 0.21366E-07 0.69211E-09	METDIAMI 0.12972E-14 0.62264E-14 0.41735E-11 0.5025E-10 0.19456E-09 0.11709E-06 0.42079E-06 0.42079E-06 0.42079E-06 0.64210E-06 0.54210E-06	METHYLPI 0.14855E-03 0.20672E-03 0.72596E-03 0.11951E-02 0.15331E-02 0.53166E-02 0.68129E-02 0.71170E-02 0.78106E-02 0.89097E-02 0.10647E-01	3-MET-01 0.99843 0.99832 0.99867 0.99847 0.99820 0.99786 0.99286 0.99258 0.99258 0.99258 0.99219 0.99109 0.98935	۲ ۲ **
		**** MASS-'	Y-PROFILE	****		A A
STAGE 1 2 7 8 9 10 15 16 17 18 19 20	HYDROGEN 0.25955 0.19125E-01 0.11032E-01 0.11022E-01 0.11022E-01 0.11022E-01 0.11022E-01 0.11022E-01 0.15866E-07 0.26435E-10 0.44043E-13	AMMONIA 0.73829 0.11128 0.31931E-01 0.31903E-01 0.31903E-01 0.31903E-01 0.31902E-01 0.77703E-03 0.25289E-04 0.82457E-06 0.26713E-07	METDIAMI 0.56209E-19 0.12017E-14 0.11101E-11 0.39964E-11 0.51775E-10 0.51775E-10 0.31191E-07 0.11212E-06 0.13257E-06 0.14958E-06 0.21327E-06 0.455444E-06	METHYLPI 0.22366E-06 0.13763E-03 0.54174E-03 0.89195E-03 0.11444E-02 0.39716E-02 0.50910E-02 0.50910E-02 0.624E-02 0.70769E-02 0.84602E-02	3-MET-01 0.21552E-02 0.86946 0.95650 0.95637 0.95618 0.95593 0.95510 0.95199 0.99357 0.99377 0.99292 0.99154	נ ו איז איז איז איז איז
BLOCK:	A-102 MODEL:	RADFRAC				Ľ
INLET OUTLE PROPER	S-117 TS - S-115	STAGE 8 STAGE 2 STAGE 1 STAGE 10 RK-SOAVE S	TANDARD RKS EC	QUATION OF STATE	Ξ	** F
	**	* MASS AND EI II	NERGY BALANCE N	*** OUT REI	ATIVE DIFF.	

SPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTIO U-O-S BLOCK SEC) N	/2013 PAGE 15
BLOCK: A-102 MODEL: RAE TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HR)	DFRAC (CONTINUED) 179.607 1856.48 -0.861937E+07	179.607 1856.48 -0.902541E+07	0.00000 -0.489904E-15 0.449883E-01
	CO2 EQUIVALENT SUMM 0.00000 0.00000 FION 0.00000		0.4450052-01
***	** INPUT DATA ***	**	
**** INPUT PARAMETERS NUMBER OF STAGES ALGORITHM OPTION ABSORBER OPTION INITIALIZATION OPTION HYDRAULIC PARAMETER CALC INSIDE LOOP CONVERGENCE DESIGN SPECIFICATION MET MAXIMUM NO. OF OUTSIDE LO MAXIMUM NO. OF INSIDE LO MAXIMUM NO. OF INSIDE LO MAXIMUM NO. OF FLASH FLASH TOLERANCE OUTSIDE LOOP CONVERGENCE **** COL-SPECS ****	METHOD HOD OOP ITERATIONS OOP ITERATIONS ITERATIONS	NO STAN NO BROY NEST 25 10 30 0 0	DARD DARD DEN ED
MOLAR VAPOR DIST / TOTAL MOLAR REFLUX RATIO DISTILLATE TO FEED RATIO **** PROFILES ****		1	00000 00000 47200
P-SPEC STAGE	1 PRES, PSIA	170	.000

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 16	ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 17
BLOCK: A-102 MODEL: RADFRAC (CONTINUED)		BLOCK: A-102 MODEL: RA	ADFRAC (CONTINUED)	
**************************************			S FOR STAGE LIQUID AND VAPOR INCLUDING ANY SIDE PRODUCT.	
*** COMPONENT SPLIT FRACTIONS ***			ENTHALPY	
OUTLET STREAMS		STAGE TEMPERATURE PRESSI F PSIA	URE BTU/LBMOL LIQUID VAPOR	HEAT DUTY BTU/HR
S-115 S-118 COMPONENT: HYDROGEN 1.0000 0.0000 AMMONIA .88402E-02 .99116 WATER .74460E-12 1.0000 METHYLPI .21064E-01 .97894 3-MET-01 .49702E-05 1.0000		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
*** SUMMARY OF KEY RESULTS ***		10 224.72 170.00	-9393824248.	.82134+06
TOP STAGE TEMPERATURE F BOTTOM STAGE TEMPERATURE F TOP STAGE LIQUID FLOW LBMOL/HR BOTTOM STAGE LIQUID FLOW LBMOL/HR TOP STAGE VAPOR FLOW LBMOL/HR BOILUP VAPOR FLOW LBMOL/HR MOLAR REFLUX RATIO MOLAR BOILUP RATIO CONDENSER DUTY BTU/HR	-117.878 224.723 84.7747 94.8327 84.7747 58.8010 1.00000 0.62005 -1,227,370. 821,341.	STAGE FLOW RATE LBMOL/HR LIQUID VAPOR 1 84.77 84.77 2 166.0 169.5 3 167.3 184.2 4 167.3 185.4 5 167.2 185.5 6 165.9 185.3 7 148.4 184.1	FEED RATE LBMOL/HR LIQUID VAPOR MIXED 66.6101 112.9972	PRODUCT RATE LBMOL/HR LIQUID VAPOR 84.7746
**** MAXIMUM FINAL RELATIVE ERRORS ****		8 159.8 53.58 9 153.6 65.00		04,0000
DEW POINT 0.95300E-04 STAC BUBBLE POINT 0.35389E-03 STAC COMPONENT MASS BALANCE 0.12038E-05 STAC	GE= 4 GE= 5 COMP=WATER	10 94.83 58.80 **** MASS FLOW PROFILI		94.8326
ENERGY BALANCE 0.57084E-04 STAG	5E= 10	STAGE FLOW RATE LB/HR LBUID VAPOR 1 1 1522. 174.7 2 2964. 1696. 3 2980. 1938. 4 2977. 1954. 5 2971. 1952. 6 2942. 1946. 7 2610. 1917. 8 2816. 928.4 9 2708. 1134.	FEED RATE LB/HR LIQUID VAPOR MIXED 1200.0000 656.4752	PRODUCT RATE LB/HR LIQUID VAPOR 174.6730
		10 1682. 1026.		1681.8022

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013	PAGE 18	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 19
BLOCK: A-102 MODEL: R	RADFRAC (CONTINUED)			BLOCK: A-102 MODEL: RADFRAC (CONTINUED)	
STAGE HYDROGEN 1 0.70949E-04 C 2 0.27256E-04 C 3 0.26897E-04 C 4 0.26694E-04 C 5 0.26490E-04 C 6 0.25748E-04 C 7 0.20285E-04 C 8 0.52886E-08 C 9 0.10593E-11 C	**** MOLE-X-PROFILE AMMONIA WATER 0.98669 0.14060E-02 0.59231 0.40213 0.59573 0.39912 0.59607 0.39904 0.59801 0.39935 0.59303 0.40291 0.54830 0.45018 0.57865 0.41905 0.57865 0.46034 0.5782 0.46034 0.29744 0.70240	**** METHYLPI 0.29009E-02 0.62850E-03 0.25130E-03 0.38166E-04 0.13317E-04 0.13317E-04 0.13053E-05 0.46220E-06 0.15283E-07 0.	3-MET-01 89298E-02 49096E-02 47627E-02 45728E-02 40266E-02 14925E-02 12996E-02 18397E-02 16020E-03	**** MASS-Y-PROFILE **** STAGE HYDROGEN AMMONIA WATER M 1 0.97547 0.24529E-01 0.51154E-11 0.1 2 0.10046 0.84234 0.12659E-02 0.1 3 0.87916E-01 0.86621 0.13696E-02 0.5 4 0.87186E-01 0.87050 0.13756E-02 0.2 5 0.87314E-01 0.87245 0.13745E-02 0.8 6 0.87555E-01 0.87413 0.14083E-02 0.3 7 0.88892E-01 0.87634 0.22000E-02 0.1 8 0.65369E-05 0.97533 0.39370E-02 0.2 9 0.15024E-08 0.96522 0.58635E-02 0.1 10 0.31978E-12 0.90348 0.72238E-01 0.6	4378E-01 0.41562E-01
1 0.99703 C 2 0.49855 C 3 0.45895 C 4 0.45584 C 5 0.45576 C 6 0.45576 C 7 0.45506 C 7 0.45922 C 8 0.56186E-04 C 9 0.13004E-07 C	**** MOLE-Y-PROFILE AMMONIA WATER 0.29677E-02 0.58506E-12 0.49483 0.70299E-03 0.53873 0.800477E-03 0.53873 0.80477E-03 0.53896 0.80282E-03 0.53896 0.82082E-03 0.53587 0.12717E-02 0.99230 0.37866E-02 0.98890 0.56790E-02 0.99250 0.69954E-01	0.36788E-09 0. 0.14505E-02 0. 0.56651E-03 0. 0.22668E-03 0. 0.3426E-04 0. 0.12003E-04 0. 0.48129E-05 0. 0.31873E-05 0. 0.11830E-05 0.	3-MET-01 .89070E-09 .44649E-02 .44254E-02 .42962E-02 .42962E-02 .42962E-02 .36293E-02 .38505E-02 .54138E-02 .45482E-02	BLOCK: B-201 MODEL: COMPR INLET STREAM: S-208 OUTLET STREAM: S-209 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION *** MASS AND ENERGY BALANCE *** IN OUT TOTAL BALANCE MOLE(LBMOL/HR) 4.58096 4.58096 MASS(LB/HR) 148.436 148.436 ENTHALPY(BTU/HR) -42755.7 -36941.9 *** CO2 FOULTVALENT SUMMARY ***	N OF STATE RELATIVE DIFF. 0.00000 0.191474E-15 -0.135977
STAGE HYDROGEN 1 14051. O 2 18290. O 3 17072. O 4 17090. O 5 17213. O 6 17711. O 7 22629. O 8 10621. 9 9 12266. 10 10 17431. O	AMMONIA WATER 0.30077E-02 0.41621E-09 0.83529 0.17488E-02 0.89843 0.20044E-02 0.90379 0.20163E-02 0.90450 0.20098E-02 0.90450 0.20368E-02 0.90729 0.28252E-02 1.7148 0.90364E-02 1.8385 0.12337E-01 3.1117 0.99591E-01	6 8655 7	3-MET-01 .99751E-07 .90986 .90964 .92296 .93972 1.0234 .4205	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.17771 LB/HR PRODUCT STREAMS CO2E 7.17771 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	31.8503 0.72000 1.00000
4 0.30242E-05 C 5 0.30044E-05 C 6 0.29268E-05 C 7 0.23250E-05 C 8 0.60513E-09 C 9 0.12116E-12 C	**** MASS-X-PROFILE AMMONIA WATER 0.93622 0.14112E-02 0.56507 0.40582 0.56952 0.40362 0.57051 0.40401 0.57106 0.40476 0.56949 0.40929 0.53095 0.46114 0.55935 0.42850 0.51971 0.47056 0.28564 0.71352	**** METHYLPI 0.16028E-01 0.34915E-02 0.55184E-03 0.21294E-03 0.74471E-04 0.73474E-05 0.73474E-05 0.26008E-05 0.85464E-07 0.	3-MET-01 .46333E-01 .25613E-01 .25453E-01 .24927E-01 .23959E-01 .21145E-01 .79031E-02 .12141E-01 .97211E-02 .84125E-03		

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 20	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 21
BLOCK: B-201 MODEL: COMPR (CONTINUED)		BLOCK: B-202 MODEL: COMPR (CONTINUED)	
*** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP POWER LOSSES SENTROPIC HORSEPOWER REQUIREMENT HP CALCULATED OUTLET TEMP F ISENTROPIC TEMPERATURE F FFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBILITY FACTOR A. SENT. VOL. EXPONENT A. ACTUAL VOL. EXPONENT A. ACTUAL VOL. EXPONENT A. ACTUAL VOL. SENDIENT A. ACTUAL VOL. SENDIENT A. ACTUAL VOL. SENDNENT A. ACTUAL VOL. SENDNENT A. ACTUAL VOL. SENDNENT MUET STREAM: S-215 OUTLET STREAM: S-216 POPERTY OPTION SET: RK-SOAVE STANDARD RKSE INET STREAM: S-216 POPERTY OPTION SET: RK-SOAVE STANDARD RKSE INTET STREAM: S-216 POPERTY OPTION SET: RK-SOAVE STANDARD RKSE INTET STREAM: S-216 POPERTY OPTION SET: RK-SOAVE STANDARD RKSE	$\begin{array}{c} 2.28491\\ 2.28491\\ 2.28491\\ 0.0\\ 1.64514\\ 249.416\\ 201.909\\ 0.72000\\ 1.00000\\ 21,944.6\\ 1.00000\\ 1.38030\\ 1,789.30\\ 1,789.30\\ 1,094.11\\ 0.99898\\ 0.99968\\ 1.37328\\ 1.37328\\ 1.37237\\ 1.56780\\ 1.56558\end{array}$	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.16881 LB/HR PRODUCT STREAMS CO2E 7.16881 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR PRESSURE CHANGE PSI ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP POWER LOSSES HP ISENTROPIC HORSEPOWER REQUIREMENT HP CALCULATED UNITED PSIA	15.0000 0.72000 1.00000 2.00448 2.00448 0.0 1.44323 30.2298
BLOCK: B-202 MODEL: COMPR INLET STREAM: S-215 OUTLET STREAM: S-216 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS E	QUATION OF STATE	CALCULATED OUTLET TEMP F ISENTROPIC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED IN ET HEAT CADACITY DATIO	228.908 186.982 0.72000 1.00000 19,276.8 1.00000 1.28076
*** MASS AND ENERGY BALANCE IN TOTAL BALANCE MOLE(LBMOL/HR) 4.57472 4 MASS(LB/HR) 148.240 1 ENTHALPY(BTU/HR) -42211.3 -3	*** OUT RELATIVE DIFF. .57472 0.00000 48.240 0.00000 7111.0 -0.120827	INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP POWER LOSSES HP ISENTROPJC HORSEPOWER REQUIREMENT HP CALCULATED OUTLET PRES PSIA CALCULATED OUTLET TEMP F ISENTROPJC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED INLET VOLUMETRIC FLOW RATE , CUFT/HR OUTLET VOLUMETRIC FLOW RATE , CUFT/HR INLET VOLUMETRIC FLOW RATE , CUFT/HR INLET VOLUMETRIC FLOW RATE , CUFT/HR OUTLET COMPRESSIBILITY FACTOR AV. ISENT. VOL. EXPONENT AV. ACTUAL TEMP EXPONENT AV. ACTUAL TEMP EXPONENT	$\begin{array}{c} 1.3076\\ 1,728.16\\ 1,117.79\\ 0.99896\\ 0.99959\\ 1.37437\\ 1.37348\\ 1.57349\\ 1.57123\end{array}$

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 22	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 23
BLOCK: B-203 MODEL: COMPR		BLOCK: B-203 MODEL: COMPR (CONTINUED)	
INLET STREAM: S-222 OUTLET STREAM: S-223		*** RESULTS ***	
PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION	OF STATE	INDICATED HORSEPOWER REQUIREMENT HP	2.62371
*** MASS AND ENERGY BALANCE ***		BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP	2.62371 2.62371
IN OUT	RELATIVE DIFF.	POWER LOSSES HP	0.0
TOTAL BALANCE MOLE(LBMOL/HR) 4.56887 4.56887 MASS(LB/HR) 148.056 148.056 ENTHALPY(BTU/HR) -41700.4 -35024.6 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.15993 LB/HR NET STREAMS CO2E 7.15993 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA ***	0.00000 0.00000 -0.160091	ISENTROPIC HORSEPOWER REQUIREMENT HP CALCULATED OUTLET TEMP F ISENTROPIC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED INLET HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET VOLUMETRIC FLOW RATE, CUFT/HR INLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBILITY FACTOR AV. ISENT. VOL. EXPONENT	$\begin{array}{c} 1.00000\\ 1.38119\\ 1,671.05\\ 954.928\\ 0.99894\\ 0.99982\\ 1.37341 \end{array}$
ISENTROPIC CENTRIFUGAL COMPRESSOR PRESSURE CHANGE PSI ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	22.0000 0.72000 1.00000	AV. ISENT. TEMP EXPONENT AV. ACTUAL VOL. EXPONENT AV. ACTUAL TEMP EXPONENT BLOCK: C-101 MODEL: COMPR	1.37234 1.56352 1.56107
		INLET STREAM: S-104 OUTLET STREAM: S-105	

OUTLET STREAM:	S-105			
PROPERTY OPTION SET:	RK-SOAVE	STANDARD RKS	EQUATION OF	STATE

***	MASS AND ENERGY BAL	LANCE ***	
	IN	OUT	RELATIVE DIFF.
TOTAL BALANCE			
MOLE(LBMOL/HR)	28.7464	28.7464	0.00000
MASS(LB/HR)	3340.34	3340.34	0.00000
ENTHALPY(BTU/HR)	-579387.	-522590.	-0.980286E-01

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 24	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 25
BLOCK: C-101 MODEL: COMPR (CONTINUED)		BLOCK: C-102 MODEL: COMPR (CONTINUED)	
*** INPUT DATA ***		*** MASS AND ENERGY BALANCE IN	E *** OUT RELATIVE DIFF.
ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	72.5189 0.72000 1.00000	TOTAL BALANCE MOLE(LBMOL/HR) 56.9179 MASS(LB/HR) 3306.95	56.9179 0.00000 3306.95 0.00000 131410E+07 -0.124925
*** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED POWER LOSSES HP SENTROPIC TEMPERTURE HE SENTROPIC TEMPERATURE F HETCLENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, INLET KOUMERTIC FLOW RATE, CUFT/HR OUTLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBALITY FACTOR <td>22.3219 22.3219 0.0 16.0717 560.209 552.594 0.72000 1.00000 9,526.59 1.00000 1.03692 8,642.49 3,915.22 0.95152 0.90244 0.96197 1.03431 0.97492 1.04480</td> <td>*** CO2 EQUIVALENT SUMMARY FEED STREAMS CO2E 0.00000 LBJ PRODUCT STREAMS CO2E 0.00000 LBJ NET STREAMS CO2E PRODUCTION 0.00000 LBJ UTILITIES CO2E PRODUCTION 0.00000 LBJ TOTAL CO2E PRODUCTION 0.00000 LBJ *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR 0UTLET PRESSURE PSIA JSENTROPIC CENTRIFUGAL COMPRESSOR 0UTLET PRESSURE *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP POWER LOSSES HP ISENTROPIC TEMPERATURE F ISENTROPIC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED INLET HEAT CAPACITY RATIO INLET HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET VOLUMETRIC FLOW RATE, CUFT/HR INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET COMPRESSIBILITY FACTOR AV. ISENT. VOL, EXPONENT AV. ISENT. TEMP EXPONENT AV. ACTUAL VOL. EXPONENT</td> <td>/HR /HR /HR /HR /HR /HR /HR 72.5189 0.72000 1.00000 73.7292 73.7292 73.7292 0.0 53.0850 393.178 374.057 0.72000 1.00000</td>	22.3219 22.3219 0.0 16.0717 560.209 552.594 0.72000 1.00000 9,526.59 1.00000 1.03692 8,642.49 3,915.22 0.95152 0.90244 0.96197 1.03431 0.97492 1.04480	*** CO2 EQUIVALENT SUMMARY FEED STREAMS CO2E 0.00000 LBJ PRODUCT STREAMS CO2E 0.00000 LBJ NET STREAMS CO2E PRODUCTION 0.00000 LBJ UTILITIES CO2E PRODUCTION 0.00000 LBJ TOTAL CO2E PRODUCTION 0.00000 LBJ *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR 0UTLET PRESSURE PSIA JSENTROPIC CENTRIFUGAL COMPRESSOR 0UTLET PRESSURE *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP POWER LOSSES HP ISENTROPIC TEMPERATURE F ISENTROPIC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED INLET HEAT CAPACITY RATIO INLET HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET VOLUMETRIC FLOW RATE, CUFT/HR INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET COMPRESSIBILITY FACTOR AV. ISENT. VOL, EXPONENT AV. ISENT. TEMP EXPONENT AV. ACTUAL VOL. EXPONENT	/HR /HR /HR /HR /HR /HR /HR 72.5189 0.72000 1.00000 73.7292 73.7292 73.7292 0.0 53.0850 393.178 374.057 0.72000 1.00000

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 26	ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTIO U-O-S BLOCK SECT	, N	27/2013 PAGE 27
BLOCK: C-102 MODEL: COMPR (CONTINUED)		BLOCK: C-103 MODEL: COM	IPR (CONTINUED)		
BLOCK: C-103 MODEL: COMPR		*	*** RESULTS ***		
INLET STREAM: S-113 OUTLET STREAM: S-114 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION *** MASS AND ENERGY BALANCE ***	N OF STATE	INDICATED HORSEPOWER RE BRAKE HORSEPOWER RE NET WORK REQUIRED POWER LOSSES ISENTROPIC HORSEPOWER RE	QUIREMENT HP HP HP	101 101	L.309 L.309 L.309 J.0 2.9426
IN OUT TOTAL BALANCE IN OUT MOLE(LBMOL/HR) 112.997 112.997 MASS(LB/HR) 656.475 656.475 ENTHALPY(BTU/HR) -619677. -361903.	RELATIVE DIFF. 0.00000 -0.173178E-15 -0.415982	CALCULATED OUTLET TEMP ISENTROPIC TEMPERATURE EFFICIENCY (POLYTR/ISENT OUTLET VAPOR FRACTION HEAD DEVELOPED, F1	F F R) USED -LBF/LB	31 229 220,00	3.672 9.872 0.72000 1.00000 3.
CO2EQUIVALENTSUMMARYFEEDSTREAMSCO2E0.00000LB/HRPRODUCTSTREAMSCO2E0.00000LB/HRNETSTREAMSCO2EPRODUCTION0.00000LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION0.00000LB/HR		MECHANICAL EFFICIENCY US INLET HEAT CAPACITY RATI INLET VOLUMETRIC FLOW RA OUTLET VOLUMETRIC FLOW F INLET COMPRESSIBILITY F OUTLET COMPRESSIBILITY F AV. ISENT. VOL. EXPONENT AV. ISENT. TEMP EXPONENT	O TE , CUFT/HR AATE, CUFT/HR ACTOR ACTOR	14,104 5,530 (
*** INPUT DATA ***		AV. ACTUAL VOL. EXPONENT AV. ACTUAL TEMP EXPONENT	-	-	L.54738 L.53984
ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	170.000 0.72000 1.00000		IPR 		
			STANDARD F	RKS EQUATION OF S	STATE
		*** N	IASS AND ENERGY BAI IN	LANCE *** OUT	RELATIVE DIFF.
		MOLE (LBMOL/HR) MOLS(LB/HR) ENTHALPY(BTU/HR)	1241.79 22481.2 -0.124572E+09	1241.79 22481.2 -0.119198E+09	0.00000 0.00000 -0.431451E-01

FEED STREAMS CO2E PRODUCT STREAMS CO2E	3.46806 3.46806	LB/HR
NET STREAMS CO2E PRODUCTION	0.00000	LB/HR
UTILITIES CO2E PRODUCTION	0.00000	LB/HR
TOTAL CO2E PRODUCTION	0.00000	LB/HR

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 28	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 29
BLOCK: C-301 MODEL: COMPR (CONTINUED)		BLOCK: D-101 MODEL: RADFRAC (CONTINUED)	
*** INPUT DATA ***		*** MASS AND ENERGY BALANCE IN	*** OUT RELATIVE DIFF.
ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	68.0082 0.72000 1.00000	MASS(LB/HR) 3340.35 33	.2054 -0.582540E-13 40.35 0.102294E-11 .51549E+07 0.356876
*** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP BRAKE HORSEPOWER REQUIREMENT HP NET WORK REQUIRED HP POWER LOSSES HP ISENTROPIC HORSEPOWER REQUIREMENT HP CALCULATED OUTLET TEMP F ISENTROPIC TEMPERATURE F EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, FT-LBF/LB MECHANICAL EFFICIENCY USED INLET HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE, CUFT/HR OUTLET VOLUMETRIC FLOW RATE, CUFT/HR INLET COMPRESSIBILITY FACTOR AV. ISENT. TEMP EXPONENT AV. ACTUAL VOL. EXPONENT AV. ACTUAL VOL. EXPONENT AV. ACTUAL VOL. EXPONENT AV. ACTUAL VOL. EXPONENT AV. ACTUAL TEMP EXPONENT INLETS - S-106 STAGE 33 OUTLETS - S-107 STAGE 1	1.00000 2,112.33 2,112.33 0.0 1,520.88 887.201 753.361 0.72000 1.00000 133,949. 1.00000 131829 774,892. 262,833. 0.99577 0.99589 1.30308 1.42936 1.42920	ENTHALPY(BTU/HR) -9746450.1 *** CO2 EQUIVALENT SUMMARY * FEED STREAMS CO2E 0.00000 LB/H PRODUCT STREAMS CO2E 0.00000 LB/H NET STREAMS CO2E PRODUCTION 0.00000 LB/H UTILITIES CO2E PRODUCTION 0.00000 LB/H TOTAL CO2E PRODUCTION 0.00000 LB/H ***** INPUT DATA **** **** INPUT DATA **** **** INPUT PARAMETERS **** NUMBER OF STAGES ALGORITHM OPTION ABSORBER OPTION INITIALIZATION OPTION HYDRAULIC PARAMETER CALCULATIONS INSIDE LOOP CONVERGENCE METHOD DESIGN SPECIFICATION METHOD MAXIMUM NO. OF UTSIDE LOOP ITERATIONS MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS MAXIMUM NO. OF FLASH ITERATIONS FLASH TOLERANCE OUTSIDE LOOP CONVERGENCE TOLERANCE	** R R R
S-108 STAGE 40 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQU	JATION OF STATE	**** COL-SPECS **** MOLAR VAPOR DIST / TOTAL DIST MOLAR REFLUX RATIO	1.00000 6.41830
		DISTILLATE TO FEED RATIO	0.99497

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 30	ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 31
BLOCK: D-101 MODEL: RADE	RAC (CONTINUED)		BLOCK: D-101 MODEL: RAD	FRAC (CONTINUED)	
**** PROFILES ****			**** PROFILES ****		
	L PRES, PSIA	14.6959		FOR STAGE LIQUID AND VAPOR R NCLUDING ANY SIDE PRODUCT.	ATES ARE THE FLOWS
***			STAGE TEMPERATURE PRESSUR F PSIA	ENTHALPY E BTU/LBMOL LIQUID VAPOR	HEAT DUTY BTU/HR
*** COMPONENT SPLIT FRAG S-107 COMPONENT: AMMONIA 1.0000 METDIAMI .10853E-03 METHYLPI 1.0000	CTIONS *** OUTLET STREAMS 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	69446+07
*** SUMMARY OF KEY RESU	JLTS ***		40 402.32 20.546	-4796128389.	.64037+07
TOP STAGE TEMPERATURE BOTTOM STAGE TEMPERATURE TOP STAGE LIQUID FLOW BOTTOM STAGE LIQUID FLOW TOP STAGE VAPOR FLOW BOILUP VAPOR FLOW MOLAR REFLUX RATIO MOLAR BOILUP RATIO CONDENSER DUTY (W/O SUBCO REBOILER DUTY **** MAXIMUM FINAL RELAT	F F LBMOL/HR LBMOL/HR LBMOL/HR LBMOL/HR BTU/HR BTU/HR	266.285 402.319 365.316 0.28746 56.9179 326.461 6.41830 1,135.66 -6,944,570. 6,403,730.	STAGE FLOW RATE LBMOL/HR LIQUID VAPOR 1 365.3 56.92 2 409.9 422.2 5 411.6 468.4 6 411.7 468.5 7 411.6 468.5 31 343.8 400.6 32 317.9 400.7 33 325.1 317.6 39 326.7 326.3 40 0.2875 326.5	FEED RATE LBMOL/HR LIQUID VAPOR MIXED 57.2054	PRODUCT RATE LBMOL/HR LIQUID VAPOR 56.9179 0.2874
DEW POINT BUBBLE POINT	0.39092E-05 ST	TAGE= 14 TAGE= 14	**** MASS FLOW PROFILES	****	0.2074
COMPONENT MASS BALANCE ENERGY BALANCE	0.34000E-05 57 0.10537E-05 57	TAGE= 14 COMP=AMMONIA TAGE= 14	STAGE FLOW RATE LB/HR LIQUID VAPOR 10.3599E+05 3307. 20.4062E+05 0.3930E+05 50.4079E+05 0.4408E+05 60.4080E+05 0.4410E+05 70.4080E+05 0.4411E+05 80.4077E+05 0.4411E+05 310.3956E+05 0.4284E+05 320.3658E+05 0.4286E+05	FEED RATE LB/HR LIQUID VAPOR MIXED 3340.3527	PRODUCT RATE LB/HR LIQUID VAPOR 3306.9499

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 32	ASPEN PLUS	PLAT: WIN32	2 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 33
BLOCK: D-101 MODEL: RAD	DFRAC (CONTINUED)		BLOCK: D-10	01 MODEL:	RADFRAC (CONTINUED)	
**** MASS FLOW PROFILES	5 ****		STACE		**** MASS-X-PROFILE **	***
STAGE FLOW RATE LB/HR LIQUID VAPOR 33 0.3762E+05 0.3654E+05 39 0.3797E+05 0.3791E+05 40 33.40 0.3793E+05	FEED RATE LB/HR LIQUID VAPOR MIXED	PRODUCT RATE LB/HR LIQUID VAPOR 33.4028	1 0. 2 0. 5 0. 6 0. 7 0. 8 0. 31 0.	AMMONIA .13668E-02 .16355E-03 .13741E-03 .13823E-03 .13903E-03 .13974E-03 .12821E-03	MEIDIAMI MEIHYLPI 0.47002E-05 0.99863 0.13649E-04 0.99982 0.31451E-03 0.99955 0.88690E-03 0.99897 0.24905E-02 0.99737 0.69488E-02 0.99291 0.94603 0.53844E-01	
STAGE AMMONIA M 1 0.79071E-02 0.3 2 0.95160E-03 0.1 5 0.79965E-03 0.2	** MOLE-X-PROFILE **** METDIAMI METHYLPI 19850E-05 0.99209 11640E-04 0.99904 6825E-03 0.99893		32 0. 33 0. 39 0. 40 0.	12895E-03 15314E-05 48376E-17 59810E-19	0.94589 0.53980E-01 0.97531 0.24689E-01 0.99979 0.20762E-03 0.99991 0.93837E-04	
6 0.80451E-03 0.7 7 0.80931E-03 0.2 8 0.81397E-03 0.5 31 0.86610E-03 0.9 32 0.87107E-03 0.9 33 0.10405E-04 0.9 39 0.33006E-16 0.9 40 0.40808E-18 0.9	5651E-03 0.99844 1249E-02 0.99707 9324E-02 0.99325 93667 0.62466E-01 93651 0.6262E-01 93718 0.28806E-01 9976 0.24326E-03 9989 0.10995E-03		STAGE 1 0. 2 0. 5 0. 6 0. 7 0. 8 0. 31 0.	AMMONIA .14656 .13585E-01 .11120E-01 .11117E-01 .11115E-01 .11116E-01 .1430E-01	**** MASS-Y-PROFILE ** METDIAMI METHYLPI 0.10962E-05 0.85344 0.10286E-03 0.98878 0.29100E-03 0.98878 0.82050E-03 0.98859 0.82050E-03 0.98806 0.82030E-02 0.98658 0.87313 0.11544	***
STAGE AMMONIA M 1 0.50000 0.5 2 0.74242E-01 0.3 5 0.61460E-01 0.8 6 0.61448E-01 0.2 7 0.61438E-01 0.6 8 0.61455E-01 0.1	** MOLE-Y-PROFILE **** METDIAMI METHYLPI 54812E-06 0.50000 35217E-05 0.92575 33316E-04 0.93846 23573E-03 0.93832 56469E-03 0.93790 L8668E-02 0.93668 20271 0.12451		32 0. 32 0. 33 0. 39 0. 40 0. BLOCK: DC-3 	11426E-01 12906E-03 39391E-15 48418E-17 301 MODEL:	0.87304 0.87304 0.94584 0.54029E-01 0.99954 0.46026E-03 0.99979 0.20772E-03 SSPLIT S-302	
31 0.71788E-01 0.8 32 0.71761E-01 0.8 33 0.87186E-03 0.9 39 0.26875E-14 0.9 40 0.33034E-16 0.9	30371 0.12451 30363 0.12461 93645 0.62678E-01 99946 0.53926E-03 99976 0.24338E-03		OUTLET STF PROPERTY (REAMS: DPTION SET: ***	S-304 S-303 RK-SOAVE STANDARD RKS EQUA * MASS AND ENERGY BALANCE * IN C	ATION OF STATE *** OUT RELATIVE DIFF.
STAGE AMMONIA M 1 63.235 0.1 2 78.018 0.3 5 76.858 0.3 6 76.375 0.3 7 75.914 0.3 3 8 75.500 0.3 31 82.887 0.8 32 82.383 0.8 33 83.795 0.9 39 81.424 0.9 40 80.951 0.9	K-VALUES **** METDIAMI METHYLPI 13754 0.50399 00256 0.92665 \$1159 0.93979 \$1282 0.94066 \$1467 0.94304 \$5805 1.9932 \$5811 1.9839 96424 2.1758 99970 2.2168	03/27/2013 PAGE 32 PRODUCT RATE LB/HR LIQUID VAPOR 33.4028	TOTAL BAI MOLE(L MASS(L) ENTHAL FEED STRE PRODUCT S NET STRE UTILITIES TOTAL CO2	ANCE BMOL/HR) B/HR) PY(BTU/HR) FAMS CO2E STREAMS CO2E AMS CO2E PRODUCTION S CO2E PRODUCTION	1259.04 1255 25618.8 2567 0 -0.153808E+09 -0.153 * CO2 EQUIVALENT SUMMARY *** 0.365887 LB/HR 0.365887 LB/HR 0.365887 LB/HR DUCTION 0.00000 LB/HR N 0.00000 LB/HR).04 0.00000 18.8 0.00000 3808E+09 -0.598727E-13

190

ASPEN PLUS PLAT: WIN32 VER: 25.0 0 NIACIN PRODUCTION U-O-S BLOCK SECTION	3/27/2013 PAGE 34	ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 35
BLOCK: DC-301 MODEL: SSPLIT (CONTINUED)		BLOCK: DR-301 MODEL: SEP	(CONTINUED)	
*** INPUT DATA *** PRESSURE DROP PSIA	5.0000	FLASH SPECS FOR STREAM S- TWO PHASE TP FLASH PRESSURE DROP PSI		0.0
FRACTION OF FLOW		MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
SUBSTRM= STRM= FRAC= MIXED S-304 1.0000 CIPSD S-304 0.0	0	FLASH SPECS FOR STREAM S- TWO PHASE TP FLASH PRESSURE DROP PSI		0.0
*** RESULTS ***		MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
	1.00000 0.0	FRACTION OF FEED SUBSTREAM= MIXED		
	0.0 1.00000		= OXYGEN FRACTION= HYDROGEN NITROGEN	1.00000 1.00000 1.00000
BLOCK: DR-301 MODEL: SEP			AMMONIA WATER	1.00000 1.00000
INLET STREAMS: S-309 S-315 S-307 OUTLET STREAMS: S-310 S-316 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION O	F STATE		CARBO-01 NIACINAM METDIAMI	1.00000 0.0 0.0 0.0 0.0
*** MASS AND ENERGY BALANCE *** IN OUT TOTAL BALANCE	RELATIVE DIFF.		METHYLPI 3-MET-O1 NICOT-O1 AMMONICO	0.0 0.0 0.0 0.0
MOLE(LBMOL/HR) 1270.20 1270.20 MASS(LB/HR) 25932.8 25932.8 ENTHALPY(BTU/HR) -0.124897E+09 -0.125748E+0	0.179006E-15 -0.140285E-15 9 0.676808E-02	ĸ	** RESULTS ***	
*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 3.46806 LB/HR		HEAT DUTY BTU	I/HR	-0.85108E+06
PRODUCT STREAMS CO2E 3.46806 LB/HR NET STREAMS CO2E 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR		COMPONENT = OXYGEN STREAM SUBSTREAM S-310 MIXED	SPLIT FRACTION 1.00000	
*** INPUT DATA ***		COMPONENT = NITROGEN STREAM SUBSTREAM S-310 MIXED	SPLIT FRACTION 1.00000	
INLET PRESSURE DROP PSI	5.00000	COMPONENT = AMMONIA STREAM SUBSTREAM S-310 MIXED	SPLIT FRACTION 1.00000	
		COMPONENT = WATER STREAM SUBSTREAM S-310 MIXED	SPLIT FRACTION 1.00000	

ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 36 NIACIN PRODUCTION U-O-S BLOCK SECTION	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 37 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: DR-301 MODEL: SEP (CONTINUED)	BLOCK: F-201 MODEL: FLASH2 (CONTINUED)
COMPONENT = CARBO-01 STREAM SUBSTREAM SPLIT FRACTION S-310 MIXED 1.00000 COMPONENT = NIACINAM STREAM SUBSTREAM SPLIT FRACTION S-316 MIXED 1.00000	*** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE F 32.0000 SPECIFIED PRESSURE PSIA 15.0000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000
COMPONENT = METDIAMI STREAM SUBSTREAM SPLIT FRACTION S-316 MIXED 1.00000 COMPONENT = METHYLPI STREAM SUBSTREAM SPLIT FRACTION S-316 MIXED 1.00000	*** RESULTS ***OUTLET TEMPERATUREFOUTLET PRESSUREPSIADUTLET PRESSUREPSIAHEAT DUTYBTU/HR103.25VAPOR FRACTION0.28725E-01
COMPONENT = 3-MET-01 STREAM SUBSTREAM SPLIT FRACTION S-316 MIXED 1.00000	V-L PHASE EQUILIBRIUM : COMP F(I) X(I) Y(I) K(I) OXYGEN 0.27373E-01 0.44082E-04 0.95146 21584. NITROGEN 0.90944E-04 0.12611E-07 0.31656E-02
COMPONENT = NICOT-01 STREAM SUBSTREAM SPLIT FRACTION S-316 MIXED 1.00000	0.25102E+06 AMMONIA 0.29921E-04 0.30292E-04 0.17386E-04 0.57393 WATER 0.78787 0.81100 0.57580E-02 0.70998E- 02
BLOCK: F-201 MODEL: FLASH2 INLET STREAM: S-227 OUTLET VAPOR STREAM: S-228 OUTLET LIQUID STREAM: S-229 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE	CARBO-O1 0.10913E-O2 0.52378E-O4 0.36222E-O1 691.56 NIACINAM 0.21623E-O7 0.11782E- 06 METDIAMI 0.20141E-O6 0.20363E-O6 0.12618E-O6 0.61969 METHYLPI 0.18373E-O2 0.18171E-O2 0.25191E-O2 1.3865 3-MET-O1 0.16370E-O2 0.16620E-O2 0.79031E-O3 0.47554
*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 0.00000 MASS(LB/HR) 5795.22 5795.22 -0.191612E-09 ENTHALPY(BTU/HR) -0.167907E+08 -0.167906E+08 -0.614923E-05 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E 7.3394E-06 LB/HR UTILITIES CO2E PRODUCTION -0.353994E-06 LB/HR TOTAL CO2E PRODUCTION -0.353994E-06 LB/HR	NICOT-01 0.18007E-02 0.18518E-02 0.71357E-04 0.38536E-01 BLOCK: F-301 MODEL: FLASH2 INLET STREAM: S-312 OUTLET VAPOR STREAM: S-313 OUTLET LIQUID STREAM: S-317 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE MOLE(LBMOL/HR) 1241.79 0.328156E-11 MASS(LB/HR) 22481.2 22481.2 0.532414E-11 ENTHALPY(BTU/HR) -0.153812E+09 -0.6328592E-09

ASPEN PLUS PLAT: WI	N32 VER: 25.0 NIACIN PRO U-O-S BLOC		03/27/201	.3 PAGE 38	ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUC U-O-S BLOCK SI	FION	03/27/2013 PAGE 39
BLOCK: F-301 MODE	EL: FLASH2 (CONTINU	IED)			BLOCK: HX-10	01 MODEL: HE	ATER (CONTINUED)		
FEED STREAMS CO2E PRODUCT STREAMS CC NET STREAMS CO2E P UTILITIES CO2E PRC TOTAL CO2E PRODUCT	D2E 3.4680 PRODUCTION -0.14147 DUCTION 0.0000	16 LB/HR 16 LB/HR 10E-08 LB/HR			PRODUCT S NET STREAM UTILITIES	AMS CO2E TREAMS CO2E	TION 0.00000	JMMARY *** LB/HR LB/HR LB/HR LB/HR LB/HR	
	*** INPUT DAT	A ***					*** INPUT DATA	***	
TWO PHASE TP F SPECIFIED TEMPERATU PRESSURE DROP MAXIMUM NO. ITERATI CONVERGENCE TOLERAN	JRE F PSI CONS		32.0000 0.0 30 0.0001		SPECIFIED PRESSURE DE MAXIMUM NO	SE TP FLASH TEMPERATURE ROP . ITERATIONS E TOLERANCE	F PSI		527.000 10.0000 30 0.000100000
	*** RESULTS	***							
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	F PSIA BTU/HR		32.00 58.00 0.9681 0.9003	08 .5E-01		PERATURE F SSURE PS	*** RESULTS *** SIA U/HR NN PARAMETER	:	527.00 33.511 0.14676E+07 1.0000 0.47894E+07
V-L PHASE EQUILIBRI	CUM :								011/05/12/07
COMP OXYGEN 0.31150E+06	F(I) X 0.53407E-04 0.	X(I) Y(19036E-07 0.5	I) 9297E-02	K(I)	V-L PHASE I	EQUILIBRIUM :			
NITROGEN	0.88768E-02 0.	65762E-07 0.9	8592		COMP	F(I) X(I)	Y(I)	
0.14992E+08 AMMONIA	0.25354E-02 0.	25571E-02 0.1	4363E-03	0.56168E-	METDIAM METHYLP		0000 1.000 0995E-05 0.6628	00 1.000 32E-06 0.1099	
01 WATER 02	0.98847 0.	99744 0.1	0054E-02	0.10080E-	BLOCK: HX-10	02 MODEL: HE	ATER		
CARBO-01	0.63459E-04 0.	39145E-06 0.7	0051E-02	17895.	INLET STREA OUTLET STREA PROPERTY OF	EAM: S	5-110 5-111 RK-SOAVE STANDARI) RKS EQUATION (OF STATE
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET	*** MASS AND ENER	GY BALANCE ***			TOTAL BAL/ MOLE(LI MASS(LI	ANCE BMOL/HR) B/HR	MASS AND ENERGY E IN 56.9179 3306.95	ОUТ 56.9179 3306.95	RELATIVE DIFF. 0.00000 0.00000
TOTAL BALANCE MOLE(LEMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HR	3340.34	3340.34	0. 0.	TIVE DIFF. 00000 00000 16950	ENTHALI	PY(BTU/HR)	-0.131410E+0	7 -0.102115E+C	07 -0.222926

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 40	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 41
BLOCK: HX-102 MODEL: HEATER (CONTINUED)		BLOCK: HX-201 MODEL: HEATER (CONTINUED)	
CO2EQUIVALENTSUMMARYFEEDSTREAMSCO2E0.00000LB/HRPRODUCTSTREAMSCO2E0.00000LB/HRNETSTREAMSCO2EPRODUCTION0.00000LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION0.00000LB/HR		*** CO2 EQUIVALENT SUMMARY ** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR	
*** INPUT DATA ***		*** INPUT DATA ***	
TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	554.000 10.0000 30 0.000100000	TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	626.000 10.0000 30 0.000100000
*** RESULTS ***		*** RESULTS ***	
OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	554.00 62.519 0.29295E+06 1.0000 0.25453E+07	OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	626.00 30.000 0.26003E+07 1.0000 0.66517E+06
V-L PHASE EQUILIBRIUM :		V-L PHASE EQUILIBRIUM :	
AMMONIA 0.ŠOÓOO 0.Ž1600E-01 0 METDIAMI 0.54812E-06 0.16117E-05 0	Y(I) K(I) .50000 34.521 .54812E-06 1.6812 .50000 2.6624	COMP F(I) X(I) AMMONIA 0.22823 0.13094 WATER 0.53895 0.43342 METDIAMI 0.25523E-06 0.67768E-06 METHYLPI 0.2382E-02 0.48532E-02 3-MET-01 0.23050 0.43078	Y(I) K(I) 0.22823 53.861 0.53895 38.426 0.25523E-06 11.639 0.23282E-02 14.825 0.23050 16.535
INLET STREAM: S-203A		BLOCK: HX-202A MODEL: HEATER	
OUTLET STREAM: S-203 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUAT	ION OF STATE	INLET_STREAM: S-205	
*** MASS AND ENERGY BALANCE **		OUTLET STREAM: S-206A PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQU	ATION OF STATE
IN OL TOTAL BALANCE MOLE(LBMOL/HR) 122.233 122.2 MASS(LB/HR) 4313.94 4313. ENTHALPY(BTU/HR) -0.773225E+07 -0.5131	33 0.00000 94 0.00000	*** MASS AND ENERGY BALANCE IN	*** OUT RELATIVE DIFF.

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTI U-O-S BLOCK SEC		ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 43 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: HX-202A MODEL: HEATER (CONTINUED)		BLOCK: HX-202B MODEL: HEATER (CONTINUED)
TOTAL BALANCE MOLE(LBMOL/HR) 182.512 MASS(LB/HR) 5795.40 ENTHALPY(BTU/HR) -0.110133E+08	182.512 0.00000 5795.40 0.00000 -0.153902E+08 0.284391	*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
*** CO2 EQUIVALENT SUM FEED STREAMS CO2E 7.43964 PRODUCT STREAMS CO2E 7.43964 NET STREAMS CO2E PRODUCTION 0.00000	MARY *** LB/HR LB/HR LB/HR	MOLE(LBMOL/HR) 182.512 182.512 0.00000 MASS(LB/HR) 5795.40 5795.40 0.00000 ENTHALPY(BTU/HR) -0.153902E+08 -0.154853E+08 0.614673E-02 *** CO2 FOULVALENT SUMMARY ***
UTILITIES CO2E PRODUCTION 0.00000 TOTAL CO2E PRODUCTION 0.00000	LB/HR LB/HR	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR
*** INPUT DATA ** TWO PHASE TP FLASH	*	NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
SPECIFIED TEMPERATURE F PRESSURE DROP PSI	100.000 5.00000	*** INPUT DATA ***
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	30 0.000100000	TWOPHASETPFLASHSPECIFIEDTEMPERATUREF77.0000PRESSUREDROPPSI5.00000MAXIMUMNO.ITERATIONS30CONVERGENCETOLERANCE0.000100000
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER V-L PHASE EQUILIBRIUM :	100.00 24.130 -0.43768E+07 0.25426E-01 0.16262E+06	*** RESULTS ***OUTLET TEMPERATURE F77.000OUTLET PRESSURE PSIA19.130HEAT DUTYBTU/HROUTLET VAPOR FRACTION0.24904E-01PRESSURE-DROP CORRELATION PARAMETER0.44418E+07
COMP F(I) X(I)	Y(I) K(I) E-03 0.90593 4467.3	
OXYGEN 0.23232E-01 0.20280 NITROGEN 0.77185E-04 0.11713	E-06 0.30312E-02 25880.	V-L PHASE EQUILIBRIUM :
AMMONIA 0.25394E-04 0.25200 WATER 0.81997 0.83992 01		COMP F(I) X(I) Y(I) K(I) OXYGEN 0.23232E-01 0.15161E-03 0.92690 6113.7 NITROGEN 0.77185E-04 0.77871E-07 0.30962E-02 39762.
CARBO-01 0.92621E-03 0.10069 METDIAMI 0.17093E-06 0.17497 01		NITROGEN 0.77185E-04 0.77871E-07 0.30962E-02 39762. AMMONIA 0.25394E-04 0.25413E-04 0.24663E-04 0.97048 WATER 0.81997 0.84003 0.34177E-01 0.40685E- 01
METHYLPI 0.15593E-02 0.15884 3-MET-01 0.13893E-02 0.14191 NICOT-01 0.15283 0.15675	E-02 0.24813E-03 0.17486	CARBO-01 0.92621E-03 0.93021E-04 0.33549E-01 360.67 METDIAMI 0.17093E-06 0.17500E-06 0.11966E-07 0.68384E- 01
01		METHYLPI 0.15593E-02 0.15896E-02 0.37350E-03 0.23498 3-MET-01 0.13893E-02 0.14198E-02 0.19710E-03 0.13883
BLOCK: HX-202B MODEL: HEATER		NICOT-01 0.15283 0.15669 0.16856E-02 0.1978E- 01
INLET STREAM: S-206A OUTLET_STREAM: S-206		

PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

ASPEN PLUS PLAT: WIN32 VER: 25.0 0 NIACIN PRODUCTION U-O-S BLOCK SECTION	8/27/2013 PAGE 44	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 45 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: HX-203 MODEL: HEATER		BLOCK: HX-203 MODEL: HEATER (CONTINUED)
INLET STREAM: S-212 OUTLET STREAM: S-213		V-L PHASE EQUILIBRIUM :
PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION O	F STATE	COMP F(I) X(I) Y(I) K(I) OXYGEN 0.27373E-01 0.72082E-04 0.93318 12947.
*** MASS AND ENERGY BALANCE *** IN OUT	RELATIVE DIFF.	NITROGEN 0.90944E-04 0.27570E-07 0.31074E-02 0.11272E+06
TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 MASS(LB/HR) 5795.22 5795.22	0.00000 0.00000	AMMONIA 0.29921E-04 0.29577E-04 0.41360E-04 1.3984 WATER 0.78787 0.81092 0.23215E-01 0.28627E- 01
ENTHALPY(BTU/HR) -0.166063E+08 -0.166135E+0		CARBO-01 0.10913E-02 0.52879E-04 0.35546E-01 672.24 NIACINAM 0.17827 0.18364 0.28002E-06 0.15249E-
*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR		05 METDIAMI 0.20141E-06 0.20077E-06 0.22263E-06 1.1091 METHYLPI 0.18373E-02 0.17891E-02 0.34339E-02 1.9195 3-MET-01 0.16370E-02 0.16468E-02 0.13118E-02 0.79667 NICOT-01 0.18007E-02 0.18501E-02 0.16287E-03 0.88047E- 01
*** INPUT DATA ***		BLOCK: HX-204 MODEL: HEATER
TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	77.0000 10.0000 30 0.000100000	INLET STREAM: S-219 OUTLET STREAM: S-220 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
		*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR	77.000 19.730 -7216.6	TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 0.00000 MASS(LB/HR) 5795.22 5795.22 0.00000 ENTHALPY(BTU/HR) -0.166071E+08 -0.166135E+08 0.388764E-03
OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	-7210.6 0.29258E-01 0.10240E+08	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
		*** INPUT DATA ***
		TWOPHASEF77.0000SPECIFIED TEMPERATUREF77.0000PRESSURE DROPPSI10.0000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

ASPE	EN PLUS PLAT: W	NIACIN	25.0 N PRODUCTION BLOCK SECTION	03/27/20	13 PAGE 46	ASF	EN PLUS	PLAT: WI	-		.0 PRODUCTION LOCK SECTION		03/27/2	2013 PAGE 47
BLOO	ск: нх-204 мор	DEL: HEATER (CON	TINUED)			BLC	ск: нх-2	05 MODE	L: HEATE	R (CONT	INUED)			
OL HE OL	JTLET TEMPERATURE JTLET PRESSURE EAT DUTY JTLET VAPOR FRACT RESSURE-DROP CORR	PSIA BTU/HR TION			30	S F M	PECIFIED RESSURE D AXIMUM NO	SE TP F TEMPERATU ROP . ITERATI E TOLERAN	LASH RE ONS	INPUT	DATA *** F PSI			32.0000 10.0000 30 0.000100000
V-	-L PHASE EQUILIBR	RIUM :							***	RESUL	.TS ***			
0 109	COMP OXYGEN NITROGEN 093E+06	F(I) 0.27373E-01 0.90944E-04	X(I) 0.73961E-04 0.28291E-07	Y(I) 0.93387 0.31099E-02	К(I) 12627.	C H C	UTLET TEM UTLET PRE EAT DUTY UTLET VAP RESSURE-D		F PSIA BTU/H ON		R		27. -0.18 0.28	.000 .730 3580E+06 3529E-01 4353E+08
01	AMMONIA WATER	0.29921E-04 0.78787	0.29606E-04 0.81092	0.40386E-04 0.22648E-01	1.3641 0.27928E-	i					.ix		0.1-	F3532+00
	CARBO-01 NIACINAM	0.10913E-02 0.17827	0.54188E-04 0.18364	0.35531E-01 0.27336E-06	655.72 0.14887E-	V		EQUILIBRI						
05	METDIAMI METHYLPI 3-MET-01	0.20141E-06 0.18373E-02 0.16370E-02	0.20092E-06 0.17915E-02 0.16477E-02	0.21748E-06 0.33557E-02 0.12809E-02	1.0826 1.8733 0.77747	0 13	COMP OXYGEN NITROGE 584E+06	N	F(I) 0.27373 0.90944		X(I) 0.81854E-0 0.23462E-0	04 07	Y(I) 0.95669 0.31870E-02	К(I) 11688.
01	NICOT-01	0.18007E-02	0.18501E-02	0.15898E-03	0.85938E-	02	AMMONIA WATER	L .	0.29921 0.78787		0.30520E-0 0.81092	04	0.95389E-05 0.31447E-02	0.31255 0.38780E-
BLOO	ск: нх-205 мор	DEL: HEATER					CARBO-0 NIACINA		0.10913 0.17827		0.93331E-0 0.18350	04	0.35075E-01 0.12063E-07	375.82 0.65739E-
OL	NLET STREAM: JTLET STREAM: ROPERTY OPTION SE		STANDARD RKS EQ			07	METDIAM METHYLP 3-MET-0 NICOT-0	РІ 01	0.20141 0.18373 0.16370 0.18007	E-02 E-02	0.20525E-(0.18496E-(0.16722E-(0.18524E-(02 02	0.70681E-07 0.14171E-02 0.43884E-03 0.39603E-04	0.34440 0.76622 0.26245 0.21381E-
-			IN		ATIVE DIFF.	01	NICOT-0	1	0.18007	E-02	0.10324E-0	02	0.39003E-04	0.213812-
ļ	TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR)	154 579			.00000 .00000	BLC	ск: нх-2	06 MODE	L: HEATE	R -				
	ENTHAL PY (BTU/H		56049E+08 -0.1 /ALENT SUMMARY *		110659E-01	C	NLET STRE		S-23 S-23	1			ATION OF STAT	re
	EED STREAMS CO2E	7.	.43964 LB/H .43964 LB/H	R		ſ					NERGY BALA	•	***	
Ν	NET STREAMS CO2E JTILITIES CO2E PR	PRODUCTION 0.	00000 LB/H	R			TOTAL BAL	ANCE			N	ICL.		ELATIVE DIFF.
	TOTAL COZE PRODUC		00000 LB/H				MOLE(L MASS(L	.BMOL/HR))	150. 5650 -0.167	.33	5650		0.00000 0.00000 0.133365E-01

ASP	EN PLUS PLAT: WI	NIACIN	5.0 PRODUCTION BLOCK SECTION	03/27/20	13 PAGE 48	ASPEN	PLUS	PLAT: WI	NIACI	25.0 N PRODUCTION BLOCK SECTION	03/27/20	013 PAGE 49
BLO	ск: нх-206 море	EL: HEATER (CON	TINUED)			BLOCK:	нх-30	01 MODE	L: HEATER (CO	NTINUED)		
	FEED STREAMS CO2E PRODUCT STREAMS CO NET STREAMS CO2E F JILITIES CO2E PRO FOTAL CO2E PRODUCT	0.3 D2E 0.3 PRODUCTION 0. DDUCTION 0.	ALENT SUMMARY * 46806 LB/H 46806 LB/H 00000 LB/H 00000 LB/H 00000 LB/H	R R R			MASS(LE		12 25	IN 59.04 12 618.8 25	59.04 618.8	LATIVE DIFF. 0.00000 0.00000 .798587E-02
S PI M	NO PHASE TP P PECIFIED TEMPERATU RESSURE DROP AXIMUM NO. ITERATI DNVERGENCE TOLERAN	FLASH JRE IONS	DATA *** F PSI	1	0.0000 0.0000 0 0.000100000	PRO NET UTI	DUCT STREAM	AMS CO2E TREAMS CO	0. 2E 0. RODUCTION 0 DUCTION 0	VALENT SUMMARY * 365887 LB/H 365887 LB/H .00000 LB/H .00000 LB/H .00000 LB/H	R R R R	
O H O	JTLET TEMPERATURE JTLET PRESSURE EAT DUTY TLET VAPOR FRACTI RESSURE-DROP CORRE			0.00	00 49E+06	PRES MAXI	SURE DE	SE TP F TEMPERATU ROP . ITERATI E TOLERAN	LASH RE ONS	T DATA *** F PSI		77.0000 10.0000 30 0.000100000
v	-L PHASE EQUILIBRI	CUM :				OUTL	.ET TEMI .ET PRES DUTY	PERATURE SSURE	*** RES F PSIA BTU/HR	ULTS ***	77.0 25.0 0.12	
01	COMP OXYGEN NITROGEN AMMONIA WATER	F(I) 0.44082E-04 0.12611E-07 0.30292E-04 0.81100	X(I) 0.44082E-04 0.12611E-07 0.30292E-04 0.81100	Y(I) 0.86921 0.20087E-02 0.92705E-04 0.58025E-01	K(I) 6855.5 55375. 1.0640 0.24875E-	PRES	SURE-DI	OR FRACTIO ROP CORRE	LATION PARAME	TER		201E-03 526E+07
01	CARBO-01 NIACINAM	0.52378E-04 0.18354	0.52378E-04 0.18354	0.60843E-01 0.96743E-06	403.86 0.18326E-	C	OMP XYGEN	EQUILIBRI	F(I) 0.52843E-05	X(I) 0.14334E-06	Y(I) 0.19622E-01	K(I)
	METDIAMI METHYLPI 3-MET-01	0.20363E-06 0.18171E-02 0.16620E-02	0.20363E-06 0.18171E-02 0.16620E-02	0.46919E-06 0.67651E-02 0.26899E-02	0.80108 1.2944 0.56269	0.13689 N 0.31135	ITROGE	N	0.59356E-07	0.72672E-10	0.22627E-03	
01	NICOT-01	0.18518E-02	0.18518E-02	0.36058E-03	0.67697E-	А	MMONIA ATER		0.24995E-02 0.97492	0.24998E-02 0.97517	0.12031E-02 0.12805E-01	0.48129 0.13131E-
		EL: HEATER				C N	ARBO-01		0.66033E-05 0.21932E-01	0.17511E-05 0.21938E-01	0.18521E-01 0.74823E-05	10577. 0.34107E-
0	NLET STREAM: JTLET STREAM:	S-301 S-302						I	0.24333E-07	0.79722E-09	0.89830E-04	
P	ROPERTY OPTION SET	E KK-SUAVE	STANDAKD KKS EQ	UAIIUN UF STATE		3	EFF06 ETHYLP: S-MET-01 IICOT-01	1	0.21713E-03 0.19874E-03 0.22129E-03	0.53865E-04 0.14939E-03 0.18575E-03	0.62321 0.18851 0.13581	11570. 1261.9 731.15

ASPEN PLUS PLAT: WIN32 VER: 25.0 03, NIACIN PRODUCTION U-O-S BLOCK SECTION	/27/2013 PAGE 50	ASPEN PLUS PLAT: WIN	NIACIN	5.0 PRODUCTION BLOCK SECTION	03/27/20	13 PAGE 51
BLOCK: HX-302 MODEL: HEATER		BLOCK: HX-302 MODEL	: HEATER (CON	TINUED)		
INLET STREAM: S-306 OUTLET STREAM: S-307		V-L PHASE EQUILIBRIU	м:			
PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF *** MASS AND ENERGY BALANCE *** IN OUT TOTAL BALANCE MOLE(LBMOL/HR) 1259.04 1259.04 MASS(LB/HR) 25618.8 25618.8 ENTHALPY(BTU/HR) -0.153806E+09 -0.124883E+09 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.365887 LB/HR	RELATIVE DIFF. 0.00000 0.00000	NITROGEN AMMONIA WATER CARBO-01 NIACINAM 01 METDIAMI METHYLPI	F(I) 0.52843E-05 0.59356E-07 0.24995E-02 0.97492 0.66033E-05 0.21932E-01 0.24333E-07 0.21713E-03 0.19874E-03	x(1) 0.52701E-08 0.27806E-10 0.32318E-04 0.10980 0.23249E-07 0.88975 0.13252E-07 0.78107E-04 0.68560E-04	Y(1) 0.52843E-05 0.59356E-07 0.24995E-02 0.97492 0.66033E-05 0.21932E-01 0.24333E-07 0.21713E-03 0.19874E-03	K(I) 1085.6 2311.2 83.735 9.6137 307.51 0.26688E- 1.9880 3.0099 3.1385
FEED SIREAMS COZE 0.365887 LB/HR PRODUCT STREAMS COZE 0.365887 LB/HR NET STREAMS COZE PRODUCTION 0.00000 LB/HR UTILITIES COZE PRODUCTION 0.00000 LB/HR TOTAL COZE PRODUCTION 0.00000 LB/HR *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	392.000 10.0000 30 0.000100000	NICOT-01 BLOCK: HX-303 MODEL INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	0.22129E-03 : HEATER S-308 S-309 RK-SOAVE ** MASS AND 1.1	0.27092E-03 STANDARD RKS EQU ENERGY BALANCE IN 0231 1.1	0.22129E-03 JATION OF STATE *** OUT REL	0.88435
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	392.00 29.946 0.28922E+08 1.0000 14256.	MASS(LB/HR) ENTHALPY(BTU/HR	30.) -5.9 ** CO2 EQUIV. 0. E 0. ODUCTION 0. UCTION 0. ON 0.	8796 30 3636 242 ALENT SUMMARY ** 00000 LB/HF 00000 LB/HF 00000 LB/HF 00000 LB/HF	.8796 0 25.28 -1 ** * * *	.00000 .00245
		TWO PHASE TP FL SPECIFIED TEMPERATUR PRESSURE DROP MAXIMUM NO. ITERATIO CONVERGENCE TOLERANC	E NS	DATA *** F PSI	1	2.000 0.0000 0 0.000100000

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 52	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 53 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: HX-303 MODEL: HEATER (CONTINUED)		BLOCK: HX-304A MODEL: HEATER (CONTINUED)
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	392.00 19.501 2431.2 1.0000 0.61542E+10	*** RESULTS ***OUTLET TEMPERATURE F100.00OUTLET PRESSURE PSIA63.008HEAT DUTYBTU/HR-0.32862E+08OUTLET VAPOR FRACTION0.91074E-02PRESSURE-DROP CORRELATION PARAMETER11710.
V-L PHASE EQUILIBRIUM :		V-L PHASE EQUILIBRIUM :
COMP F(I) X(I) NITROGEN 1.0000 1.0000 BLOCK: HX-304A MODEL: HEATER	Y(I) K(I) 1.0000 MISSING	COMP F(I) X(I) Y(I) K(I) OXYGEN 0.53407E-04 0.60207E-07 0.58576E-02 97291. NITROGEN 0.88768E-02 0.41595E-06 0.97464 0.23431E+07
INLET STREAM: S-311 OUTLET STREAM: S-312A PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EC	WATION OF STATE	0.25451E+07 AMMONIA 0.25354E-02 0.25504E-02 0.89734E-03 0.35184 WATER 0.98847 0.99745 0.11718E-01 0.11748E- 01 CARBO-01 0.63459E-04 0.70059E-06 0.68916E-02 9836.8
*** MASS AND ENERGY BALANCE IN TOTAL BALANCE MOLE(LBMOL/HR) 1241.79 12 MASS(LB/HR) 22481.2 22		BLOCK: HX-304B MODEL: HEATER INLET STREAM: S-312A OUTLET STREAM: S-312 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
ENTRALPT(BT0/RK) -0.1191982+09 -0.1 *** CO2 EQUIVALENT SUMMARY * FEED STREAMS CO2E 3.46806 LB/H PRODUCT STREAMS CO2E 3.46806 LB/H NET STREAMS CO2E 3.46806 LB/H UTILITIES CO2E PRODUCTION 0.00000 LB/H UTAL CO2E PRODUCTION 0.00000 LB/H	** R R R	*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 1241.79 1241.79 0.00000 MASS(LB/HR) 22481.2 22481.2 0.00000 ENTHALPY(BTU/HR) -0.152060E+09 -0.153812E+09 0.113920E-01 *** CO2 EQUIVALENT SUMMARY *** ***
*** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	100.000 5.00000 30 0.000100000	FEED STREAMS CO2E3.46806LB/HRPRODUCT STREAMS CO2E3.46806LB/HRNET STREAMS CO2E PRODUCTION0.00000LB/HRUTILITIES CO2E PRODUCTION0.00000LB/HRTOTAL CO2E PRODUCTION0.00000LB/HR

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTIC U-O-S BLOCK SECT		ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 55 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: HX-304B MODEL: HEATER (CONTINUED)		BLOCK: M-101 MODEL: MIXER (CONTINUED)
*** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	32.0000 5.00000 30 0.000100000	***CO2EQUIVALENTSUMMARY***FEEDSTREAMSCO2E0.00000LB/HRPRODUCTSTREAMSCO2EPRODUCTION0.00000LB/HRNETSTREAMSCO2EPRODUCTION0.00000LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION0.00000LB/HR
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR OUTLET VAPOR FRACTION PRESSURE-DROP CORRELATION PARAMETER	32.000 58.008 -0.17522E+07 0.90036E-02 0.11032E+07	*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: M-201 MODEL: MIXER
		OUTLET STREAM: S-203A PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
V-L PHASE EQUILIBRIUM : COMP F(I) X(I) OXYGEN 0.53407E-04 0.19036E 0.31150E+06 0.88768E-02 0.65762E		*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 122.233 122.233 0.00000 MASS(LB/HR) 4313.94 4313.94 0.210827E-15
0.14992E+08 AMMONIA 0.25354E-02 0.25571E	-02 0.14363E-03 0.56168E-	ENTHALPÝ(BTU/HR) -0.773225E+07 -0.773225E+07 0.183524E-06
01 WATER 0.98847 0.99744	0.10054E-02 0.10080E-	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR
02 CARBO-01 0.63459E-04 0.39145E BLOCK: M-101 MODEL: MIXER	-06 0.70051E-02 17895.	PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
INLET STREAMS: S-102 S-109 OUTLET STREAM: S-103 PROPERTY OPTION SET: RK-SOAVE STANDARD F *** MASS AND ENERGY BAL IN TOTAL BALANCE MOLE(LBMOL/HR) 28.7464 MASS(LB/HR) 3340.34 ENTHALPY(BTU/HR) -0.204694E+07	KS EQUATION OF STATE ANCE *** OUT RELATIVE DIFF. 28.7464 0.00000 3340.34 0.00000 -0.204694E+07 -0.494793E-13	*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES

ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 56 NIACIN PRODUCTION U-O-S BLOCK SECTION	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 57 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: M-202 MODEL: MIXER	BLOCK: M-203 MODEL: MIXER (CONTINUED)
INLET STREAMS: S-209 S-211 OUTLET STREAM: S-212 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.	UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
TOTAL BALANCE IN OUT RELATIVE DIFF. MOLE(LBMOL/HR) 154.898 154.898 0.00000 MASS(LB/HR) 5795.22 5795.22 -0.313878E-15 ENTHALPY(BTU/HR) -0.166063E+08 -0.166063E+08 0.476387E-09	*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30
CO2EQUIVALENTSUMMARYFEEDSTREAMSCO2E7.43964LB/HRPRODUCTSTREAMSCO2E7.43964LB/HRNETSTREAMSCO2EPRODUCTION0.00000LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION0.00000LB/HR	CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: M-204 MODEL: MIXER
*** INPUT DATA *** TWO PHASE FLASH	*** MASS AND ENERGY BALANCE ***
OUILEI PRESSURE: MINIMUM OF INLEI SIREAM PRESSURES	IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 0.00000 MASS(LB/HR) 5795.22 5795.22 -0.156939E-15 ENTHALPY(BTU/HR) -0.166049E+08 -0.166049E+08 0.217430E-08
INLET STREAMS: S-216 S-218 OUTLET STREAM: S-219 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 0.00000 MASS(LB/HR) 5795.22 5795.22 -0.156939E-15 ENTHALPY(BTU/HR) -0.166071E+08 -0.166071E+08 0.470319E-09	*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 58	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 59
BLOCK: M-301 MODEL: MIXER		BLOCK: N-301 MODEL: RSTOIC (CONTINUED)	
INLET STREAMS: S-231 S-318 S-201 OUTLET STREAM: S-301 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATIO *** MASS AND ENERGY BALANCE *** IN OUT	N OF STATE RELATIVE DIFF.	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.365887 LB/HR PRODUCT STREAMS CO2E 0.365887 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR	
TOTAL BALANCE MOLE(LBMOL/HR) 1259.04 1259.04 MASS(LB/HR) 25618.8 25618.8 ENTHALPY(BTU/HR) -0.155047E+09 -0.155047	0.00000 0.426013E-15	*** INPUT DATA *** STOICHIOMETRY MATRIX:	
*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.365887 LB/HR PRODUCT STREAMS CO2E 0.365887 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR		REACTION # 1: SUBSTREAM MIXED : WATER -1.00 NIACINAM -1.00 AMMONICO : SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS	1.00
TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES	50 0.000100000	REACTION # 2: SUBSTREAM MIXED : WATER 1.00 NIACINAM 1.00 AMMONICO -: SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS	1.00
BLOCK: N-301 MODEL: RSTOIC INLET STREAMS: S-304 S-303 OUTLET STREAM: S-305 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATIO	N OF STATE	REACTION CONVERSION SPECS: NUMBER= 2 REACTION # 1: SUBSTREAM:MIXED KEY COMP:NIACINAM CONV FRAC: 2 REACTION # 2: SUBSTREAM:MIXED KEY COMP:AMMONICO CONV FRAC: 2	
DIFF. TOTAL BALANCE	RATION RELATIVE	TWO PHASE TP FLASH SPECIFIED TEMPERATURE F	77.0000
15 MASS(LB/HR) 25618.8 25618.8 15	65655E-15 -0.361187E- -0.426013E-	PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE SERIES REACTIONS	5.00000 30 0.000100000
ENTHALPY(BTU/HR) -0.153808E+09 -0.153810E+09 05	0.969732E-	GENERATE COMBUSTION REACTIONS FOR FEED SPECIES	NO

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 60	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 61
BLOCK: N-301 MODEL: RSTOIC (CONTINUED)		BLOCK: P-101 MODEL: PUMP (CONTINUED)	
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR VAPOR FRACTION	77.000 15.000 -1491.5 0.35328E-03	TOTAL BALANCE IN C MOLE (LBMOL/HR) 28.4590 28.4 MASS (LB/HR) 3306.93 3306	
REACTION EXTENTS: REACTION REACTION NUMBER EXTENT		*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR	
LBMOL/HR 1 27.614 2 27.614 V-L PHASE EQUILIBRIUM :		TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** OUTLET PRESSURE PSIA DRIVER EFFICIENCY	43.5113 1.00000
COMP F(I) X(I) OXYGEN 0.52843E-05 0.60926E-07 0.24268E+06 0.59356E-07 0.30314E-10 0.55355E+07 0.59356E-07 0.30314E-10	Y(I) K(I) 0.14785E-01 0.16793E-03	FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE	30 0.000100000
AMMONIA 0.24995E-02 0.24996E-02 WATER 0.97492 0.97526 01	0.20677E-02 0.82721 0.21653E-01 0.22202E-	*** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR	53.9515
CARBO-01 0.66033E-05 0.88085E-06 NIACINAM 0.21932E-01 0.21940E-01 03	0.16199E-01 18390. 0.11239E-04 0.51228E-	PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP	29.0075 34.0618 0.11382
METDIAMI 0.24333E-07 0.39200E-09 0.17288E+06 0.21713E-03 0.29085E-04 METHYLPI 0.21713E-03 0.11620E-03 3-MET-01 0.19874E-03 0.11620E-03 NICOT-01 0.22129E-03 0.15811E-03	0.67768E-04 0.53232 18302. 0.23374 2011.5 0.17899 1132.0	BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB	0.38497 0.28707 0.29566 0.38497 68.1477
BLOCK: P-101 MODEL: PUMP		BLOCK: P-102 MODEL: PUMP	
INLET STREAM: S-101 OUTLET STREAM: S-102 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EC	QUATION OF STATE	INLET STREAM: S-108 OUTLET STREAM: S-109 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUA	TION OF STATE
		PROS AND ENERGY DALANCE	VUT RELATIVE DIFF.

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 62	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 63
BLOCK: P-102 MODEL: PUMP (CONTINUED) TOTAL BALANCE		BLOCK: P-103 MODEL: PUMP (CONTINUED)	
MOLE(LBMOL/HR) 0.287465 0.287465 MASS(LB/HR) 33.4028 33.4028 ENTHALPY(BTU/HR) -13787.0 -13777.3	0.00000	*** CO2 EQUIVALENT SUMMARY ** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR	
*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR		UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA ***	
UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR		OUTLET PRESSURE PSIA DRIVER EFFICIENCY	170.000 1.00000
*** INPUT DATA *** OUTLET PRESSURE PSIA DRIVER EFFICIENCY	43.5113 1.00000	FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS	30
FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION		TOLERANCE	0.000100000
NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS	30	*** RESULTS ***	19.4761
TOLERANCE	0.000100000	PRESSURE CHANGE PSI	155.000
*** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW	0.67609 22.9654 0.0 0.0011292 0.0038193 0.0028481	VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB	33.8472 0.21955 0.74258 0.55374 0.29566 0.74258 362.255
PUMP EFFICIENCY USED	0.29566	BLOCK: P-201 MODEL: PUMP	
NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB BLOCK: P-103 MODEL: PUMP	0.0038193 66.9359	INLET STREAM: S-210 OUTLET STREAM: S-211 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQU	ATION OF STATE
INLET STREAM: S-116		*** MASS AND ENERGY BALANCE	***
OUTLET STREAM: S-117 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATIO	N OF STATE		OUT RELATIVE DIFF.
*** MASS AND ENERGY BALANCE *** IN OUT	RELATIVE DIFF.	MOLE(LBMOL/HR) 150.317 150 MASS(LB/HR) 5646.78 564	.317 0.00000 6.78 0.00000 5693E+08 -0.432513E-04
TOTAL BALANCE MOLE(LBMOL/HR) 66.6101 66.6101 MASS(LB/HR) 1200.00 1200.00 ENTHALPY(BTU/HR) -0.825936E+07 -0.825747	0.00000	*** CO2 EQUIVALENT SUMMARY ** FEED STREAMS CO2E 0.261936 LB/HR PRODUCT STREAMS CO2E 0.261936 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR	

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 64	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 65
BLOCK: P-201 MODEL: PUMP (CONTINUED)		BLOCK: P-202 MODEL: PUMP (CONTINUED)	
*** INPUT DATA *** PRESSURE CHANGE PSI DRIVER EFFICIENCY	15.0000 1.00000	*** INPUT DATA *** PRESSURE CHANGE PSI DRIVER EFFICIENCY	15.0000 1.00000
FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE	30 0.000100000	FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE	30 0.000100000
*** RESULTS ***		*** RESULTS ***	
VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB NEGATIVE NPSH MAY BE DUE TO VAPOR IN THE FEED OR UN BLOCK: P-202 MODEL: PUMP	76.3381 15.0000 -0.0029243 0.83278 0.28167 0.21004 0.29566 0.28167 29.2008 ACCOUNTED SUCTION HEAD.	VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB BLOCK: P-203 MODEL: PUMP	76.3413 15.0000 0.0 0.83281 0.28168 0.21005 0.29566 0.28168 29.2010
INLET STREAM: S-217 OUTLET STREAM: S-217 OUTLET STREAM: S-218 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATI	ON OF STATE	INLET STREAM: S-224 OUTLET STREAM: S-225 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUAT	ION OF STATE
INCLUST OF THE OFTEN OF	RELATIVE DIFF. 4 0.00000 8 0.161059E-15	*** MASS AND ENERGY BALANCE ** IN OU TOTAL BALANCE MOLE(LBMOL/HR) 150.329 150.3 MASS(LB/HR) 5647.16 5647. ENTHALPY(BTU/HR) -0.165713E+08 -0.1656 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.279711 LB/HR PRODUCT STREAMS CO2E 0.279711 LB/HR NET STREAMS CO2E 0.279711 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR	T RELATIVE DIFF. 29 0.00000 16 0.00000

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUC U-O-S BLOCK S		ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 67
BLOCK: P-203 MODEL: PUMP (CONTINUED)		BLOCK: P-204 MODEL: PUMP (CONTINUED)	
*** INPUT DATA PRESSURE CHANGE PSI DRIVER EFFICIENCY	*** 30.0000 1.00000	*** INPUT DATA *** PRESSURE CHANGE PSI DRIVER EFFICIENCY	30.0000 1.00000
FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE	30 0.000100000	FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE	30 0.000100000
*** RESULTS ** VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB BLOCK: P-204 MODEL: PUMP 	* 76.3443 30.0000 0.0 0.16657 0.56339 0.42012 0.29566 0.56339 58.4023	*** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB NEGATIVE NPSH MAY BE DUE TO VAPOR IN THE FEED OR UN BLOCK: P-301 MODEL: PUMP	74.8273 30.0000 -0.0035963 0.16326 0.55219 0.41177 0.29566 0.55219 57.2098 JACCOUNTED SUCTION HEAD.
INLET STREAM: S-229 OUTLET STREAM: S-230 PROPERTY OPTION SET: RK-SOAVE STANDAR	D RKS EQUATION OF STATE	INLET STREAM: S-305 OUTLET STREAM: S-306 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATJ	ION OF STATE
*** MASS AND ENERGY IN	BALANCE *** OUT RELATIVE DIFF.	*** MASS AND ENERGY BALANCE ***	
TOTAL BALANCE DISC. MOLE (LBMOL/HR) 150.449 MASS (LB/HR) 5650.33 ENTHALPY (BTU/HR) -0.167589E+C *** CO2 EOUIVALENT S	150.449 0.00000 5650.33 -0.321926E-15 8 -0.167575E+08 -0.838361E-04	TOTAL BALANCE MOLE(LBMOL/HR) 1259.04 1259.0 MASS(LB/HR) 25618.8 25618. ENTHALPY(BTU/HR) -0.153810E+09 -0.15380	RELATIVE DIFF. 04 0.00000 .8 0.00000
FEED STREAMS CO2E 0.346806 PRODUCT STREAMS CO2E 0.346806 NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION 0.00000 TOTAL CO2E PRODUCTION 0.00000	LB/HR LB/HR LB/HR LB/HR LB/HR LB/HR	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.365887 LB/HR PRODUCT STREAMS CO2E 0.365887 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR	

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 68	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 69 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: P-301 MODEL: PUMP (CONTINUED)		BLOCK: R-101 MODEL: RSTOIC (CONTINUED) STOICHIOMETRY MATRIX:
*** INPUT DATA *** PRESSURE CHANGE PSI DRIVER EFFICIENCY FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED	24.9465 1.00000	REACTION # 1: SUBSTREAM MIXED : AMMONIA 1.00 METDIAMI -1.00 METHYLPI 1.00 SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS
MAXIMUM NUMBER OF ITERATIONS TOLERANCE *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB	30 0.000100000 400.442 24.9465 -213.682	REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:METDIAMI CONV FRAC: 0.9900
FLUID POWER HP BRAKE POWER HP ELECTRICITY KW PUMP EFFICIENCY USED NET WORK REQUIRED HP HEAD DEVELOPED FT-LBF/LB NEGATIVE NPSH MAY BE DUE TO VAPOR IN THE FEED OR UN BLOCK: R-101 MODEL: RSTOIC	0.72652 1.65276 1.23247 0.43958 1.65276 56.1504 ACCOUNTED SUCTION HEAD.	TWOPHASETPFLASHSPECIFIEDTEMPERATUREF581.000PRESSUREDROPPSI0.87023MAXIMUMNO.ITERATIONS30CONVERGENCE0.000100000SIMULTANEOUSREACTIONSGENERATECOMBUSTIONREACTIONSNO
INLET STREAM: S-105 OUTLET STREAM: S-106 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATI *** MASS AND ENERGY BALANCE ***		*** RESULTS *** OUTLET TEMPERATURE F 581.00 OUTLET PRESSURE PSIA 71.649 HEAT DUTY BTU/HR -0.45205E+06 VAPOR FRACTION 1.0000
DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 28.7464 57.2054 2 MASS(LB/HR) 3340.34 3340.35 05 ENTHALPY(BTU/HR) -522590974645. **** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR	ERATION RELATIVE 8.4590 0.00000 -0.477106E- 0.463815	REACTION EXTENTS: REACTION REACTION NUMBER EXTENT LBMOL/HR 1 28.459 V-L PHASE EQUILIBRIUM :
PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA ***		COMP F(I) X(I) Y(I) K(I) AMMONIA 0.49749 0.89068E-01 0.49749 27.859 METDIAMI 0.50251E-02 0.13718E-01 0.50251E-02 1.8272 METHYLPI 0.49749 0.89721 0.49749 2.7657 BLOCK: R-102 MODEL: RSTOIC XIII XIIII XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
		INLET STREAM: S-111 OUTLET STREAM: S-112 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/20 NIACIN PRODUCTION U-O-S BLOCK SECTION	013 PAGE 70	ASPEN PLUS	PLAT: WIN	NIACI	25.0 N PRODUCTION BLOCK SECTION	03/27/	2013 PAGE 71
BLOCK: R-102 MODEL: RSTOIC (CONTINUED)		BLOCK: R-102	2 MODEL	: RSTOIC (CO	NTINUED)		
*** MASS AND ENERGY BALANCE *** IN OUT GENERATION I TOTAL BALANCE	RELATIVE	OUTLET TEM OUTLET PRES HEAT DUTY		*** RES F PSIA BTU/HR	ULTS ***	42	4.00 .214 6027E+07
MOLE(LBMOL/HR) 56.9179 141.441 84.5231	0.200944E-	VAPOR FRAC	TION	Broynk			0000
MASS(LB/HR) 3306.95 3307.12	-0.507751E-						
ENTHALPY(BTU/HR) -0.102115E+07 0.158151E+07	-1.64568	REACTION EX	XTENTS:				
CO2EQUIVALENTSUMMARYFEEDSTREAMSCO2E0.00000LB/HRPRODUCTSTREAMSCO2E0.00000LB/HRNETSTREAMSCO2EPRODUCTION0.00000LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION0.00000LB/HR		REACTION NUMBER 1 V-L PHASE N		REACTION EXTENT LBMOL/HR 28.174 M :			
*** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : HYDROGEN 3.00 METHYLPI -1.00 3-MET-01 1.00 SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS		COMP HYDROGEN AMMONIA METDIAM METHYLP 3-MET-0 BLOCK: R-20	I I 1	F(I) 0.59759 0.20121 0.22057E-06 0.20121E-02 0.19920 : RSTOIC	X(I) 0.26382 0.19839 0.84634E-06 0.5977E-02 0.53184	Y(I) 0.59759 0.20121 0.22057E-06 0.20121E-02 0.19920	
REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:METHYLPI CONV FRAC: 0.9900		INLET STRE OUTLET STRI PROPERTY OI	AMS: EAM: PTION SET:	S-203 S-205 RK-SOAVE	S-204 STANDARD RKS EQU ENERGY BALANCE	***	
TWOPHASETPFLASHSPECIFIEDTEMPERATUREF554.000PRESSUREDROPPSI20.300MAXIMUNNO.ITERATIONS30CONVERGENCETOLERANCE0.000SIMULTANEOUSREACTIONS0.000GENERATECOMBUSTIONREACTIONSGENERATECOMBUSTIONREACTIONS		DIFF. TOTAL BALAM MOLE(LBMOL, MASS(LB/HR 15 ENTHALPY(B ⁻	/HR))	IN 168.530 5795.40 -0.513239E+	OUT 182.512 5795.40 07 -0.110133E+08	GENERATION	RELATIVE 0.00000 -0.156934E- 0.533984

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 72	ASPEN PLUS PLAT: WI	N32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 73
BLOCK: R-201 MODEL: RSTOIC (CONTINUED)		BLOCK: R-201 MODE	L: RSTOIC (CONTINUED)	
CO2EQUIVALENTSUMMARYFEEDSTREAMSCO2E0.00000LB/HRPRODUCTSTREAMSCO2E7.43964LB/HRNETSTREAMSCO2EPRODUCTION7.43964LB/HRUTILITIESCO2EPRODUCTION0.00000LB/HRTOTALCO2EPRODUCTION7.43964LB/HR		OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	*** RESULTS *** F PSIA BTU/HR	626.00 29.130 -0.58809E+07 1.0000
*** INPUT DATA *** STOICHIOMETRY MATRIX:		REACTION EXTENTS:		
REACTION # 1: SUBSTREAM MIXED : OXYGEN -1.50 AMMONIA -1.00 WATER 3.0 NICOT-01 1.00 SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS	0 3-MET-01 -1.00	REACTION NUMBER 1 2	REACTION EXTENT LBMOL/HR 27.892 0.14087E-01	
REACTION # 2:		V-L PHASE EQUILIBRI	UM :	
SUBSTREAM MIXED : OXYGEN -15.5 NITROGEN 1.00 WATER 7.0 3-MET-01 -2.00 SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS	0 CARBO-01 12.0	COMP OXYGEN NITROGEN AMMONIA WATER CARBO-01	F(I) X(I) 0.23232E-01 0.61170E-02 0.77185E-04 0.17977E-04 0.81997 0.55663 0.92621E-03 0.32383E-03	Y(I) K(I) 0.23232E-01 91.523 0.77185E-04 103.47 0.25394E-04 49.930 0.81997 35.499 0.92621E-03 68.927
REACTION CONVERSION SPECS: NUMBER= 2		METDIAMI METHYLPI	0.17093E-06 0.46285E-06 0.15593E-02 0.31949E-02	0.17093E-06 8.8998 0.15593E-02 11.762
REACTION # 1: SUBSTREAM:MIXED KEY COMP:3-MET-01 CONV FRAC: 0.99 REACTION # 2:	00	3-MET-01 NICOT-01	0.13893E-02 0.25124E-02 0.15283 0.43119	0.13893E-02 13.326 0.15283 8.5412
SUBSTREAM:MIXED KEY COMP:3-MET-01 CONV FRAC: 0.10	00	BLOCK: R-202A MODE	L: RSTOIC	
TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE SERIES REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES	626.000 0.87023 30 0.000100000 NO	INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET DIFF.	S-206 S-207 : RK-SOAVE STANDARD RKS EC *** MASS AND ENERGY BALANCE IN OUT	QUATION OF STATE *** GENERATION RELATIVE

REACTION # 1: SUBSTREAM MIXED : NO PARTICIPATING COMPONENTS CARBO-01 0.10913E-02 0.39595E-04 0.35602E-01 899.17 NACTNAM 0.17827 0.18370 0.37163E-06 0.20230E NO PARTICIPATING COMPONENTS METDIAMI 0.20141E-06 0.19863E-06 0.29267E-06 1.4735 REACTION # 1: SUBSTREAM:MIXED NO PARTICIPATING COMPONENTS METDIAMI 0.20141E-06 0.18370E-02 0.16341E-02 0.17330E-02 1.4735 REACTION # 1: SUBSTREAM:MIXED KEY COMP:NICOT-01 CONV FRAC: 0.9900 METDIAMI 0.10077E-02 0.18340E-02 0.21638E-03 0.11702 TWO PHASE TP FLASH FLASH S-213 OUTLET STREAM: S-213 OUTLET STREAM: S-213 OUTLET STREAM: S-214 NOUT GENERATION FELSION METDIAN CONVERGENCE TOLERANCE 0.000100000 0.000100000 0.000100000 SUBSTREAM: S-214 NOUT GENERATION RELATIVE METSING FEASURE 0.0001000000 0.000100000 0.0001000000 SUBSTREAM: S-214 NOUT GENERATION RELATIVE MILET STREAM: S-214 NOUT GENERATION SOUTLET STREAM: <th>ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION</th> <th>03/27/2013 PAGE 74</th> <th>ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 75 NIACIN PRODUCTION U-O-S BLOCK SECTION</th>	ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 74	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 75 NIACIN PRODUCTION U-O-S BLOCK SECTION
MOLE (LEMOL/HR) 142, 512 154, 898 -27.613 0.00000 0.00000 C. PEACTION REACTION FEECTION <			BLOCK: R-202A MODEL: RSTOIC (CONTINUED)
Control (Control (Contro) (Contro) (Contro) (Control (Contro) (Contro) (Contro) (Contro)	MOLE(LBMOL/HR) 182.512 154.898 -27 MASS(LB/HR) 5795.40 5795.22		
**** C02 FOUTVALENT SUMMARY **** FEED STREAMS CO2E 7.43964 LB/HR MATE STREAMS CO2E 7.43964 LB/HR MATE STREAMS CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** *** STOICHIOMETRY MATRIX: *** INPUT DATA *** MATE R -1.00 NICOT-01 -1.00 SUBSTREAM MIXED :	ENTHALPY(BTU/HR) -0.154853E+08 -0.166128E+08	0.678664E-	NUMBER EXTENT LBMOL/HR
NET STREAMS COZE PRODUCTION 0.00000 LB/HR UTLITIES COZE PRODUCTION 0.00000 LB/HR COMP F(1) X(1) Y(1) K(1) UTLITIES COZE PRODUCTION 0.00000 LB/HR 0.000000 LB/HR 0.0000000 LB/HR 0.000000 LB/HR 0.00000000000000000000000000000000000	FEED STREAMS CO2E 7.43964 LB/HR		V-L PHASE EQUILIBRIUM :
**** INPUT DATA *** AMMONIA 0.2921E-04 0.25433E-04 1.3533E-04 1.35227E STOICHDOMETRY MATXE: WATER 0.76787 0.8100E-01 0.38227E SUBSTREAM MIXED :	NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR		OXYGEN 0.27373E-01 0.53288E-04 0.92383 17337. NITROGEN 0.90944E-04 0.20364E-07 0.30745E-02
REACTION # 1: SUBSTREAM INED : WATER -1.00 NIACINAM 1.00 NICOT-01 -1.00 SUBSTREAM INED : NO PARTICIPATING COMPONENTS NIACINAM 0.10913E-02 0.39595E-04 0.35602E-01 89.17 0.18270 0.337062-06 0.20230E REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:NICOT-01 CONV FRAC: 0.9900 METDIAN 0.12827 0.18373E-02 0.17565E-02 0.44868E-02 2.5543 3-MET-01 0.16373E-02 0.17565E-02 0.44868E-02 2.5543 3-MET-01 0.1807E-02 0.18490E-02 0.21638E-03 0.11702 TWO PHASE TP FLASH SPECIFIED TEMPERATURE F 77.0000 PRESSURE DROP PSI 4.40000 MAXIMUM NO. ITERATIONS 30 GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO BLOCK: R-2028 MODEL: RSTOIC VERTER KEATION FOR FEED SPECIES NO WITET TEMPERATURE F 77.000 OUTLET TEMPERATURE F 0.000100000 SIMULTANEOUS REACTIONS FOR FEED SPECIES NO WATH REACTION BULLET STREAM: S-214 PROPERTY OPTION SET: NO DUT GENERGY BALANCE MODEL: RSTOIC VERTER REACTIONS FOR FEED SPECIES NO WITET TEMPERATURE F 77.000 OUTLET TEMPERATURE F 77.000 OUTLET TEMPERATURE F VAPOR FRACTION BULHR 14.730 OUTLET TEMPERATURE F 77.000 OUTLET TEMPERATURE F VAPOR FRACTION BULHR 0.29574E-01 OUTLET TEMPERATURE F 77.000 OUTLET TEMPERATURE F VAPOR FRACTION BULHR 0.29574E-01 OUTLET TEMESSURE PSIA 14.730 OUTLET STREAM SCOZE VAPOR FRACTION 0.29574E-01			AMMONIA 0.29921E-04 0.29171E-04 0.54533E-04 1.8694 WATER 0.78787 0.81094 0.31000E-01 0.38227E-
SUBSTREAM CIPSD ::::::::::::::::::::::::::::::::::::	SUBSTREAM MIXED :	00	CARBO-01 0.10913E-02 0.39595E-04 0.35602E-01 899.17 NIACINAM 0.17827 0.18370 0.37163E-06 0.20230E-
REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:NICOT-01 CONV FRAC: 0.9900 TWO PHASE TP FLASH SPECIFIED TEMPERATURE F SPECIFIED TEMPERATURE F MAXIMUM NO. ITERATIONS 30 CONVERGENCE TO LERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO *** RESULTS *** OUTLET TEMPERATURE F OUTLET TEMPERATURE F	SUBSTREAM CIPSD :	. 00	METDIAMI 0.20141E-06 0.19863E-06 0.29267E-06 1.4735 METHYLPI 0.18373E-02 0.17565E-02 0.44868E-02 2.5543 3-MET-01 0.16370E-02 0.16341E-02 0.17330E-02 1.0606
INLET STREAM:S-213 OUTLET STREAM:TWOPHASE TPFLASH SPECIFIED TEMPERATURE F77.000 4.40000PRESSURE DROPPSI4.40000 4.40000LFF.MAXIMUM NO. ITERATIONS30 CONVERGENCE TOLERANCE0.000100000CONVERGENCE TOLERANCE0.000100000DIFF. TOTAL BALANCE MOLICLABURGY BALANCEMAXIMUTANEOUS REACTIONS0.000100000GENERATE COMBUSTION REACTIONS FOR FEED SPECIESNOMAXINT NO. TITERATURE F77.000 0UTLET TEMPERATURE FOUTLET TEMPERATURE F77.000 0UTLET PRESSUREOUTLET TEMPERATURE F77.000 0UTLET PRESSUREOUTLET TEMPERATURE F77.000 0UTLET PRESSUREOUTLET TEMPERATURE F OUTLET PRESSURE PSIA77.000 14.730 14.730 HEAT DUTYHEAT DUTYBTU/HRVAPOR FRACTION0.29574E-01FEED STREAMS CO2E7.43964LB/HR	REACTION # 1:	9900	
SPECIFIED TEMPERATURE F77.000IN OUT GENERATIONPRESSURE DROPPSI4.4000DIFF.MAXIMUM NO. ITERATIONS30TOTAL BALANCECONVERCENCE TOLERANCE0.000100000MOLE(LBMOL/HR)154.898154.8980.00000SIMULTANEOUS REACTIONS0.000100000MOLE(LBMOL/HR)154.898154.8980.000000.183486ESIMULTANEOUS REACTIONS0.000100000MOLE(LBMOL/HR)154.898154.8980.000000.183486ESIMULTANEOUS REACTIONSFEED SPECIESNOMASS(LB/HR)5795.225795.220.156939E*** RESULTS ***15ENTHALPY(BTU/HR)-0.166135E+08-0.357740E04OUTLET TEMPERATURE F77.00014.73004*** CO2 EQUIVALENT SUMMARY ***OUTLET PRESSUREPSIA14.730*** CO2 EQUIVALENT SUMMARY ***HEAT DUTYBTU/HR-0.11279E+07*** CO2 EQUIVALENT SUMMARY ***VAPOR FRACTION0.29574E-01FEED STREAMS CO2E7.43964LB/HRPRODUCT STREAMS CO2E7.43964LB/HR			OUTLET STREAM: S-214
CONVERGENCE TOLERANCE 0.000100000 MOLE(LBMOL/HR) 154.898 154.898 0.00000 0.1834866 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO MASS(LB/HR) 5795.22 5795.22 0.1569396 *** RESULTS *** ** ENTHALPY(BTU/HR) -0.166135E+08 -0.357740E OUTLET TEMPERATURE F 77.000 14.730 0.29574E-01 0.29574E-01 *** CO2 EQUIVALENT SUMMARY *** -0.357740E VAPOR FRACTION BTU/HR -0.11279E+07 0.29574E-01 *** CO2 EQUIVALENT SUMMARY *** FED STREAMS CO2E 7.43964 LB/HR	SPECIFIED TEMPERATURE F PRESSURE DROP PSI	4.40000	DIFF.
GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO MASS(LB/HR 5795.22 5795.22 0.156939e *** RESULTS *** 15 OUTLET TEMPERATURE F 77.000 04 -0.357740e OUTLET TEMPERATURE F 77.000 04 -0.357740e OUTLET TEMPERATURE F 0.1279E+07 04 -0.357740e VAPOR FRACTION 0.29574E-01 FEED STREAMS CO2E 7.43964 LB/HR	CONVERGENCE TOLERANCE		MOLE(LBMOL/HR) 154.898 154.898 0.00000 0.183486E-
*** RESULTS *** ENTHALPY(BTU/HR -0.166135E+08 -0.357740E OUTLET F 77.000 04 -0.357740E -0.357740E OUTLET PRESSURE PSIA 14.730 -0.106135E+08 -0.357740E HEAT DUTY BTU/HR -0.11279E+07 *** C02 EQUIVALENT SUMMARY *** VAPOR FRACTION 0.29574E-01 FED STREAMS C02E 7.43964 LB/HR		NO	MASS(LB/HR) 5795.22 5795.22 0.156939E-
NET STREAMS COZE PRODUCTION 0.00000 LB/HR UTILITIES COZE PRODUCTION 0.00000 LB/HR TOTAL COZE PRODUCTION 0.00000 LB/HR	OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR	14.730 -0.11279E+07	ENTHALPY(BTU/HR) -0.166135E+08 -0.166129E+08 -0.357740E- 04 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR

*** INPUT DATA ***

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 76	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 77 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: R-202B MODEL: RSTOIC (CONTINUED) STOICHIOMETRY MATRIX:		BLOCK: R-202B MODEL: RSTOIC (CONTINUED) V-L PHASE EQUILIBRIUM :
REACTION # 1: SUBSTREAM MIXED : WATER 1.00 NIACINAM -1.00 NICOT-01 1 SUBSTREAM CIPSD : NO PARTICIPATING COMPONENTS	.00	V-L PHASE EQUILIBRIUM X(I) Y(I) K(I) OXYGEN 0.27373E-01 0.55167E-04 0.92503 16768. NITROGEN 0.90944E-04 0.21084E-07 0.30786E-02 0.14602E+06
REACTION # 2: SUBSTREAM MIXED :		AMMONIA 0.29921E-04 0.29224E-04 0.52848E-04 1.8084 WATER 0.78787 0.81093 0.29991E-01 0.36984E- 01
WATER -1.00 NIACINAM 1.00 NICOT-01 -1 SUBSTREAM CIPSD :	. 00	CARBO-01 0.10913E-02 0.40938E-04 0.35607E-01 869.77 NIACINAM 0.17827 0.18369 0.35976E-06 0.19585E-
NO PARTICIPATING COMPONENTS REACTION CONVERSION SPECS: NUMBER= 2 REACTION # 1: SUBSTREAM:MIXED KEY COMP:NIACINAM CONV FRAC: 1 REACTION # 2: SUBSTREAM:MIXED KEY COMP:NICOT-01 CONV FRAC: 0.		05 METDIAMI 0.20141E-06 0.19890E-06 0.28368E-06 1.4262 METHYLPI 0.18373E-02 0.17607E-02 0.43526E-02 2.4721 3-MET-01 0.16370E-02 0.16357E-02 0.16789E-02 1.0264 NICOT-01 0.18007E-02 0.18491E-02 0.20945E-03 0.11327 BLOCK: R-202C MODEL: RSTOIC
TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI	77.0000 _4.50000	*** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF.
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE SERIES REACTIONS	30 0.000100000	TOTAL BALANCE MOLE(LBMOL/HR) 154.898 154.898 0.00000 0.183486E- 15
GENERATE COMBUSTION REACTIONS FOR FEED SPECIES	NO	MASS(LB/HR) 5795.22 5795.22 0.156939E-
*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR VAPOR FRACTION REACTION EXTENTS:	77.000 15.230 594.33 0.29534E-01	15 ENTHALPY(BTU/HR) -0.166135E+08 -0.334953E- 04 *** CO2 EQUIVALENT SUMMARY *** -0.334953E- FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E 7.43964 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR

REACTION EXTENTS:

REACTION	REACTION
NUMBER	EXTENT
	LBMOL/HR
1	27.614
2	27.614

*** INPUT DATA ***

N	VER: 25.0 0 NIACIN PRODUCTION U-O-S BLOCK SECTION	3/27/2013 PAGE 78	ASPE	EN PLUS PLAT: WI	N) RODUCTION DCK SECTION	03/27/2	013 PAGE 79
BLOCK: R-202C MODEL: RSTOIC STOICHIOMETRY MATRIX:	C (CONTINUED)			CK: R-202C MODE		(CONTIN	IUED)		
SUBSTREAM CIPSD : NO PARTICIPATING COMPONENT	АМ -1.00 NICOT-01 1.00 TS			-L PHASE EQUILIBR COMP OXYGEN NITROGEN 137E+06 AMMONIA	F(I) 0.27373E- 0.90944E- 0.29921E-	-01 0 -04 0 -04 0	X(I)).57048E-04).21805E-07).29273E-04	Y(I) 0.92615 0.30826E-02 0.51264E-04	K(I) 16235.
REACTION # 2: SUBSTREAM MIXED : WATER -1.00 NIACINA SUBSTREAM CIPSD : NO PARTICIPATING COMPONENT			01 05	WATER CARBO-01 NIACINAM METDIAMI	0.78787 0.10913E- 0.17827 0.20141E-	-02 0 0 -06 0	0.81093 0.42280E-04 0.18369 0.19916E-06	0.29047E-01 0.35608E-01 0.34861E-06 0.27520E-06	0.35819E- 842.24 0.18980E- 1.3820
REACTION # 2:	NUMBER= 2 MP:NIACINAM CONV FRAC: 1.000 MP:NICOT-01 CONV FRAC: 0.9900		II Ol	METHYLPI 3-MET-01 NICOT-01 CK: SEP-201 MODE 	S-207 4: S-208 AM: S-210	-02 0 -02 0).17647E-02).16373E-02).18493E-02	0.42258E-02 0.16278E-02 0.20293E-03	2.3950 0.99434 0.10975
TWO PHASE TP FLASH SPECIFIED TEMPERATURE F PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE SERIES REACTIONS GENERATE COMBUSTION REACTION	NS FOR FEED SPECIES	77.0000 4.50000 30 0.000100000 NO		ROPERTY OPTION SET TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HF	*** MASS		98 154 22 579	*** OUT RE 898 -0 5.22 0	E LATIVE DIFF. .183486E-15 .156939E-15 .169258E-09
*** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR VAPOR FRACTION	RESULTS ***	77.000 15.730 556.47 0.29496E-01	F	FEED STREAMS CO2E PRODUCT STREAMS CO NET STREAMS CO2E F UTILITIES CO2E PRO TOTAL CO2E PRODUCT	D2E PRODUCTION DDUCTION	7.439	964 LB/HR 900 LB/HR 900 LB/HR		
REACTION EXTENTS: REACTION REACTIO NUMBER EXTENT LBMOL/H 1 27.614 2 27.614	HR 4		PF SF M/	WO PHASE PQ F RESSURE DROP PECIFIED HEAT DUTY AXIMUM NO. ITERATI ONVERGENCE TOLERAM	FLASH PSI Y BTU/HR LONS	ENPUT DA	ιτα ***	0.0 0.0 30 0.00	0100000

ASPI	EN PLUS PLAT: WI	NIACIN	5.0 PRODUCTION BLOCK SECTION	03/27/20	13 PAGE 80	ASP	EN PLUS	PLAT: WI	NIACI	25.0 N PRODUCTION BLOCK SECTION	03/27/20	013 PAGE 81
BLO	CK: SEP-201 MODE	EL: FLASH2 (CON	TINUED)			BLO	CK: SEP-	202 MODE	L: FLASH2 (CC	NTINUED)		
OL	UTLET TEMPERATURE UTLET PRESSURE APOR FRACTION	*** RESU F PSIA	'LTS ***	77.0 14.7 0.295		Pi Si M,	RESSURE D PECIFIED AXIMUM NO	SE PQ F PROP HEAT DUTY . ITERATI E TOLERAN	LASH PSI BTU/HR ONS	T DATA ***	0.0 0.0 42 0.000	0100000
V	-L PHASE EQUILIBRI	:UM :								ULTS ***	/	200
0 150	COMP OXYGEN NITROGEN 097E+06	F(I) 0.27373E-01 0.90944E-04	X(I) 0.53288E-04 0.20364E-07	Y(I) 0.92383 0.30745E-02	К(I) 17337.	0	UTLET TEM UTLET PRE APOR FRAC	SSURE	F PSIA		77.0 15.2 0.295	
0.130	AMMONIA WATER	0.29921E-04 0.78787	0.29171E-04 0.81094	0.54533E-04 0.31000E-01	1.8694 0.38227E-	V	-L PHASE	EQUILIBRI	UM :			
05	CARBO-01 NIACINAM	0.10913E-02 0.17827	0.39595E-04 0.18370	0.35602E-01 0.37163E-06	899.17 0.20230E-		COMP OXYGEN NITROGE	N	F(I) 0.27373E-01 0.90944E-04	X(I) 0.55167E-04 0.21084E-07	Y(I) 0.92503 0.30786E-02	K(I) 16768.
	METDIAMI METHYLPI 3-MET-01 NICOT-01	0.20141E-06 0.18373E-02 0.16370E-02 0.18007E-02	0.19863E-06 0.17565E-02 0.16341E-02 0.18490E-02	0.29267E-06 0.44868E-02 0.17330E-02 0.21638E-03	1.4735 2.5543 1.0606 0.11702	0.14	602E+06 AMMONIA WATER	L.	0.29921E-04 0.78787	0.29224E-04 0.81093	0.52848E-04 0.29991E-01	1.8084 0.36984E-
BLO	CK: SEP-202 MODE					05	CARBO-0 NIACINA		0.10913E-02 0.17827	0.40938E-04 0.18369	0.35607E-01 0.35976E-06	869.77 0.19585E-
OL OL	NLET STREAM: JTLET VAPOR STREAM JTLET LIQUID STREA ROPERTY OPTION SET	M: S-217	STANDARD RKS EC	QUATION OF STATE		05	METDIAM METHYLP 3-MET-0 NICOT-0	ч 1	0.20141E-06 0.18373E-02 0.16370E-02 0.18007E-02	0.19890E-06 0.17607E-02 0.16357E-02 0.18491E-02	0.28368E-06 0.43526E-02 0.16789E-02 0.20945E-03	1.4262 2.4721 1.0264 0.11327
			ENERGY BALANCE IN		ATIVE DIFF.	BLO	CK: SEP-	203 MODE	L: FLASH2			
-	TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HR	154 579	.898 15 5.22 57	54.898 0 795.22 0	.00000 .00000 183965E-09	0	UTLET LIQ	AM: OR STREAM UID STREA PTION SET	M: S-224	STANDARD RKS E	QUATION OF STATE	E
1 1 1	FEED STREAMS CO2E PRODUCT STREAMS CO NET STREAMS CO2E P JILITIES CO2E PRO TOTAL CO2E PRODUCT	7. PRODUCTION 0. DUCTION 0.	ALENT SUMMARY * 43964 LB/H 43964 LB/H 00000 LB/H 00000 LB/H 00000 LB/H	iR iR iR iR			MASS(L	ANCE BMOL/HR)	15 57	95.22 5	54.898 0 795.22 0	LATIVE DIFF. 0.00000 0.00000 .199391E-09

ASPEN PLUS PLAT: WIN32 VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 82	ASPEN PLUS PLAT: WIN32 VER: 25.0 03/27/2013 PAGE 83 NIACIN PRODUCTION U-O-S BLOCK SECTION
BLOCK: SEP-203 MODEL: FLASH2 (CONTINUED) *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 7.43964 LB/HR PRODUCT STREAMS CO2E 7.43964 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR *** INPUT DATA *** TWO PHASE PQ FLASH PRESSURE DROP PSI SPECIFIED HEAT DUTY BTU/HR	0.0 0.0	BLOCK: SP-201 MODEL: FSPLIT (CONTINUED) TOTAL BALANCE MOLE(LBMOL/HR) 94.8327 94.8327 0.00000 MASS(LB/HR) 1681.80 1681.80 0.135196E-15 ENTHALPY(BTU/HR) -0.890837E+07 -0.890837E+07 -0.209089E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 LB/HR PRODUCT STREAMS CO2E 0.00000 LB/HR NET STREAMS CO2E PRODUCTION 0.00000 LB/HR UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE *** RESULTS ***	30 0.000100000	*** INPUT DATA *** FRACTION OF FLOW STRM=S-202 FRAC= 0.98900
OUTLET TEMPERATURE F OUTLET PRESSURE PSIA VAPOR FRACTION	77.000 15.730 0.29496E-01	*** RESULTS *** STREAM= S-202 SPLIT= 0.98900 KEY= 0 STREAM-ORDER= 1 S-201 0.011000 0
V-L PHASE EQUILIBRIUM :		2
OXYGEN 0.27373E-01 0.57046E-04 NITROGEN 0.90944E-04 0.21804E-07 0.14138E+06	0.92615 16235. 0.30826E-02	INLET STREAM: S-317 OUTLET STREAMS: S-319 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
		*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
NIACINAM 0.17827 0.18369 05 METDIAMI 0.20141E-06 0.19916E-06	0.34864E-06 0.18980E- 0.27524E-06 1.3820	TOTAL BALANCE MOLE(LBMOL/HR) 1230.61 1230.61 0.00000 MASS(LB/HR) 22166.6 22166.6 -0.164120E-15 ENTHALPY(BTU/HR) -0.153794E+09 -0.153794E+09 -0.148026E-08
3-MET-01 0.16370E-02 0.16373E-02 NICOT-01 0.18007E-02 0.18493E-02	0.16280E-02 0.99434	*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.212006E-01 LB/HR PRODUCT STREAMS CO2E 0.212006E-01 LB/HR
INLET STREAM: S-118 OUTLET STREAMS: S-202 S-201	TTON OF STATE	UTILITIES CO2E PRODUCTION 0.00000 LB/HR TOTAL CO2E PRODUCTION 0.00000 LB/HR
V-L PHASE EQUILIBRIUM : 		

03/27/2013 PAGE 85

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION U-O-S BLOCK SECTION	03/27/2013 PAGE 84	ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION STREAM SECTION
BLOCK: SP-301 MODEL:	FSPLIT (CONTINUED)		SUBSTREAM A	TTR PSD TYPE: PSI	D
STREAM= S-319 1 S-318 2 BLOCK: SP-302 MODEL:	*** RESULTS *** SPLIT= 0.100000 KEY= 0.90000	0 STREAM-ORDER= 0	INTERVAL 1 2 3 4 5 6 7	LOWER LIMIT 0.0 FT 6.5617-05 FT 1.3123-04 FT 1.9685-04 FT 2.6247-04 FT 3.2808-04 FT 3.9370-04 FT	- UPPER LIMIT 6.5617-05 FT 1.3123-04 FT 2.6247-04 FT 3.2808-04 FT 3.9370-04 FT 4.5932-04 FT
INLET STREAM: OUTLET STREAMS: PROPERTY OPTION SET:	S-313 S-315 S-314 RK-SOAVE STANDARD RKS EQUATION	OF STATE	8 9 10	4.5932-04 FT 5.2493-04 FT 5.9055-04 FT	5.2493-04 FT 5.9055-04 FT 6.5617-04 FT
*** TOTAL BALANCE MOLE(LBMOL/HR) MASS(LB/HR) ENTHALPY(BTU/HR) *** FEED STREAMS CO2E PRODUCT STREAMS CO2E		RELATIVE DIFF. 0.00000 0.180689E-15 0.968382E-09			
NET STREAMS COZE PROD UTILITIES COZE PRODUC TOTAL COZE PRODUCTION	UCTION 0.00000 LB/HR TION 0.00000 LB/HR				
PRESSURE DROP PSI		10.0000			
FRACTION OF FLOW	STRM=S-314 FRAC= *** RESULTS ***	0.100000			
2	SPLIT= 0.90000 KEY=				
S-314 1	0.100000	0			

ASPEN PLUS PLAT: WI	NIA	: 25.0 CIN PRODUCT STREAM SECT		03/27/20	13 PAGE 86	ASPEN PLUS		NIA	R: 25.0 ACIN PRODUCT STREAM SECT		03/27/20)13 PAGE 87
S-101 S-102 S-103 S-1	04 S-105					s-101 s-102	S-103 S-	104 s-105 (d	CONTINUED)			
STREAM ID	s-101	S-102	s-103	s-104	s-105	STREAM ID		S-101	S-102	S-103	S-104	S-105
		P-101	M-101	HX-101	C-101	AMMONIA		$\begin{array}{c} 5-101\\ 0.0\\ 0.0\\ 0.0\\ 1.0000\\ 0.0\\ 0.0\\ 0.$	0.0		5.9810-22	
FROM : TO : CLASS:	P-101	M-101	HX-101	C-101	R-101	WATER		0.0	0.0	0.0	0.0	0.0
CLASS: TOTAL STREAM:	MIXCIPSD	MIXCIPSD				CARBO-01 NIACINAM		0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
LB/HR	3306.9340	3306.9340	3340.3368	3340.3368	3340.3368	METDIAMI		1.0000	1.0000	1.0000	1.0000	1.0000
BTU/HR	-2.0341+06	-2.0332+06	-2.0469+06	3340.3368 -5.7939+05	-5.2259+05	METHYLPI		0.0	0.0	9.3836-07		9.3836-07
SUBSTREAM: MIXED PHASE:	LIQUID	LIQUID	LIQUID	VAPOR	VAPOR	3-MET-01 NICOT-01		0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
COMPONENTS: LBMOL/HR		LIQUID	LIQUID	VAPUR	VAPUR	AMMONICO		0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	TOTAL FLOW:		0.0 28.4590 3306.9340 53.9515 77.0000 14.5038 0.0 1.0000 0.0 -7.1476+04 -615.1156 -2.0341+06	010			
HYDROGEN	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 28.4590\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	0.0	0.0	0.0	0.0	LBMOL/HR		28.4590	28.4590	28.7464 3340.3368	28.7464	28.7464 3340.3368
NITROGEN AMMONIA	0.0	0.0	0.0	0.0 1.1731-19	0.0			3306.9340	3306.9340 53.9621	3340.3368 54.6159	3340.3368 8642.4869	3340.3368 3915.2157
WATER	0.0	0.0	0.0	0.0	0.0	STATE VARIAE	BLES:	33.3313	JJ. 9021	J4.0133	0042.4009	5515.2157
CARBO-01	0.0	0.0	0.0	0.0	0.0	TEMP F		77.0000	77.3730	81.1415	527.0000	560.2087
NIACINAM	0.0	0.0	0.0	0.0	0.0	PRES PS1	IA	14.5038	43.5113	43.5113	33.5113	72.5189 1.0000
METDIAMI METHYLPI	28.4590	28.4590 0.0	28.7464 3.1607-05	28.7464 3.1607-05	28.7464 3.1607-05			0.0	0.0 1.0000	$0.0 \\ 1.0000$	1.0000 0.0	0.0
3-MET-01	0.0	0.0	0.0	0.0	0.0	SFRAC		0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	ENTHALPY:						
AMMONICO	0.0	0.0	0.0	0.0	0.0	BTU/LBMOL		1.0000 0.0 -7.1476+04 -615.1156 -2.0341+06	-7.1442+04	-7.1207+04	-2.0155+04	-1.8179+04
COMPONENTS: MOLE FRAC OXYGEN	0.0	0.0	0.0	0.0	0 0	BTU/LB BTU/HR		-7.1476+04 -615.1156 -2.0341+06 -222.0035 -1.9105 0.5275 61.2946 116.2000	-614.8194 -2 0332+06	-612.7958 -2.0469 ± 06	-1/3.4510 -5.7939 ± 05	-130.4484
			0.0	0.0	0.0	ENTROPY:		210311100	2.0332100	210105100	5.7555105	5.2255105
NITROGEN	0.0	0.0	0.0	0.0	0.0	BTU/LBMOL-	-R	-222.0035	-221.9648	-221.5284 -1.9064	-157.4434	-156.8990
AMMONIA WATER	0.0	0.0		4.0808-21	4.0808-21	BTU/LB-R		-1.9105	-1.9102	-1.9064	-1.3549	-1.3502
CARBO-01	0.0	0.0	0.0	0.0 0.0	0.0	I BMOL/CUFT	т	0.5275	0.5274	0.5263	3.3262-03	7.3422-03
NIACINAM	0.0	0.0	0.0	0.0	0.0	LB/CUFT	•	61.2946	61.2825	61.1605	3.3262-03 0.3865	0.8532
METDIAMI	1.0000	1.0000	1.0000	1.0000	1.0000	AVG MW		116.2000	116.2000	116.2000	116.2000	116.2000
METHYLPI 3-MET-01	0.0	0.0 0.0	1.0995-06 0.0	1.0995-06 0.0	1.0995-06							
NICOT-01	0.0	0.0	0.0	0.0	0.0							
AMMONICO	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.0000\\ 0.0\\ 0.$	0.0	0.0	0.0	0.0							
			0.0	0.0	0.0							
OXYGEN HYDROGEN	0.0	0.0	0.0	0.0 0.0	0.0							
NITROGEN	0.0	0.0	0.0	0.0	0.0							
AMMONIA	0.0	0.0	1.9978-18	1.9978-18	1.9978-18							
WATER	0.0	0.0	0.0	0.0	0.0							
CARBO-01 NIACINAM	0.0	0.0	0.0	0.0 0.0	0.0							
METDIAMI	3306.9340	3306.9340	3340.3337	3340.3337	3340.3337							
METHYLPI	0.0	0.0	3.1344-03	3.1344-03	3.1344-03							
3-MET-01 NICOT-01	0.0	0.0	0.0	0.0	0.0 0.0							
AMMONICO	0.0	0.0	0.0	0.0	0.0							
COMPONENTS: MASS FRAC												
OXYGEN	0.0	0.0	0.0	0.0	0.0							
HYDROGEN NITROGEN	$0.0 \\ 0.0$	$0.0 \\ 0.0$	0.0	0.0	0.0							
HI HOGEN	0.0	0.0	0.0	0.0	0.0							

ASPEN PLUS PLAT: WI	NIA	R: 25.0 ACIN PRODUCTION STREAM SECTION		03/27/201	3 PAGE 88	ASPEN PLUS		NIA	25.0 CIN PRODUCT STREAM SECT		03/27/20	013 PAGE 89
S-106 S-107 S-108 S-1	LO9 S-110					S-106 S-107	5-108 5-1					
STREAM ID	s-106	s-107 s	s-108	s-109	s-110	STREAM ID		s-106	S-107	S-108	S-109	s-110
FROM :	R-101		D-101	P-102	c-102	HYDROGEN		0.0 0.1451 0.0 0.0 9.9999-03 0.8449 0.0	0.0	0.0	0.0	0.0
то :	D-101		P-102	M-101	HX-102	NITROGEN		0.0	0.0	0.0	0.0	0.0
CLASS:	MIXCIPSE	D MIXCIPSD N	MIXCIPSD	MIXCIPSD	MIXCIPSD	AMMONIA		0.1451	0.1466 0.0	5.9811-20	5.9811-20	$0.1466 \\ 0.0$
MAX CONV. ERROR:	0.0	0.0 -9.2	1223-06	0.0	0.0	WATER CARBO-01		0.0	0.0	0.0	0.0	0.0
TOTAL STREAM:			1225 00	0.0	0.0	NIACINAM		0.0	0.0	0.0	0.0	0.0
LB/HR	3340.3528	3306.9499	33.4028	33.4028	3306.9499	METDIAMI		9.9999-03	1.0962-06	0.9999		1.0962-06
	-9.7465+05	-1.5017+06 -1.3	3787+04 ·	-1.3777+04 -	1.3141+06	METHYLPI 3-MET-01 NICOT-01 AMMONICO TOTAL FLOW: LBMOL/HR STATE VARIAE TEMP F PRES PSI VFRAC LFRAC SFRAC ENTHALPY: BTU/LBMOL- BTU/LBMOL- BTU/LBMOL- BTU/LBANCH BTU/LBANCH BTU/LBANCH BTU/LBANCH AVG MW		0.8449	0.8534	9.3838-05	9.3838-05	0.8534
SUBSTREAM: MIXED	VAPOR	VAPOR	MIXED			3-MET-01		0.0	0.0	0.0 0.0	0.0 0.0	$0.0 \\ 0.0$
PHASE: COMPONENTS: LBMOL/HR	VAPUK	VAPUK	MIXED	LIQUID	VAPUR			0.0	0.0	0.0	0.0	0.0
0.0.000	0.0	0.0	0.0	0.0	0.0	TOTAL FLOW:		0.0	0.0	0.0	0.0	0.0
HYDROGEN	0.0 0.0 28.4590 0.0 0.0 0.0 0.2875 28.4590 0.0	0.0	0.0	0.0	0.0	LBMOL/HR		57.2054	56.9179	0.2875	0.2875	56.9179
NITROGEN	0.0	0.0	0.0	0.0	0.0	LB/HR		3340.3528	3306.9499	33.4028		3306.9499
AMMONIA	28.4590	28.4590 1.1 0.0	1731-19	1.1731-19	28.4590	CUFT/HR	DI 56 -	8706.5292	2.9720+04	0.6761	0.6763	6847.9515
WATER CARBO-01	0.0	0.0	0.0	0.0	0.0		BLES:	581 0000	266 2846	402 3192	402.6851	393.1779
NIACINAM	0.0	0.0	0.0	0.0	0.0	PRES PSI	IA	71.6486	14.6959	402.3192 20.5459	43.5113	72.5189
METDIAMI	0.2875	3.1198-05	0.2874	0.2874	3.1198-05	VFRAC		1.0000	1.0000	1.2289-08	0.0	1.0000
METHYLPI	28.4590	28.4590 3.1	1607-05	3.1607-05	28.4590	LFRAC		0.0	0.0	1.0000	1.0000	0.0
3-MET-01	0.0	0.0	0.0	0.0	0.0	SFRAC		0.0	0.0	0.0	0.0	0.0
NICOT-01 AMMONICO	0.0 0.0		0.0 0.0	0.0	0.0	ENTHALPY:		1 7028.04	2 6284.04	4 7061.04	4 7027.04	2 2088-04
COMPONENTS: MOLE FRAC		0.0	0.0	0.0	0.0	BTU/LBMOL		-1.7038+04 -291.7791 -9.7465+05	-454,1038	-412.7500	-412,4590	-397.3751
		0.0	0.0	0.0	0.0	BTU/HR		-9.7465+05	-1.5017+06	-1.3787+04	-1.3777+04	-1.3141+06
HYDROGEN	0.0	0.0	0.0	0.0	0.0	ENTROPY:						
NITROGEN	0.0	0.0	0.0	0.0	0.0	BTU/LBMOL-	-R	-79.2776	-86.4713	-188.1311		-85.3726
AMMONIA WATER	0.4975	0.5000 4.0	0.0	4.0808-19	0.5000	BTU/LB-R		-1.35//	-1.4883	-1.6191	-1.6188	-1.4694
CARBO-01	0.0	0.0	0.0	0.0	0.0	I BMOL /CUFT	т	6.5704-03	1.9151-03	0.4252	0.4251	8.3117-03
NIACINAM	0.0	0.0	0.0	0.0	0.0	LB/CUFT		0.3837	0.1113	0.4252 49.4057	49.3902	0.4829
METDIAMI	5.0251-03	5.4812-07	0.9999	0.9999	5.4812-07	AVG MW		58.3923	58.1003	116.1981	116.1981	58.1003
METHYLPI	0.4975	0.5000 1.0	0995-04	1.0995-04	0.5000							
3-MET-01 NICOT-01	0.0	0.0	0.0 0.0	0.0	0.0							
AMMONICO	0.0	0.0 0.0 0.5000 4.0 0.0 0.0 5.4812-07 0.5000 1.0 0.0 0.0	0.0	0.0	0.0							
COMPONENTS: LB/HR	0.0	0.0	0.0	0.0	0.0							
OXYGEN	0.0 0.0 484.6719 0.0 0.0	0.0	0.0	0.0	0.0							
HYDROGEN	0.0	0.0	0.0	0.0	0.0							
NITROGEN AMMONIA	0.0 484.6719		0.0	0.0	0.0							
WATER	464.6719	0.0	0.0	0.0	484.6719 0.0							
CARBO-01	0.0	0.0	0.0	0.0	0.0							
NIACINAM	0.0		0.0	0.0	0.0							
METDIAMI	33.4033	0.0 3.6252-03 2822.2744 3.2 0.0	33.3997		3.6252-03							
METHYLPI	2822.2775	2822.2744 3.1		3.1344-03	2822.2744							
3-MET-01 NICOT-01	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0							
AMMONICO	0.0	0.0	0.0	0.0	0.0							
COMPONENTS: MASS FRAC												
OXYGEN	0.0	0.0	0.0	0.0	0.0							

ASPEN PLUS PLAT: WI	NIAG	: 25.0 CIN PRODUCT STREAM SECT	ION	03/27/203	L3 PAGE 92		ASPEN PLUS	PLAT: WI	N32 VEF NIA	R: 25.0 ACIN PRODUCT STREAM SECT		03/27/20	013 PAGE 93
S-116 S-117 S-118 S-1	.19 S-201					:	s-116 s-117	S-118 S-1	19 S-201 (0	CONTINUED)			
STREAM ID	s_116	S-117	S-118	s-119	s-201	:	STREAM ID		S-116	S-117	S-118	S-119	S-201
FROM : TO : CLASS:	P-103 MIXCIPSD	P-103 A-102 MIXCIPSD	A-102 SP-201 MIXCIPSD	A-101 M-201	SP-201 M-301 MIXCIPSD		AMMONIA WATER CARBO-01 NIACINAM		0.0 1.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.0000 0.0 0.0		6.9211-10 0.0 0.0 0.0	0.2856 0.7135 0.0 0.0
LB/HR BTU/HR SUBSTREAM: MIXED	1200.0000 -8.2594+06			2650.6425 1.0781+06			METDIAMI METHYLPI 3-MET-01		0.0 0.0 0.0	0.0 0.0 0.0	0.0 8.5464-08 8.4125-04	1.3677-06 1.0647-02 0.9894	0.0 8.5464-08 8.4125-04
PHASE: COMPONENTS: LBMOL/HR	LIQUID	LIQUID	MIXED	MIXED	MIXED		NICOT-01 AMMONICO		0.0 0.0	0.0 0.0	$0.0 \\ 0.0$	0.0	0.0 0.0
OXYGEN HYDROGEN NITROGEN AMMONIA WATER	0.0 0.0 0.0 0.0 66 6101	0.0 0.0 0.0 0.0 66.6101	0.0	0.0 7.6711-14 0.0 1.0772-07 0.0	$\begin{array}{c} 0.0\\ 1.6566-16\\ 0.0\\ 0.3103\\ 0.7327\end{array}$		TOTAL FLOW: LBMOL/HR LB/HR CUFT/HR STATE VARTAE	RLEST	66.6101 1200.0000 19.4761	66.6101 1200.0000 19.4862	94.8327 1681.8023 35.1089	28.4438 2650.6425 53.5694	1.0432 18.4998 0.3862
CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01	0.0 0.0 0.0 66.6101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.4494-06 1.5192-02	0.0 0.0 3.1198-05 0.2846	0.0 0.0 0.0 1.5943-08 1.6711-04		TEMP F PRES PSI VFRAC LFRAC SFRAC	IA	90.0000 15.0000 0.0 1.0000 0.0	90.9526 170.0000 0.0 1.0000 0.0	0.0 94.8327 1681.8023 35.1089 224.7170 170.0000 5.1152-06 1.0000 0.0 -9.3938+04 -5296.9162 -8.9084+06 -37.1520 -2.0949 2.7011 47.9024 17.7344	366.2599 40.0000 4.4361-07 1.0000 0.0	224.7170 170.0000 5.1152-06 1.0000 0.0
NICOT-01 AMMONICO COMPONENTS: MOLE FRAC OXYGEN	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	I	ENTHALPY: BTU/LBMOL BTU/LB BTU/HR		-1.2400+05 -6882.7988 -8.2594+06	-1.2397+05 -6881.2243 -8.2575+06	-9.3938+04 -5296.9162 -8.9084+06	3.7904+04 406.7394 1.0781+06	-9.3938+04 -5296.9162 -9.7992+04
HYDROGEN NITROGEN AMMONIA WATER	0.0 0.0 0.0 1.0000	$0.0 \\ 0.0 \\ 0.0 \\ 1.0000$	0.0	2.6969-15 0.0 3.7871-09 0.0	1.5880-16 0.0 0.2974 0.7024		ENTROPY: BTU/LBMOL- BTU/LB-R DENSITY:	-R	-40.3951 -2.2423	-40.3635 -2.2405	-37.1520 -2.0949	-71.4089 -0.7663	-37.1520 -2.0949
CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO	0.0 0.0 0.0 1.0000 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.0 0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 1.0968-06 \\ 1.0005-02 \\ 0.9900 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 1.5283-08\\ 1.6020-04\\ 0.0\\ 0.0 \end{array}$,	LBMOL/CUFT LB/CUFT AVG MW	Т	3.4201 61.6141 18.0153	3.4183 61.5820 18.0153	2.7011 47.9024 17.7344	0.5310 49.4806 93.1888	2.7011 47.9024 17.7344
OXYGEN HYDROGEN NITROGEN AMMONIA WATER CAPPO-01	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1200.0000 \\ 0.0 \end{array}$	0.0	$\begin{array}{c} 0.0\\ 3.0358-14\\ 0.0\\ 480.3873\\ 1200.0000\\ 0.0\\ 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 1.5464-13\\ 0.0\\ 1.8345-06\\ 0.0\\ 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 3.3394-16\\ 0.0\\ 5.2843\\ 13.2000\\ 0.0\\ 0.0\end{array}$								
METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MASS FRAC		$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0	3.6252-03	0.0 1.5811-06								
OXYGEN HYDROGEN NITROGEN	0.0 0.0 0.0	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0 1.8051-17 0.0	0.0 5.8341-17 0.0									

ASPEN PLUS PLAT: WI	NIA	: 25.0 CIN PRODUCT STREAM SECT	ION	03/27/20	13 PAGE 94	ASF	EN PLUS	PLAT: WI	NIA	25.0 CIN PRODUCT STREAM SECT	ION	03/27/20	013 PAGE 95
S-202 S-203 S-203A S-	-204 s-205								-204 s-205 (
STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR SUBSTPEAM: MTYED	s_202	s_203	s_203A	s_204	s_205	STF A V C N N N S S T O T C S T A T O S T A C S S T A C S S T A C S S T A C S S T A C S S T A S S T O T O T O S S T A S S S S S S S S S S S S S S S S	EAM ID		S-202	s-203	S-203A	s-204	s-205
FROM :	SP-201	HX-201	M-201		R-201	A	MMONIA		0.2856	0.1101	0.1101	0.0	1.3620-05
то :	M-201	R-201	HX-201	R-201	HX-202A	Ň	ATER		0.7135	0.2751	0.2751	0.0	0.4652
CLASS:	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	C	ARBO-01		0.0	0.0	0.0	0.0	1.2837-03
TOTAL STREAM:						N	IACINAM		0.0	0.0	0.0	0.0	0.0
LB/HR	1663.3024	4313.9450	4313.9450	1481.4509	5795.3959	N	ETDIAMI		0.0	8.4034-07	8.4034-07	0.0	6.2553-07
BTU/HR	-8.8104+06	-5.1319+06	-7.7323+06	-444.5190	-1.1013+07	N	ETHYLPI		8.5464-08	6.5422-03	6.5422-03	0.0	4.8699-03
SUBSTREAM: MIXED	MIXED		MTYED	VADOD		1	-MEI-UI		8.4125-04	0.6082	0.6082	0.0	4.0/4/-03
PHASE: COMPONENTS: LBMOL/HR	MIXED	VAPOR	MIXED	VAPOR	VAPOR	P A			0.0	0.0	0.0	0.0	0.5011
		0 0	0 0	46 2971	4 2400	- דסד			0.0	0.0	0.0	0.0	0.0
HYDROGEN	1.4894-14	9.1605-14	9.1605-14	0.0	0.0		BMOL/HR		93,7895	122,2333	122,2333	46,2971	182.5118
NITROGEN	0.0	0.0	0.0	0.0	1.4087-02	Ĺ	B/HR		1663.3024	4313.9450	4313.9450	1481.4509	5795.3959
AMMONIA	27.8971	27.8971	27.8971	0.0	4.6348-03	Ċ	UFT/HR		34.7227	4.7201+04	1287.3168	6748.4266	7.2571+04
WATER	65.8774	65.8774	65.8774	0.0	149.6534	STA	TE VARIAE	BLES:					
CARBO-01	0.0	0.0	0.0	0.0	0.1690	1	EMP F		224.7170	626.0000	158.8554	77.0000	626.0000
NIACINAM	0.0	0.0	0.0	0.0	0.0	F	RES PS1	IA	170.0000	30.0000	40.0000	39.4503	29.1298
METDIAMI	0.0	3.1198-05	3.1198-05	0.0	3.1198-05	N. N.	FRAC		5.1152-06	1.0000	6.0995-02	1.0000	1.0000
METHYLPI 3-MET-01	1.4334-06	0.2846	0.2846	0.0	0.2846	L	FRAC		1.0000	0.0	0.9390	0.0	0.0
NICOT-01	1.3023-02	20.1/42	20.1/42	0.0	27 8025				0.0	0.0	0.0	0.0	0.0
AMMONICO	$\begin{array}{c} 0.0\\ 1.4894-14\\ 0.0\\ 27.8971\\ 65.8774\\ 0.0\\ 0.0\\ 0.0\\ 1.4334-06\\ 1.5025-02\\ 0.0\\ 0.0\\ \end{array}$	0.0	0.0	0.0	0.0	ENT			-9 3938+04	$-4 1985 \pm 04$	-63258+04	-9 6014	-6 0343+04
COMPONENTS: MOLE FRAC		0.0	0.0	0.0	0.0	Ē	TU/LB		-5296.9162	-1189.6179	-1792.3860	-0.3001	-1900.3591
OXYGEN	0.0	0.0	0.0	1.0000	2.3232-02	E	TU/HR		-8.8104+06	-5.1319+06	-7.7323+06	-444.5190	-1.1013+07
HYDROGEN	1.5880-16	7.4943-16	7.4943-16	0.0	0.0	ENT	ROPY:						
NITROGEN	0.0	0.0	0.0	0.0	7.7185-05	E	TU/LBMOL-	-R	-37.1520	-15.0794	-45.0383	-1.9758	-3.7817
AMMONIA	0.2974	0.2282	0.2282	0.0	2.5394-05	E	TU/LB-R		-2.0949	-0.4273	-1.2761	-6.1746-02	-0.1191
WATER	0.7024	0.5389	0.5389	0.0	0.8200	DEN	SITY:	-	2 7011	2 5806 02	0 4052 02	C 8C04 03	2 5140 02
CARBO-01 NIACINAM	0.0	0.0	0.0	0.0	9.2621-04	L		I	47 0024	2.3890-03	9.4952-02	0.0004-03	2.5149-03
METDIAMI	0.0	2 5523-07	2 5523-07	0.0	1 7093-07		MW		17 7344	35 2927	35 2927	31 9988	31 7535
METHYLPI	1.5283-08	2.3282-03	2.3282-03	0.0	1.5593-03	AIC	1-100		11.7511	55.2527	5512527	51.5500	51.7555
3-MET-01	1.6020-04	0.2305	0.2305	0.0	1.3893-03								
NICOT-01	0.0	0.0	0.0	0.0									
AMMONICO	0.0	0.0	0.0	0.0	0.0								
COMPONENTS: MOLE FRAC OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: LB/HR OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01				4 4 9 4 4 5 9 9	435 6763								
OXYGEN	0.0	0.0	0.0	1481.4509	135.6/63								
HYDROGEN	3.0024-14	1.8466-13	1.8466-13	0.0 0.0	0.0 0.3946								
	475 1030	475 1031	475 1031	0.0	7.8933-02								
WATER	1186 8000	1186 8000	1186 8000	0.0	2696.0476								
CARBO-01	0.0	0.0	0.0	0.0	7.4396								
NIACINAM	0.0	0.0	0.0	0.0	7.4396								
METDIAMI	0.0	3.6252-03	3.6252-03	0.0	3.6252-03								
METHYLPI	1.4215-04	28.2227	28.2227	0.0	28.2227 23.6143								
3-MET-01	1.3993	2623.8156	2623.8156	0.0									
NICOT-01	0.0	0.0	0.0	0.0	2903.9180								
COMPONENTS: LB/HR OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MASS FRAC	0.0	0.0	0.0	0.0	0.0								
OXYGEN					2.3411-02								
HYDROGEN	1.8051-17	4.2806-17	0.0 4.2806-17	0.0	0.0								
NITROGEN	0.0	0.0	0.0	0.0 0.0	6.8093-05								

ASPEN PLUS	PLAT:	WIN32 VER NIA	R: 25.0 ACIN PRODUCT STREAM SECT	ΓΙΟΝ ΓΙΟΝ	03/27/201	3 PAGE 96	ASPEN PLUS S-206 S-206A STREAM ID AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO TOTAL FLOW: BMOL/HR LB/HR CUFT/HR STATE VARIAB TEMP F PRES PSI VFRAC LFRAC SFRAC ENTHALPY: BTU/LBMOL BTU/LB BTU/LB BTU/LBR DENJIY: LBMOL/CUFT LB/CUFT AVG MW	PLAT:	WIN32 VE NI	R: 25.0 ACIN PRODUCT STREAM SECT	TION TION	03/27/20	13 PAGE 97
	a s-207	S-208 S-209					S-206 S-206A	s-207	S-208 S-209	(CONTINUED)			
		s-206	S-206A	s-207	5-208	s-209	STREAM ID		s-206	S-206A	s-207	s-208	s-209
FROM :		S-206 HX-202B R-202A MIXCIPSI	HX-202A	R-202A	SEP-201	в-201	AMMONIA		1.3620-05	1.3620-05	1.3620-05	2.8662-05	2.8662-05
TO :		R-202A	HX-202B	SEP-201	B-201	M-202	WATER		0.4652	0.4652	0.3794	1.7235-02	1.7235-02
CLASS: TOTAL STREAM	.	MIXCIPSI	D MIXCIPSE) MIXCIPSD	MIXCIPSD	MIXCIPSD			1.2837-03	1.2837-03	1.2838-03	4.8356-02	4.8356-02
LB/HR	···	5795.3959	5795.3959	5795.2158	148.4361	148.4361	METDIAMI		6.2553-07	6.2553-07	6.2554-07	1.0495-06	1.0495-06
BTÚ/HR		5795.3959 -1.5485+07	-1.5390+07	-1.6613+07	-4.2756+04 -	3.6942+04	METHYLPI		4.8699-03	4.8699-03	4.8700-03	1.3732-02	1.3732-02
	MIXED	MTVED	MENED	MEYED			3-MET-01		4.0747-03	4.0747-03	4.0748-03	4.9809-03	4.9809-03
PHASE: COMPONENTS:		MIXED	MIXED	MIXED	VAPOR	VAPOR			0.5011		5.0109-03	0.9522-04	0.9522-04
OXYGEN	EDHOL/	4.2400	4.2400	4.2400	4.2320	4.2320	TOTAL FLOW:		0.0	0.0	0.0	0.0	0.0
HYDROGEN		0.0	0.0	0.0	0.0	0.0	LBMOL/HR		182.5118	182.5118	154.8983	4.5810	4.5810
NITROGEN AMMONIA		1.4087-02	1.4087-02	1.4087-02	1.4084-02	1.4084-02			5795.3959	5795.3959	5795.2158	148.4361	148.4361
WATER		149.6534	149.6534	122.0399	0.1420	0.1420	STATE VARTAR	I FS:	1437.4033	1243.1048	1003.0330	1/09.2937	1094.1085
CARBO-01		0.1690	0.1690	0.1690	0.1631	0.1631	TEMP F		77.0000	100.0000	77.0000	77.0000	249.4160
NIACINAM		0.0	0.0	27.6135	1.7024-06	1.7024-06	PRES PSI	A	19.1298	24.1298	14.7298	14.7298	31.8503
METDIAMI METHYLPI		3.1198-05	3.1198-05	3.1198-05	1.3407-06	1.3407-06	VFRAC		2.4904-02	2.5426-02	2.95/4-02	1.0000	1.0000
3-MET-01		0.2536	0.2536	0.2536	7.9390-03	7.9390-03	SFRAC		0.0	0.0	0.0	0.0	0.0
NICOT-01		27.8925	27.8925	0.2789	9.9121-04	9.9121-04	ENTHALPY:						
AMMONICO		0.0	0.0	0.0	0.0	0.0	BTU/LBMOL		-8.4846+04	-8.4324+04	-1.0725+05	-9333.3538	-8064.2282
COMPONENTS: OXYGEN	MOLE F	RAC 2.3232-02 0.0 7.7185-05 2.5394-05 0.8200 9.2621-04 0.0 1.7093-07 1.5593-03 1.3893-03 0.1528 0.0	2 3232-02	2 7373-02	0 9238	0 9238	BIU/LB BTU/HR		-26/2.00/8	-2655.5837 $-1 5390\pm07$	-2866.6394 -1 6613 \pm 07	-288.0411 -4.2756 ± 04	-248.8740
HYDROGEN		0.0	0.0	0.0	0.0	0.0	ENTROPY:		1.5405407	1.5550+07	1.0015+07	4.2750+04	5.0542404
NITROGEN		7.7185-05	7.7185-05	9.0944-05	3.0745-03	3.0745-03	BTU/LBMOL-	R	-38.1308	-37.1920	-52.1945	-0.4678	5.0892-02
AMMONIA WATER		2.5394-05	2.5394-05	2.9921-05	5.4533-05	5.4533-05	BTU/LB-R		-1.2008	-1.1713	-1.3951	-1.4437-02	1.5706-03
CARBO-01		9.2621-04	9.2621-04	1.0913-03	3.5602-02	3.5602-02	I BMOL/CUFT	-	0.1252	0.1466	8.3027-02	2.5602-03	4.1869-03
NIACINAM		0.0	0.0	0.1783	3.7163-07	3.7163-07	LB/CUFT		3.9765	4.6545	3.1063	8.2958-02	0.1357
METDIAMI		1.7093-07	1.7093-07	2.0141-07	2.9267-07	2.9267-07	AVG MW		31.7535	31.7535	37.4130	32.4028	32.4028
METHYLPI 3-MET-01		1 3893-03	1.5593-03	1.83/3-03	4.4868-03	4.4868-03							
NICOT-01		0.1528	0.1528	1.8007-03	2.1638-04	2.1638-04							
AMMONICO		0.0	0.0	0.0	0.0	0.0							
COMI ONLINI J.	LB/HR	125 6762	125 6762	125 6762	125 4200	125 4200							
OXYGEN HYDROGEN		135.0703	135.6/63	135.6763	135.4200	135.4200							
NITROGEN		0.3946	0.3946	0.3946	0.3945	0.3945							
AMMONIA		7.8933-02	7.8933-02	7.8933-02	4.2545-03	4.2545-03							
WATER CARBO-01		2696.0476	2696.0476	2198.5821	2.5583	2.5583							
NIACINAM		7.4396	7.4396	7.4390	2 0790-04	2 0790-04							
METDIAMI		3.6252-03	3.6252-03	3.6252-03	2.0790-04 1.5579-04 2.0383 0.7393	1.5579-04							
METHYLPI		28.2227	28.2227	28.2227	2.0383	2.0383							
3-MET-01 NICOT-01		23.0143	23.6143 2903.9180	23.6143 29.0392	0.7393 0.1032	0.7393 0.1032							
AMMONICO		0.0	0.0	0.0	0.1032	0.0							
COMPONENTS:		RAC											
OXYGEN		2.3411-02	2.3411-02	2.3412-02	0.9123	0.9123							
HYDROGEN NITROGEN		2.3411-02 0.0 6.8093-05	0.0	0.0	0.0 2.6580-03	0.0							
NTIKUGEN		0.0095-05	0.0095-05	0.0030-03	2.0300-03	2.0300-03							

ASPEN PLUS PLAT: WI	NIA	: 25.0 CIN PRODUCT STREAM SECT	ION	03/27/202	13 PAGE 98	ASPEN PLUS	PLAT:	WIN32 VI	ER: 25.0 IACIN PRODUC STREAM SEC	TION	03/27/20	013 PAGE 99
s-210 s-211 s-212 s-2	213 S-214					s-210 s-211	S-212	s-213 s-214	(CONTINUED)			
STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR SUBSTREAM: MIXED PHASE: COMPONENTS: LBMOL/HR OXYGEN MYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MOLE FRAC OXYGEN MUTROGEN MITROGEN MITROGEN MITROGEN MITROGEN AMMONICO COMPONENTS: LB/HR OXYGEN STREAM: LB/HR	s_210	s-211	s-212	s-213	s-214	STREAM ID		S-210	S-211	S-212	S-213	S-214
FROM :	SEP-201	P-201	M-202	HX-203	R-202B	AMMONIA		1.3225-0	5 1.3225-05	1.3620-05	1.3620-05	1.3620-05
то :	P-201	M-202	HX-203	r-202b	SEP-202	WATER		0.388	0.3889	0.3794	0.3794	0.3794
CLASS:	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	CARBO-01		4.6387-0	4.6387-05	1.2838-03	1.2838-03	1.2838-03
TOTAL STREAM:	FC4C 7700	FC4C 7700	5705 2150	5705 2150	5705 2150	NIACINAM		0.597	2 0.5972	0.5819	0.5819	0.5819
	5646.7798	5646.7798	5/95.2158	5/95.2158	5/95.2158	METUVIDI		6.1440-0	6.1440-07	6.2554-07	6.2554-07	6.2554-07
	-1.03/0+0/	-1.0309+07	-1.0000+07	-1.0013+07	-1.0013+07			4.0571-0	2 4.0571-05 2 4.0510_03	4.8700-03	4.8700-03	4.8700-05
DUASE.			MTYED	MTYED	MIVED			5 12/3-0	5 4.0310-03 5 12/3-03	5 0109-03	5 0100-03	5 0109-03
COMPONENTS' I BMOL/HR	LIQUID	LIQUID	MIXED	MIXED	MIXED			0.0	0 0	0.0	0.0	0.0
OXYGEN	8 0101-03	8 0101-03	4 2400	4 2400	4 2400	TOTAL FLOW		0.0	0.0	0.0	0.0	0.0
HYDROGEN	0.0101 05	0.0	0.0	0.0	0.0	LBMOL/HR		150.317	150.3174	154.8983	154.8983	154.8983
NITROGEN	3.0611-06	3.0611-06	1.4087-02	1.4087-02	1.4087-02	LB/HR		5646.779	5646.7798	5795.2158	5795.2158	5795.2158
AMMONIA	4.3849-03	4.3849-03	4.6348-03	4.6348-03	4.6348-03	CUFT/HR		76.338	L 76.3426	946.9293	1397.6407	1804.4997
WATER	121.8978	121.8978	122.0399	122.0399	122.0399	STATE VARIA	BLES:					
CARBO-01	5.9518-03	5.9518-03	0.1690	0.1690	0.1690	TEMP F		77.000) 77.1252	78.9689	77.0000	77.0000
NIACINAM	27.6135	27.6135	27.6135	27.6135	27.6135	PRES PS1	IA	14.729	3 29.7298	29.7298	19.7298	15.2298
METDIAMI	2.9857-05	2.9857-05	3.1198-05	3.1198-05	3.1198-05	VFRAC		0.0	0.0	2.8952-02	2.9258-02	2.9534-02
METHYLPI	0.2640	0.2640	0.2846	0.2846	0.2846	LFRAC		1.000	1.0000	0.9/10	0.9707	0.9705
3-MEI-UI	0.2456	0.2456	0.2536	0.2530	0.2550	SFRAC		0.0	0.0	0.0	0.0	0.0
	0.2779	0.2779	0.2789	0.2789	0.2769			1 1022.0	1 1022.05	1 0721.05	1 0725.05	1 0725-05
COMPONENTS MOLE ERAC	- 0.0	0.0	0.0	0.0	0.0	BTU/LBMOL		-2934 422	5 -2934 2957	-2865 5125	-2866 7578	-2866 6553
OXYGEN	5 3288-05	5 3288-05	2 7373-02	2 7373-02	2 7373-02	BTU/HR		-1 6570+0	7 -1 6569 + 07	-1.6606 ± 07	-1 6613+07	-1.6613 ± 07
HYDROGEN	0.0	0.0	0.0	0.0	0.0	ENTROPY:		1.057010	1.0505107	1.0000107	1.0015107	1.0015107
NITROGEN	2.0364-08	2.0364-08	9.0944-05	9.0944-05	9.0944-05	BTU/LBMOL-	-R	-53.770	-53.7656	-52.1603	-52.2210	-52.1977
AMMONIA	2.9171-05	2.9171-05	2.9921-05	2.9921-05	2.9921-05	BTU/LB-R		-1.431	-1.4312	-1.3942	-1.3958	-1.3952
WATER	0.8109	0.8109	0.7879	0.7879	0.7879	DENSITY:						
CARBO-01	3.9595-05	3.9595-05	1.0913-03	1.0913-03	1.0913-03	LBMOL/CUF1	Г	1.969	L 1.9690	0.1636	0.1108	8.5840-02
NIACINAM	0.1837	0.1837	0.1783	0.1783	0.1783	LB/CUFT		73.970	5 73.9663	6.1200	4.1464	3.2115
METDIAMI	1.9863-07	1.9863-07	2.0141-07	2.0141-07	2.0141-07	AVG MW		37.565	37.5657	37.4130	37.4130	37.4130
METHYLPI	1.7565-03	1.7565-03	1.83/3-03	1.83/3-03	1.83/3-03							
3-MEI-UI	1.6341-03	1.6341-03	1.63/0-03	1.63/0-03	1.63/0-03							
	1.8490-05	1.8490-05	1.8007-05	1.8007-05	1.8007-05							
COMPONENTS: LB/HR	0.0	0.0	0.0	0.0	0.0							
OXYGEN	0.2563	0.2563	135.6763	135.6763	135.6763							
HYDROGEN	0.0	0.0	0.0	0.0	0.0							
NITROGEN	8.5752-05	8.5752-05	0.3946	0.3946	0.3946							
OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 2-MET-01	7.4678-02	7.4678-02	7.8933-02	7 8933-02	7.8933-02							
WATER	2196.0238	2196.0238	2198.5821 7.4396 3372.1643	2198.5821	2198.5821							
CARBO-01	0.2619	0.2619	7.4396	7.4396	7.4396							
NIACINAM	3372.1641	3372.1641	3372.1643	3372.1643	3372.1643							
METDIAMI	3.4694-03	3.4694-03	3.6252-03	3.6252-03	3.6252-03							
METHYLPI	26.1844 22.8750	26.1844	28.2227	3.6252-03 28.2227 23.6143	28.2227							
J-MEI-UI	28.9360	22.8750 28.9360	29.0392	29.0392	29.0392							
NICOT-01 AMMONICO	28.9360	28.9360	29.0392	29.0392	29.0392							
COMPONENTS: MASS FRAC		0.0	0.0	0.0	0.0							
OXYGEN	4.5391-05	4.5391-05	2.3412-02	2.3412-02	2.3412-02							
HYDROGEN	0.0	0.0	0.0	0.0	0.0							
NITROGEN	1.5186-08	1.5186-08	6.8096-05	0.0 6.8096-05	6.8096-05							

STREM D 5-215 5-216 5-217 5-218 5-219 PROM SEP-200 SEP-200 SEP-200 F-200 H-200 M-200 M-	ASPEN PLUS PLAT: W	NIA	: 25.0 CIN PRODUCT STREAM SECT	ION	03/27/20	13 PAGE 100	ASPEN PLUS	PLAT:	NIA	R: 25.0 ACIN PRODUCT STREAM SECT		03/27/20	013 PAGE 10
STREAM ID 5-215 6-216 5-217 5-218 5-219 PROM: SEP202 P-303 SEP202 P-304 M-204 MANDILL 2.7775-66 2.7775-66 2.3248-05 1.4280-05 1.43520-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5350-05 4.5420-05 4.5240-05 4.5240-05 4.5240-05 4.5240-05 4.5240-05 4.5248-05 5.1248-05 5.1248-05 5.1248-05 5.1248-05	s-215 s-216 s-217 s-2	218 S-219					S-215 S-216	S-217	s-218 s-219 (0	CONTINUED)			
TOTAL STREAM: LTVM, 442,2402 148,2402 6646,9756 5646,9756 7595,2158 NLACINAM 1.3558-06 1.3558-06 1.3578-00 7.05972 0.5372 SUBSTREAM: MIXED VAPOR 4.2318 4.2318 6.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.8250-03 4.0551-03 4.0551-03 4.0551 SUBSTREAM: MIXED A.2318 4.2318 8.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.0551-03 4.05	STREAM TO	s-215	s-216	s-217	s-218	s_219	STREAM ID		S-215	S-216	S-217	S-218	S-219
TOTAL STREAM: LTVM, 442,2402 148,2402 6646,9756 5646,9756 7595,2158 NLACINAM 1.3558-06 1.3558-06 1.3578-00 7.05972 0.5372 SUBSTREAM: MIXED VAPOR 4.2318 4.2318 6.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.8250-03 4.0551-03 4.0551-03 4.0551 SUBSTREAM: MIXED A.2318 4.2318 8.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.0551-03 4.05	FROM :	SEP-202	в-202			M-203	AMMONIA		2.7775-05	2.7775-05	1.3249-05	1.3249-05	1.3620-05
TOTAL STREAM: LTVM, 442,2402 148,2402 6646,9756 5646,9756 7595,2158 NLACINAM 1.3558-06 1.3558-06 1.3578-00 7.05972 0.5372 SUBSTREAM: MIXED VAPOR 4.2318 4.2318 6.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.8250-03 4.0551-03 4.0551-03 4.0551 SUBSTREAM: MIXED A.2318 4.2318 8.2929-03 6.2929-03 4.2400 3-MET-01 4.8250-03 4.0551-03 4.05	то :	B-202	M-203	P-202		HX-204	WATER		1.6674-02	1.6674-02	0.3889	0.3889	0.3794
TOTAL STEEAN: HT/LB - 442.2402 HT/LB - 442.2402 TOTAL STEEAN: HT/LB - 442.2402 HT/LB - 444.2402 HT/LB - 444.2402	CLASS:	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	CARBO-01		4.8359-02	4.8359-02	4.7961-05	4.7961-05	1.2838-03
OYGEN 4.2318 4.2318 4.2329 8.2329-03 4.2400 TOTAL FLOW: MYDROGEN 1.4084-02 1.4084-02 1.4084-03 1.694-06 1.4087-02 1.4084-02	TOTAL CTDEAM.						NIACINAM		1.3558-06	1.3558-06	0.5972	0.5972	0.5819
OXYGEN 4.2318 4.2329 8.2929-03 4.2400 TOTAL FLOW: HYDROGEN 0.0 <td< td=""><td>LB/HR</td><td>148.2402</td><td>148.2402</td><td>5646.9756</td><td>5646.9756</td><td>5795.2158</td><td>METDIAMI</td><td></td><td>1.0173-06</td><td>1.0173-06</td><td>6.1526-07</td><td>6.1526-07</td><td>6.2554-07</td></td<>	LB/HR	148.2402	148.2402	5646.9756	5646.9756	5795.2158	METDIAMI		1.0173-06	1.0173-06	6.1526-07	6.1526-07	6.2554-07
CXYCREN 4.2318 4.2329 8.2929-03 4.2400 TOTAL FLOW: HYDROGEN 0.0 <t< td=""><td>BTU/HR</td><td>-4.2211+04</td><td>-3.7111+04</td><td>-1.6571+07</td><td>-1.6570+07</td><td>-1.6607+07</td><td>METHYLPI</td><td></td><td>1.3321-02</td><td>1.3321-02</td><td>4.6482-03</td><td>4.6482-03</td><td>4.8700-03</td></t<>	BTU/HR	-4.2211+04	-3.7111+04	-1.6571+07	-1.6570+07	-1.6607+07	METHYLPI		1.3321-02	1.3321-02	4.6482-03	4.6482-03	4.8700-03
OXYGEN 4.2318 4.2329 8.2929-03 4.2400 TOTAL FLOW: HYDROGEN 0.0 <td< td=""><td>SUBSIREAM: MIXED</td><td></td><td></td><td></td><td></td><td></td><td>3-MET-01</td><td></td><td>4.8250-03</td><td>4.8250-03</td><td>4.0551-03</td><td>4.0551-03</td><td>4.0/48-03</td></td<>	SUBSIREAM: MIXED						3-MET-01		4.8250-03	4.8250-03	4.0551-03	4.0551-03	4.0/48-03
OXYGEN 4.2318 4.2318 4.2329-03 4.2400 TOTAL FLOW: HYDBOGEN 0.0 <td< td=""><td></td><td></td><td>VAPOR</td><td>LIQUID</td><td>LIQUID</td><td>MIXED</td><td>NICOI-UI</td><td></td><td>6.7293-04</td><td>6.7293-04</td><td>5.1248-03</td><td>5.1248-03</td><td>5.0109-03</td></td<>			VAPOR	LIQUID	LIQUID	MIXED	NICOI-UI		6.7293-04	6.7293-04	5.1248-03	5.1248-03	5.0109-03
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8407-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 0.354.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIECTVLPI 1.5080-04 1.6744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.9747 2.62481 28.2227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 OXYGEN 0.9135 <td></td> <td>1 2210</td> <td>1 2210</td> <td>e 2020 02</td> <td>° 2020 02</td> <td>4 2400</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>		1 2210	1 2210	e 2020 02	° 2020 02	4 2400			0.0	0.0	0.0	0.0	0.0
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8407-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 0.0 OXYGEN 135.4110 0.354110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 MAMONIA 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2.196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACTNAM 2.0098-04 2.0098-04 3.4744-03 3.472.1641 3372.1641 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 2.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS:		4.2310	4.2310	0.2929-05	0.2929-05	4.2400			1 5717	4 5747	150 3236	150 3236	15/ 8083
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8407-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 0.0 OXYGEN 135.4110 0.354110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 MAMONIA 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2.196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACTNAM 2.0098-04 2.0098-04 3.4744-03 3.472.1641 3372.1641 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 2.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS:	NTTROGEN	1 4084-02	1 4084-02	3 1694-06	3 1694-06	1 4087-02			148 2402	148 2402	5646 9756	5646 9756	5795 2158
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0	AMMONIA	2.4176-04	2.4176-04	4.3930-03	4.3930-03	4.6348-03	CUFT/HR		1728.1584	1117.7900	76.3413	76.3458	931.7176
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4815-02 7.8933-02 WATER 2.4717 2.4718 0.2708 7.4706 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4396 NIACINAM 2.0098-04 2.0098-04 3.072.1641 3372.1641 3372.1643 METHYLPI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 1.6143 METHYLPI 1.9747 1.62.481 26.2481 28.227 3.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 3.6143	WATER	0.1372	0.1372	121.9027	121.9027	122.0399	STATE VARIA	BLES:					
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4815-02 7.8933-02 WATER 2.4717 2.4718 0.2708 7.4706 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4396 NIACINAM 2.0098-04 2.0098-04 3.072.1641 3372.1641 3372.1643 METHYLPI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 1.6143 METHYLPI 1.9747 1.62.481 26.2481 28.227 3.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 3.6143	CARBO-01	0.1629	0.1629	6.1540-03	6.1540-03	0.1690	TEMP F		77.0000	228.9080	77.0000	77.1252	78.7705
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0	NIACINAM	1.6458-06	1.6458-06	27.6135	27.6135	27.6135	PRES PS:	IA	15.2298	30.2298	15.2298	30.2298	30.2298
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0		1.2978-06	1.2978-06	2.9900-05	2.9900-05	3.1198-05	VFRAC		1.0000	1.0000	0.0	0.0	2.8936-02
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0		1.9912-02	1.9912-02	0.2647	0.2647	0.2846	LFRAC		0.0	0.0	1.0000	1.0000	0.9711
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4815-02 7.8933-02 WATER 2.4717 2.4718 0.2708 7.4706 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4396 NIACINAM 2.0098-04 2.0098-04 3.072.1641 3372.1641 3372.1643 METHYLPI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 1.6143 METHYLPI 1.9747 1.62.481 26.2481 28.227 3.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 3.6143		7.6803-03	7.6803-03	0.2459	0.2459	0.2536	SFRAC		0.0	0.0	0.0	0.0	0.0
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0		9.5816-04	9.5816-04	0.2780	0.2780	0.2789	ENTHALPY:		0227 0644	0112 1027	1 1022.05	1 1022.05	1 0721.05
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0 0.0 0.0 0.0 0.0 NITROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 7.14815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 3.0721.641 3372.1641 3372.1643 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COXYGEN 0.9135 0.91			0.0	0.0	0.0	0.0	BTU/LBMOL		-9227.0644	-8112.1827	-1.1023+05	-1.1023+05	-1.0/21+05
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0 0.0 0.0 0.0 0.0 NITROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 7.14815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 3.0721.641 3372.1641 3372.1643 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COXYGEN 0.9135 0.91		0 0250	0 0250	5 5167 05	5 5167 05	2 7272 02			-284.7491	-250.3437	-2934.4333	-2934.3000	-2805.0515
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 3.0721.641 3372.1641 3372.1643 METHYLPI 1.9747 1.9747 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 4.6992-05 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0 0.0 <td< td=""><td></td><td></td><td>0.9230</td><td>0.0</td><td>0.0</td><td>2.7373-02</td><td></td><td></td><td>-4.2211+04</td><td>-3.7111+04</td><td>-1.03/1+0/</td><td>-1.0370+07</td><td>-1.0007+07</td></td<>			0.9230	0.0	0.0	2.7373-02			-4.2211+04	-3.7111+04	-1.03/1+0/	-1.0370+07	-1.0007+07
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4815-02 7.8933-02 WATER 2.4717 2.4718 0.2708 7.4706 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4396 NIACINAM 2.0098-04 2.0098-04 3.072.1641 3372.1641 3372.1643 METHYLPI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 1.6143 METHYLPI 1.9747 1.62.481 26.2481 28.227 3.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 3.6143		3.0786-03	3.0786-03	2.1084-08	2.1084-08	9.0944-05	BTU/I BMOL	- R	-0.5068	-3.9100-02	-53.7708	-53.7655	-52,1710
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 3.0721.641 3372.1641 3372.1643 METHYLPI 1.9747 1.9747 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 4.6992-05 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0 0.0 <td< td=""><td></td><td>5.2848-05</td><td>5.2848-05</td><td>2.9224-05</td><td>2.9224-05</td><td>2.9921-05</td><td>BTU/LB-R</td><td></td><td>-1.5641-02</td><td>-1.2066-03</td><td>-1.4314</td><td>-1.4312</td><td>-1.3945</td></td<>		5.2848-05	5.2848-05	2.9224-05	2.9224-05	2.9921-05	BTU/LB-R		-1.5641-02	-1.2066-03	-1.4314	-1.4312	-1.3945
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8407-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 0.0 OXYGEN 135.4110 0.354110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 MAMONIA 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2.196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACTNAM 2.0098-04 2.0098-04 3.4744-03 3.472.1641 3372.1641 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 2.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS:		2.9991-02	2.9991-02	0.8109	0.8109	0.7879	DENSITY:						
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0.0 0.0 0.0 0.0 OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4815-02 7.8933-02 WATER 2.4717 2.4718 0.2708 7.4706 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 7.4396 NIACINAM 2.0098-04 2.0098-04 3.072.1641 3372.1641 3372.1643 METHYLPI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 1.6143 METHYLPI 1.9747 1.62.481 26.2481 28.227 3.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 3.6143	CARBO-01	3 5607-02	3.5607-02	4.0938-05	4.0938-05	1.0913-03	LBMOL/CUF	Т	2.6472-03	4.0927-03	1.9691	1.9690	0.1663
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0		3.5976-07	3.5976-07	0.1837	0.1837	0.1783	LB/CUFT		8.5779-02	0.1326	73.9701	73.9658	6.2199
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8401-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR OXYGEN 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0		2.8368-07	2.8368-07	1.9890-07	1.9890-07	2.0141-07	AVG MW		32.4042	32.4042	37.5655	37.5655	37.4130
NICOT-01 2.0945-04 2.0945-04 1.8491-03 1.8491-03 1.8007-03 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0 0.0 0.0 0.0 0.0 NITROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 7.14815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 3.0721.641 3372.1641 3372.1643 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 1.62481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COXYGEN 0.9135 0.91		4.3526-03	4.3526-03	1.7607-03	1.7607-03	1.8373-03							
AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR 0 0.0 0.2654 0.2654 135.6763 OXYGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.3787-05 0.3946 AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1682 0.2708 7.4336 NIACINAM 2.0098-04 3.0271641 3372.1643 METHYLPI 1.9747 1.6744 3.4744-03 3.6252-03 METHYLPI 0.7153 0.7153 22.8991 23.6143 NICCOT-01 9.9755-02 9.9755-02 28.9394 28.9394 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 4.6992-05 2.3412-02 OXYGEN 0.9135 0.9135 4.6992-05 2.3412-02 OXYGEN 0.0 0.0 0.0		1.6/89-03	1.6/89-03	1.6357-03	1.6357-03	1.63/0-03							
COMPONENTS: LB/HR OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 0.3946 AMMONIA 4.1174-03 7.4815-02 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2196.1104 2198.5821 CARBO-01 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 3.4744-03 3.4622-03 METHYLPI 1.9747 2.62481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 4.692-05 4.692-05 2.3412-02 OXYGEN 0.0 0.0 0.0 0.0 0.0	NICOI-UI	2.0945-04											
OXYGEN 135.4110 135.4110 0.2654 0.2654 135.6763 HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 8.8787-05 8.8787-05 0.3946 AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3.4744-03 3.6252-03 METHYLPI 1.9747 1.9747 2.62481 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 OXYGEN 0.0 0.0 0.0 0.0 0.0 0.0	COMPONENTS · LB/HP	0.0	0.0	0.0	0.0	0.0							
HYDROGEN 0.0 0.0 0.0 0.0 0.0 NITROGEN 0.3945 0.3945 0.3945 8.8787-05 0.3946 AMMONIA 4.1174-03 7.4117-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 372.1641 3372.1643 METHYLPI 1.9747 1.6747 26.2481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 28.9394 COMPONENTS: MASS FRAC 0.0 0.0 0.0 OXYGEN 0.9135 0.9135 4.6992-05 2.3412-02 OXYGEN 0.0 0.0 0.0 0.0 0.0		135,4110	135,4110	0.2654	0.2654	135.6763							
AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.168 0.2708 0.2708 NIACINAM 2.0098-04 2.0098-04 3372.1641 3372.1641 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.9747 2.62481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPORENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0 0.0		0.0											
AMMONIA 4.1174-03 4.1174-03 7.4815-02 7.8933-02 WATER 2.4717 2.4717 2196.1104 2198.5821 CARBO-01 7.1688 7.1688 0.2708 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3372.1641 3372.1641 3372.1643 METHYLPI 1.9747 1.9747 26.2481 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COXYGEN 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0		0.3945	0.3945	8.8787-05	8.8787-05								
CARBO-01 7.1688 7.1688 0.2708 7.4396 NIACINAM 2.0098-04 2.0098-04 3372.1641 3372.1643 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.4744-03 3.6252-03 METHYLPI 1.9747 1.9747 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0 0.0 0.0	AMMONIA	4.1174-03	4.1174-03	7.4815-02	7.4815-02								
NIACINAM 2.0098-04 2.0098-04 3372.1641 3372.1641 METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 2.62481 26.2481 28.227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 MYDROGEN 0.0 0.0 0.0 0.0 0.0	WATER	2.4717	2.4717	2196.1104	2196.1104								
METDIAMI 1.5080-04 1.5080-04 3.4744-03 3.6252-03 METHYLPI 1.9747 1.9747 26.2481 26.2481 28.227 J-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0 0.0		7.1688	7.1688	0.2708	0.2708								
METHYLPI 1.9747 1.9747 26.2481 28.2227 3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC OXYGEN 0.9135 0.9135 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0			2.0098-04	3372.1641	3372.1641								
3-MET-01 0.7153 0.7153 22.8991 23.6143 NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC 0.9135 0.9135 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0		1.5080-04	1.5080-04	3.4744-03	3.4744-03								
NICOT-01 9.9755-02 9.9755-02 28.9394 29.0392 AMMONICO 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC OXYGEN 0.9135 0.9135 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0		1.9/4/	1.9/4/	26.2481									
AMMONICO 0.0 0.0 0.0 0.0 0.0 COMPONENTS: MASS FRAC OXYGEN 0.9135 0.9135 4.6992-05 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0 0.0		0.7153	0.7153	22.8991									
COMPONENTS: MASS FRAC OXYGEN 0.9135 0.9135 4.6992-05 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0 0.0													
OXYGEN 0.9135 0.9135 4.6992-05 4.6992-05 2.3412-02 HYDROGEN 0.0 0.0 0.0 0.0 0.0 0.0			0.0	0.0	0.0	0.0							
HYDROGEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OXYGEN	0.9135	0.9135	4.6992-05	4.6992-05	2.3412-02							
	HYDROGEN	0.0											
NITROGEN 2.6615-03 2.6615-03 1.5723-08 1.5723-08 6.8096-05	NITROGEN	2.6615-03											

ASPEN PLUS PLAT: WI	NIA	: 25.0 CIN PRODUCT STREAM SECT	ION	03/27/201	3 PAGE 102	A	SPEN PLUS	PLAT:		R: 25.0 ACIN PRODUC STREAM SEC		03/27/20	013 PAGE 103
S-220 S-221 S-222 S-2									s-223 s-224 (-			
STREAM TO	s_220	s_221	s_222	c_223	s_224	S	TREAM ID		s-220	S-221	s-222	S-223	s-224
STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR SUBSTDEAM: MIXED	HX-204 R-202C	R-202C SEP-203	SEP-203 B-203	в-203 м-204	SEP-203 P-203		AMMONIA WATER		$\begin{array}{c} \text{S-220}\\ 1.3620-05\\ 0.3794\\ 1.2838-03\\ 0.5819\\ 6.2554-07\\ 4.8700-03\\ 4.0748-03\\ 5.0109-03\\ 5.0109-03\\ 5.0109-03\\ 0.0\\ 154.8983\\ 5795.2158\\ 1363.9141\\ 77.0000\\ 20.2298\\ 2.9234-02\\ 0.9708\\ 0.0\\ -1.0725+05\\ -2866.7660\\ -1.6614+07\\ -52.2231\\ -1.3959\\ 0.1136\\ 4.2490\\ 37.4130\\ \end{array}$	1.3620-05 0.3794	2.6941-05 1.6148-02	2.6941-05 1.6148-02	1.3271-05 0.3889
CLASS: TOTAL STREAM:	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD		CARBO-UI NIACINAM		1.2838-03 0.5819	0.5819	4.8360-02	4.8360-02	4.9531-05 0.5971
LB/HR BTU/HR SUBSTREAM: MIXED	5795.2158 -1.6614+07	5795.2158 -1.6613+07	148.0557 -4.1700+04	148.0557 -3.5025+04 -	5647.1601 1.6571+07		METDIAMI METHYLPI		6.2554-07 4.8700-03	6.2554-07 4.8700-03	9.8697-07 1.2934-02	9.8697-07 1.2934-02	6.1607-07 4.6586-03
PHASE: COMPONENTS: LBMOL/HR	MIXED	MIXED	VAPOR	VAPOR	LIQUID		NICOT-01 AMMONICO		4.0748-03 5.0109-03 0.0	4.0748-03 5.0109-03 0.0	6.5206-04 0.0	6.5206-04 0.0	4.0390-03 5.1252-03 0.0
OXYGEN HYDROGEN	4.2400	4.2400	4.2315	4.2315	8.5757-03	т	OTAL FLOW:		154 8983	154 8983	4 5689	4 5689	150 3294
NITROGEN	1.4087-02 4.6348-03	1.4087-02 4.6348-03	1.4084-02 2.3422-04	1.4084-02 2.3422-04	3.2778-06 4.4005-03	-	LB/HR CUFT/HR		5795.2158 1363.9141	5795.2158 1747.3886	148.0557 1671.0452	148.0557 954.9285	5647.1601 76.3443
WATER CARBO-01	122.0399 0.1690	0.1690	0.1327 0.1627	0.1327 0.1627	6.3557-03	5	TEMP F	SLES:	77.0000	77.0000	77.0000	275.3011	77.0000
NIACINAM METDIAMI	27.6135 3.1198-05	27.6135 3.1198-05	1.5929-06 1.2575-06	1.5929-06 1.2575-06	27.6135 2.9940-05		PRES PSI VFRAC	[A	20.2298 2.9234-02	15.7298	15.7298	37.7298	15.7298 0.0
METHYLPI 3-MET-01	0.2846 0.2536	0.2846 0.2536	1.9310-02 7.4381-03	1.9310-02 7.4381-03	0.2653 0.2461		LFRAC SFRAC		0.9708	0.9705	0.0 0.0	0.0	1.0000 0.0
NICOT-01 AMMONICO	0.2789 0.0	0.2789 0.0	9.2729-04 0.0	9.2729-04 0.0	0.2780 0.0	E	NTHALPY: BTU/LBMOL		-1.0725+05	-1.0725+05	-9127.0909	-7665.9271	-1.1023+05
COMPONENTS: MOLE FRAC OXYGEN	2.7373-02	2.7373-02	0.9262	0.9262	5.7046-05		BTU/LB BTU/HR		-2866.7660 -1.6614+07	-2866.6700 -1.6613+07	-281.6537 -4.1700+04	-236.5635 -3.5025+04	-2934.4432 -1.6571+07
HYDROGEN	0.0	0.0	0.0	0.0	0.0	E	NTROPY:		52 2221	E2 2007	0 5454	2 2002 02	53 7707
NITROGEN AMMONIA	2.9921-05	2.9921-05	5.1264-05	5.1264-05	2.9273-05		BTU/LBMOL- BTU/LB-R	-к	-1.3959	-1.3953	-1.6832-02	1.0153-02	-1.4314
WATER CARBO-01	0.7879	0.7879	2.9047-02	0.0 3.0826-03 5.1264-05 2.9047-02 3.5608-02 3.4864-07 2.7524-07 4.2264-03 1.6280-03 2.0296-04 0.0	0.8109	D	ENSITY:	r	0 1136	8 8646-02	2 7341-03	4 7845-03	1 9691
NIACINAM	0.1783	0.1783	3.4864-07	3.4864-07	0.1837		LB/CUFT		4.2490	3.3165	8.8601-02	0.1550	73.9696
METDIAMI METHYLPI	2.0141-07	2.0141-07	4.2264-03	2.7524-07 4.2264-03	1.7647-03	A	VG MW		37.4130	37.4130	32.4054	32.4054	37.5652
3-MET-01 NICOT-01	1.6370-03	1.6370-03	1.6280-03	1.6280-03	1.6373-03								
AMMONICO	0.0	0.0	0.0	0.0	0.0								
COMPONENTS: LB/HR OXYGEN	135.6763	135 6763	135.4019	135.4019	0.2744								
	133.0703	133.0703	0.0	0.0	0.0								
NITROGEN AMMONIA WATER CARBO-01 NIACINAM	0.0 0.3946 7.8933-02	0.3946 7.8933-02	0.3945	0.3945	9.1823-05 7.4944-02								
WATER	2198.5821	2198.5821	2.3908	2.3908	2196.1913								
CARBO-01 NIACINAM	2198.5821 7.4396 3372.1643	7.4396 3372.1643	7.1599	7.1599	0.2797 3372.1641								
METDIAMI	3.6252-03 28.2227 23.6143	3.6252-03 28.2227	1.4613-04	1.4613-04	3.4790-03								
METHYLPI 3-MET-01	28.2227	28.2227 23.6143	1.9150	0.6927	26.3078 22.9216								
NICOT-01 AMMONICO	29.0392 0.0	29.0392 0.0	9.6541-02	0.3945 3.9888-03 2.3908 7.1599 1.9452-04 1.4613-04 1.9150 0.6927 9.6541-02 0.0	28.9426								
COMPONENTS: MASS FRAC OXYGEN HYDROGEN NITROGEN	2.3412-02	0.0	0.9145 0.0 2.6648-03	0.9145 0.0 2.6648-03	4.8593-05 0.0 1.6260-08								

ASPEN PLUS PLAT: WI	NIA	: 25.0 CIN PRODUCT STREAM SECT	ION			ASPEN PLUS		NIA	R: 25.0 ACIN PRODUCT STREAM SECT	FION FION		013 PAGE 105
s-225 s-226 s-227 s-2	28 S-229					s-225 s-226	S-227 S	s-228 s-229 (0	CONTINUED)			
STREAM TO	s_225	s-226	s_227	s_228	s-229	STREAM ID		s-225	s-226	s-227	s-228	S-229
S-225 S-226 S-227 S-2 STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR SUBSTREAM: MIXED PHASE: COMPONENTS: LBMOL/HR OXYGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI	P-203 M-204 MIXCIPSD	M-204 HX-205 MIXCIPSD	HX-205 F-201 MIXCIPSD	F-201 MIXCIPSD	F-201 P-204 MIXCIPSD	AMMONIA WATER CARBO-01		1.3271-05 0.3889 4.9531-05	1.3620-05 0.3794 1.2838-03	1.3620-05 0.3794 1.2838-03	9.0927-06 3.1855-03 4.8954-02	1.3736-05 0.3890 6.1378-05
TOTAL STREAM: LB/HR	5647.1601	5795.2158	5795.2158	144.8865	5650.3293	NIACINAM METDIAMI		0.5971 6.1607-07	0.5819	0.5819 6.2554-07	8.1093-08	0.5968
BTU/HR SUBSTREAM: MIXED	-1.6570+07	-1.6605+07	-1.6791+07	-3.1649+04 -	1.6759+07	METHYLPI 3-MET-01		4.6586-03 4.0590-03	4.8700-03 4.0748-03	4.8700-03 4.0748-03	7.6719-03 2.2602-03	4.7982-03 4.1213-03
PHASE: COMPONENTS: LBMOL/HR	LIQUID	MIXED	MIXED	VAPOR	LIQUID	NICOT-01 AMMONICO		5.1252-03 0.0	5.0109-03 0.0	5.0109-03 0.0	2.2814-04 0.0	5.1335-03 0.0
OXYGEN HYDROGEN	8.5757-03 0.0	4.2400 0.0	4.2400 0.0	4.2334 0.0	6.6320-03 0.0	TOTAL FLOW: LBMOL/HR		150.3294	154.8983	154.8983	4.4494	150.4489
NITROGEN AMMONIA	3.2778-06	1.4087-02	1.4087-02	1.4085-02 7.7355-05	1.8974-06	LB/HR CUFT/HR		5647.1601 76.3533	5795.2158 758.7494	5795.2158 913.9509	144.8865 1563.2334	5650.3293 74.8273
WATER CARBO-01	6.3557-03	0.1690	0.1690	2.5620-02 0.1612	122.0142	STATE VARIA	BLES:	77.2505	79.3753	32.0000	32.0000	32.0000
METDIAMI METHYLPI	27.6135 2.9940-05 0.2653	3.1198-05 0.2846	3.1198-05 0.2846	5.6141-07 1.1209-02	3.0636-05 0.2734	VFRAC LFRAC	IA	45.7298 0.0 1.0000	2.8787-02 0.9712	27.7298 2.8529-02 0.9715	1.0000 0.0	0.0 1.0000
3-MET-01 NICOT-01	0.2461 0.2780	0.2536	0.2536	3.5164-03 3.1750-04	0.2501 0.2786	SFRAC ENTHALPY:		0.0	0.0	0.0	0.0	0.0
COMPONENTS: MOLE FRAC	5.7046-05	2.7373-02	2.7373-02	0.0	4.4082-05	BTU/LB BTU/LB BTU/HR		-1.1022+05 -2934.1894 -1.6570+07	-1.0720+05 -2865.2707 -1.6605+07	-1.0840+05 -2897.3321 -1.6791+07	-7113.1518 -218.4418 -3.1649+04	-1.1139+05 -2966.0063 -1.6759+07
HYDROGEN NITROGEN	0.0 2.1804-08	0.0 9.0944-05	0.0 9.0944-05	0.0 3.1656-03	0.0 1.2611-08	ENTROPY: BTU/LBMOL-	-R	-53.7600	-52.1589	-54.4680	-0.7075	-56.0174
AMMONIA WATER	2.9273-05 0.8109	2.9921-05 0.7879	2.9921-05 0.7879	1.7386-05 5.7580-03	3.0292-05 0.8110	BTU/LB-R DENSITY:		-1.4311	-1.3941	-1.4559	-2.1726-02	-1.4916
CARBO-01 NIACINAM	4.2278-05 0.1837	1.0913-03 0.1783	1.0913-03 0.1783	3.6222-02	5.2378-05 0.1835	LBMOL/CUFT LB/CUFT	Т	1.9689 73.9609	0.2041 7.6379	0.1695	2.8463-03	2.0106 75.5116
MEIDIAMI METHYLPI 3-MET-01	1.7647-03 1.6373-03	1.8373-03 1.6370-03	1.8373-03 1.6370-03	1.2618-07 2.5191-03 7.9031-04	1.8171-03 1.6620-03	AVG MW		37.3032	37.4130	37.4130	32.3031	37.3303
AMMONICO	0.0	0.0	0.0	0.0	0.0							
OXYGEN HYDROGEN NITROGEN	0.2744 0.0 9.1823-05	135.6763 0.0	135.6763 0.0 0.3946	135.4641 0.0 0.3946	0.2122 0.0 5.3152-05							
AMMONIA WATER	7.4944-02 2196.1913	0.3946 7.8933-02 2198.5821 7.4396	7.8933-02 2198.5821	0.4615	7.7615-02 2198.1206							
	0.0 9.1823-05 7.4944-02 2196.1913 0.2797 3372.1641 3.4790-03 26.3078	7.4396 3372.1643 3.6252-03 28.2227 23.6143	3372 1643		0.3468 3372.1643 3.5599-03 27.1112							
3-MET-01 NICOT-01 AMMONICO	28.9426 0.0	23.6143 29.0392 0.0	23.6143 29.0392 0.0	0.3275 3.3055-02 0.0	23.2869 29.0061 0.0							
COMPONENTS: MASS FRAC OXYGEN HYDROGEN NITROGEN	4.8593-05	2.3412-02 0.0 6.8096-05	2.3412-02 0.0 6.8096-05	0.9350 0.0 2.7233-03	3.7558-05 0.0 9.4070-09							

ASPEN PLUS PLAT: WI	NIA	25.0 ACIN PRODUCT STREAM SECT	ION	03/27/2013	PAGE 106	ASPEN PLUS	PLAT:		R: 25.0 ACIN PRODUCT STREAM SECT		03/27/201	3 PAGE 107
s-230 s-231 s-301 s-3	302 s-303							s-302 s-303 (0	-			
STREAM TO	c 220	c 221	c 201	5 202	s-303	STREAM ID AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 NICOT-01 AMMONICO TOTAL FLOW: LBMOL/HR CUFT/HR STATE VARIAB TEMP F PRES PSI VFRAC LFRAC SFRAC ENTHALPY: BTU/LBMOL BTU/LB BTU/LBMOL BTU/LB BTU/LBMOL BTU/LBAR DENSITY: LBMOL/CUFT AVG MW		s-230	S-231	S-301	s-302	s-303
STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR	P-204	HX-206	M-301	HX-301	DC-301	AMMONIA		1.3736-05	1.3736-05	2.0920-03	2.0920-03	MISSING
то :	HX-206	M-301	HX-301	DC-301	N-301	WATER		0.3890	0.3890	0.8632	0.8632	MISSING
CLASS:	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	MIXCIPSD	CARBO-01		6.1378-05	6.1378-05	1.4282-05	1.4282-05	MISSING
TOTAL STREAM:						NIACINAM		0.5968	0.5968	0.1316	0.1316	MISSING
LB/HR	5650.3293	5650.3293	2.5619+04	2.5619+04	0.0	METDIAMI		6.3004-07	6.3004-07	1.3896-07	1.3896-07	MISSING
BTU/HR	-1.6/58+0/	-1.6534+07	-1.5505+08	-1.5381+08	0.0	METHYLPI		4.7982-03	4.7982-03	1.0583-03	1.0583-03	MISSING
SUBSIREAM: MIXED	LIQUID		MIXED	MIXED	MICCINC	3-MEI-UI		4.1213-03	4.1213-03	9.0958-04	9.0958-04	MISSING MISSING
COMPONENTS: LBMOL/HR	LIQUID	LIQUID	MIXED	MIXED	MISSING			5.1333-03	5.1555-05	1.1322-03	1.1322-03	MISSING
		6 6320-03	6 6531-03	6 6531-03	0 0	TOTAL FLOW		0.0	0.0	0.0	0.0	MISSING
OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MOLE ERAC	0.0520 05	0.0	1.6566-16	1.6566-16 7.4732-05 3.1469 1227.4593 8.3138-03	0.0	I BMOL /HR		150,4489	150.4489	1259.0371	1259.0371	0.0
NITROGEN	1.8974-06	1.8974-06	7.4732-05	7.4732-05	0.0	LB/HR		5650.3293	5650.3293	2.5619+04	2.5619+04	0.0
AMMONIA	4.5574-03	4.5574-03	3.1469	3.1469	0.0	CUFT/HR		74.8355	76.8679	432.6425	464.6754	0.0
WATER	122.0142	122.0142	1227.4593	1227.4593	0.0	STATE VARIAB	BLES:					
CARBO-01	7.8802-03	7.8802-03	8.3138-03	8.3138-03	0.0	TEMP F		32.2422	90.0000	30.9724	77.0000	MISSING
NIACINAM	27.6135	27.6135	27.6135	27.6135	0.0	PRES PSI	IA	45.0000	35.0000	35.0000	25.0000	MISSING
METDIAMI	3.0636-05	3.0636-05	3.0636-05	3.0636-05	0.0	VFRAC		0.0	0.0	3.4792-04	2.6201-04	MISSING
METHYLPI	0.2/34	0.2/34	0.2/34	0.2734	0.0	LFRAC		1.0000	1.0000	0.9997	0.9997	MISSING
3-MET-UI	0.2501	0.2501	0.2502	0.2502 0.2786	0.0	SFRAC		0.0	0.0	0.0	0.0	MISSING
	0.2786	0.2780	0.2786	0.2788	0.0			-1 1138+05	_1 0000+05	-1 2315+05	-1 2216+05	MISSING
COMPONENTS: MOLE FRAG	- 0.0	0.0	0.0	0.0	0.0	BTU/LBMOL		-2965 7577	-2926 2048	-6052 0663	-6003 7353	MISSING
OXYGEN	4.4082-05	4.4082-05	5.2843-06	5.2843-06	0.0	BTU/HR		-1.6758+07	-1.6534+07	-1.5505+08	-1.5381+08	MISSING
HYDROGEN	0.0	0.0	1.3157-19	1.3157-19	0.0	ENTROPY:						
NITROGEN	1.2611-08	1.2611-08	5.9356-08	5.9356-08	0.0	BTU/LBMOL-	-R	-56.0060	-53.1487	-44.0519	-42.1344	MISSING
AMMONIA	3.0292-05	3.0292-05	2.4995-03	2.4995-03	0.0	BTU/LB-R		-1.4912	-1.4152	-2.1649	-2.0707	MISSING
WATER	0.8110	0.8110	0.9749	0.9749	0.0	DENSITY:						
CARBO-01	5.2378-05	5.2378-05	6.6033-06	6.6033-06	0.0	LBMOL/CUFT	Г	2.0104	1.9572	2.9101	2.7095	MISSING
NIACINAM	0.1835	0.1835	2.1932-02	2.1932-02	0.0	LB/CUFT		/5.5033	/3.50/0	59.2147	55.1326	MISSING
	2.0303-07	2.0303-07	2.4333-08	2.4333-08	0.0	AVG MW		37.5505	37.5505	20.3479	20.3479	MISSING
	1 6620-03	1 6620-03	1 9874-04	1 9874-04	0.0							
NTCOT-01	1 8518-03	1 8518-03	2 2129-04	2 2129-04	0.0							
AMMONTCO	0.0	0.0	0.0	0.0	0.0							
COMPONENTS: LB/HR	0.0	0.0	0.0	0.0								
OXYGEN	0.2122	0.2122	0.2129	0.2129	0.0							
HYDROGEN	0.0	0.0	3.3394-16	3.3394-16	0.0							
NITROGEN	5.3152-05	5.3152-05	2.0935-03	2.0935-03	0.0							
AMMONIA	7.7615-02	7.7615-02	53.5941	53.5941	0.0							
WATER	2198.1206	2198.1206	2.2113+04	2.2113+04	0.0							
CARBO-01	0.3468	0.3468	0.3659	0.3659	0.0 0.0							
METDIAMI	2 5500 02	2 5500 02	2 5500 02	2 5500 02	0.0							
	27 1112	27 1112	27 1112	27 1112	0.0							
3-MFT-01	23.2869	23.2869	23, 3024	23.3024	0.0							
NICOT-01	29.0061	29.0061	29.0061	29.0061	0.0							
AMMONICO	0.0	0.0	0.0	0.0	0.0							
AMMONICO COMPONENTS: MOLE FRAG OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: LB/HR OXYGEN HYDROGEN NITROGEN NIACINAM METDIAMI METHYLPI 3-MET-01 NIACINAM METDIAMI METHYLPI 3-MET-01 AMMONICO COMPONENTS: MASS FRAG OXYGEN												
OXYGEN	3.7558-05	3.7558-05	8.3100-06	8.3100-06	MISSING							
HYDROGEN	0.0	0.0	8.3100-06 1.3035-20 8.1717-08	1.3035-20	MISSING							
NITROGEN	9.4070-09	9.4070-09	8.1717-08	8.1717-08	MISSING							

ASPEN PLUS PLAT: WI	NIA	R: 25.0 ACIN PRODUCT STREAM SECT		03/27/2013	PAGE 108	AS	SPEN PLUS	PLAT: W	NIA	: 25.0 CIN PRODUCT STREAM SECT		03/27/20	013 PAGE 109
S-304 S-305 S-306 S-3	307 S-308					S-	-304 s-305	s-306 s-	-307 s-308 (C	ONTINUED)			
STREAM ID FROM : TO : CLASS: TOTAL STREAM: LB/HR BTU/HR CUDSCTAM. NTVED	5-304	s-305	s-306	s-307	s-308	ST	TREAM ID		$\begin{array}{c} \text{S-304}\\ 2.0920-03\\ 0.8632\\ 1.4282-05\\ 0.1316\\ 1.3896-07\\ 1.0583-03\\ 9.0958-04\\ 1.1322-03\\ 0.0\\ 1259.0371\\ 2.5619+04\\ 496.3740\\ 77.0265\\ 20.0000\\ 3.0069-04\\ 0.9997\\ 0.0\\ -1.2216+05\\ -6003.7353\\ -1.5381+08\\ -42.1335\\ -2.0707\\ 2.5365\\ 51.6119\\ 20.3479\\ \end{array}$	s-305	s-306	s-307	s-308
FROM :	DC-301	N-301	P-301	HX-302			AMMONIA		2.0920-03	2.0920-03	2.0920-03	2.0920-03	0.0
то :	N-301	P-301	HX-302	DR-301	HX-303		WATER		0.8632	0.8632	0.8632	0.8632	0.0
CLASS:	MIXCIPS	D MIXCIPSD	0 MIXCIPS	MIXCIPSD	MIXCIPSD		CARBO-01		1.4282-05	1.4282-05	1.4282-05	1.4282-05	0.0 0.0
IDIAL SIREAM:	2 5619±04	2 5619+04	2 5619±04	2 5619+04	30 8796				1 3896-07	1 3896-07	1 3896-07	1 3896-07	0.0
BTU/HR	-1.5381+08	-1.5381+08	-1.5381+08	-1.2488+08	-5.9364		METHYLPI		1.0583-03	1.0583-03	1.0583-03	1.0583-03	0.0
SUBSIREAM: MIXED							3-MET-01		9.0958-04	9.0958-04	9.0958-04	9.0958-04	0.0
	MIXED	MIXED	LIQUID	VAPOR	VAPOR		NICOT-01		1.1322-03	1.1322-03	1.1322-03	1.1322-03	0.0
COMPONENTS: LBMOL/HR		6 6534 63	c c534 63	6 6534 63			AMMONICO		0.0	0.0	0.0	0.0	0.0
OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MOLE ERAC	0.0531-03 1 6566 16	6.6531-03	6.6531-03	6.6531-03	0.0	10	JIAL FLOW:		1250 0271	1250 0271	1250 0271	1250 0271	1.1023
NTTROGEN	7.4732-05	7.4732-05	7.4732-05	7.4732-05	1,1023				2.5619+04	2.5619+04	2.5619+04	2.5619+04	30.8796
AMMONIA	3.1469	3.1469	3.1469	3.1469	0.0		CUFT/HR		496.3740	556.2393	400.4598	3.8057+05	215.1855
WATER	1227.4593	1227.4593	1227.4593	1227.4593	0.0	ST	TATE VARIAE	BLES:					
CARBO-01	8.3138-03	8.3138-03	8.3138-03	8.3138-03	0.0		TEMP F		77.0265	77.0000	76.9392	392.0000	77.0000
NIACINAM	27.6135	27.6135	27.6135	27.6135	0.0		PRES PS1	IA	20.0000	15.0000	39.9465	29.9465	29.5007
	3.0030-05	3.0030-05	3.0030-05	3.0030-05	0.0				3.0069-04	3.3328-04	1 0000	1.0000	1.0000 0.0
3-MET-01	0.2502	0.2502	0.2502	0.2502	0.0		SFRAC		0.0	0.0	0.0	0.0	0.0
NICOT-01	0.2786	0.2786	0.2786	0.2786	0.0	EN	THALPY:		010	0.0		0.0	0.0
AMMONICO	0.0	0.0	0.0	0.0	0.0		BTU/LBMOL		-1.2216+05	-1.2216+05	-1.2216+05	-9.9190+04	-5.3854
COMPONENTS: MOLE FRAG				5 2242 26			BTU/LB		-6003.7353	-6003.7935	-6003.6296	-4874.6840	-0.1922
	5.2843-06	5.2843-06	5.2843-06	5.2843-06	0.0	-	BTU/HR		-1.5381+08	-1.5381+08	-1.5381+08	-1.2488+08	-5.9364
NTTROGEN	5 9356-08	5 9356-08	5 9356-08	5 9356-08	1 0000	El	BTU/IBMOI -	- R	-42 1335	-42 1348	-42 1328	-9 4357	-1.3937
AMMONIA	2.4995-03	2.4995-03	2.4995-03	2.4995-03	0.0		BTU/LB-R	IX .	-2.0707	-2.0707	-2.0706	-0.4637	-4.9752-02
WATER	0.9749	0.9749	0.9749	0.9749	0.0	DE	ENSITY:						
CARBO-01	6.6033-06	6.6033-06	6.6033-06	6.6033-06	0.0		LBMOL/CUFT	Г	2.5365	2.2635	3.1440	3.3083-03	5.1226-03
NIACINAM	2.1932-02	2.1932-02	2.1932-02	2.1932-02	0.0		LB/CUFT		51.6119	46.0571	63.9734	6.7316-02	0.1435 28.0135
	2.4555-06	2.4555-06	2.4333-00	2.4555-06	0.0	A	/G MW		20.3479	20.3479	20.3479	20.5479	20.0155
3-MET-01	1.9874-04	1.9874-04	1.9874-04	1.9874-04	0.0								
NICOT-01	2.2129-04	2.2129-04	2.2129-04	2.2129-04	0.0								
COMPONENTS: MOLE FRAG OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: LB/HR	0.0	0.0	0.0	0.0	0.0								
COMPONENTS: LB/HR	0.2129	0 2120	0 2120	0 2120	0.0								
	3 3394-16	0.2129	0.2129	0.2129	0.0								
NTTROGEN	2.0935-03	2.0935-03	2.0935-03	2.0935-03	30.8796								
AMMONIA	53.5941	53.5941	53.5941	53.5941	0.0								
WATER	2.2113+04	2.2113+04	2.2113+04	2.2113+04	0.0								
CARBO-01	0.3659	0.3659	0.3659	0.3659	0.0								
METDIAMI	3372.1043	3372.1043	3372.1043	3372.1043	0.0 0.0								
	27 1112	27 1112	27 1112	27 1112	0.0								
3-MET-01	23.3024	23.3024	23.3024	23.3024	0.0								
NICOT-01	29.0061	29.0061	29.0061	29.0061	0.0								
AMMONICO	0.0	0.0	0.0	0.0	0.0								
COMPONENTS: LB/HR OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METDIAMI METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MASS FRAC	0 2100 OC	8 3100 OC	8 2100 OC	8 2100 OC	0.0								
	0.3100-06	0.3100-06	0.3100-06	0.0	0.0								
OXYGEN HYDROGEN NITROGEN	8.1717-08	8.1717-08	8.1717-08	8.1717-08	1.0000								

ASPEN PLUS PLAT: WIN	NIA	25.0 CIN PRODUCT STREAM SECT		03/27/203	.3 PAGE 110	ASPEN PLUS		R: 25.0 ACIN PRODUCT STREAM SECT		03/27/20	013 PAGE 111
s-309 s-310 s-311 s-31						S-309 S-310	S-311 S-312 S-312A	(CONTINUED)			
STREAM ID	s-309	s-310	s-311	s-312	S-312A	STREAM ID	s-309	S-310	S-311	S-312	S-312A
FROM :	S-309 HX-303 DR-301 MIXCIPSD	DR-301	C-301	HX-304B	111/ 2014	AMMONIA	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	2.3850-03	2.3850-03	2.3850-03	2.3850-03
TO :	DR-301	C-301	HX-304A	F-301	HX-304B	WATER	0.0	0.9836	0.9836	0.9836	0.9836
CLASS:	MIXCIPSD	MIXCIPSD			MIXCIPSD	AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO	0.0	1.5427-04	1.5427-04	1.5427-04	
TOTAL STREAM: LB/HR	20 9706	2 2401.04	2 2401.04	2.2481+04 -1.5381+08	2 2401.04	NIACINAM	0.0	0.0	0.0	0.0	0.0
BTU/HR	2425 2806	-1 2401+04	-1 1920 \pm 08	-1 5381+08	2.2401+04 -1 5206+08		0.0	0.0	0.0	0.0	0.0
SUBSTREAM: MIXED	2423.2000	1.2457400	1.1520+00	1.5501+00	1.5200+00	3-MET-01	0.0	0.0	0.0	0.0	0.0
PHASE:	VAPOR	VAPOR	VAPOR	MIXED	MIXED	NICOT-01	0.0	0.0	0.0	0 0	0.0
COMPONENTS: LBMOL/HR						AMMONICO	0.0	0.0	0.0	0.0	0.0
COMPONENTS: LEMOL/HR OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONICO COMPONENTS: MOLE FRAC	0.0	6.6320-02	6.6320-02 0.0	6.6320-02 0.0	6.6320-02	AMMONICO TOTAL FLOW: LBMOL/HR LB/HR CUFT/HR STATE VARIAB TEMP F PRES PSI VFRAC LFRAC ENTHALPY: BTU/LBMOL BTU/LB BTU/LBMOL- BTU/LB-R DENSITY: LBMOL/CUFT LB/CUFT AVG MW	1 1022	1241 7001	1241 7001	1241 7001	1241 7001
HYDROGEN NITROGEN	0.0	0.0 11.0231	11.0231	11 0231	0.0		1.1023	2 2481.7801	1241.7801 2 2481 \pm 04	1241.7801 2 2481 \pm 04	1241.7801 2 2481±04
AMMONIA	0.0	3.1484	3.1484	11.0231 3.1484	3.1484		516.9630	7.7489+05	2.6283+05	1364.9568	1440.1101
WATER	0.0	1227.4695	1227.4695	1227.4695	1227.4695	STATE VARIAB	LES:				
CARBO-01	0.0	7.8802-02	7.8802-02		7.8802-02	TEMP F	392.0000	387.1028	887.2012	32.0000	100.0000
NIACINAM	0.0	0.0	0.0	0.0	0.0	PRES PSI	A 19.5007	14.5007	68.0082	58.0082	63.0082
METDIAMI METHYLPI	0.0	0.0	0.0	$0.0 \\ 0.0$	0.0		1.0000	1.0000	1.0000	9.0036-03	9.1074-03
3-MET-01	0.0	0.0 0.0 0.0	0.0	0.0	0.0	SFRAC	0.0	0.0	0.0	0.0	0.0
NICOT-01	0.0	0.0 0.0	0.0	0.0	0.0	ENTHAL PY:					
AMMONICO	0.0	0.0	0.0	0.0	0.0	BTU/LBMOL	2200.1776	-1.0032+05	-9.5989+04	-1.2386+05	-1.2245+05
COMPONENTS: MOLE FRAC	0.0	F 3407 OF	F 2407 OF	5.3407-05	F 3407 OF	BTU/LB	78.5400	-5541.1690	-5302.0945	-6841.8061	-6763.8642
OXYGEN HYDROGEN	0.0	5.3407-05	5.3407-05	5.3407-05	5.3407-05	BIU/HR ENTRODY:	2425.2806	-1.2457+08	-1.1920+08	-1.5381+08	-1.5206+08
NITROGEN	1.0000	8.8768-03	8.8768-03	8.8768-03	8.8768-03	BTU/LBMOL-	R 2.6614	-6.6712	-5.7237	-42.3579	-39.6719
AMMONIA	0.0	2.5354-03	2.5354-03	2.5354-03	2.5354-03	BTU/LB-R	9.5003-02	-0.3685	-0.3162	-2.3397	-2.1913
WATER	0.0	0.9885	0.9885	0.9885	0.9885	DENSITY:					
CARBO-01	0.0	6.3459-05	6.3459-05	6.3459-05	6.3459-05	LBMOL/CUFT	2.1323-03	1.6025-03	4.7246-03	0.9098	0.8623
NIACINAM METDIAMI	0.0	0.0	0.0	0.0	0.0		5.9/33-02	2.9012-02	8.5534-02	10.4/03	18 1020
METHYLPI	0.0	0.0	0.0	0.0	0.0	AVG MW	20.0155	10.1055	10.1055	10.1055	10.1055
3-MET-01	0.0	0.0	0.0	0.0	0.0						
NICOT-01	0.0	0.0	0.0	0.0	0.0						
AMMONICO	0.0	0.0	0.0	0.0	$\begin{array}{c} 5.3407-05\\ 0.0\\ 8.8768-03\\ 2.5354-03\\ 0.9885\\ 6.3459-05\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$						
COMPONENTS: LB/HR OXYGEN	0.0	2.1222	2.1222	2.1222	2.1222						
HYDROGEN	0.0	0.0	0.0	0.0	0.0						
HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM	30.8796	308.7963	308.7963	308.7963	308.7963						
AMMONIA	0.0	53.6188	53.6188	53.6188	53.6188						
WATER	0.0	2.2113+04	2.2113+04	2.2113+04	2.2113+04						
CARBO-01 NIACINAM	0.0	3.4681 0.0	3.4681 0.0	3.4681 0.0	3.4681 0.0						
METDIAMI	0.0	0.0	0.0	0.0	0.0						
METHYLPI	0.0	0.0	0.0	0.0	0.0						
3-MET-01	0.0	0.0	0.0	0.0	0.0						
NICOT-01	0.0	0.0	0.0	0.0	0.0						
AMMONICO COMPONENTS: MASS FRAC		0.0	0.0	0.0	0.0						
JUMIFUNEINIS. MASS FRAC			0 4300 05	0 4300 05	0 4300 05						
OXYGEN	0 0	9 4398-05									
OXYGEN HYDROGEN	0.0 0.0	0.0	0.0	9.4398-05 0.0 1.3736-02	0.0						

ASPEN PLUS PLAT: W	NIA	: 25.0 CIN PRODUCT STREAM SECT		03/27/20	13 PAGE 112	ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUC STREAM SEC		03/27/2	013 PAGE 11
s-313 s-314 s-315 s-3						S-313 S-314	s-315 s-316 s-31	7 (CONTINUED)			
STREAM ID	s-313	s-314	s-315	s-316	S-317	STREAM ID	S-31	l3 S-314	S-315	S-316	S-317
FROM :	F-301	SP-302	SP-302	DR-301	F-301	HYDROGEN	0.0	0.0	0.0	0.0	0.0
			DR-301		SP-301	NITROGEN		0.9816 0.9816			1.0227-07
CLASS:	SP-302 MIXCIPSD	MIXCIPSD		MIXCIPSD	MIXCIPSD	NITROGEN AMMONIA	8.6932	-05 8.6932-05	8.6932-05	0.0	2.4177-03
MAX CONV. ERROR:	-9.9363-09	0.0	0.0	0.0	4.7926-11	WATER CARBO-01	6.4371 1.0957	L-04 6.4371-04 7-02 1.0957-02	6.4371-04 1.0957-02	0.0	0.9976 9.5642-07
TOTAL STREAM:						NIACINAM	0.0	0.0	0.0	0.9770	0.0
	314.5922	31.4592		3451.5876		METDIAMI	0.0		0.0	1.0314-06	
	-1.8108+04	-1810.8064	-1.6297+04	-1.1762+06	-1.5379+08	METHYLPI	0.0	0.0	0.0	7.8547-03 6.7512-03	0.0
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	LIQUID		METHYLPI 3-MET-01 NICOT-01 AMMONICO TOTAL FLOW: LBMOL/HR CUFT/HR STATE VARIAB TEMP F PRES PSI VFRAC LFRAC SFRAC ENTHALPY: BTU/LBMOL BTU/LB BTU/LBMOL	0.0		0.0	8 4037-03	0.0
COMPONENTS: LBMOL/HR		VAFOR	VAFUK	LIQUID	LIQUID	AMMONTCO	0.0	0.0	0.0	0.0	0.0
OXYGEN	6.6297-02	6.6297-03	5.9667-02	0.0	2.3426-05	TOTAL FLOW:	0.0	0.0	0.0	0.0	0.0
HYDROGEN	$\begin{array}{c} 6.6297-02\\ 0.0\\ 11.0231\\ 1.6058-03\\ 1.1241-02\\ 7.83200\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	0.0	0.0	0.0	0.0	LBMOL/HR	11.1	.805 1.1181	. 10.0625	28.4158	1230.6056
NITROGEN	11.0231	1.1023	9.9207	0.0	8.0927-05	LB/HR	314.5	ight see 31.4592	283.1330	3451.5876	2.2167+04
AMMONIA	1.6058-03	1.6058-04	1.4452-03	0.0	3.1468	CUFT/HR	1015.6	5803 122.6666	5 1103.9997	44.4549	349.2765
WATER	1.1241-02	1.1241-03	1.0117-02	0.0	1227.4582	STATE VARIAB	BLES:	21 6602	21 6602	207 1020	22.0000
CARBO-01	7.8320-02	7.8320-03	7.0488-02	0.0 27.6135	4.81/3-04	TEMP F	32.0	000 31.6694	31.6692	387.1028	32.0000
NIACINAM METDIAMI	0.0	0.0	0.0	3.0636-05	0.0	PRES PSI	LA 58.0	1082 48.0082	48.0082	14.5007	58.0082
METHYLPI	0.0	0.0	0.0	0 2734	0.0		1.0		1.0000	1 0000	1 0000
3-MET-01	0.0	0.0	0.0	0 2502	0.0	SERAC	0.0		0.0	1.0000	0.0
NICOT-01	0.0	0.0	0.0	0.2786	0.0	ENTHAL PY :	0.0	, 0.0	0.0	0.0	0.0
AMMONICO	0.0	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0	0.0	0.0	BTU/LBMOL	-1619.6	5091 -1619.6091	-1619.6091	-4.1394+04	-1.2497+05
COMPONENTS: MOLE FRAG	С					BTU/LB	-57.5	604 -57.5604	-57.5604	-340.7833	-6938.0891
OXYGEN	5.9297-03	5.9297-03		0.0	1.9036-08	BTU/HR	-1.8108	3+04 -1810.8064	-1.6297+04	-1.1762+06	-1.5379+08
HYDROGEN	0.0 0.9859	0.0	0.0	0.0	0.0	ENTROPY:					
NITROGEN	0.9859	0.9859	0.9859	0.0	6.5762-08	BTU/LBMOL-	-R -3.1	-2.822:	-2.8223	-97.5291	-42.7137
AMMONIA	1.4363-04	1.4363-04	1.4363-04	0.0	2.55/1-03	BTU/LB-R	-0.1	-0.1003	-0.1003	-0.8029	-2.3/13
WATER CARBO-01	7 0051 02	7 0051 02	1.0054-03	0.0	0.9974	DENSITY:	- 1 1000	02 0 1146 03	0 11/6 02	0 6202	2 5222
NIACINAM	7.0051-05	7.0051-05	7.0051-05	0.0	5.9145-07		1.1000	02 9.1140-03	0 2565	77 6425	5.5255
METDIAMI	0.0	0.0	0.0	1.0781-06	0.0		28 1	375 28 1375	28 1375	121 4673	18 0128
METHYLPI	0.0	0.0	0.0	9.6207-03	0.0		2013	2011573	20.1575	1211.1075	10.0110
3-MET-01	0.0	0.0	0.0	8.8056-03	0.0						
NICOT-01	0.0	0.0	0.0	9.8047-03	0.0						
AMMONICO	0.0 0.9859 1.4363-04 1.0054-03 7.0051-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0	0.0	0.0	0.0						
COMPONENTS: LB/HR											
OXYGEN	2.1214	0.2121	1.9093	0.0	7.4959-04						
HYDROGEN	0.0	0.0	0.0	0.0	0.0						
NITROGEN AMMONIA	308.7940	30.8794	277.9146 2.4613-02	0.0	2.20/0-03						
WATER	0 2025	2.7348-03 2.0251-02	0.1823	0.0	2.2113+04						
CARBO-01	3 4469	0.3447	3.1022	0.0	2.1201-02						
NIACINAM	0.0	0.0	0.0	3372.1643	0.0						
METDIAMI	$\begin{array}{c} 2.1214\\ 0.0\\ 308.7940\\ 2.7348-02\\ 0.2025\\ 3.4469\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.0	0.0	3.5599-03	0.0						
METHYLPI	0.0	0.0	0.0	27.1112	0.0						
3-MET-01	0.0	0.0	0.0	23.3024	0.0						
NTCOT 01	0.0	0.0	0.0	29.0061	0.0						
NICOI UI											
AMMONICO	0.0	0.0	0.0	0.0	0.0						
AMMONICO COMPONENTS: MASS FRAG				0.0	0.0 3.3816-08						

ASPEN PLUS PLAT	: WIN32 VER: 25.0 NIACIN PRODUCTION STREAM SECTION	03/27/2013 PAG	GE 114 ASPEN PLUS	PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION STREAM SECTION	03/27/2013 PAGE 11
S-318 S-319			S-318 S-319	(CONTINUED)		
	s 219 s 210		STREAM ID	S-3	18 S-319	
STREAM ID FROM : CLASS: TOTAL STREAM: LB/HR BTU/HR SUBSTREAM: MIXED PHASE: COMPONENTS: LBMOL OXYGEN HYDROGEN NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NICOT-01 AMMONIA WATER CARBO-01 NITROGEN AMMONIA WATER CARBO-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NIACINAM METDIAMI METOLAMI METHYLPI 3-MET-01 NIACINAM METDIAMI METOLAMI METHYLPI 3-MET-01 NIACINAM METDIAMI METHYLPI 3-MET-01 NIACINAM METOLAMI METHYLPI 3-MET-01 NIACINAM METOLAMI METHYLPI 3-MET-01 NIACINAM METHYLPI 3-MET-01 NIACOFNI METHYLPI 3-METHYLPI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			S-3 2.417 0. 9.564 0. 0. 0. 0. 1107. 1.995 314. BLES: 32. IA 48. 1.157 1. 0. -1.249 -6938. -1.384 -R -42. -2. T 3. 63.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
CARBO-01 NIACINAM METDIAMI METHYLPI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
3-MET-01 NICOT-01 AMMONICO COMPONENTS: MASS						
OXYGEN HYDROGEN NITROGEN	3.3816-08 3.3816-08 0.0 0.0 1.0227-07 1.0227-07					

ASPEN PLUS PLAT: WIN32	VER: 25.0 NIACIN PRODUCTION PROBLEM STATUS SECTION	03/27/2013 PAGE 116
BLOCK STATUS		

*		*
* Calculations were comple	ted normally	ਸ *
* All Unit Operation block	s were completed normally	*

 $\mathop{*}\limits_{*}$ All streams were flashed normally $_{\star}^{\star}$ All Convergence blocks were completed normally

*

* *

*

D. SAMPLE DESIGN AND COST CALCULATIONS

Sample Catalyst Regeneration Oxygen Flow Calculations (R-101)

Based on the relative low concentration of hydrocarbons in our process streams and lacking data from any of the patents, it was assumed that catalysts in reactors R101 and R201 would need regenerating every 6 months via oxidation to remove coke buildup. It was also assumed that the carbon building up at the end of 6 months is equivalent to 3% of the catalysts original weight. $m_{catalyst} = 5,600$ lbs = 2,540 kg

$$n_{carbon} = \frac{(0.03)(M_{ca\,ta\,lyst})}{MW_{ca\,rb\,o\,n}} = \frac{(0.03)(254\,\text{@g})}{1\,20\,\frac{\text{kg}}{\text{kmol}}} = 6.35\,\text{kmol} = n_{oxygen}$$

Given the 1:1 ratio of C to O₂ molecules in the typical combustion reaction

$$C + O_2 \rightarrow CO_2$$

 $m_{oxygen} = (n_{oxygen}) * (MW_{oxygen}) = (6.35)(16.00 \text{ kg/kmol}) = 203 \text{ kg} = 448 \text{ lbs/6 months}$

Any heat given off during the combustion will be borne away by the cooling fluid within each reactor. Additionally, the CO_2 that is produced is sent to a wet scrubber to prevent pollution.

Sample Catalyst Price Calculations (R-101)

For the first reactor, the mass of HZSM-5 catalyst required, $m_{catalyst}$ for the entire reactor train = 5,600 lb

Assuming a catalyst density of 50 lb/ft³ and a void fraction, ϵ of 0.5, the total volume of catalysts required:

$$V_{\text{catalyst}} = \left(\frac{m_{\text{catalyst}}}{\rho_{\text{catalyst}}}\right) \div \epsilon = \left(\frac{5600 \text{ lb}}{50 \frac{\text{lb}}{\text{ft}^3}}\right) \div (0.5) = 224 \text{ ft}^3$$

Cost

The price, P_{catalyst} of the ZSM-5 catalyst was estimated as follows:

$$P_{catalyst} = m_{catalyst} \times \sum P_i \times x_i \text{ where i the element in the catalyst}$$

The β -zeolite has a chemical formula of Na_nAl_nSi_{96-n}O₁₉₂ (0<n<27). To get Si/Al = 18 as specified in the patent, n = 5,

Element	X	Price (\$/lb)	$(\mathbf{P})(\mathbf{x}/\mathbf{x}_{total})(\$/\mathbf{lb})$
Na	10	0.45	0.01
Al	10	0.86	0.01
Si	86	0.94	0.29
0	192	0.56	0.37
	$\mathbf{x}_{\text{total}} = 298$		$\sum P_i \times \frac{x_i}{x_{total}} = 0.68$

 $P_{catalyst} = 5600 \text{ lb} \times \$ 0.68 / \text{lb} = \$3,808$

Sample Catalyst Price Calculations (R-102)

For the second reactor, the mass of 1% Pd-SiO₂/Al₂O₃ catalyst required, $m_{catalyst}$ for the entire reactor train = 6,410 lb

To calculate the catalyst density, the density of each compound (Pd, SiO_2 , and Al_2O_3) was weighted against its mass fraction:

$$\begin{split} \rho_{catalyst} &= \sum \rho_i \times x_i = \left(0.01 \times 12.023 \, \frac{g}{cm^3} + 0.495 \times 2.65 \, \frac{g}{cm^3} + 0.495 \times 2.65 \, \frac{g}{cm^3} \right) = 3.39 \, \frac{g}{cm^3} \\ &= 211.5 \, \frac{lb}{ft^3} \end{split}$$

With a weighted catalyst density of 211 lb/ft³ and a void fraction, ϵ of 0.5, the total volume of catalysts required:

$$V_{\text{catalyst}} = \left(\frac{m_{\text{catalyst}}}{\rho_{\text{catalyst}}}\right) \div \varepsilon = \left(\frac{6410 \text{ lb}}{211.5 \frac{\text{lb}}{\text{ft}^3}}\right) \div (0.5) = 60 \text{ ft}^3$$

Cost

The price, P_{catalyst} of the 1% Pd-SiO₂/Al₂O₃ catalyst was estimated as follows:

 $P_{catalyst} = m_{catalyst} \times \sum P_i \times x_i \text{ where i the element in the catalyst}$

Compound	X	Price (\$/lb)	$(\mathbf{P})(\mathbf{x}/\mathbf{x}_{total})(\$/\mathbf{lb})$
Pd	0.01	12144	121.44
SiO ₂	0.495	0.64	0.31
Al ₂ O ₃	0.495	0.91	0.45
			$\sum P_i \times \frac{x_i}{x_{total}} = 122.20$

 $P_{catalyst} = 6,410 \text{ lb} \times \$ 122.20/\text{lb} = \$783,300$

Sample Catalyst Price Calculations (R-201)

For the third reactor, the mass and price of catalyst are calculated by sourcing bulk prices for the different catalysts required. The overall results are shown below:

Compound	V_2O_5	TiO ₂	ZrO ₂	MoO ₃
Mass (lb)	90,548	39,761	61,344	71,660
Price per lb (\$/lb)	6.22	4.70	4.00	9.07
Price (\$)	563,166	186,877	245,375	650,089

 $P_{catalyst} = $1,645,510$

Sample Catalyst Price Calculations (R-202A, B, C)

The fourth reaction train consists of three reactor vessels in a continuous cascade. Each vessel has a volume, V of 6,975 ft³. It was determined that each 6,975 ft³ tank would house 1,740 lb (dry weight) of the whole cell biocatalyst *R. rhodochrous* J1 immobilized in polyacrylamide particles.

Cell density in each vessel would then be:

$$\rho_{\text{cell}} = \frac{\text{mass of cells (lb)}}{\text{volume of vessel (ft^3)}} = \frac{1740 \text{ lb}}{6975 \text{ ft}^3} = 0.25 \frac{\text{lb}}{\text{ft}^3}$$

Cost

For each vessel, 1,740 lb (dry weight) of the whole cell biocatalyst *R. rhodochrous* J1 immobilized in polyacrylamide (PAM) particles is required. The biocatalyst produced by *R. rhodochrous* J1 that is responsible for the reaction is nitrile hydratase, NHase.

The price for the biocatalyst in bulk quantities was not obtainable (Dia-Nitrix Co., Ltd sells it but the authors were unable to obtain a price quote from them); therefore, cost estimation methods were used to estimate the price of the biocatalyst.

Assuming that each polyacrylamide-*R. rhodochrous* particle consists of equal percentage by mass of either substance—50 mass% of PAM and 50 mass% of *R. rhodochrous*. Another assumption made is that only 1% of the *R. rhodochrous* whole cells is the actual enzyme, NHase. This means that using immobilized enzyme instead of whole cells, 870 lb of PAM and 8.7 lb of NHase would be required, giving a total of 878.7 lb.

Keeping as the foundation the retail price (provided by Sigma-Aldrich), the price for each chemical goes through a fluctuation of price proportionate to the bulk purchase, i.e. the cost on a commercial level, is much cheaper compared to the cost for chemicals for lab-scale purposes, which are purchased in small amounts and with a higher price fluctuation. On a lab scale, the prices (from http://www.sigmaaldrich.com/) are as follows:

Price of PAM = 130/25 g = 2,359/lb

Price of NHase = \$188/ 50 mg = \$1,705,510/lb

While the prices of both these chemicals are very high, there is evidence that a bulk market for both these products exists. Bulk prices for PAM are listed at \$1.2/lb. This is a scaling ratio of $(2359/1.2) = 1,966 \approx 2,000$. Since both PAM and NHase are usually used for biologics purposes, as opposed to as commodity chemicals, it would be safe to assume that they would scale the same way. Thus, the price of NHase was converted to an estimated bulk quantity price using a price correlation factor and a scaling factor of ~0.75 (Dieudonné, B., et al., 2012).

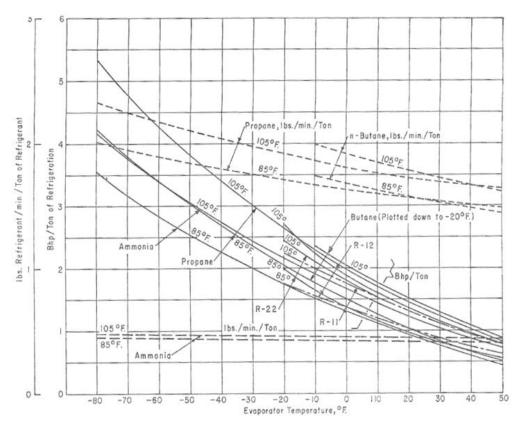
Price of NHase =
$$\frac{\$1,705,510}{lb} \times \left(\frac{2,359}{1.2}\right)^{0.75} = \frac{\$5,777}{lb}$$

This price is a conservatively high estimate (more than 3 times the upper bound) according to "Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes" that gives the range of free enzyme price as \$690/lb to \$1,725/lb based on "typical values of biocatalyst cost" (Tufvesson, P., et al., 2010). However, the paper also states that the immobilization process "increases the specific enzyme cost by a factor of 4." This would put our estimate price of enzyme inside that price range.

Compound	PAM	NHase	Total
Mass (lb)	870	8.7	
Price per lb (\$/lb)	1.2	5776.89	
Price (\$)	1,044	50,259	51,303

This means that the total price per lb of biocatalyst = $\frac{\$51,303}{(870+8,7) \text{ lb}} = \frac{\$175}{\text{ lb}}$

This sits well in the range of immobilized enzyme price of \$69/lb to \$690/lb given in "Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes," making it a confident estimate.


For all three vessels, the total price of biocatalyst is \$153,910.

Sample Adsorbent (Activated Carbon) Calculations (DC-301)

Adsorbent (Activated Carbon)					
Applicable Block: DC-301					
Variable S	Description = Size Factor = Bulk volume	Unit ft ³			
Relevant F 1) Find Cos C _P C _P	-		(CE=575.4)	Source SSLW (T22.32)	

Refrigeration Power Requirements Chart

Chart used to calculate the electricity needed for refrigeration units. -120°F needs about 7 hp per ton of refrigeration.

Source: Ludwig. P.E, E. E. (2001). Chapter 11 Refrigeration systems. <u>Applied Process Design for Chemical &</u> <u>Petrochemical Plants</u>. E. E. Ludwig. P.E, Gulf Professional Publishing. **Volume 3:** 289-367.

Sample Calculations: Dowtherm System

To effectively calculate the cost of the Dowtherm system used in the process, costing for a furnace, pump, and Dowtherm A was taken from a previous report, *Hydrogenation of Maleic Anhydride Tetrahydrofuran*. In the report from 2009, a total of 11,349 lbs of Dowtherm A were used for 17,038,956 BTU/hr needed for heat transfer. 68,093 lbs/hr were needed. Therefore, the heating capacity of a pound of Dowtherm A was calculated as

$$\frac{17,038,956\frac{BTU}{hr}}{68093\frac{lbs}{hr}} = 250\frac{BTU}{lb}$$

For the overall cost of the furnace and the pump, a cost of \$700,000 for a furnace that has the capacity for 17 MMBTU/hr. The pump cost \$6,900 to have the capacity listed above. Dowtherm A, as quoted from a Dow representative, is around \$4.68/lb in 2009. To convert to our process, a factor was calculated to scale down the cost and flow rate of the Dowtherm.

$$\frac{17,038,956\frac{\text{BTU}}{\text{hr}}}{6,963,000\frac{\text{BTU}}{\text{hr}}} = 0.408$$

This factor was used to scale the costing for the pump and furnace.

Pump Cost: \$6,900 * 0.408 = \$2,819.34 *Furnace Cost*: \$700,000 * 0.408 = \$286,020

However, since this was calculated in 2009 when the CE was 521, these costs needed to be scaled up.

Pump Cost:
$$$2,819.34 * \left(\frac{570}{521}\right) = $3,035$$

Furnace Cost: $$286,020 * \left(\frac{570}{521}\right) = $312,920$

It was then calculated how much Dowtherm A was needed for our process assuming that the heating value is 250 BTU/hr. The overall cost of the Dowtherm was also calculated, assuming the Dowtherm is pumped constantly in the system. A factor of $1/6^{th}$ was used to find the total amount of Dowtherm necessary to be put into the system. CE factors were also taken into account to deal with inflation.

$$\frac{6,963,000\frac{\text{BTU}}{\text{hr}}}{250\frac{\text{BTU}}{\text{hr}}} = 27,852 \text{ lb/hr}$$

$$27,852\frac{\text{lb}}{\text{hr}} * \frac{1 \text{ hr}}{6} * \frac{\$4.68}{\text{lb}} * \left(\frac{570}{521}\right) = \$23,767$$

Final cost calculations also take into consideration total bare module cost. For a furnace, 2.2 is used whereas 3.30 is used for a pump.

Overall, the cost for the entire Dowtherm A system, including the furnace, pump, and Dowtherm A chemical is \$722,207.

Sample Calculations: Distillation or Absorbing Column

Tower:

All of the data used in these calculations were taken from the ASPEN report for the distillation column. The top stage conditions were used to calculate the flooding velocity and the final diameter of the column itself. This distillation column was defined by the authors to have sieve trays and a tray spacing of 12 inches to make sure that the column was only one unit and did not have to separated into two distillation columns in series. From ASPEN, the number of trays calculated were 40. Assuming a tray efficiency of 70%, this means that there are 55 total trays in the column. As defined in the presentation *Total Capital Investment and Cost Estimated – Distillation Column* given by Dr. Warren Seider on 11/19/2012, the calculations for the diameter, height, and cost of the distillation column are outlined below. Estimating the Flooding Velocity:

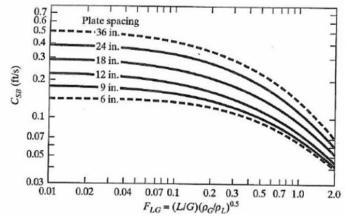
$$U_{f} = C \left(\frac{\rho_{L} - \rho_{G}}{\rho_{G}} \right)$$
$$C = C_{SB} * F_{ST} * F_{F} * F_{HA}$$

For a non-foaming material, $F_F = 1$, whereas F_{HA} must be determined for a sieve tray distillation column, dependent on the ratio of the active area of the distillation column to the total area of the tray. CSB is determined using Figure 19.4 in *Product and Process Design Principles*, whereas F_{ST} is defined as the following and is dependent on the surface tension of the mixture:

$$F_{\rm ST} = \left(\frac{\sigma}{20}\right)^{0.2}$$

 F_{sT} is calculated to be 0.9791 given the surface tension of the mixture at the top of the distillation tower is 18.1 lb/ft.

 F_{LG} was also calculated using correlations from the ASPEN data. The density of the gas on the top tray is 0.11127 lb/ft3 while the density of the liquid fraction is 49.405 lb/ft3. Liquid flow rate is 365.316 lb/hr; vapor flow rate is 56.9179 lb/hr. These were put into the following equation to yield a F_{LG} of 0.3045.


$$F_{LG} = \left(\frac{L}{G}\right) \left(\frac{\rho_G}{\rho_L}\right)^{0.5}$$

To calculate the ratio, A_d/A_T , it may be estimated by the following:

$$\frac{A_{d}}{A_{T}} = 0.1 + \frac{F_{LG} - 0.1}{9}$$

This value turns out to be greater than 0.1, which means that the approximation where $F_{HA} = 1$ is the correct one, since for a sieve tray.

To calculate the last piece necessary to find the flooding velocity, the coefficient C_{SB} is determined from knowing 12 inch plate spacing along with the 0.3045 value of F_{LG} . Using the given graph below, C_{SB} is determined to be around 0.15.

Therefore, C for the flooding velocity equation is 0.146865. U_f, given these values, is around 2.63 ft/hr. Assuming that the actual velocity, U, is $0.85U_f$, the overall diameter of the tower can be calculated.

$$D = 2 \left(\frac{V}{0.9\pi U}\right)^{0.5}$$

Where V is the vapor flow rate that was given by ASPEN earlier. Using this equation and the calculated variables, the overall estimated tower diameter is 5.5 ft, which can be increased to a standard size of 6ft.

With the diameter effectively calculated and the number of trays known (55 for this case with a spacing of 1 ft between each tray), the total tower cost can be determined. The total height, or length, is calculated by adding four feet for the top of the column with the condenser and ten feed at the bottom for the reboiler.

$$L = 54 * 1ft + 4ft + 10ft = 68ft$$

For the purchase and installed cost, the purchase cost of the column, not including the trays, is given by the equation below.

$$C_P = F_M C_V + C_{PL}$$

 F_M is the materials factor, C_V is the vessel cost, and C_{PL} is the platform and ladder cost. To calculate the vessel cost, the weight of the tower must be estimated.

$$W = \pi (D_i + t_s)(L + 0.8D_i)t_s\rho$$

D and L are the inside diameter and length of the vessel as calculated previously. t_s is the thickness of the material used, which in this case is carbon steel, meaning that the thickness can be assumed to be 0.75 inches. The density of the material, ρ , is 0.284 lb/in². Using this equation, the weight of the vessel is calculated as 42,500 lbs. C_v can then be calculated from the following equation.

$$C_V = \exp(7.2756 + 0.18255 \ln(W) + 0.02297(\ln(W))^2)$$

From this, the vessel cost is \$137,300 for 2006 with a CE of 500. To increase to 2013 costing, CE of 570 is used. The total cost for the vessel is then \$156,500. Next the platform and ladder cost is evaluated.

$$C_{PL} = 300.9(D)^{0.63316}(L)^{0.80161}$$

This equation yields a cost for the ladders and platforms around \$27,500. Again, to cost for 2013 a CE of 570 is used, making the cost of the ladders and platforms \$31,400. Then the cost for the entire tower is calculated as follows. F_M is the materials factor which is 1 for carbon steel.

$$C_P = F_M C_V + C_{PL} = 1 * 156,500 + 31,400 = $187,900$$

Next, the purchase cost of the trays needs to be calculated. Total cost of the trays, C_T , is calculated.

$$C_{\rm T} = N_{\rm T} F_{\rm NT} F_{\rm TT} F_{\rm TM} C_{\rm BT}$$

 N_T is the total number of trays, F_{NT} is the number factor, which is 1 for towers with >20 trays. F_{TT} is the type factor, which is 1 for sieve trays; F_{TM} is the materials factor, equal to 1 for carbon steel. C_{BT} finally is the base cost for sieve trays, which is calculated with the equation below for 2006 values.

$$C_{BT} = 468e^{0.1739D}$$

Where D is again the diameter. C_{BT} is then \$1,330 per tray.

$$C_{T} = N_{T}F_{NT}F_{TT}F_{TM}C_{BT} = 55 * 1 * 1 * 1 * 1 * 1,330 = $73,150$$

Therefore the total cost of the trays is \$73,150 for 2006. Scaled to reflect 2013 prices, the cost is \$83,400. The cost of the entire tower is then calculated with the equation below.

$$C_{BM} = F_{BM}(C_P + C_T) = 4.16(187,900 + 83,400) = $1,128,600$$

 F_{BM} is the bare module factor for a vertical pressure vessel. In this case, FBM is 4.16. Cost of the entire column is \$1,128,600.

Reflux Accumulator:

For the reflux accumulator, this was sized and a cost estimated for it assuming that it is a horizontal pressure vessel. A typical aspect ratio, L/D for this type of a vessel is 2. The overall reflux ratio is 6.4183, with the reflux rate at 365.32 lb_{mol}/hr . Average molecular weight is 58.10 lb/ lb_{mol} . Density of this solution is assumed to be 50.23 lb/ft³. The equation below outlines the total flowrate in ft³/hr of the reflux.

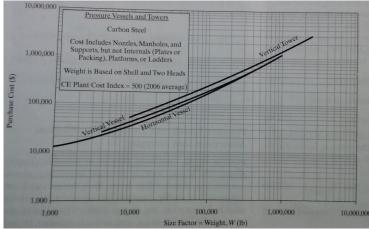
$$Q = \frac{\left(365.32\frac{lb_{mol}}{\Box r} * 58.10\frac{lb}{lb_{mol}}\right)}{50.23\frac{lb}{ft^3}} = \frac{422.55ft^3}{\Box r}$$

With a typical residence time of 5 minutes (assuming the vessel is actually only half full for this particular residence time), the total diameter of the reflux accumulator can be determined. The total volume of the container, then, would be

$$V = 2Q\tau$$

As outlined in the equation below, the diameter is dependent on the residence time and the volumetric flow rate of the liquid going into the reflux accumulator. Assuming the vessel is a cylinder in shape, the diameter of the vessel would be:

$$\mathsf{D} = \left(\frac{4\mathsf{Q}\tau}{\pi}\right)^{0.33}$$


Using the flow rate and residence time specified above, the diameter is calculated to 3.55 ft. Then the total length of the vessel is twice that amount, or 7.1 ft.

From here, the correlations based on f.o.b. purchase costs for pressure vessels and towers can be used to calculate the cost of the reflux accumulator. To find the overall cost, the weight of the shell with the two heads is approximated by the same weighting equation as seen for the tower.

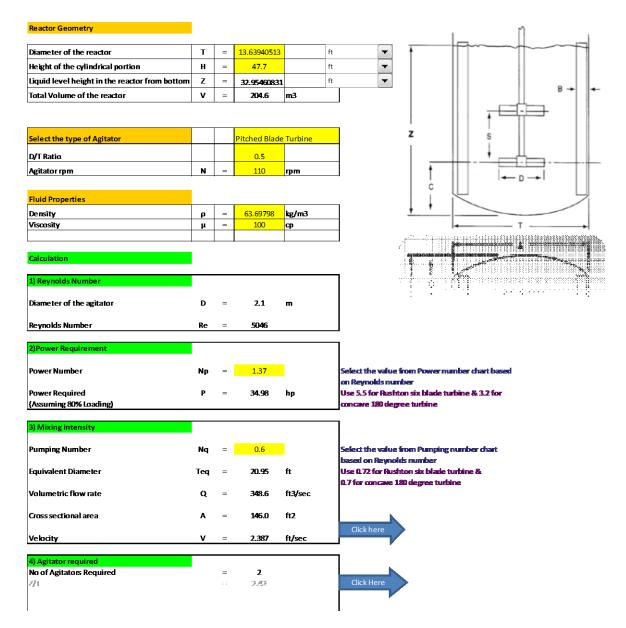
$$W = \pi (D_i + t_s)(L + 0.8D_i)t_s\rho$$

With the diameter calculated at Xft and the length at Xft, the overall weight is calculated to be XX,XXX lbs. Using the correlations for carbon steel in Seider's text, pg 574, the following graph can correctly calculated the horizontal tower's (reflux accumulator's) total cost. Thickness of the vessel is again 0.75 inches with the density of carbon steel at 0.284 lb/in².

$$W = \pi (D_i + t_s)(L + 0.8D_i)t_s\rho$$
$$= \pi (3.55 * 12 + 0.75)(7.1 * 12 + 0.8 * 3.55 * 12)0.75 * 0.284 = 3,460 \text{ lbs}$$

The total cost of the reflux accumulator, given by the graph, is around \$20,000 for 2006. Scaled to fit 2013 costing, the total cost comes to around \$22,800. However, the bare modulus factor of 4.16 must also be multiplied to get the final cost of this horizontal tower. Multiplying the cost by 4.16 gives a final cost estimate at \$94,800.

Condenser/Reboilder:


Modeled as heat exchangers. See Heat Exchangers sample calculations.

Reflux Pump:

Modeled as pump. See Pump sample calculations.

Sample Agitator Calculations for R-202

The entire sizing for the agitators were performed using the following spreadsheet entitled "Agitator Power Requirement and Mixing Intensity Calculations" obtained from cheresources.com. By inputting the reactor geometry, selecting the type of agitator, inputting the fluid properties in the vessel, the power requirement required for the correlations in *Seider et al.* (SSLW 22.23) would be calculated.

Also, the following are correlations from Seider for which a turbine agitator in a closed vessel would be cost.

	Agitator (Turbine, closed vessel)					
Applicable B	Blocks: R-202A, R-202B, R-202C, N-2	301				
Variable S	Description Size Factor = Motor Hp	Unit hp				
Relevant Equ 1) Find Equip C _B		Includes speed reducer, pressures to 150 psig	Source SSLW (22.23)			
F _M	Vertical Pressure Vessel Cost		SSLW (pg580)			
C _P	$= C_{\rm B} \times F_{\rm M} $ 5. = (575.4/500)*C _p					

Sample Blower Calculations (B-101)

From ASPEN, the brake horsepower, P_B (hp) of B-101 is 2.3 hp.

The fractional efficiency of the electric motor is calculated using (SSLW 22.18) :

 $\eta_M = 0.80 + 0.0319 (\ln P_B) - 0.00182 (\ln P_B)^2;$ For $1 < P_B < 1500 \ Hp$

 $\eta_M = 0.80 + 0.0319 (\ln 2.3 \ \text{Hp}) - 0.00182 (\ln 2.3)^2 = 0.83$

The power consumption, P_C (hp):

$$P_C = \frac{P_B}{\eta_M} = \frac{2.3 \text{ hp}}{0.83} = 2.8 \text{ hp}$$

Cost

For a cast iron ($F_M = 1$) centrifugal blower, the f.o.b. purchase cost, CE Index = 500, is given by (from SSLW (T22.32))

 $C_{FOB} = e^{6.8929 + 0.7900(\ln P_C)} = e^{6.8929 + 0.7900(\ln 2.8 \text{ hp})} = \$2,220$

The bare-module factor, F_{BM} gas compressors and drivers = 2.15 (SSLW T22.11)

Therefore, the equipment bare-module cost, CE Index = 575.4 is:

$C_{\rm P} = \left(\frac{CE}{C}\right)$	$C_{\rm P} = \left(\frac{CE_{575.4}}{CE_{500}}\right) \times C_{\rm FOB} \times F_{\rm BM} = \left(\frac{575.4}{500}\right) \times (\$2,220) \times (2.15) = \$5,490$							
	Centrifugal Blower							
Applicable Blocks: B-201, B-202, B-203								
Variable	Description	Unit						
Q	Inlet Volumetric Flow Rate	ft ³ /min						
Pi	Inlet Pressure	psi						
Po	Outlet Pressure	psi						
	Relevant Equations: Source							
1) Find Con	sumed Power							
$\eta_{\rm B}$	= 0.75							
PB	= $0.00436 \times (k/(k-1)) \times (Q \times P_i/\eta_B) \times ((Q \times P_i/\eta_B)) \times ((Q \times $	$P_{o}/P_{i})^{(k-1)/k}$ -1)	Brake horsepower	SSLW (22.30)				
η_{M}	= $0.80+0.0319 \times ln$ (P _B)- $0.00182 \times h$	$n(P_B)^2$	Motor efficiency	SSLW (22.18)				
P _C	$= P_B / \eta_M$		Size factor					
2) Find Tota	al Blower Cost							
C _B	$= exp (6.8929+0.7900 \times ln (P_C))$			SSLW (22.32)				
F_M	= 1 (Cast Iron)							
C _{FOB}	$= C_B \times F_M$			SSLW (T22.11)				
F_{BM}	= 2.15							
CP	$= C_{FOB} \times F_{BM}$							

Sample Compressor Calculations (C-101)

From ASPEN, the brake horsepower, P_B (hp) of C-101 is 22.3 hp.

The fractional efficiency of the electric motor is calculated using (SSLW 22.18) :

 $\eta_M = 0.80 + 0.0319 (\ln P_B) - 0.00182 (\ln P_B)^2;$ For $1 < P_B < 1500 \ Hp$

 $\eta_{M} = 0.80 + 0.0319(\ln 22.3 \text{ Hp}) - 0.00182(\ln 22.3)^{2} = 0.88$

The power consumption, P_C (hp):

$$P_C = \frac{P_B}{\eta_M} = \frac{22.3 \text{ hp}}{0.88} = 25.3 \text{ hp}$$

Cost

For a cast iron ($F_M = 1$) screw compressor (valid from $10 < P_C < 750$ hp), the f.o.b. purchase cost, CE Index = 500, is given by (from SSLW (22.38))

 $C_{FOB} = e^{8.1238 + 0.7243(\ln P_c)} = e^{8.1238 + 0.7243(\ln 2.8 hp)} = \$35,050$

The bare-module factor, F_{BM} gas compressors and drivers = 2.15 (SSLW T22.11). Therefore, the equipment bare-module cost, CE Index = 575.4 is:

$$C_{\rm P} = \left(\frac{CE_{575.4}}{CE_{500}}\right) \times C_{\rm FOB} \times F_{\rm BM} = \left(\frac{575.4}{500}\right) \times (\$35,050) \times (2.15) = \$86,800$$

Centrifugal Compressor

Applicable Blocks: C-101, C-102, C-103, C-301

Variable Q P _i P _o	Description Volumetric Flow Rate Inlet Pressure Outlet Pressure	Unit gal/min psi psi	
Relevant Equ 1) Find Const			Source
η _B P _B η _M P _C	= 0.75 = 0.00436×(k/(k-1))×(Q×P _i / η_B)×((P _o = 0.80+0.0319× <i>ln</i> (P _B)-0.00182×ln(R = P _B / η_M		SSLW (22.30) SSLW (22.18)
2) Find Total	Blower Cost		
C _B	= $exp (6.8929+0.7900 \times ln (P_C))$		SSLW (22.32)
F_M	= 1 (Cast Iron)		
C _{FOB}	$= C_B \times F_M$		SSLW (T22.11)
F_{BM}	= 2.15		
CP	$= C_{FOB} \times F_{BM}$		

Sample Vapor Liquid Separator Calculations

All the sizing and costing for the vapor liquid separators/flash vessels were performed using ASPEN Process Economic Analyzer (IPE). The following are correlations from *Product and Process Design Principles* for which a flash vessel would be sized and cost. Equivalently, the spreadsheet provided by Mr. Fabiano was also used to size the flash vessel as a comparison.

	Vapor Liquid S	Separator					
Applicable Blocks: F-201, F-301							
Variable	Description	Unit					
Q	Volumetric Flow Rate	ft ³ /min					
τ	Residence Time	min					
AR	Aspect Ratio, $AR = L/D$	dimensionless					
P _o	Operating Pressure	psig					
E S	Weld Efficiency Maximum Allowable Shell Stress	<i>dimensionless</i> psi	= 0.85 for thickness < 1.25 in.				
	Density of Carbon Steel	lb/in ³					
ρs	Density of Carbon Steel	ID/III					
Relevant Eq 1) Find Volu			Source				
Holdup	$= Q \times \tau$	ft^3					
V	$= 2 \times Holdup$	ft^3					
2) Find Dian	neter and Length						
D	$= ((2 \times V) / \pi)^{1/3}$	ft					
L	$= \mathbf{D} \times \mathbf{AR}$	ft					
3) Shell Thic	kness, excl. wind and earthquake considerations						
P _d	$= exp (0.60608 + 0.91615 \times ln (P_o) + 0.0015655 \times ln (P_o)^2)$		SSLW (22.61)				
tp	$= (\mathbf{P}_{d} \times \mathbf{D}) / (2 \times \mathbf{S} \times \mathbf{E} - 1.2 \times \mathbf{P}_{d})$		SSLW (22.60)				
t _C	= 0.125 (in) Corrosion Allowance						
ts	$= t_p + t_c$						
4) Find Vess	el Weight and Cost						
W	$= \pi \times (D + t_s) \times (L + 0.8 \times D) \times t_V \times \rho_S$		SSLW (22.59)				
Cv	$= exp (7.2756 + 0.18255 \times ln (W) + 0.02297 \times ln (W)^{2}$		SSLW (22.53)				
F_M	= 1 Carbon Steel						
C _{VESSEL}	$= C_V \times F_M$						
5) Find Cost	of Platforms and Ladders						
C _{PL}	$= 300.9 \times D^{0.63316} \times L^{0.80161}$		SSLW (22.58)				
6) Find Tota	l Vertical Pressure Vessel Cost						
C _{FOB}	$= C_{VESSEL} \times C_{PL}$						
F_{BM}	= 4.16		SSLW (T22.11)				
CP	$= C_{FOB} \times F_{BM}$						

Sample Heat Exchanger Calculations

All the sizing for the heat exchangers was performed using ASPEN Plus Exchanger Design and Rating (EDR) and costing was done using ASPEN Process Economic Analyzer (IPE). The following are correlations from *Product and Process Design Principles* for which a shell-and-tube heat exchanger would be sized and cost.

Shell and Tube Heat Exchanger (Fixed Head)			
Applicable	Blocks:		
Variable	Description	Unit	
$T_{h,in}$	Initial temperature of the hot stream	°F	
T _{h,out}	Final temperature of the hot stream	°F	
T _{c,in}	Initial temperature of the cold stream	°F	
T _{c,out}	Final temperature of the cold stream	°F	
Q	Heat duty	Btu	
U	Overall heat exchange coefficient	Btu/ft ² -hr-°F	
L	Tube length	ft	
Ps	Shell pressure	psig	
a	Material of construction factor	dimensionless	
b	Material of construction factor	dimensionless	
Relevant E 1) Find the	quations: Log-Mean Temperature Difference		Source
ΔT_1	$= T_{h,in} - T_{c,out}$		SSLW (S18.3)
ΔT_2	$= T_{h,out} - T_{c,in}$		SSLW (S18.3)
$\Delta T_{\rm LM}$	$= (\Delta T_1 - \Delta T_2) / ln ((\Delta T_1 / \Delta T_2))$		SSLW (18.3)
2) Find the	Area Required for Heat Exchange		
А	$= Q/(U \times \Delta T_{LM})$		SSLW (S18.3)
3) Find Ves	sel Cost		
F _M	$= a + (A/100)^{b}$		SSLW (22.44)
F_L	= 1 L = 20 ft		SSLW (S22.5)
F _P	$= 0.9803 + 0.018(P_{s}/100) + 0.0017(P_{s}/100)^{2}$		SSLW (22.45)
C _B	$= exp (11.0545 - 0.9228 \times ln (A) + 0.09861 \times ln (A)^{2}$		SSLW (22.40)
C _{FOB}	$= F_{\rm M} \times F_{\rm L} \times F_{\rm P} \times C_{\rm B}$		
F _{BM}	= 3.17		
С _Р	$= C_{FOB} \times F_{BM}$		SSLW (T22.11)
℃ _r			

Sample Vertical Pressure Vessel Calculations

The following are correlations from *Product and Process Design Principles* for which a vertical pressure vessel would be sized and cost.

Vertical Pressure Vessel			
Applicable l	Blocks: R-202A, R-202B, R-202C, DC-301, N-301		
Variable	Description	Unit	
Q	Volumetric Flow Rate	ft ³ /min	
τ	Residence Time	min	
AR	Aspect Ratio	dimensionless	
Po	Operating Pressure	psig	
E	Weld Efficiency	dimensionless	
S	Maximum Allowable Shell Stress	psi	
ρs	Density of Carbon Steel	lb/in ³	
Relevant Eq 1) Find Dian	uations: neter and Length		Source
v	$= Q \times \tau$		
D	$= ((4 \times V) / (AR \times \pi))^{1/3}$		
L	$= D \times AR$		
2) Shell Thic	kness		
P _d	$= exp (0.60608 + 0.91615 \times ln (P_o) + 0.0015655 \times ln (P_o)^2)$		SSLW (22.61)
t _p	$= (P_d \times D) / (2 \times S \times E - 1.2 \times P_d)$		SSLW (22.60)
t _C	= 0.125 (in) Corrosion Allowance		
t _s	$= t_p + t_c$		
3) Find Vess	sel Weight and Cost		
W	$= \pi \times (D + t_s) \times (L + 0.8 \times D) \times t_V \times \rho_S$		SSLW (22.59)
C_V	$= exp (7.2756 + 0.18255 \times ln (W) + 0.02297 \times ln (W)^{2}$		SSLW (22.53)
F _M	= 1 Carbon Steel		
C _{VESSEL}	$= C_V \times F_M$		
4) Find Cost	of Platforms and Ladders		
C _{PL}	$= 300.9 \times D^{0.63316} \times L^{0.80161}$		SSLW (22.58)
5) Find Tota	l Vertical Pressure Vessel Cost		
C _{FOB}	$= C_{VESSEL} \times C_{PL}$		
F _{BM}	= 4.16		SSLW (T22.11)
C _P	$= C_{FOB} \times F_{BM}$		(122.11)
-r	-10B ··· - BM		

Sample Pump Calculations

All the sizing for the pumps performed using ASPEN Process Economic Analyzer (IPE). The following are correlations from *Product and Process Design Principles* for which a pump would be sized and cost as a comparison.

		Centrifugal Pump	
Applicable l	Blocks: P-101, P-102, P-103, P-201, P-20	02, P-203, P-204, P-301	
Variable	Description	Unit	
Q	Volumetric Flow Rate	gal/min	
ΔP	Pressure Rise	psi	
ρL	Liquid Density	lb/gal	
A_G	Gravitational Acceleration	ft/s ²	
Relevant Eq			Source
1) Find Pum	p head		
\mathbf{P}_{H}	$= (\Delta P \times 144)/(\rho_L \times A_G)$	ft	
2) Find Pum	p Cost		
S	$= \mathbf{Q} \times \mathbf{P}_{\mathrm{H}}^{0.5}$		SSLW (22.13)
CB	$= exp (9.7171 - 0.6019 \times ln (S) + 0.051)$	$19 \times ln(S)^2$	SSLW (22.14)
F _M	= 1 (Cast Iron)		SSLW (S22.5)
F _T	$= 1.0 50 < P_{\rm H} < 400, hp_{\rm max} = 75$		SSLW (S22.5)
- 1	1.5 $50 < P_H < 200, hp_{max} = 200$		
	1.7 $100 < P_H < 450, hp_{max} = 15$		
	2.0 $50 < P_H < 500, hp_{max} = 250$		
	2.7 $300 < P_H < 1,100, hp_{max} = 2$		
	8.9 $650 < P_H < 3,200, hp_{max} = 1$	1,450	
C _{PUMP}	$= C_B \times F_M \times F_T$		
3) Find Mot	or Cost		
η_P	= 0.7		
P _B	= $(Q \times P_H \times \rho_L)/(33,000 \times \eta_P)$		SSLW (22.16)
η_{M}	= $0.80+0.0319 \times ln$ (P _B)-0.00182×ln	$(\mathbf{P}_{\mathbf{R}})^2$	SSLW (22.18)
P _C	$= (\mathbf{Q} \times \mathbf{P}_{\mathrm{H}} \times \rho_{\mathrm{L}})/(33,000 \times \eta_{\mathrm{P}} \times \eta_{\mathrm{M}})$		SSLW (22.16)
C _B		$353255 \times ln (P_{C})^{2} + 0.028628 \times ln (P_{C})^{3} - 0.0035549 \times ln (P_{C})^{4}$	SSLW (22.19)
FT	= 1.8 Explosion-proof Enclosur		SSLW (S22.5)
C _{MOTOR}	$= C_B \times F_T$. ,
4) Find Tota			
C _{FOB}	$= C_{\rm B} \times F_{\rm T}$		SSLW (T22.11)
F _{BM}	= 3.3		
C _P	$= C_{FOB} \times F_{BM}$		

Sample Reactor Calculations (R-202A, B, C)

The following calculations serve as a supplement to the methodology outlined in the 'B. ii. Reactor Design' section of the paper. A lot of the reasoning behind these calculations can be found with reference to the afore-mentioned section. The calculations are broken down into several steps that correspond with the 'Reactor Design' subsections for easy reading.

Vessel Sizing

The volumetric flow rate, Q of the stream (S-206) entering R-202A is 1457 ft³/hr (from ASPEN)

The appropriate residence time, τ of the whole cascade is 12 hours as determined from literature references to give the maximum niacinamide concentration; hence, the residence time, τ for each vessel is 4 hours.

Total Volume of vessel, V = Q $\times \tau$ = 1457 $\frac{ft^3}{hr} \times 4 hr$ = 5830 ft³

From ASPEN, the vapor fraction obtained is 0.463 giving the volume of vapor and liquid as:

 $V_{vapor} = 0.463 \times V = 2700 \text{ ft}^3$

 $V_{\text{liquid}} = (1 - 0.463) \times V = 3130 \,\text{ft}^3$

Adjusting the volume for liquid in the vapor phase:

 $V_{vapor,adj.} = 0.8 \times V_{vapor} = 2160 \text{ ft}^3$

Adjusting the volume for vapor dissolved in the liquid phase:

 $V_{liquid,adj.} = \frac{V_{liquid}}{0.65} = 4815 \text{ ft}^3$

Total adjusted volume, $V_{total,adj.} = V_{vapor,adj.} + V_{liquid,adj.} = 6975 \text{ ft}^3$

Selecting an aspect ratio, AR = L/D as 3.5. The diameter, D and height, L of the vessel was determined to be 14 ft and 48 ft respectively.

Vessel Costing

Correlations from SSLW were used. Please refer to Sample Vertical Pressure Vessel Calculations on page 245.

Agitator Sizing and Costing

Please refer to Sample Agitator Calculations for R-202 on page 239. The number of impellers required and their individual power requirements were determined for costing using correlations in *Product and Process Design Principles*.

Sample Storage Vessel Calculations (T-101)

From ASPEN, the outlet volumetric flow rate, Q_o (gal/hr) of T-101 (S-101) is 404 gal/hr. With a residence time, τ (hr) of 7 days or 168 hours and maintaining it at 60% (f = 0.6) of the tank capacity for potential increase in productions, the tank volume, V (gal):

$$V = \frac{Q_o \times \tau}{f} = \frac{(404 \frac{\text{gal}}{\text{hr}}) \times (168 \text{ hr})}{0.6} = 113,000 \text{ gal}$$

Cost

For a cast iron ($F_M = 1$) floating roof storage tank, the f.o.b. purchase cost, CE Index = 500, is given by (from SSLW (T22.32))

$$C_{FOB} = 475 \times V^{0.51} = 475 \times (113,000 \text{ gal})^{0.51} = \$ 179,400$$

The bare-module factor, F_{BM} for horizontal pressure vessels = 3.05 (SSLW T22.11)

Therefore, the equipment bare-module cost, CE Index = 575.4 is:

$$C_{\rm P} = \left(\frac{CE_{575.4}}{CE_{500}}\right) \times C_{\rm FOB} \times F_{\rm BM} = \left(\frac{575.4}{500}\right) \times (\$\ 179,400) \times (3.05) = \$\ 629,600$$

Floating Roof Storage Tank

Applicable Blocks: T-101

Variable Q	Description Inlet/Outlet Volumetric Flow Rate Residence Time	Unit gal/hr hr	
Relevant E			Source
V	$= Q \times \tau$		
2) Calculat	e Vessel Cost		
C _{FOB}	$= 475 \times V^{0.51}$		SSLW (T22.32)
F_{BM}	= 3.05		SSLW (T22.11)
C _P	$= C_{FOB} \times F_{BM}$		
	Cone-Roc	of Storage Tank	

Variable Q τ	Description Inlet/Outlet Volumetric Flow Rate Residence Time	Unit gal/hr hr	
Relevant Equ 1) Find the Ta			Source
V	$= Q \times \tau$		

2) Calculate Vessel Cost

C _{FOB}	$= 265 \times V^{0.51}$
F _{BM}	= 4.16
CP	$= C_{FOB} \times F_{BM}$

SSLW (T22.32) SSLW (T22.11)

E. PROFITABILITY ANALYSIS SPREADSHEET

	Process Title:	Green Process to	Produce Niacin			
	Product	Niacinamide				
Pla	ant Site Location:	Michigan				
Timeline:						
Number of Years for Design		1	(must be whole number)			
Number of Years for Construct	ton		(must be whole number)			
Number of Years for Production		18				
Total Number of Years for Producid		20				
Start Year	jeci	2013				
Start Fear		1.00				
		1.00				
Continuous Operation:						
Days per Year		0				
OR						
Hours per Year		8026				
OR						
Operating Factor		0.0000	(if multiple entries, "Operating Factor" i	s used)		
Discrete Operation:			(cappotuse Continuous AND Discrete	If both optorod	Discrete used by	(default)
		0	(cannot use Continuous AND Discrete		, Disciele used Dy	uelaully
Hours per Day		0				
AND						
Days per Year		0				
Production Capacity		90%	of Design Capacity			
Start production at			of Production Capacity			
Years to achieve full capacity		2				
Number of Shifts		5				
Depreciation Schedule		5 year				
		. ,				
Income Tax Rate		37%				
Cost of Capital (for the NPV C	alculation)	15%	(discount rate)			
General Inflation Rate		2%				
Product Inflation Rate		0%				
Variable Cost Inflation R	ate	0%				
Fixed Cost Inflation Rate		0%				
Product Information:		11-				
Enter Product Units		lb				
(i.e. lb, gram, gal, etc)						
Price Per Unit		\$4.43	/ID			
Number of units per:		(Specify ONE of th	e three. If multiple entries, "Year" is us	ed.)		
Year		27,701,739				
OR			-			
Day		-	lb per Day			
OR						
Hour		-	lb per Hour			

Raw	Materials					
	Raw Material:	Unit:	Required Ratio:		Cost of Raw M	aterial:
1	MPDA	lb		lb per lb of Niacinamide	\$3.091	per lb
2	Nitrogen	MT		MT per lb of Niacinamide	\$110.000	
	Oxygen	MT		MT per lb of Niacinamide	\$77.000	
	Process Water	lb		lb per lb of Niacinamide	\$7.500E-04	
5						
6						
7						
8						
9						
10						
10	Total Weighted Averag	1e'			\$2.962	per lb of Niacinamide
	rotar Wolghiod / Wordg				ψ2.302	
Bvor	<u>oducts</u>					
	Byproduct:	Unit:	Ratio to Product		Byproduct Sel	lina Price
1	- 11				-,,	
2						
3						
4						
5						
6						
7						
8						
9						
10						
10	Total Weighted Averag				¢0.000 - 00	per lb of Niacinamide
	Total Weighted Averag	le.			\$0.000 ⊑ +00	
Utilit	ies					
	Utility:	Unit:	Required Ratio		Utility Cost	
1	High Pressure Steam	lb		lb per lb of Niacinamide	\$7.520E-03	per lb
	Critical Refrigeration	ton-day		ton-day per lb of Niacinamide		per ton-day
	Refrigeration	ton-day		ton-day per lb of Niacinamide		per ton-day
	Cooling Water	lb		Ib per Ib of Niacinamide	\$8.550E-05	
	Electricity	kWh		kWh per lb of Niacinamide		per kWh
	Hot Water	lb		Ib per lb of Niacinamide	\$8.550E-04	
7			0.04040		ψ0.000 ∟ 204	
8						
9						
10						
10	Total Weighted Averag	τ <u>ρ</u> .			\$0.166	per lb of Niacinamide
	, star rroignieu Averag	,~.			ψ0.100	Por lo or readinariade

			MAC	RS D	epre	eciation	Schedu	le:		
		5 year	7 year		-	0 year	15 y		2	0 year
	1	20.00%	14.	29%		10.00%		5.00%		3.75%
	2	32.00%	24.	49%		18.00%		9.50%		7.22%
	3	19.20%		49%		14.40%		8.55%		6.68%
	4	11.52%		49%		11.52%		7.70%		6.18%
	5	11.52%		93%		9.22%		6.93%		5.71%
	6	5.76%		92%		7.37%		6.23%		5.29%
	7	0.1070		93%		6.55%		5.90%		4.89%
	8			46%		6.55%		5.90%		4.52%
	9		т.			6.56%		5.91%		4.46%
	9 10					6.55%		5.90%		4.46%
	11							5.90%		
						3.28%				4.46%
	12							5.90%		4.46%
	13							5.91%		4.46%
	14							5.90%		4.46%
	15							5.91%		4.46%
	16							2.95%		4.46%
	17									4.46%
	18									4.46%
	19									4.46%
	20									4.46%
	21									2.23%
Other Variable (Costs									
Ger	neral Expe	<u>nses</u>								
		Selling / Tra	ansfer Expenses:		3.00%	of Sales				
			Direct Research:	4	4.80%	of Sales				
			cated Research:			ofSales				
	Ma	Adminis anagement Incentiv	strative Expense:			of Sales of Sales				
	IVIC		e compensatori.		1.2070	of Oales				
Working Capital										
Acc	ounts Rece	ivable				¢			30	Days
		s (excluding Raw I	Materials)			⇒				Days
Acc	ounts Paya	ble				₽				Days
	cinamide In					⇔				Days
Rav	v Materials					⇒			7	Days

Additional Equipme	nt								\$10,733,767					
R-101		Other Equipme	nt	8	10,184		3		\$2,568,283					
P-301		Process Machi	nery		6,541		3		\$120,587					
P-204		Process Machi			1,239		3		\$103,088					
P-203		Process Machi			4,467		3		\$113,740					
P-202		Process Machi			4,467		3	\$113,740						
P-201		Process Machi			4,467		3		\$113,740					
P-103		Process Machi			1,844		3	\$100,426						
P-102		Process Machi			0,432		3		\$100,426					
P-101		Process Machi			0,547		4.16 3		\$100,806					
N-301		Fabricated Equ			5,900		4.16		142,736					
HX-304A HX-304B		Fabricated Equ Fabricated Equ			8,414		3		3				\$802,450 \$280,273	
HX-303 HX-304A		Fabricated Equ			6,829 53,139		3		\$180,149 \$802,450					
HX-302		Fabricated Equ			23,457		3		\$391,359					
HX-301		Fabricated Equ			6,282		3		\$210,113					
HX-206		Fabricated Equ			3,371		3	\$169,187						
HX-205		Fabricated Equ			2,622		3	\$230,2						
IX-204		Fabricated Equ	uipment	5	7,636		3	\$182,707						
IX-203		Fabricated Equ			7,636		3		\$182,707					
HX-202B		Fabricated Equ			7,117		3	\$244,462						
HX-202A		Fabricated Equ			04,322		3		\$330,700					
HX-201		Fabricated Equ			33,947		3	\$424,612						
HX-102		Fabricated Equ			4,697		3	\$236,789						
HX-101		Fabricated Equ			6,656		3	\$243,001						
-301		Fabricated Equ	uipment	1	15,273		4	\$479,535						
-201		Fabricated Equ			28,760		4		\$535,640					
DR-301		Fabricated Equ			04,369		2	\$1,657,000						
DC-301		Fabricated Equ			8,089		4		\$149,787					
D-101		Fabricated Equ			67,255		4		\$4,023,779					
C-301		Process Machi Process Machi			18,025)84,345		2		\$253,753 \$2,331,342					
C-102 C-103		Process Machi		94,138 118,025			2		\$202,397					
C-101		Process Machi		40,335			2 2		\$86,719					
3-203		Process Machi		2,828		2		\$6,080						
3-202		Process Machi			2,304		2		\$4,954					
3-201		Process Machi			2,555		2		\$5,492					
4-102		Fabricated Equ			48,989		4	\$2,283,795						
A-101		Fabricated Equ			91,116		4		\$3,291,044					
Name		(must be filled-i				(defa	ult 3.21 if blank)							
Equipment Descr	iption	Туре		Purcl	nase Cost	Bare	Module Factor		Bare Module Cost	<u> </u>				
Equipment Co	5(5													
Faultum 5 1 0	-4-	Cost of	Plant St	art-Up:	10).00%	of Total Depr	eciab	le Capital					
			ostofRo	•		2.00%								
			Costo	fLand:		2.00%	of Total Depr	eciab	le Capital					
Cost of	Conting	encies and C	ontractor	Fees:	18	3.00%	of Direct Perr	naner	nt Investment					
Allocated Costs					\$50	0,000								
		Cost of Se					of Total Bare	Modu	ule Costs					
		Cost of Sit					of Total Bare							
		0,0												
2017		0%												
2016		0%												
2010		0%												
2015														
2014 2015		100%			(default is	first ye	ar of Construc	tion, d	otherwise over-	ride this year				

(Note: The first 38 equipment items are displayed in the Input Summary tab. Items listed below are included in calculating the total bare module cost.)

			Purchase C	<u>ost</u> <u>Ba</u>	are Module Factor	B	are Module	Cost
Name	Туре			(c	lefault 3.21 if blank)			
R-102	Other Equipment		\$30,713		3		\$97,359	
R-201	Other Equipment		\$721,219		3		\$2,286,265	5
R-202A	Other Equipment		\$268,719		3		\$918,160	
R-202B	Other Equipment		\$268,719		3		\$918,160	
R-202C	Other Equipment		\$268,719		3		\$918,160	
T-101	Storage		\$206,429		3		\$629,609	
T-301	Storage		\$104,337		4		\$434,044	
Wastewater Treatment	Other Equipment						\$239,065	
Wastegas Treatment	Other Equipment						\$40,000	
Wastegas Treatment	Other Equipment						\$40,000	
Dowtherm System	Other Equipment						\$722,207	
Reactor 1 Catalyst	Catalysts		\$3,808		1		\$3,808	
Reactor 2 Catalyst	Catalysts		\$783,300		1		\$783,300	
Reactor 3	Catalysts		\$1,645,510)	1		\$1,645,510)
Reactor 4	Catalysts		\$153,910		1		\$153,910	
P-101	Spares		30,547		3		\$100,806	
P-102	Spares		30,432		3		\$100,426	
P-103	Spares		41,844		3		\$138,085	
P-201	Spares		34,467		3		\$113,740	
P-202	Spares		34,467		3		\$113,740	
P-203	Spares		34,467		3		\$113,740	
P-204	Spares		31,239		3		\$103,088	
P-301	Spares		36,541		3		\$120,587	
Bare Module Factor C	Calculator:							
Use the tool below to a	alculate a parti	cular ba	are module	factor, the	en input in the i	required of	column to	the left
(Note, if no bare module fac	tor is entered, the d	efault of 3	3.21 will be use	ed)				
Cost of Install	ation Materials:	71%	of Equipment	Purchase (Cost			
			of Equipment Purchase Cost of Equipment Purchase Cost					
				of Equipment Purchase Cost				
Cost of Contractor Engineer			of Equipment					
		0070	o. Equipment					
Total Derived Bare M	Indule Factor:	3 21	of Equipment	Purchase (Cost			

Fixed Costs								
	Operations	ĺ				1		
		Operators p	oer Shift	1	(assuming	5	shifts)	
	C	irect Wages and	Benefits:	\$35	/operator hour			
	Di	rect Salaries and	Benefits:	15%	of Direct Wages	of Direct Wages and Benefits		
	Operatir	Operating Supplies and Services:			of Direct Wages	efits		
	Technical As	sistance to Manufa	acturing:	\$0.00	per year, for ea	ch Opera	ator per Shift	
		Control Laboratory:		\$0.00	per year, for each	ch Opera	ator per Shift	
	Maintenance							
		Wages and	Benefits:	4.50%	of Total Deprecia	able Cap	pital	
		Salaries and Benefits		25.00%	of Maintenance	Wages a	nd Benefits	
		Materials and S	ervices:	100.00%	of Maintenance	Wages a	nd Benefits	
		Maintenance Ov	erhead:	5.00%	of Maintenance	Wages a	nd Benefits	
	Operating Overh	ead_						
		General Plant Overhead:		7 10%	of Maintenance and Operations Wages and Benefits		rations Wages and Benefits	
		Mechanical Department Services: Employee Relations Department				rations Wages and Benefits		
						rations Wages and Benefits		
	Emplo.	Business			of Maintenance and Operations Wages and Benefits			
	Property Taxes a	nd Insurance						
	Prope	rty Taxes and Ins	surance:	2.00%	of Total Depreciable Capital		pital	
	Straight Line De	preciation						
	Direct Plant		of Total D	epreciable Ca	apital, less	1.18	times the Allocated Costs	
					• •		for Utility Plants and Related Facilities	
	Allocated Plant	6.00%	of	1.18	times the Allocate	ed Costs	for Utility Plants and Related Facilities	
	Other Annual Ex	penses						
	Rental Fees (Office	and Laboratory	Space):	\$0				
		Licensing Fees:		\$0				
		Miscell	aneous:	\$0				
	Depletion Allowa	ince						
		nual Depletion Alle	owance:	\$0				

F. MSDS AND COMPOUND DATA

Reactivity Hazard:	0							
Potential Health Effects		SIGMA-ALDRIC						
Inhalation	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous membranes and upper respiratory tract.		Material Safety Data Sheet					
Skin Eves	May be harmful if absorbed through skin. Causes skin burns. Causes eve burns.		Revision Date 09/21/2012 Print Date 01/21/2012					
Ingestion	May be harmful if swallowed.							
3. COMPOSITION/INFORMATION	I ON INGREDIENTS	1. PRODUCT AND COMPANY ID	ENTIFICATION					
Formula	: C6H16N2	Product name	2-Methylpentane-1,5-diamine					
Molecular Weight	: 116.20 g/mol	Product Number	: 33120					
Component	Concentration	Brand	: Fluka					
2-Methylpentane-1,5-diar	nine	Supplier	: Sigma-Aldrich					
CAS-No. EC-No.	15520-10-2 239-556-6		3050 Spruce Street SAINT LOUIS MO 63103					
		Telephone	USA : +1 800-325-5832					
4. FIRST AID MEASURES		Fax	: +1 800-325-5052					
General advice		Emergency Phone # (For both supplier and	: (314) 776-8555					
	is safety data sheet to the doctor in attendance. Move out of dangerous area.	manufacturer) Preparation Information	: Sigma-Aldrich Corporation					
If inhaled If breathed in, move person i	into fresh air. If not breathing, give artificial respiration. Consult a physician.	Preparation information	Product Safety - Americas Region					
In case of skin contact	no rear ar. i no o caning, gre armoar capitaton, consult a physical.		1-800-521-8956					
	ng and shoes immediately. Wash off with soap and plenty of water. Consult a physician.	2. HAZARDS IDENTIFICATION						
In case of eye contact		Emergency Overview						
transport to hospital.	of water for at least 15 minutes and consult a physician. Continue rinsing eyes during	OSHA Hazards	OSHA Hazards Combustible Liquid, Harmful by ingestion., Corrosive					
If swallowed		GHS Classification						
Do NOT induce vomiting. Ne physician.	ever give anything by mouth to an unconscious person. Rinse mouth with water. Consult a	Flammable liquids (Cate						
		Acute toxicity, Oral (Cate Skin corrosion (Category						
5. FIREFIGHTING MEASURES	P	Serious eye damage (Ca						
Suitable extinguishing me For small (incipient) fires, us	dia e media such as "alcohol" foam, dry chemical, or carbon dioxide. For large fires, apply wa	GHS Label elements, ir	cluding precautionary statements					
from as far as possible. Use	very large quantities (flooding) of water applied as a mist or spray, solid streams of water	Pictogram						
Special protective equipm	iffected containers with flooding quantities of water.		\checkmark					
	ig apparatus for fire fighting if necessary.	Signal word	Danger					
Hazardous combustion pro		Hazard statement(s) H227	Combustible liquid					
	roducts formed under fire conditions Carbon oxides, nitrogen oxides (NOx)	H302 H314	Harmful if swallowed. Causes severe skin burns and eve damage.					
Further information Use water spray to cool unor	pened containers.	Precautionary statement						
6. ACCIDENTAL RELEASE MEA		P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.					
Personal precautions	SURES	P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.					
Use personal protective equi	pment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all	P310	Immediately call a POISON CENTER or doctor/ physician.					
sources of ignition. Evacuate concentrations. Vapours can	epersonnel to safe areas. Beware of vapours accumulating to form explosive accumulate in low areas.	HMIS Classification Health hazard:	3					
Environmental precautions		Flammability:	2					
	illage if safe to do so. Do not let product enter drains.	Physical hazards: NFPA Rating	U					
		Health hazard:	3					
		Fire:	2					
Fluka - 33120	Page 2 o	7 Fluka - 33120	Page 1 of 7					

Upper explosion limit	no data available
Vapour pressure	173 hPa (130 mmHg) at 135 °C (275 °F)
Density	0.865 g/cm3
Water solubility	no data available
Partition coefficient: n-octanol/water	log Pow: -0.414
Relative vapour density	no data available
Odour	no data available
Odour Threshold	no data available
Evaporation rate	no data available

10. STABILITY AND REACTIVITY

Chemical stability Stable under recommended storage conditions. Possibility of hazardous reactions no data available Conditions to avoid

University of the Real Annual state of the later

Heat, flames and sparks.

Materials to avoid Strong oxidizing agents

Hazardous decomposition products Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx) Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity Oral LD50 no data available Inhalation LC50

no data available Dermal LD50

no data available Other information on acute toxicity no data available

Skin corrosion/irritation no data available

Serious eye damage/eye irritation no data available

Respiratory or skin sensitization

Prolonged or repeated exposure may cause allergic reactions in certain sensitive individuals.

Germ cell mutagenicity no data available

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

No component of this product present at levels greater than or equal to 0.1% is identified as a ACGIH:

Fluka - 33120

Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13). Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Store under inert gas. Air sensitive.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Contains no substances with occupational exposure limit values.

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Tighty fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	
Form	clear, liquid
Colour	light yellow
Safety data	
рН	no data available
Melting point/freezing point	no data available
Boiling point	193 °C (379 °F) at 1,013 hPa (760 mmHg)
Flash point	82 °C (180 °F) - dosed cup
Ignition temperature	298 °C (568 °F)
Autoignition temperature	no data available
Lower explosion limit	no data available

Fluka - 33120 Page 4 of 7

Page 3 of 7

Product Contact a licensed professional waste disposal service to dispose of this mat burned in a chemical incinerator equipped with an afterburner and scrubber. I to a licensed disposal company. Contaminated packaging Dispose of as unused product.			carcinogen or potential carcinogen by ACGIH. NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP. OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA. Reproductive toxicity					
14. TRANSPORT INFORMATION DOT (US) UN number: 2735 Class: 8 Packing group: I Proper shipping name: Polyamines, liquid, corrosive, n.o.s. (2-Methylpentane-1,5-diamine) Marine pollutant: No Poison Inhalation Hazard: No				no data available Teratogenicity no data available				
IMDG UN number: 2735 Class: 8 Packing group: I EMS-No: F-A, S-B Proper shipping name: POLYAMINES, LIQUID, CORROSIVE, N.O.S. (2-Methylpentane-1,5-diamine) Marine pollutant: No IATA			Specific target organ toxicity - single exposure (Globally Harmonized System) no data available Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available Aspiration hazard					
UN number: 2735 Class: 8 Packing group: 1 Proper shipping name: Polyamines, liquid, corrosive, n.o.s. (2-Methylpentane-1,5-diamine) 15. REGULATORY INFORMATION			no data av Potential Inhalat	health effects	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous			
OSHA Hazards Combustible Liquid, Harmful by ingestion., Corrosive SARA 302 Components		Ingesti Skin Eyes	ion	membranes and upper respiratory tract. May be harmful if swallowed. May be harmful if absorbed through skin. Causes skin burns. Causes eve burns.				
SARA 302: No chemicals in this material are subject to the reporting requiren SARA 313 Components	SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302. SARA 313 Components SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold			Signs and Symptoms of Exposure Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin., Cough, Shortness of breath, Headache, Nausea Symergistic effects				
SARA 311/312 Hazards Fire Hazard, Acute Health Hazard Massachusetts Right To Know Components			Additional Information RTECS: SA0248500					
No components are subject to the Massachusetts Right to Know Act.								
Pennsylvania Right To Know Components	CAS-No.	Revision Date	12. ECOLOGIC/ Toxicity	AL INFORMAT	TION			
2-Methylpentane-1,5-diamine	15520-10-2	New Joint Date	no data av	aldelie				
New Jersey Right To Know Components 2-Methylpentane-1,5-diamine	CAS-No. 15520-10-2	Revision Date		ce and degrad	dability			
California Prop. 65 Components This product does not contain any chemicals known to State of California to o	ause cancer, birth	defects, or any other	Bioaccum no data av	ulative poten ailable	tial			
reproductive harm.			Mobility in no data av					
16. OTHER INFORMATION Further information				/PvB assessn	nent			
Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a			Other adverse effects					
guide. The information in this document is based on the present state of our product with regard to appropriate safety precautions. It does not represent a	ny guarantee of th	e properties of the	no data av	ailable				
product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for	product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.				IONS			

13. DISPOSAL CONSIDERATIONS

Fluka - 33120

Page 6 of 7 Fluka - 33120

Page 5 of 7

Material Safety Data Sheet

SIGMA-ALDRICH

sigma-aldrich.com

Version 4.1

Health hazard:	3
Chronic Health Hazard:	•
Flammability:	3
Physical hazards:	0
NFPA Rating	
Health hazard:	3
Fire:	3
Reactivity Hazard:	0
Potential Health Effects	
Inhalation	May be harmful if inhaled. Material is ex membranes and upper respiratory tract.

Inhalation	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous
	membranes and upper respiratory tract.
Skin	Toxic if absorbed through skin. Causes skin burns.
Eyes	Causes eye burns.
Ingestion	Toxic if swallowed.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms	: 3-Methylpyridine	
Formula	: C ₆ H ₇ N	
Molecular Weight	: 93.13 g/mol	
Component		Concentration
3-Methylpyridine		
CAS-No.	108-99-6	-
EC-No.	203-636-9	

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician. Continue rinsing eyes during transport to hospital.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Suitable extinguishing media

For small (incipient) fires, use media such as "alcohol" foam, dry chemical, or carbon dioxide. For large fires, apply water from as far as possible. Use very large quantities (flooding) of water applied as a mist or spray, solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water.

Special protective equipment for firefighters

Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx) Further information

Use water spray to cool unopened containers.

Aldrich - P42053

Page 2 of 7

Aldrich - P42053

Page 1 of 7

			Version 4.1 Revision Date 01/19/2012 Print Date 01/13/2013
1. PRODUCT AND COMPANY I	DENT	IFICATION	
Product name	11	3-Picoline	
Product Number	:	P42053	
Brand	:	Aldrich	
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	
Telephone	:	+1 800-325-5832	
Fax	:	+1 800-325-5052	
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555	
Preparation Information	:	Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956	

2. HAZARDS IDENTIFICATION

Emergency Overview

OSHA Hazards

Flammable liquid, Target Organ Effect, Toxic by ingestion, Toxic by skin absorption, Corrosive

Target Organs

Liver, Kidney

GHS Classification

Flammable liquids (Category 3) Acute toxicity, Oral (Category 4) Acute toxicity, Inhalation (Category 4) Acute toxicity, Dermal (Category 3) Skin corrosion (Category 1B) Serious eye damage (Category 1)

GHS Label elements, including precautionary statements

Pictogram	

Signal word Dange

Hazard statement(s)

ridzaru statement(s)	
H226	Flammable liquid and vapour.
H302 + H332	Harmful if swallowed or if inhaled
H311	Toxic in contact with skin.
H314	Causes severe skin burns and eye damage.
Precautionary statement	(s)
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/ physician.

P310

HMIS Classification

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Form clear, liquid Colour light yellow

Safety data

pН no data available Melting point/range: -19 °C (-2 °F) - lit. Melting point/freezing point Boiling point 144 °C (291 °F) - lit. 37 °C (99 °F) - closed cup Flash point 538 °C (1,000 °F) Ignition temperature Autoignition no data available temperature Lower explosion limit no data available Upper explosion limit no data available Vapour pressure 5.9 hPa (4.4 mmHg) at 20 °C (68 °F) 0.957 g/cm3 at 25 °C (77 °F) Density no data available Water solubility Partition coefficient: no data available n-octanol/water Relative vapour 3.22 density - (Air = 1.0) Odour no data available

no data available

no data available

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

Conditions for safe storage

Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

hygroscopic

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control parameters	Basis
3-Methylpyridine	108-99-6	TWA	2 ppm	USA. Workplace Environmental Exposure Levels (WEEL)
Remarks	Skin			
		STEL	5 ppm	USA. Workplace Environmental Exposure Levels (WEEL)
	Skin			1 dates

10. STABILITY AND REACTIVITY

Odour Threshold

Evaporation rate

Chemical stability Stable under recommended storage conditions. Possibility of hazardous reactions

reactions

Vapours may form explosive mixture with air.

Conditions to avoid hygroscopic

Heat, flames and sparks. Materials to avoid

acids, Acid chlorides, Oxidizing agents, Chloroformates

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx) Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 LD50 Oral - rat - 400 mg/kg

Inhalation LC50

Dermal LD50

Aldrich - P42053

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific worknace.

Hygiene measures

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

Page 4 of 7 Aldrich - P42053

Page 3 of 7

Toxicity

Toxicity to fish LC50 - Pimephales promelas (fathead minnow) - 144 mg/l - 96 h

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil no data available

PBT and vPvB assessment no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US) UN number: 2313 Class: 3 Proper shipping name: Picolines Marine pollutant: No Poison Inhalation Hazard: No	Packing group: III		
IMDG UN number: 2313 Class: 3 Proper shipping name: PICOLINES Marine pollutant: No	Packing group: III	EMS-No: F-E, S-D	
IATA UN number: 2313 Class: 3 Proper shipping name: Picolines	Packing group: III		

15. REGULATORY INFORMATION

OSHA Hazards

Flammable liquid, Target Organ Effect, Toxic by ingestion, Toxic by skin absorption, Corrosive

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

3-Methylpyridine

Fire Hazard, Acute Health Hazard, Chronic Health Hazard

Massachusetts Right To Know Components

No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

```
108-99-6
```

Revision Date

CAS-No

Aldrich - P42053

LD50 Dermal - guinea pig - 1,000 mg/kg

Other information on acute toxicity no data available

Skin corrosion/irritation Skin - rabbit - Severe skin irritation - 24 h

Serious eye damage/eye irritation Eyes - rabbit - Severe eye irritation - 24 h

Respiratory or skin sensitization no data available

Germ cell mutagenicity no data available

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System) no data available

Specific target organ toxicity - repeated exposure (Globally Harmonized System)

no data available

Aspiration hazard

Potential health effects

 Inhalation
 May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous membranes and upper respiratory tract.

 Ingestion
 Toxic if swallowed.

 Skin
 Toxic if absorbed through skin. Causes skin burns.

Causes eye burns.

Signs and Symptoms of Exposure

Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin., Cough, Shortness of breath, Headache, Nausea

Synergistic effects no data available

Eyes

Additional Information

RTECS: TJ5000000

12. ECOLOGICAL INFORMATION

Page 6 of 7 Aldrich - P42053

New Jersey Right To Know Components	
	CAS-No.
3-Methylpyridine	108-99-6

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Further information

Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 7 of 7

Revision Date

Physical hazards:	0		SIGMA-ALDRICH	I
NFPA Rating Health hazard: Fire:	2			Material Safety Data Sheet
Reactivity Hazard:	0			Version 4.6 Revision Date 11/13/2012
Potential Health Effects				Print Date 01/13/2013
Inhalation Skin	May be harmful if inhaled. Causes respiratory tract irritation. May be harmful if absorbed through skin. Causes skin irritation.		1. PRODUCT AND COMPANY IDE	NTIFICATION
Eyes	Causes eye irritation.		Product name	Nicotinamide (Niacinamide)
Ingestion	May be harmful if swallowed.		Product Number	: 47865-U
3. COMPOSITION/INFORMATIO	N ON INGREDIENTS			: Supelco
Synonyms	: Nicotinic acid amide		Supplier	: Sigma-Aldrich
	Vitamin B3 Pyridine-3-carboxylic acid amide			3050 Spruce Street SAINT LOUIS MO 63103
	Vitamin PP			USA
	Niacinamide Nicotinamide			: +1 800-325-5832
			Fax Emergency Phone # (For	: +1 800-325-5052 : (314) 776-6555
Formula Molecular Weight	: C6H6N2O : 122.12 g/mol		both supplier and	
Component	Concentration	_	manufacturer) Preparation Information	: Sigma-Aldrich Corporation
Nicotinamide	Concentration	-		Product Safety - Americas Region
CAS-No.	98-92-0 -	_		1-800-521-8956
EC-No.	202-713-4		2. HAZARDS IDENTIFICATION	
			Emergency Overview	
4. FIRST AID MEASURES General advice			OSHA Hazards Target Organ Effect, Irritar	ıt
	this safety data sheet to the doctor in attendance. Move out of dangerous area.		Target Organs	
If inhaled			Kidney, Eyes, Liver	
If breathed in, move person	into fresh air. If not breathing, give artificial respiration. Consult a physician.		GHS Classification	
In case of skin contact	the function Compatible statistics		Acute toxicity, Oral (Catego Skin irritation (Category 2)	
	nty of water. Consult a physician.		Eye irritation (Category 2)	
In case of eye contact Rinse thoroughly with plent	y of water for at least 15 minutes and consult a physician.		Specific target organ toxici	ty - single exposure (Category 3)
If swallowed	,		GHS Label elements, inc	luding precautionary statements
	th to an unconscious person. Rinse mouth with water. Consult a physician.		Pictogram	\land
5. FIREFIGHTING MEASURES				
Suitable extinguishing me	edia		Signal word	Warning
Use water spray, alcohol-re	sistant foam, dry chemical or carbon dioxide.		Hazard statement(s) H303	May be harmful if swallowed.
Special protective equipn			H315	Causes skin irritation.
	ng apparatus for fire fighting if necessary.		H319 H335	Causes serious eye irritation. May cause respiratory irritation.
Hazardous combustion p Hazardous decomposition	roducts products formed under fire conditions Carbon oxides, nitrogen oxides (NOx)		Precautionary statement(s	
	· • · · · /		P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
6. ACCIDENTAL RELEASE MEA	ASURES		P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Personal precautions Use personal protective equip	upment. Avoid dust formation. Avoid breathing vapors, mist or gas. Ensure ade	quate	HMIS Classification	
	nnel to safe areas. Avoid breathing dust.	-	Health hazard: Chronic Health Hazard:	2
Environmental precaution Do not let product enter dra			Flammability:	1
Supelco - 47865-U		Page 2 of 7	Supelco - 47865-U	Page 1 of 7
		-0		

Safety data

рн	no data available
Melting point/freezing point	Melting point/range: 128 - 131 °C (262 - 268 °F) - lit.
Boiling point	no data available
Flash point	150 °C (302 °F) - closed cup
Ignition temperature	no data available
Autoignition temperature	no data available
Lower explosion limit	no data available
Upper explosion limit	no data available
Vapour pressure	no data available
Density	no data available
Water solubility	no data available
Partition coefficient: n-octanol/water	no data available
Relative vapour density	no data available
Odour	no data available
Odour Threshold	no data available
Evaporation rate	no data available

no data available

10. STABILITY AND REACTIVITY

Chemical stability Stable under recommended storage conditions. Possibility of hazardous reactions no data available Conditions to avoid no data available

Materials to avoid Strong oxidizing agents

Hazardous decomposition products Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx) Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity Oral LD50 LD50 Oral - rat - 3,500 mg/kg Inhalation LC50 Dermal LD50 no data available Other information on acute toxicity no data available Skin corrosion/irritation no data available

Serious eye damage/eye irritation

Supelco - 47865-U

Methods and materials for containment and cleaning up

Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. Normal measures for preventive fire protection.

Conditions for safe storage Keep container tightly closed in a dry and well-ventilated place.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Contains no substances with occupational exposure limit values.

Personal protective equipment

Respiratory protection

For nuisance exposures use type P95 (US) or type P1 (EU EN 143) particle respirator. For higher level protection use type OV/AG/P99 (US) or type ABEK-P2 (EU EN 143) respirator cartridges. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: Nitrille rubber Minimum layer thickness: 0.11 mm Break through time: > 480 min Material tested:Dermatrik@ (Aldrich Z677272, Size M)

Splash protection Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: > 30 min Material tested:Dermatril® (Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an Industrial Hygienist familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Eye protection

Safety glasses with side-shields conforming to EN166 Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

impervious clothing, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Form crystalline Colour white

Page 4 of 7 Supelco - 47865-U

Page 3 of 7

PBT and vPvB assessment

no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US) Not dangerous goods

IMDG

Not dangerous goods

IATA Not dangerous goods

15. REGULATORY INFORMATION

OSHA Hazards

Target Organ Effect, Irritant SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Acute Health Hazard, Chronic Health Hazard

Massachusetts Right To Know Components

No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

Nicotinamide	CAS-No. 98-92-0	Revision Date
New Jersey Right To Know Components	CAS-No.	Revision Date
Nicotinamide	98-92-0	Nevision Date

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Further information

Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Supelco - 47865-U

Page 6 of 7

no data available

Respiratory or skin sensitization no data available

Germ cell mutagenicity no data available

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System) Inhalation - May cause respiratory irritation.

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard

no data available

Potential health effects

Inhalation Ingestion	May be harmful if inhaled. Causes respiratory tract irritation. May be harmful if swallowed.
Skin	May be harmful if absorbed through skin. Causes skin irritation.
Eyes	Causes eye irritation.

Signs and Symptoms of Exposure

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Synergistic effects

no data available

Additional Information RTECS: QS3675000

12. ECOLOGICAL INFORMATION

Toxicity

no data available

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil

no data available

Supelco - 47865-U

Page 5 of 7

sigma-aldrich.com

Health hazard: Fire: Reactivity Hazard:	0 4 0
Potential Health Effects	
Inhalation	May be harmful if inhaled. May cause respiratory tract irritation. Vapours may cause drowsiness and dizziness.
Skin	May be harmful if absorbed through skin. May cause skin irritation.
Eyes	May cause eye irritation.
Ingestion	May be harmful if swallowed.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms	: Ethene	
Formula Molecular Weight	: C ₂ H ₄ : 28.05 g/mol	
Component		Concentration
Ethylene		
CAS-No.	74-85-1	-
EC-No.	200-815-3	
Index-No.	601-010-00-3	

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Flush eyes with water as a precaution.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Conditions of flammability

Flammable in the presence of an oxidizing gas (eg air), a source of ignition, and when the concentration of the gas is between the lower and upper explosive limits. Keep away from heat/sparks/open flame/hot surface/oxidizing gas. No smoking.

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Special protective equipment for firefighters Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Carbon oxides

Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

SIGMA-ALDRICH

Material Safety Data Sheet Version 3.4 Revision Date 10/29/2012 Print Date 03/19/2013

1. PRODUCT AND COMPANY IDENTIFICATION			
Product name	1	Ethylene	
Product Number Brand	:	03484 Fluka	
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	
Telephone	1	+1 800-325-5832	
Fax	1	+1 800-325-5052	
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555	
Preparation Information	:	Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956	

2. HAZARDS IDENTIFICATION

Emergency Overview

OSHA Hazards Flammable gas, Compressed Gas, Target Organ Effect

Target Organs

Signal word

H220

H280

H336

P261

Central nervous system

GHS Classification Flammable gases (Category 1) Gases under pressure (Liquefied gas) Specific target organ toxicity - single exposure (Category 3)

GHS Label elements, including precautionary statements

Pictogram

Hazard statement(s) Extremely flammable gas.

Contains gas under pressure; may explode if heated. May cause drowsiness or dizziness.

Precautionary statement(s) P210

Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. P410 + P403 Protect from sunlight. Store in a well-ventilated place.

HMIS Classification Health hazard:

0 Chronic Health Hazard: Flammability: 4 Dhusiaal ha 3

Physical hazarus.	
NFPA Rating	

Fluka - 03484

Page 1 of 7

Page 2 of 7

Eye protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

impervious clothing, Flame retardant antistatic protective clothing, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

	ppoulation	
	Form	Liquefied gas
	Colour	no data available
S	afety data	
	pН	no data available
	Melting point/freezing point	Melting point/range: -169 °C (-272 °F) - lit.
	Boiling point	-104 °C (-155 °F) - lit.
	Flash point	-100 °C (-148 °F) - closed cup
	Ignition temperature	450 °C (842 °F)
	Autoignition temperature	no data available
	Lower explosion limit	2.7 %(V)
	Upper explosion limit	36 %(V)
	Vapour pressure	35,504.3 hPa (26,630.4 mmHg) at 20 °C (68 °F)
	Density	no data available
	Water solubility	no data available
	Partition coefficient: n-octanol/water	no data available
	Relative vapour density	0.97 - (Air = 1.0)
	Odour	no data available
	Odour Threshold	no data available
	Evaporation rate	no data available

10. STABILITY AND REACTIVITY

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions

Conditions to avoid

Heat, flames and sparks. Extremes of temperature and direct sunlight. Materials to avoid

Strong oxidizing agents, Carbon tetrachloride, Chlorine, Copper, Vinyl compounds

Personal precautions

Use personal protective equipment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

Methods and materials for containment and cleaning up Clean up promptly by sweeping or vacuum.

7. HANDLING AND STORAGE

Precautions for safe handling Avoid inhalation of vapour or mist

Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place.

Contents under pressure.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control parameters	Basis		
Ethylene	74-85-1	TWA	200 ppm	USA. ACGIH Threshold Limit Values (TLV)		
Remarks	Asphyxia No	Asphyxia Not classifiable as a human carcinogen				

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Immersion protection Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: > 480 min Material tested:Vitoject@ (Aldrich 2677698, Size M)

Splash protection Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: > 30 min Material tested:Camatrik@(Aldrich Z677442, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 873000, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an Industrial Hygienist familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Fluka - 03484

Page 4 of 7

Page 3 of 7

no data available or EPA classification. If the second of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen o	Aspiration hazard no data available Potential health effer	cts		Hazardous	decomposition products decomposition products formed under fire conditions Carbon oxides mposition products - no data available			
Name Accessibility New of weak and distributes Oral LOG Sign and Symptom of Exposition For all solution Strates, Restandow, moreship, To the lot of or knowledge, the chemical, physical, and toxicological provide solution For all solution Strates, Restandow, moreship, To the lot of or knowledge, the chemical, physical, and toxicological provide solution For all solution Strates, Restandow, moreship, To the solution For all solution For all solution Strates, Restandow, moreship, To the solution For all solution For all solution Strates, Restandow, moreship, To the solution For all solution For all solution To chem solution For all solution For all solution For all solution To chem solution For all solution For all solution For all solution To chem solution For all solution For all solution For all solution Foral soluton For all solution Fo	Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Vapours may cause drowsiness and dizziness. Ingestion May be harmful if swallowed. Skin May be harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Signs and Symptoms of Exposure Nausea, Dizziness, Headache, narcosis, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated. Synergistic effects no data available Additional Information		irritation. Vapours may cause	Acute toxicity Oral LD50 no data available				
Sun By May be harmful if absorbed through kin. May cause skin initiation. Difficulty of the second sequence of the se								
Spins and Spruptoms of Sposure in odds available Nases, Dictionation of Sposure in odds available Spregiste in the rot been throughly investigated. in odds available Spregiste in the rot been throughly investigated. in odds available Spregiste in throughly investigated. in odds available Additional Information in odds available Decomposite in throughly investigated. in odds available Decomposite in throughly in vestigated. in odds available Decomposite in throughly in vestigated. in odds available Decomposite			kin irritation.					
preprints have not hav			ical physical and toxicological					
n data available Other information on acute toxicity Additional information n data available Toxicity Service consistent infration on acute toxicity Toxicity n data available Toxicity Before and degradability no data available Before and degradability no data available Germ offinitage insensitization on acute toxicity Bioseconsider potential no data available Bioseconsider potential Germ offinitage insensitization on acute toxicity or otkin sensitization on data available Bioseconsider potential no data available Bioseconsider potent			, physical, and toxicological	no data available Other information on acute toxicity				
Ricci: Skin correstoriu/iritation no data available 72. ECO.GGICA. INFORMATION Scribus available Scribus available Toxicity no data available Respiratory of skin sensitization Portisine and degrabability mo data available Germ cell mutagenicity Boascemantiaty optication mo data available Germ cell mutagenicity Boascemantiation mo data available Germ cell mutagenicity Boascemantiation mo data available Germ cell mutagenicity Boascemantiation mo data available Marce available Toxicity mo data available Germ cell mutagenicity Boascemantiation mo data available Germ cell mutagenicity Boascemantiation mo data available Germ cell mutagenicity Boasce data available Marce available								
Toxicity no data available Repiratory or skin sensitization no data available Respiratory or skin sensitization no data available Persistence and degradability Gern cell mutagenicity no data available Gern cell mutagenicity no data available Gern cell mutagenicity no data available Carcinogenicity mo data available Carcinogenicity no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity based on its IARC, ACGIH, NTF no data available Carcinogenicity to humans (Ethylene) NTF No component of this product present at levels grater than or equal to 0.1% is identified as a carcinogenicity to humans (Ethylene) NTF No component of this product present at levels grater than or equal to 0.1% is identified as a carcinogenicity to humans (Ethylene) NTF No component of this product present at levels grater than or equal to 0.1% is identified as a carcinogenicity to humans (Ethylene)				Skin corrosion/irritation				
Persidence and degradability no data available no data available Gen cell mutagenicity Bioaccumulative potential no data available no data available Mobility in soil no data available Carcinogenicity No data available No component that is not classifiable as to its carcinogenicity based on its IARC, ACGH, NTF No data available NTF: No data available NTF: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP. Stata available NTF: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by OSHA. Not mobility is not interval No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by OSHA. No transfer potential carcinogen by OSHA. No component of this product present at levels grea		IATION						
re data available Gern cell mutagenicity no data available no data available Mobility in soli on data available Mobility in soli Carnogenicity no data available Carnogenicity PET and VP-B assessment no data available Carnogenicity Other adverse effects The product is or contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGH, NTF or EPA dataBide 10. USP/OSAL CONSIDERATIONS IARC: A - Group 3: Not classifiable as to its carcinogenicity to humans (Ehylene) NTF: No component of this product present at levels greater than or equal to 0.1% is identified as a professional water disposal erice to dispose of this material is highly flarmable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional water disposal erice to dispose of this material. No component of this product present at levels greater than or equal to 0.1% is identified as a exonom or anticipated carcinogen by DNTP. 10. TARNEPORT INFORMATION In odata available 10. TRANSPORT INFORMATION In odata available 10. NEP. No data available 10. NEP. Product like toxicity 10. NEP. No data available 10. NEP. No data available 10. NEP. No component of this product present at levels greater than or equal to 0.1% is identified as a enoremotion or anticipate toxicity 10. TRANSPORT INFORMATION <td>no data available</td> <td></td> <td></td> <td>Respirator</td> <td>y or skin sensitization</td> <td></td>	no data available			Respirator	y or skin sensitization			
Bioaccumulative potential no data available no data available Mobility in soll no data available no data available Mobility in soll no data available Carcongonicity Differed synthese effects no data available This product is or contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGH, NTF or data available 13. DEPOSAL CONSIDERATIONS Prode silppis and not-explaible solvions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. NTF: No component of this product present at levels greater than or equal to 0.1% is identified as a known or articipated carcinogen by NTP. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by NTP. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by NTP. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by NTP. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA. 14. TRANSPORT INFORMATION Prooper shipping name: ETHYLENE Marine polutant: No Projeer shipping name: ETHYLENE Marine polutant: No Marine polyting name: ETHYLENE Marine polyting name: ETH		gradability						
no data available Carcinogenicity in soil no data available Carcinogenicity Constants a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTF or EPA classifications constants a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTF or EPA classifications. Constants a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTF or EPA classifications. Constants a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTF or EPA classifications. Constants and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal envice to dispose of this material. Constant and packaging Dispose of as unased product. Constant and packaging Dispose of as unased product. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen by OSHA. Reproductive toxicity constants are potential carcinogen by OSHA. Reproductive toxicity constants are potential carcinogen by OSHA. Reproductive toxicity constants is carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen or potential carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen by OSHA. So component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen by OSHA. Reproductive toxicity constants are available as to its available as to its available as to its available as a carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen by OSHA. Reproductive toxicity constants are available as a carcinogen by OSHA. Reproductive toxicity constants are available as available as a carcinogen by OSHA. Reprodu		Bioaccumulative potential						
no data available Carcinogenicity PBT and vPPB assessment no data available Carcinogenicity Other adverse effects no data available Frequent is no contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTF or PA classification. 13. DISPOSAL CONSIDERATIONS IARC: 3 - Group 3: Not classifiable as to its carcinogenicity to humans (Ethylene) NTP: No component of this product is or contains a component that is not classifiable as to its carcinogenicity to humans (Ethylene) NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or analiopated carcinogen by OSHA. Contaminated packaging Dispose of as unused product. OS (US) DOT (US) UN number: 1962. Class: 2.1 Proper shipping name: Ethylene Poison inhalation Hazard: No EMS-No: F-D, S-U Proper shipping name: Ethylene Marine plotant: No MIND Marine: 1962. Class: 2.1 Proper shipping name: Ethylene Marine plotant: No EMS-No: F-D, S-U Proper shipping name: Ethylene Marine plotant: No Marine: 1962. Class: 2.1 Proper shipping name: Ethylene Marine plotant: No EMS-No: F-D, S-U Proper shipping name: Ethylene Marine: 1962. Class: 2.1 Proper shipping name: Ethylene EMS-No: F-D, S-U Proper shipping name: Ethylene Specific target organ toxicity - single exposure (Globally Harmonized System) Ne data available Marine: 1962. Class: 2.1 Proper shipping name: Ethylene EMS-No: F-D, S-U Specif								
no data available or EPA classification. If CPA classification or CPA classification. If CP				Carcinogenicity				
In data available no data available 13. DISPOSAL CONSIDERATIONS Pordut Is highly flarmable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Contaminated packaging Dispose of as mused product. 14. TRANSPORT INFORMATION Poisson Inhalation Hazard: No Poisson Inhalation Hazard: No Poisson Inhalation Hazard: No Poisson Inhalation Hazard: No Publicatt: No Poisson Inhalation Hazard: No Poisson Inhalation Hazard: No Publicatt: No Publicatt: No Poisson Inhalation Hazard: No Marine polutant: No Proper shipping name: Ethylene Marine polutant: No Proper shipping name: Ethylene Marine polutant: No Marine polutant: No Marine polutant: No Marine polutant: No Proper shipping name: Ethylene Marine polutant: No Marine polutant: No <td colspan="2"></td> <td colspan="4">This product is or contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTP, or EPA classification.</td>			This product is or contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTP, or EPA classification.					
13. DISPOSAL CONSIDERATIONS Product Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal pervice to dispose of this material. NRC: 3 Group 3: Not classifiable as to its carcinogenicity to humans (Ethylene) Contaminated packaging No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA. NDT (US) No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA. NDT (US) No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA. NDT (US) No mumber: 1962 Class: 2.1 Proper shipping name: Ethylene Marine pollutant: No MDC NDC VUN number: 1962 Class: 2.1 EMS-No: F-D, S-U Proper shipping name: Ethylene Marine pollutant: No Marine pollutant: No EMS-No: F-D, S-U Marine pollutant: No Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or disziness. Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available UN number: 19	Other adverse effect	ts						
13. DIPOSAL CONSIDERATIONS Product Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flarmable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed or professional waste disposal service to dispose of this material. Contaminated packaging Dispose of as unused product. 14. TRANSPORT INFORMATION DT (US) UN number: 1962. Class: 2.1. Projer shipping name: Ethylene Marine pollutant: No Proper shipping name: Ethylene Marine pollutant: No LYN mumber: 1962. Class: 2.1. Proper shipping name: Ethylene Marine pollutant: No Proper shipping name: Ethylene	no data available							
Product known or anticipated carcinogen by NTP. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Known or anticipated carcinogen by NTP. Contaminated packaging Dispose of as unused product. No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen by OSHA. Port (US) UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Marine pollutant: No No data available IMDG UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No EMS-No: F-D, S-U Proper shipping name: ETHYLENE Marine pollutant: No Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No EMS-No: F-D, S-U Marine pollutant: No Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No Specific target organ toxicity - repeated exposure (Globally Harmonized System) may cause drowsiness or dizziness. UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Not an available	13. DISPOSAL CONSIDER	ATIONS						
 is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Contaminated packaging Dispose of as unused product. I4. TRANSPORT INFORMATION DOT (US) UN number: 1962 Class: 2.1 Proper shipping name: Ethylene MARDE UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Marine pollutant: No EMS-No: F-D, S-U Proper shipping name: Ethylene Marine pollutant: No Charact a licensed disposal company. Ethylene Marine pollutant: No Proper shipping name: Ethylene Marine pollutant: No Specific target organ toxicity - repeated exposure (Globally Harmonized System) May cause drowsiness or dizzness. Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available 				NTP:				
Contaminated packaging Dispose of as unused product. Reproductive toxicity 14. TRANSPORT INFORMATION no data available DOT (US) UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Marine pollutant: No no data available IMDG UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No EMS-No: F-D, S-U Proper shipping name: ETHYLENE Marine pollutant: No Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. IATA UN number: 1962 Class: 2.1 Proper shipping name: Ethylene EMS-No: F-D, S-U	is highly flammable. O	Offer surplus and non-recyclable solutions to a licensed dispo		OSHA:				
DOT (US) no data available UN number: 1962 Class: 2.1 Teratogenicity Proper shipping name: Ethylene no data available IMDG no data available UN number: 1962 Class: 2.1 EMS-No: F-D, S-U Proper shipping name: ETHYLENE Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. Proper shipping name: ETHYLENE Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available IATA UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available	Contaminated packa	aging		Reproduct				
UN number: 1962 Class: 2.1 Teratogenicity Proper shipping name: Ethylene no data available Marine pollutant: No no data available IMDG UN number: 1962 Class: 2.1 EMS-No: F-D, S-U Proper shipping name: EthYLENE EMS-No: F-D, S-U Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. Proper shipping name: ETHYLENE EMS-No: F-D, S-U Specific target organ toxicity - repeated exposure (Globally Harmonized System) May cause drowsiness or dizziness. IATA UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available	14. TRANSPORT INFORM	ATION						
Proper shipping name: Ethylene Marine pollutant: No Poison Inhalation Hazard: No no data available IMDG UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No EMS-No: F-D, S-U Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. IATA UN number: 1962 Class: 2.1 Proper shipping name: Ethylene				no data ava	ilable			
Poison Inhalation Hazard: No no data available MDG UN number: 1962 Class: 2.1 Proper shipping name: ETHYLENE Marine pollutant: No EMS-No: F-D, S-U Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. IATA UN number: 1962 Class: 2.1 Proper shipping name: Ethylene Function Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available				Teratogen	city			
UN number: 1962 Class: 2.1 EMS-No: F-D, S-U Specific target organ toxicity - single exposure (Globally Harmonized System) May cause drowsiness or dizziness. Marine pollutant: No Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available IATA Proper shipping name: Ethylene Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available		Poison İnhalation Hazard: No IMDG UN number: 1962 Class: 2.1 EMS-No: F-D, S-U Proper shipping name: ETHYLENE		Specific target organ toxicity - single exposure (Globally Harmonized System)				
IATA Specific target organ toxicity - repeated exposure (Globally Harmonized System) UN number: 1962 Class: 2.1 Proper shipping name: Ethylene no data available	UN number: 1962 Cl Proper shipping name:							
Fluka - 03484 Page 6 of 7 Fluka - 03484 Page 5 of	IATA UN number: 1962 CI							
	Fluka - 03484		Page 6 of 7	Fluka - 03484		Page 5 of 7		

IATA Passenger: Not permitted for transport

OSHA Hazards Flammable gas, Compressed Gas, Target Organ Effect		
SARA 302 Components SARA 302: No chemicals in this material are subject to the	reporting requirements of SARA Ti	tle III, Section 302.
SARA 313 Components The following components are subject to reporting levels e	stablished by SARA Title III, Section CAS-No	n 313: Revision Dat
Ethylene	74-85-1	2007-07-01
SARA 311/312 Hazards Fire Hazard, Sudden Release of Pressure Hazard, Chronic	: Health Hazard	
Massachusetts Right To Know Components		
Ethylene	CAS-No. 74-85-1	Revision Da 2007-07-01
Pennsylvania Right To Know Components		
Pennsylvania Right To Know Components	CAS-No.	Revision Da 2007-07-01
Ethylene	74-85-1	2001 01 01
	74-85-1	2001 01 01

ais known to State of California to cause cancer, birth defects, or any other reproductive harm. does no

16. OTHER INFORMATION

Further information

Further information Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and enditions of a context of the terms of the product. additional terms and conditions of sale.

Page 7 of 7

Health hazard: Fire:	2 2		SIGMA-ALDRICH	sigma-aldrich.c Material Safety Data Shee
Reactivity Hazard:	ō			Version Revision Date 01/15/20
tential Health Effects				Print Date 02/05/20
Inhalation Skin	May be harmful if inhaled. Causes respiratory tract Harmful if absorbed through skin. Causes skin irrita		1. PRODUCT AND COMPANY IDEN	NTIFICATION
Eyes Ingestion	Causes eye irritation. Harmful if swallowed.		Product name	3-Pyridinecarbonitrile
POSITION/INFORMATIO				: C94807
Synonyms	: Nicotinonitrile		Brand	: Aldrich
Synonyms	Nicotinic acid nitrile 3-Cyanopyridine		Supplier	: Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103
Formula	: C ₆ H ₄ N ₂		Telephone	USA : +1 800-325-5832
Molecular Weight	: 104.11 g/mol		Fax	: +1 800-325-5052
Component		Concentration	Emergency Phone # (For both supplier and	: (314) 776-6555
Nicotinonitrile CAS-No.	100-54-9		manufacturer) Preparation Information	: Sigma-Aldrich Corporation
EC-No.	202-863-0		rieparatori mormatori	Product Safety - Americas Region 1-800-521-8956
T AID MEASURES			2. HAZARDS IDENTIFICATION	
eneral advice			Emergency Overview	
onsult a physician. Show t inhaled	this safety data sheet to the doctor in attendance.Move	out of dangerous area.	OSHA Hazards Target Organ Effect, Harmf	ful by ingestion., Irritant
breathed in, move person	into fresh air. If not breathing, give artificial respiration.	Consult a physician.	Target Organs	
a case of skin contact	nty of water. Consult a physician.		Liver, Kidney	
a case of eye contact	ny or water. Consult a physician.		GHS Classification Acute toxicity, Oral (Catego	ary 4)
	y of water for at least 15 minutes and consult a physicia	ın.	Skin irritation (Category 2)	
swallowed	th to an unconscious person. Rinse mouth with water.	Consult a physician	Eye irritation (Category 2A) Specific target organ toxicit) ty - single exposure (Category 3)
			GHS Label elements, incl	uding precautionary statements
FIGHTING MEASURES			Pictogram	\wedge
uitable extinguishing me se water spray, alcohol-re	edia sistant foam, dry chemical or carbon dioxide.			
pecial protective equipm			Signal word	Warning
	ng apparatus for fire fighting if necessary.		Hazard statement(s) H302	Harmful if swallowed.
azardous combustion pr			H315	Causes skin irritation.
azardous decomposition p yanide (hydrocyanic acid)	products formed under fire conditions Carbon oxides,	nitrogen oxides (NOx), Hydrogen	H319 H335	Causes serious eye irritation. May cause respiratory irritation.
DENTAL RELEASE MEA	ASURES		Precautionary statement(s))
ersonal precautions			P261 P305 + P351 + P338	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if
se personal protective equ	ipment. Avoid dust formation. Avoid breathing vapors,	mist or gas. Ensure adequate		present and easy to do. Continue rinsing.
	nnel to safe areas. Avoid breathing dust.		HMIS Classification	
nvironmental precaution o not let product enter dra			Health hazard: Chronic Health Hazard:	2
			Flammability:	0
C94807		Page 2 of 7	Aldrich - C94807	Page 1 of

Safety data

•	nety data	
	pH	6.5 at 25 °C (77 °F)
	Melting point/freezing point	Melting point/range: 48 - 52 °C (118 - 126 °F) - lit.
	Boiling point	201 °C (394 °F) - lit.
	Flash point	84 °C (183 °F) - closed cup
	Ignition temperature	no data available
	Auto-ignition temperature	no data available
	Lower explosion limit	no data available
	Upper explosion limit	no data available
	Vapour pressure	0.395 hPa (0.296 mmHg) at 25 °C (77 °F)
	Density	1.159 g/cm3 1.080 g/cm3 at 50 °C (122 °F)
	Water solubility	100 g/l at 20 °C (68 °F) - soluble
	Partition coefficient: n-octanol/water	log Pow: 0.36
	Relative vapor density	no data available
	Odour	no data available
	Odour Threshold	no data available
	Evaporation rate	no data available

10. STABILITY AND REACTIVITY

Chemical stability Stable under recommended storage conditions. Possibility of hazardous reactions no data available

Conditions to avoid no data available

Materials to avoid

Strong oxidizing agentsStrong oxidizing agents, Strong acids, Strong bases, Strong reducing agents

Hazardous decomposition products Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx), Hydrogen cyanide (hydrocyanic acid) Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 LD50 Oral - rat - 1,185 mg/kg Remarks: Liver:Other changes. Kidney, Ureter, Bladder:Other changes.

Inhalation LC50 no data available

Dermal LD50 no data available

Other information on acute toxicity no data available

Aldrich - C94807

Methods and materials for containment and cleaning up

Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. Normal measures for preventive fire protection.

Conditions for safe storage Keep container tightly closed in a dry and well-ventilated place.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Contains no substances with occupational exposure limit values.

Personal protective equipment

Respiratory protection

For nuisance exposures use type P95 (US) or type P1 (EU EN 143) particle respirator. For higher level protection use type OV/AG/P99 (US) or type ABEK-P2 (EU EN 143) respirator cartridges. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH. D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Eye protection

Safety glasses with side-shields conforming to EN166 Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES Appearance Form crystalline Colour beige

Aldrich - C94807 Page 4 of 7

Page 3 of 7

Bioaccumulative potential

no data available								
Mobility in soil no data available				Serious eye damage/eye irritation no data available				
PBT and vPvB assessment no data available			Respiratory or skin sensitization no data available					
Other adverse effects				Germ cell mutagenicity no data available				
no data available	no data available							
13. DISPOSAL CONSIDERATIONS			Carcinogenicity					
Product Offer surplus and non-recyclable solutions to a licensed disposal compar	v. Contact a license	d professional waste	IARC:		nent of this product present at levels greater than or equal to 0.1% is identified as possible or confirmed human carcinogen by IARC.			
disposal service to dispose of this material.	,		ACGIH:		nent of this product present at levels greater than or equal to 0.1% is identified as a n or potential carcinogen by ACGIH.			
Contaminated packaging Dispose of as unused product.			NTP:					
14. TRANSPORT INFORMATION DOT (US)			OSHA:		nent of this product present at levels greater than or equal to 0.1% is identified as a or potential carcinogen by OSHA.			
Not dangerous goods			Reproductive toxicity					
IMDG Not dangerous goods			no data ava	ilable				
ΙΑΤΑ			Teratogenicity					
Not dangerous goods			no data available					
15. REGULATORY INFORMATION								
OSHA Hazards Target Organ Effect, Harmful by ingestion., Irritant				Specific target organ toxicity - single exposure (Globally Harmonized System) Inhalation - May cause respiratory irritation. Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available				
SARA 313 Components SARA 313: This material does not contain any chemical components with (In Misingia) constitue levels activities of the CARA Title IV. Operating 210	known CAS numbe	ers that exceed the threshold	Aspiration hazard no data available Potential health effects					
(De Minimis) reporting levels established by SARA Title III, Section 313.								
SARA 311/312 Hazards Acute Health Hazard, Chronic Health Hazard			Inhalation Inhalation		May be harmful if inhaled. Causes respiratory tract irritation. Harmful if swallowed.			
Massachusetts Right To Know Components No components are subject to the Massachusetts Right to Know Act.			Skin Eyes		Harmful if absorbed through skin. Causes skin irritation. Causes eye irritation.			
Pennsylvania Right To Know Components		Devision Data	Signs and Symptoms of Exposure					
Nicotinonitrile	CAS-No. 100-54-9	Revision Date		Central nervous system depression, To the best of our knowledge, the chemical, physical, and toxico have not been thoroughly investigated.				
New Jersey Right To Know Components	CAS-No.	Revision Date	Synergistic no data ava					
Nicotinonitrile 100-54-9		Additional Information						
California Prop. 65 Components This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.			RTECS: Q1	3030000				
· · · · · · · · · · · · · · · · · · ·			12. ECOLOGICA Toxicity	INFORMA	HUN			
16. OTHER INFORMATION			-	ilabla				
Further information Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimite	Further information Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.			no data available Persistence and degradability				
				e and degra ilable	Gabinty			

Skin corrosion/irritation

no data available

Page 6 of 7

Page 5 of 7

Aldrich - C94807

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 7 of 7

Fire: Reactivity Hazard:	3 0
Potential Health Effects	
Inhalation	May be harmful if inhaled. Causes respiratory tract irritation.
Skin Eyes	May be harmful if absorbed through skin. Causes skin irritation. Causes eye irritation.
Ingestion	May be harmful if swallowed.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms	:	3-Pipecoline β-Pipecoline	
Formula	:	C ₆ H ₁₃ N	
Molecular Weight	:	99.17 g/mol	
Component			Concentration
3-Methylpiperidine			
CAS-No.		626-56-2	-
EC-No.		210-953-6	

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Suitable extinguishing media

For small (incipient) fires, use media such as "alcohol" foam, dry chemical, or carbon dioxide. For large fires, apply water from as far as possible. Use very large quantities (flooding) of water applied as a mist or spray; solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water.

Special protective equipment for firefighters Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx)

Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Use personal protective equipment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

Aldrich - M73001

SIGMA-ALDRICH

Material Safety Data Sheet Version 4.1 Revision Date 11/09/2011

Print Date 01/13/2013

sigma-aldrich.com

RODUCT AND COMPANY ID	ENTIFICATION	
Product name	: 3-Methylpiperidine	
Product Number Brand	: M73001 : Aldrich	
Supplier	: Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	
Telephone	: +1 800-325-5832	
Fax	: +1 800-325-5052	
Emergency Phone # (For both supplier and manufacturer)	: (314) 776-6555	
Preparation Information	: Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956	
ZARDS IDENTIFICATION		
Emergency Overview		
OSHA Hazards Flammable liquid, Irritant	t	
GHS Classification Flammable liquids (Cate Skin irritation (Category 2 Eye irritation (Category 2 Specific target organ tox	2)	
GHS Label elements, ir	cluding precautionary statements	
Pictogram	\wedge	

Pictogram	
Signal word	Danger
Hazard statement(s) H225 H315 H319 H335	Highly flammable liquid and vapour. Causes skin irritation. Causes serious eye irritation. May cause respiratory irritation.
Precautionary statement(s) P210 P261 P305 + P351 + P338	Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
/IS Classification Health hazard: Flammability:	2 3

NFPA Rating

Page 2 of 6

Health hazard	ł
Aldrich - M73001	

HMI

Physical hazards:

0

2

Page 1 of 6

Upper explosion limit	no data available
Vapour pressure	no data available
Density	0.845 g/cm3 at 25 °C (77 °F)
Water solubility	no data available
Partition coefficient: n-octanol/water	no data available
Relative vapour density	no data available
Odour	no data available
Odour Threshold	no data available
Evaporation rate	no data available

10. STABILITY AND REACTIVITY

Chemical stability

Stable under recommended storage conditions. Possibility of hazardous reactions

Vapours may form explosive mixture with air.

Conditions to avoid Heat, flames and sparks. Extremes of temperature and direct sunlight

Materials to avoid

acids, Acid chlorides, Acid anhydrides, Strong oxidizing agents, Carbon dioxide (CO2)

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, nitrogen oxides (NOx) Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 no data available

Inhalation LC50 Dermal LD50 no data available

Other information on acute toxicity no data available

Skin corrosion/irritation no data available

Serious eye damage/eye irritation

Respiratory or skin sensitization no data available

Germ cell mutagenicity no data available

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.

Aldrich - M73001

Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

Conditions for safe storage

Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Contains no substances with occupational exposure limit values.

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

impervious clothing, Flame retardant antistatic protective clothing, The type of protective equipment must be

Skin and body protection

selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CH	EMICAL PROPERTIES
Appearance	

Appearance	
Form	clear, liquid
Colour	light yellow
Safety data	
pН	no data available
Melting point/freezing point	no data available
Boiling point	125 - 126 °C (257 - 259 °F) at 1,017 hPa (763 mmHg) - lit.
Flash point	21 °C (70 °F) - closed cup
Ignition temperature	no data available
Autoignition temperature	no data available
Lower explosion limit	no data available

Aldrich - M73001

Page 4 of 6

Page 3 of 6

Contaminated packaging	
Dispose of as unused product.	

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1993 Class: 3 Packing group: II Proper shipping name: Flammable liquids, n.o.s. (3-Methylpiperidine) Marine pollutant: No Poison Inhalation Hazard: No

IMDG

UN number: 1993 Class: 3 Packing group: II EMS-No: F-E, S-E Proper shipping name: FLAMMABLE LIQUID, N.O.S. (3-Methylpiperidine) Marine pollutant: No

IATA

UN number: 1993 Class: 3 Packing group: II Proper shipping name: Flammable liquid, n.o.s. (3-Methylpiperidine)

15. REGULATORY INFORMATION

OSHA Hazards

Flammable liquid, Irritant

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard

Massachusetts Right To Know Components No components are subject to the Massachusetts Right to Know Act.

Penneylyania Right To Know Components

Pennsylvania Right To Know Components	CAS-No.	Revision Date
3-Methylpiperidine	626-56-2	Noviolon Date
New Jersey Right To Know Components		
	CAS-No.	Revision Date
3-Methylpiperidine	626-56-2	

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Further information

Copyright 2011 Sigma-Aldrich Co. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Co., shall not be held liable for any damage resulting from handling or from contact with the above product. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 6 of 6

- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System) Inhalation - May cause respiratory irritation

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard no data available

Potential health effects Inhalation

May be harmful if inhaled. Causes respiratory tract irritation. May be harmful if swallowed.

Ingestion May be harmful if absorbed through skin. Causes skin irritation.

Causes eye irritation.

Signs and Symptoms of Exposure

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Synergistic effects no data available

Skin

Eyes

Additional Information **RTECS: Not available**

12. ECOLOGICAL INFORMATION

Toxicity no data available

Persistence and degradability no data available

Bioaccumulative potential

no data available Mobility in soil

no data available

PBT and vPvB assessment no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Aldrich - M73001

Page 5 of 6

sigma-aldrich.com

Page 1 of 8

HMIS Classification Health hazard: Chronic Health Hazard: Flammability: Physical hazards:	2 0 0			SIGMA-ALDRIC	H
NFPA Rating Health hazard: Fire:	2			1. PRODUCT AND COMPANY I	DENTIFICATION
Reactivity Hazard:	0			Product name	: Dowtherm
Potential Health Effects				Product Number	: 44570
Inhalation Skin Eyes Ingestion				Brand	: Aldrich : Sigma-Aldric
3. COMPOSITION/INFORMATION		valiowed.			3050 Spruce SAINT LOUI USA
Synonyms	: Diphyl			Telephone Fax	: +1 800-325-5 : +1 800-325-5
Component		Classification	Concentration	Emergency Phone # (For both supplier and	: (314) 776-65
Diphenyl ether				manufacturer)	
CAS-No. EC-No.	101-84-8 202-981-2	Eye Dam. 1; H318	70 - 90 %	Preparation Information	: Sigma-Aldric Product Safe 1-800-521-89
Biphenyl				2. HAZARDS IDENTIFICATION	
CAS-No. EC-No.	92-52-4 202-163-5	Skin Irrit. 2; Eye Irrit. 2; ST SE 3; Aquatic Acute 1; Aqu		Emergency Overview	
Index-No.	601-042-00-8	Chronic 1; H315, H319, H3 H410		OSHA Hazards Target Organ Effect, Irri	itant. Mutagen
For the full text of the H-State	ements and R-Phrases	mentioned in this Section, see Se	ction 16	Target Organs	
4. FIRST AID MEASURES				Liver, Kidney, Spleen., 1	Thyroid, Central ner
If inhaled If breathed in, move person i In case of skin contact	nto fresh air. If not brea	the doctor in attendance.Move out athing, give artificial respiration. Co	-	GHS Classification Acute toxicity, Oral (Cate Skin irritation (Category Serious eye damage (C Specific target organ tox Acute aquatic toxicity (C	egory 5) 2) ategory 1) xicity - single expose
Wash off with soap and plent	ty of water. Consult a p	hysician.		GHS Label elements, i	ncluding precautio
	of water for at least 15	minutes and consult a physician.		Pictogram	
If swallowed Never give anything by mout	h to an unconscious pe	erson. Rinse mouth with water. Cor	sult a physician	Signal word	Danger
			ioan a prijololani	Hazard statement(s)	
5. FIREFIGHTING MEASURES Conditions of flammability Not flammable or combustibl				H303 H315 H318	May be harmful Causes skin irri Causes serious
Suitable extinguishing med Use water spray, alcohol-res	dia	cal or carbon dioxide.		H335 H400	May cause resp Very toxic to aq
	Special protective equipment for firefighters Wear self contained breathing apparatus for fire fighting if necessary.			Precautionary statemen P261 P273	Avoid breathing Avoid release to

Aldrich - 44570

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Carbon oxides

Page 2 of 8 Aldrich - 44570

DRICH

Material Safety Data Sheet Version 4.4 Revision Date 10/10/2012 Print Date 03/19/2013

Product name	1	Dowtherm® A	
Product Number Brand		44570 Aldrich	
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	
Telephone	1	+1 800-325-5832	
Fax		+1 800-325-5052	
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555	
Preparation Information	1	Sigma-Aldrich Corporation	
		Product Safety - Americas Region	
		1-800-521-8956	
2. HAZARDS IDENTIFICATION			
Emergency Overview			
OSHA Hazards Target Organ Effect, Irrita	ant,	Mutagen	
Target Organs	Target Organs		
Liver, Kidney, Spleen., T	hyro	id, Central nervous system, Peripheral nervous system.	
GHS Classification Acute toxicity, Oral (Category 5) Skin irritation (Category 2) Serious eye damage (Category 1) Specific target organ toxicity - single exposure (Category 3) Acute aquatic toxicity (Category 1)			
GHS Label elements, in	Iclue	ding precautionary statements	
Pictogram	<		

I if swallowed.
ritation.
s eye damage.
piratory irritation.

	May cause respiratory irrita Very toxic to aquatic life.
nary statement(s)	

recautionary statement(s)	
P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
P273	Avoid release to the environment.
P280	Wear protective gloves/ eye protection/ face protection.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, it
	present and easy to do. Continue rinsing.

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Appearance	
Form	clear, liquid
Colour	light yellow
Safety data	
pH	no data available
Melting point/freezing point	Melting point/range: 12 - 14 °C (54 - 57 °F)
Boiling point	no data available
Flash point	no data available
Ignition temperature	no data available
Autoignition temperature	no data available
Lower explosion limit	no data available
Upper explosion limit	no data available
Vapour pressure	no data available
Density	1.063 g/cm3 at 20 °C (68 °F)
Water solubility	no data available
Partition coefficient: n-octanol/water	no data available
Relative vapour density	no data available
Odour	no data available
Odour Threshold	no data available
Evaporation rate	no data available

6. ACCIDENTAL RELEASE MEASURES Personal precautions

Use personal protective equipment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up

Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control parameters	Basis				
Diphenyl ether	101-84-8	TWA	1 ppm	USA. ACGIH Threshold Limit Values (TLV)				
Remarks	Eye & Upper Respiratory Tract irritation Nausea							
		STEL	2 ppm	USA. ACGIH Threshold Limit Values (TLV)				
	Eye & Uppe	er Respirat	ory Tract irritation	n Nausea				
		TWA	1 ppm 7 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants				
	The value in mg/m3 is approximate.							
		TWA	1 ppm 7 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000				
		TWA	1 ppm 7 mg/m3	USA. NIOSH Recommended Exposure Limits				
Biphenyl	92-52-4	TWA	0.2 ppm	USA. ACGIH Threshold Limit Values (TLV)				
Remarks	Pulmonary	function						
		TWA	0.2 ppm 1 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000				
		TWA	0.2 ppm 1 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants				
	The value in	n mg/m3 is	approximate.					
		TWA	0.2 ppm 1 mg/m3	USA. NIOSH Recommended Exposure Limits				

10. STABILITY AND REACTIVITY

Aldrich - 44570

Page 4 of 8

Page 3 of 8

Aldrich - 44570

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard

no data available

Potential health effects

Inhalation	May be harmful if inhaled. Causes respiratory tract irritation.
Ingestion	May be harmful if swallowed.
Skin	May be harmful if absorbed through skin. Causes skin irritation.
Eyes	Causes eye irritation.

Signs and Symptoms of Exposure

prolonged or repeated exposure can cause:, Gastrointestinal disturbance, Dermatitis, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Synergistic effects

no data available

Additional Information RTECS: Not available

12. ECOLOGICAL INFORMATION

Toxicity

no data available

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil no data available

PBT and vPvB assessment no data available

Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal.

Very toxic to aquatic life.

13. DISPOSAL CONSIDERATIONS

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US) Not dangerous goods

IMDG

UN number: 3082 Class: 9 Packing group: III EMS-No: F-A, S-F Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Diphenyl ether) Marine pollutant: Marine pollutant

IATA

UN number: 3082 Class: 9 Packing group: III Proper shipping name: Environmentally hazardous substance, liquid, n.o.s. (Diphenyl ether)

Aldrich - 44570

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions no data available

Conditions to avoid

no data available

Materials to avoid Strong oxidizing agents

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity Oral LD50 no data available Inhalation LC50 no data available

Dermal LD50

Other information on acute toxicity no data available

Skin corrosion/irritation

no data available

Serious eye damage/eye irritation Eyes: no data available

Respiratory or skin sensitization no data available

Germ cell mutagenicity

no data available

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System)

Page 6 of 8 Aldrich - 44570

Page 5 of 8

Further information

EHS-Mark required (ADR 2.2.9.1.10, IMDG code 2.10.3) for single packagings and combination packagings containing inner packagings with Dangerous Goods > 5L for liquids or > 5kg for solids.

OSHA Hazards Target Organ Effect, Irritant, Mutagen		
SARA 302 Components SARA 302: No chemicals in this material are subject to the re-	eporting requirements of SARA T	itle III, Section 302.
SARA 313 Components The following components are subject to reporting levels est	ablished by SARA Title III, Section	n 313:
Biphenyl	CAS-No. 92-52-4	Revision Date 2007-07-01
SARA 311/312 Hazards Acute Health Hazard, Chronic Health Hazard		
Massachusetts Right To Know Components		
Diphenyl ether Biphenyl	CAS-No. 101-84-8 92-52-4	Revision Date 2007-03-01 2007-07-01
Pennsylvania Right To Know Components		
Diphenyl ether Biphenyl	CAS-No. 101-84-8 92-52-4	Revision Date 2007-03-01 2007-07-01
New Jersey Right To Know Components		
Diphenyl ether Biphenyl	CAS-No. 101-84-8 92-52-4	Revision Date 2007-03-01 2007-07-01
California Prop. 65 Components This product does not contain any chemicals known to State reproductive harm.	of California to cause cancer, bir	th defects, or any ot

16. OTHER INFORMATION

Text of H-code(s) and R-phrase(s) mentioned in Section 3

Aquatic Acute	Acute aquatic toxicity
Aquatic Chronic	Chronic aquatic toxicity
Eye Dam.	Serious eye damage
Eye Irrit.	Eye irritation
H315	Causes skin irritation.
H318	Causes serious eye damage.
H319	Causes serious eye irritation.
H335	May cause respiratory irritation.
H410	Very toxic to aquatic life with long lasting effects.
Skin Irrit.	Skin irritation
STOT SE	Specific target organ toxicity - single exposure

Further information

Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 7 of 8

DOWTHERM A Synthetic Organic Heat Transfer Fluid

Saturated Vapor Properties of DOWTHERM A Fluid (SI Units)

Temp. °C	Vapor Pressure bar	Liquid Enthalpy kJ/kg	Latent Heat kJ/kg	Vapor Enthalpy kJ/kg	Vapor Density kg/m ³	Vapor Viscosity mPa•s	Vapor Thermal Cond. W/mK	Z _{vapor}	Specific Heat (c _p) kJ/kg K	Ratio of Specific Heats c _p /c _v
15	0.00	4.9	407.2	412.1		0.0054	0.0075	1.000	1.044	1.050
65	0.00	88.1	380.9	469.1	0.0040	0.0063	0.0104	1.000	1.227	1.043
105	0.01	158.1	362.7	520.9	0.0341	0.0071	0.0129	0.999	1.366	1.038
155	0.06	251.2	341.5	592.7	0.2583	0.0080	0.0163	0.995	1.528	1.035
205	0.28	351.2	320.2	671.5	1.179	0.0090	0.0200	0.982	1.681	1.034
255	0.97	458.2	297.4	755.6	3.831	0.0100	0.0238	0.954	1.829	1.036
305	2.60	572.2	271.5	843.6	9.896	0.0110	0.0279	0.908	1.976	1.042
355	5.80	693.1	240.6	933.8	22.03	0.0122	0.0322	0.838	2.133	1.057
405	11.32	822.0	201.7	1023.7	45.17	0.0138	0.0368	0.740	2.333	1.094

Saturated Vapor Properties of DOWTHERM A Fluid (English Units)

Temp. °F	Vapor Pressure psia	Liquid Enthalpy Btu/lb	Latent Heat Btu/Ib	Vapor Enthalpy Btu/Ib	Vapor Density Ib/ft ³	Vapor Viscosity cP	Vapor Thermal Cond. Btu/hr ft²(°F/ft)	Z _{vepor}	Specific Heat (c _p) Btu/lb °F	Ratio of Specific Heats c _p /c _v
60	0.000	2.5	175.1	177.6		0.0054	0.0044	1.000	0.250	1.050
120	0.003	26.2	167.3	193.5		0.0060	0.0055	1.000	0.279	1.045
300	0.64	103.0	148.0	251.1	0.0130	0.0079	0.0092	0.996	0.361	1.035
360	2.03	131.1	142.0	273.1	0.0388	0.0086	0.0106	0.989	0.385	1.034
420	5.38	160.6	135.8	296.3	0.0967	0.0092	0.0120	0.977	0.409	1.034
480	12.25	191.4	129.2	320.5	0.2100	0.0098	0.0135	0.959	0.433	1.035
540	24.72	223.5	122.1	345.5	0.4102	0.0105	0.0150	0.932	0.456	1.039
600	45.31	256.9	114.2	371.1	0.7389	0.0113	0.0166	0.895	0.480	1.045
660	76.89	291.7	105.3	397.0	1.254	0.0121	0.0183	0.848	0.505	1.055
720	122.7	327.9	95.0	422.9	2.045	0.0130	0.0200	0.789	0.534	1.073
780	186.4	365.9	82.5	448.4	3.270	0.0142	0.0219	0.714	0.571	1.108

Product Information

DOWTHERM A

Synthetic Organic Heat Transfer Fluid — Liquid and Vapor Phase Data

Color: Clear to Light Yellow

DOWTHERM* A heat transfer fluid is a eutectic mixture of two very stable compounds, biphenyl (C12H10) and diphenyl oxide (C12H10O). These compounds have practically the same vapor pressures, so the mixture can be handled as if it were a single compound. DOWTHERM A fluid may be used in systems employing either liquid phase or vapor phase heating.

Recommended use temperature range: Liquid phase: 15°C (60°F) to 400°C (750°F) Vapor phase: 257°C (495°F) to

400°C (750°F) Suitable applications: Indirect heat transfer

For health and safety information for this product, contact your Dow sales representative or call the number for your area on the second page of this sheet for a Material Safety Data Sheet

(MSDS).

Property	SI Units	English Units
Freeze Point	12.0°C	53.6°F
Atmospheric Boiling Point	257.1°C	494.8°F
Flash Point ¹	113°C	236°F
Fire Point ²	118°C	245°F
Autoignition Temperature ³	599°C	1110°F
Density @ 25°C (75°F)	1056 kg/m ³	66.0 lb/ft3
Surface Tension in Air @		
20°C (68°F)	40.1 Dynes/cm	40.1 Dynes/cm
40°C (104°F)	37.6 Dynes/cm	37.6 Dynes/cm
60°C (140°F)	35.7 Dynes/cm	35.7 Dynes/cm
Estimated Critical Temperature	497°C	927°F
Estimated Critical Pressure	31.34 bar	30.93 atm
Estimated Critical Volume	3.17 l/kg	0.0508 ft ³ /lb
Average Molecular Weight		166.0
Heat of Combustion	36,053 kJ/kg	15,500 Btu/lb
Not to be construed as specifications		

Typical Properties of DOWTHERM A Fluid[†]

Composition: Diphenyl Oxide/Biphenyl Blend

*C.O.C.

ASTM E659-78

For further information, call...

In the United States and Canada: 1-800-447-4369 • FAX: 1-989-832-1465 In Europe: +32 3 450 2240 • FAX: +32 3 450 2815 In the Pacific: +886 22 547 8731 • FAX: +886 22 713 0092 In other Global Areas: 1-989-832-1560 • FAX: 1-989-832-1465

www.dowtherm.com

NOTICE: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer's responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposed practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSIVE VECLUDED.

Published November 2001

Printed in U.S.A.

*Trademark of The Dow Chemical Company NA/LA/Pacific: Form No. 176-01463-1101 AMS Europe: CH-153-307-E-1101 DOWTHERM A Fluid (SI units) .

Saturated Liquid Properties of

Temp. °C	Vapor Pressure bar	Viscosity mPa sec	Specific Heat kJ/kg K	Cond. W/mK	Density kg/m ³
15	0.00	5.00	1.558	0.1395	1063.5
65	0.00	1.58	1.701	0.1315	1023.7
105	0.01	0.91	1.814	0.1251	990.7
155	0.06	0.56	1.954	0.1171	947.8
205	0.28	0.38	2.093	0.1091	902.5
255	0.97	0.27	2.231	0.1011	854.0
305	2.60	0.20	2.373	0.0931	801.3
355	5.80	0.16	2.527	0.0851	742.3
405	11.32	0.12	2.725	0.0771	672.5

Saturated Liquid Properties of DOWTHERM A Fluid (English units)

	Vapor		Specific	Thermal	
Temp.	Pressure	Viscosity	Heat	Cond.	Density
°F	psia	cP	Btu/lb °F	Btu/hr ft²(°F/ft)	lb/ft ³
60	0.000	4.91	0.373	0.0805	66.37
120	0.003	2.12	0.396	0.0775	64.72
180	0.028	1.22	0.418	0.0744	63.03
240	0.16	0.81	0.441	0.0713	61.30
300	0.64	0.59	0.463	0.0682	59.51
360	2.03	0.45	0.485	0.0651	57.65
420	5.38	0.35	0.507	0.0620	55.72
480	12.25	0.28	0.529	0.0590	53.70
540	24.72	0.23	0.552	0.0559	51.57
600	45.31	0.19	0.575	0.0528	49.29
660	76.89	0.16	0.599	0.0497	46.82
720	122.7	0.14	0.627	0.0466	44.08
780	186.4	0.12	0.665	0.0436	40.93

*Trademark of The Dow Chemical Company

	Immediately call a POISON CENTER or doctor/ physic Protect from sunlight. Store in a well-ventilated place.	cian.	SIGMA-ALDRIC	
P410 + P403 HMIS Classification	Protect from sunlight. Store in a weil-ventilated place.			Material Safety Data She
Health hazard:	3			Version Revision Date 12/05/2
Chronic Health Hazard:				Print Date 01/13/2
Flammability: Physical hazards:	0		1. PRODUCT AND COMPANY ID	ENTIFICATION
NFPA Rating	0			
Health hazard:	3		Product name	: Ammonia
Fire:	ō		Product Number	: 294993
Reactivity Hazard:	0		Brand	: Aldrich
Potential Health Effects			Supplier	: Sigma-Aldrich
Inhalation	May be harmful if inhaled. Material is extremely destru-	uctive to the tissue of the mucous	ouppilor	3050 Spruce Street
Skin	membranes and upper respiratory tract.	- h		SAINT LOUIS MO 63103
Eves	May be harmful if absorbed through skin. Causes skir Causes eye burns.	n burns.	Telephone	USA : +1 800-325-5832
Ingestion	May be harmful if swallowed.		Fax	: +1 800-325-5052
-	-		Emergency Phone # (For	: (314) 776-6555
OMPOSITION/INFORMATION	I ON INGREDIENTS		both supplier and manufacturer)	
Formula	: H ₃ N		Preparation Information	: Sigma-Aldrich Corporation
Molecular Weight	: 17.03 g/mol			Product Safety - Americas Region
Component		Concentration		1-800-521-8956
Ammonia, anhydrous			2. HAZARDS IDENTIFICATION	
CAS-No.	7664-41-7	-	Emergency Overview	
EC-No. Index-No.	231-635-3 007-001-00-5		OSHA Hazards	
IIIUEA-INO.	007-001-00-0		USHA Hazarus	
			Compressed Gas, Targe	t Organ Effect, Corrosive
RST AID MEASURES			Compressed Gas, Targe Target Organs	t Organ Effect, Corrosive
RST AID MEASURES General advice				
General advice	is safety data sheet to the doctor in attendance.Move ou	it of dangerous area.	Target Organs Lungs, Central nervous GHS Classification	system, Liver, Kidney
General advice	is safety data sheet to the doctor in attendance.Move ou	it of dangerous area.	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate	system, Liver, Kidney gory 2)
General advice Consult a physician. Show th If inhaled	is safety data sheet to the doctor in attendance.Move ou nto fresh air. If not breathing, give artificial respiration. Co	·	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate Gases under pressure (system, Liver, Kidney gory 2) Compressed gas)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact	- nto fresh air. If not breathing, give artificial respiration. Co	onsult a physician.	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cater Gases under pressure (I Acute toxicity, Inhalation Skin corrosion (Categor)	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothin	nto fresh air. If not breathing, give artificial respiration. Congression of the second states and shoes immediately. Wash off with soap and plent	onsult a physician.	Target Organs Lungs, Central nervous I GHS Classification Flammable gases (Cate Gases under pressure (I Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) tegory 1)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia	nto fresh air. If not breathing, give artificial respiration. Congression of the second states and shoes immediately. Wash off with soap and plent	onsult a physician.	Target Organs Lungs, Central nervous e GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) ategory 1) ategory 1)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia In case of eye contact	nto fresh air. If not breathing, give artificial respiration. Construction and shoes immediately. Wash off with soap and plent an.	onsult a physician. y of water. Take victim immediately	Target Organs Lungs, Central nervous e GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) tegory 1)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothin to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty transport to hospital.	nto fresh air. If not breathing, give artificial respiration. Congression of the second states and shoes immediately. Wash off with soap and plent	onsult a physician. y of water. Take victim immediately	Target Organs Lungs, Central nervous e GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) ategory 1) ategory 1)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed	nto fresh air. If not breathing, give artificial respiration. Construction and shoes immediately. Wash off with soap and plent an.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous e GHS Classification Flammable gases (Cate Gases under pressure () Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C GHS Label elements, in	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) ategory 1) ategory 1)
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate Gases under pressure (C Acute toxicity, Inhalation Skin corrosion (Category Serious eye damage (C Acute aquatic toxicity (C GHS Label elements, in Pictogram	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) telegory 1) ategory 1) ategory 1) and the precautionary statements
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. New physician.	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C. Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221	system, Liver, Kidney gory 2) Compressed gas) (Category 3) (1B) telgory 1) ategory 1) ategory 1) ategory 1) and the system of th
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothin to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. Ney physician. REFIGHTING MEASURES	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. Of water for at least 15 minutes and consult a physician. R	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous s GHS Classification Flammable gases (Cate Gases under pressure () Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (Ca Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280	system, Liver, Kidney gory 2) Compressed gas) (Category 3) (Allegory 1) ategory 1) ategory 1) ategory 1) brotuding precautionary statements Danger Flammable gas. Contains gas under pressure; may explode if heated.
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physici In case of eye contact Rinse thoroughly with plenty transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability	nto fresh air. If not breathing, give artificial respiration. Con ng and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. ver give anything by mouth to an unconscious person. R	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C. Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221	system, Liver, Kidney gory 2) Compressed gas) (Category 3) (1B) telgory 1) ategory 1) ategory 1) ategory 1) and the system of th
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physici In case of eye contact Rinse thoroughly with plenty transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustible	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. ver give anything by mouth to an unconscious person. R	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous i GHS Classification Flammable gases (Cate Gases under pressure (I Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) tegory 1) teluding precautionary statements
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustibl Suitable extinguishing med	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. ver give anything by mouth to an unconscious person. R e.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate; Gases under pressure (C Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C: Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314 H331	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) telgory 1) ategory 1) ategory 1) ategory 1) cuting precautionary statements
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothin to hospital. Consult a physicia In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustible Suitable extinguishing med Use water spray, alcohol-resi	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. ver give anything by mouth to an unconscious person. R e. ia istant foam, dry chemical or carbon dioxide.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous : GHS Classification Flammable gases (Cate Gases under pressure (Acute toxicity, Inhalation Skin corrosion (Category Serious eye damage (C. Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314 H331 H400 Precautionary statement	system, Liver, Kidney gory 2) compressed gas) (Category 3) (1B) telgory 1) teluding precautionary statements
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physici In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustible Suitable extinguishing med Use water spray, alcohol-resi Special protective equipme	nto fresh air. If not breathing, give artificial respiration. Constant of the set of the	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous s GHS Classification Flammable gases (Cate Gases under pressure (L Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (CA Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314 H331 H400 Precautionary statement P261	system, Liver, Kidney gory 2) Compressed gas) (Category 3) (Allegory 1) ategory 1) ategory 1) ategory 1) ategory 1) ategory 1) ategory 2) Danger Flammable gas. Contains gas under pressure; may explode if heated. Causes severe skin burns and eye damage. Toxic if inhaled. Very toxic to aquatic life. (s) Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/fume/ gas/ mist/ vapours/ spray.
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physici In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustible Suitable extinguishing med Use water spray, alcohol-resi Special protective equipme	nto fresh air. If not breathing, give artificial respiration. Cong and shoes immediately. Wash off with soap and plent an. of water for at least 15 minutes and consult a physician. ver give anything by mouth to an unconscious person. R e. ia istant foam, dry chemical or carbon dioxide.	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous s GHS Classification Flammable gases (Cate Gases under pressure (I Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (C Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314 H331 H400 Precautionary statement P210 P261 P273	system, Liver, Kidney gory 2) Compressed gas) (Category 3) 1B) tegory 1) teluding precautionary statements \widehat{O} \widehat{O} \widehat{O} \widehat{O} Danger Flammable gas. Contains gas under pressure; may explode if heated. Causes severe skin burns and eye damage. Toxic if inhaled. Very toxic to aquatic life. (s) Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/fume/gas/ mist/vapours/ spray. Avoid breathing dust/fume/gas/ mist/vapours/ spray.
General advice Consult a physician. Show th If inhaled If breathed in, move person in In case of skin contact Take off contaminated clothir to hospital. Consult a physici In case of eye contact Rinse thoroughly with plenty of transport to hospital. If swallowed Do NOT induce vomiting. Ner physician. REFIGHTING MEASURES Conditions of flammability Not flammable or combustible Suitable extinguishing med Use water spray, alcohol-resi Special protective equipme	nto fresh air. If not breathing, give artificial respiration. Constant of the set of the	onsult a physician. y of water. Take victim immediately Continue rinsing eyes during	Target Organs Lungs, Central nervous s GHS Classification Flammable gases (Cate Gases under pressure (L Acute toxicity, Inhalation Skin corrosion (Categor) Serious eye damage (CA Acute aquatic toxicity (C GHS Label elements, in Pictogram Signal word Hazard statement(s) H221 H280 H314 H331 H400 Precautionary statement P261	system, Liver, Kidney gory 2) Compressed gas) (Category 3) (Allegory 1) ategory 1) ategory 1) ategory 1) ategory 1) ategory 1) ategory 2) Danger Flammable gas. Contains gas under pressure; may explode if heated. Causes severe skin burns and eye damage. Toxic if inhaled. Very toxic to aquatic life. (s) Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/fume/ gas/ mist/ vapours/ spray.

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: butyl-rubber Minimum layer thickness: 0.3 mm Break through time: 480 min Material tested:Butgjec(KCL 897 / Aldrich Z677647, Size M)

Splash protection Material: butyl-rubber Minimum layer thickness: 0.3 mm Break through time: 480 min Material tested:Butoject6 (KCL 897 / Aldrich Z677647, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an Industrial Hygienist familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Eye protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

9. PHYSICAL AND CHEMICAL PROPERTIES

Ap	pea	ran	се
----	-----	-----	----

s

	Form	Compressed gas
	Colour	no data available
i	fety data	
	pН	no data available
	Melting point/freezing point	Melting point/range: -78 °C (-108 °F) - lit.
	Boiling point	-33 °C (-27 °F) - lit.
	Flash point	132 °C (270 °F) - closed cup
	Ignition temperature	651 °C (1,204 °F)
	Auto-ignition temperature	no data available
	Lower explosion limit	15 %(V)
	Upper explosion limit	25 %(V)

Aldrich - 294993

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - nitrogen oxides (NOx)

Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge. Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place.

Contents under pressure.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control	Basis		
			parameters			
Ammonia, anhydrous	7664-41-7	TWA	25 ppm	USA. ACGIH Threshold Limit Values (TLV)		
Remarks	Upper Respiratory Tract irritation Eye damage					
		STEL	35 ppm	USA. ACGIH Threshold Limit Values (TLV)		
	Upper Respiratory Tract irritation Eye damage					
		STEL	35 ppm 27 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000		
		TWA	50 ppm 35 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants		
	The value in mg/m3 is approximate.					
		TWA	25 ppm 18 mg/m3	USA. NIOSH Recommended Exposure Limits		
	Often used in an aqueous solution.					
		ST	35 ppm 27 mg/m3	USA. NIOSH Recommended Exposure Limits		
	Often used in an aqueous solution.					

Page 4 of 8 Aldrich - 294993

Page 3 of 8

			or potential carcinogen by ACGIH.		Vapo	ur pressure	6,402 hPa (4,802 mmHg) at 15.50 °C (59.90 °F) 8,866 hPa (6,650 mmHg) at 21 °C (70 °F)	
	NTP:	No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.		Dens	ity	0.590 g/cm3		
	OSHA:		ent of this product present at levels greater than or equal to 0	.1% is identified as a	Wate	r solubility	soluble	
		carcinogen	or potential carcinogen by OSHA.			ion coefficient: anol/water	no data available	
	Reproducti	vetoxicity			Relat	ive vapor	0.59	
	no data avai	ilable			densi		- (Air = 1.0)	
	Teratogenie	city			Odou	ır ır Threshold	no data available no data available	
	no data available							
					Evap	oration rate	no data available	
			xicity - single exposure (Globally Harmonized System)		10. STABILITY	AND REACTIV	ITY	
	no data available Specific target organ toxicity - repeated exposure (Globally Harmonized System))	Chemical stability Stable under recommended storage conditions.				
	no data avai				Possibility of hazardous reactions no data available			
	no data ava	ilable	e		Conditions to avoid			
	Potential he	ealth effects			Heat, flames and sparks. Extremes of temperature and direct sunlight.			
	Inhalatio Ingestio		May be harmful if inhaled. Material is extremely destructive membranes and upper respiratory tract. May be harmful if swallowed.	to the tissue of the mucous			nc, Copper, Silver/silver oxides, Cadmium/cadmium oxides, Alcohols, acids, Halogens,	
	Ingestion Inge be harmful if absorbed through skin. Causes skin burns. Skin May be harmful if absorbed through skin. Causes skin burns. Eyes Causes eye burns. Signs and Symptoms of Exposure To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated. Synergistic effects Same and the state of the state		S.	Hazardous decomposition products Hazardous decomposition products formed under fire conditions nitrogen oxides (NOx) Other decomposition products - no data available				
			e not been thoroughly investigated.					
			• • •					
	no data ava				Acute to	oxicity		
	Additional RTECS: BO					LD50 ata available		
12. E	ECOLOGICAL	L INFORMAT	ION			ation LC50 Inhalation - rat -	4 h - 2000 ppm	
	Toxicity				Derm	nal LD50		
	no data ava	ilable			no da	ata available		
	and othe	to daphnia er aquatic	LC50 - Daphnia magna (Water flea) - 25.4 mg/l - 48 h			r information on ata available	acute toxicity	
	invertebr					rosion/irritation		
	no data avai	e and degrad ilable	ability		no data a			
		lative potent	ial		no data a	eye damage/eye available	e irritation	
	no data available		Respiratory or skin sensitization					
		Mobility in soil no data available PBT and vPvB assessment no data available Other adverse effects		no data available Germ cell mutagenicity no data available				
	PBT and vF							
	Other adve			Carcino	genicity			
	An environm	nental hazard	cannot be excluded in the event of unprofessional handling of	r disposal.	IARC:		ent of this product present at levels greater than or equal to 0.1% is identified as	
	Very toxic to	o aquatic life.					ossible or confirmed human carcinogen by IARC.	
					ACGIH:	No compone	ent of this product present at levels greater than or equal to 0.1% is identified as a	

Page 6 of 8

Page 5 of 8

Aldrich - 294993

no data available

13. DISPOSAL CONSIDERATIONS

Product

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

EMS-No: F-C, S-U

Contaminated packaging Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US) UN number: 1005 Class: 2.3 (8) Proper shipping name: Ammonia, anhydrous Reportable Quantity (RQ): 100 lbs Marine Pollutant: No Poison Inhalation Hazard: Hazard zone D

IMDG

UN number: 1005 Class: 2.3 (8) Proper shipping name: AMMONIA, ANHYDROUS Marine Pollutant: No

ΙΑΤΑ

UN number: 1005 Class: 2.3 (8) Proper shipping name: Ammonia, anhydrous IATA Passenger: Not permitted for transport IATA Cargo: Not permitted for transport

15. REGULATORY INFORMATION

OSHA Hazards

Compressed Gas, Target Organ Effect, Corrosive

SARA 302 Components		
The following components are subject to reporting levels established by	SARA Title III, Section CAS-No.	302: Revision Date
Ammonia, anhydrous	7664-41-7	2007-03-01
SARA 313 Components		
The following components are subject to reporting levels established by	SARA Title III, Section CAS-No.	313: Revision Date
Ammonia, anhydrous	7664-41-7	2007-03-01
SARA 311/312 Hazards		
Sudden Release of Pressure Hazard, Acute Health Hazard, Chronic He	ealth Hazard	
Massachusetts Right To Know Components		
	CAS-No.	Revision Date
Ammonia, anhydrous	7664-41-7	2007-03-01
Pennsylvania Right To Know Components		
	CAS-No.	Revision Date
Ammonia, anhydrous	7664-41-7	2007-03-01
New Jersey Right To Know Components		
	CAS-No.	Revision Date
Ammonia, anhydrous	7664-41-7	2007-03-01

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other

California Prop. 65 Components

reproductive harm.

Aldrich - 294993

16. OTHER INFORMATION

Further information

Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 7 of 8 Aldrich - 294993

Page 8 of 8