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Recent Developments on Anodes for Direct Fuel Utilization in SOFC

Abstract
This paper reviews recent work on SOFC anode fabrication at the University of Pennsylvania. In this work,
anode fabrication is based on the preparation of a porous YSZ matrix, into which electronic and catalytic
components are added by impregnation of the appropriate metal salts. First, the methods used to prepare
porous YSZ are described, along with a description of the structures that are obtained. Next, it is
demonstrated that cell performance is strongly affected by the methods used to impregnate and pretreat ceria
that is added to the porous YSZ. Third, the role of carbonaceous deposits within the anode is discussed. These
deposits can lead to improved electronic conductivity that results in improved performance. Finally, the effect
of precious-metal dopants, added to ceria to improve the catalytic properties of the anode, is discussed. Pd, Pt,
and Rh are shown to give large increases in the performance of the cells, particularly in CH4.
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Recent Developments on Anodes for Direct Fuel Utilization in SOFC

R. J. Gorte, J. M. Vohs, and S. McIntosh
Department of Chemical Engineering, 

University of Pennsylvania, 
Philadelphia, P.A. 19104 USA

Abstract

This paper reviews recent work on SOFC anode fabrication at the University of 

Pennsylvania. In this work, anode fabrication is based on the preparation of a porous YSZ 

matrix, into which electronic and catalytic components are added by impregnation of the 

appropriate metal salts. First, the methods used to prepare porous YSZ are described, 

along with a description of the structures that are obtained. Next, it is demonstrated that 

cell performance is strongly affected by the methods used to impregnate and pretreat 

ceria that is added to the porous YSZ. Third, the role of carbonaceous deposits within the 

anode is discussed. These deposits can lead to improved electronic conductivity that 

results in improved performance. Finally, the effect of precious-metal dopants, added to 

ceria to improve the catalytic properties of the anode, is discussed. Pd, Pt, and Rh are 

shown to give large increases in the performance of the cells, particularly in CH4. 

*Corresponding author: gorte@seas.upenn.edu; FAX: 215/573-2093.

Key Words: solid-oxide fuel cell, direct utilization, n-butane, methane, Cu, yttria-
stabilized zirconia, ceria.
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Introduction

The fact that fuel cells run on H2 is sometimes stated to be an advantage since H2

is considered renewable, but this ignores the fact that the vast majority of H2 is generated 

by reforming hydrocarbons. There are also major problems with distribution and storage 

associated with H2. While hydrocarbons can be reformed into H2, it would be much 

simpler and more efficient if one could simply operate fuel cells on existing hydrocarbon 

fuels without reforming. 

In principle, hydrocarbons can be utilized directly in solid oxide fuel cells (SOFC) 

because O2- anions, rather than protons, are the mobile species transmitted through the 

electrolyte. However, SOFC with conventional, Ni-based anodes are unstable in 

hydrocarbon fuels due to the propensity of Ni to catalyze carbon formation [1-4]. Indeed, 

Ni is such an effective catalyst for forming carbon that carbon formation can occur even 

when carbon is not the thermodynamically preferred, final product. For example, Ni 

catalysts instantly form carbon in the presence of n-butane at a H2O:C ratio of 2.0 [5], 

even though thermodynamics indicates CO2 and H2O are the preferred products [6]. This 

problem is even worse with hydrocarbon fuels that are liquids at ambient conditions. For 

these fuels, carbon formation is unavoidable in the presence of Ni. 

To avoid catalyzing carbon formation, work at Penn has focused on replacing Ni 

with catalytically inert Cu [7,8]. While Cu-YSZ (yttria-stabilized zirconia) composites 

were found to be stable in hydrocarbon fuels, it is necessary to add a catalyst, ceria, to the 

anode in order to achieve reasonable performance [9,10]. Furthermore, the fabrication of 

Cu-based anodes has required the development of new synthetic methods, different from 

those used to produce Ni ceramic-metallic (cermet) composites, because CuO and Cu2O 

melt at the temperatures required for processing YSZ [8]. Rather than calcining mixtures 

of CuOx and YSZ, the Cu cermets are prepared by first producing a highly porous YSZ 

matrix and then adding Cu to the matrix by impregnation with Cu salts. Using Cu-ceria-

YSZ anodes, we have demonstrated that stable operation, with reasonable performance, 

can be achieved with a wide variety of hydrocarbon fuels, including even a synthetic 

diesel fuel [11]. These Cu-based anodes have an additional advantage of being 

reasonably tolerant of sulfur [12].
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In this paper, we will discuss some of the most recent results from our 

laboratories. First, we will outline the strategy used to fabricate Cu cermets and show the 

range of microstructures that we have achieved. Next, because ceria is a critical catalytic 

component in all of our anodes, the effect of ceria synthesis and pretreatment will be 

discussed. Third, we will discuss anodes in which carbonaceous compounds are used as 

the conductive component. Finally, we will discuss data on cells in which precious-metal 

dopants are added to the anode to improve the catalytic properties. The addition of 

precious metals leads to significant increases in the open-circuit voltages (OCV) for 

hydrocarbons, giving values approaching the Nernst potentials.

Fabrication of Cu Cermets

Attempts to produce Cu cermets by traditional methods (co-firing of CuOx and 

YSZ, following by reduction of CuOx) have been shown to ineffective due to the fact that 

CuOx-YSZ mixtures cannot be calcined to temperatures high enough to properly sinter 

the YSZ; when YSZ sintering does not occur at sufficiently high temperatures, there is a 

segregation of Cu out of the YSZ upon reduction [13]. An alternative method that we 

developed begins with preparation of a YSZ bilayer in which a dense YSZ layer is 

attached to a highly porous YSZ layer [8,14]. The Cu and other catalytic components 

(usually ceria) are added by impregnation of soluble salts to the porous YSZ only after 

high-temperature calcination of the YSZ bilayer. This procedure allows very high 

temperatures to be used for densification of the YSZ, while allowing complete flexibility 

for the conditions used to prepare the Cu and ceria.

It is well known that obtaining the proper microstructure for Ni-cermets is crucial 

for maximizing performance. This microstructure can be controlled through the particle 

size of the starting NiO and YSZ powders, as well as through the use of pore formers. 

Producing the porous YSZ to be used in fabrication of the Cu cermet is somewhat more 

difficult because sufficient porosity is required to allow the addition of significant 

amounts of Cu while still keeping enough porosity for gas-phase diffusion of the fuel to 

the three-phase boundary (TPB). We have found two effective methods for preparing 

bilayers, both based on tape casting.
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In the first method, the porous layer is prepared by casting a tape with fugitive 

pore formers added [14,15]. This layer is attached to a second tape, which has no pore 

formers and will later become the electrolyte, either by dual casting or lamination.  To a 

first approximation, we have found the shrinkage of the green tapes upon calcination 

depends on the particle size of the oxide particles and not on the amount of pore formers, 

so that the tapes that produce the dense and porous layers can be co-fired without 

resulting in cracks [15].

The shape of the pores in the YSZ can be controlled quite effectively through the 

shape of the pore formers that are used. Fig. 1 shows scanning electron micrographs 

(SEM) of two ceramic pieces made with polymethyl methacrylate (PMMA) and graphite 

pore formers, along with images of the pore formers themselves. The data are especially 

clear for PMMA, where the spherical pore formers lead to spherical cavities in the 

ceramic. The correspondence between the cavity and pore-former shape is less clear with 

graphite, but the size of the pores in the resulting ceramic is certainly similar to the size 

of the graphite particles. It is interesting to notice that the pore formers leave the ceramic 

piece at a temperature well below the temperature at which the tape begins to shrink [15]. 

For example, with PMMA, the pore former is completely removed by 700 K, while the 

tape begins to shrink only above 1300 K. This helps to explain why the sizes of the 

cavities in the ceramic piece are somewhat smaller than the size of the pore formers. 

Obviously, the structure of the pore formers is built into the ceramic at low temperatures, 

well before most densification occurs, and the pores then shrink at the higher 

temperatures.

A second method to produce YSZ bilayers involves first preparing a dense YSZ 

film supported on a Ni-YSZ cermet, similar to structures used in conventional, anode-

supported SOFC [15,16]. Because Ni is highly soluble in nitric acid, HNO3, while YSZ is 

not, the Ni can be removed from the cermet very effectively. We have shown that the 

pore structure of the resulting YSZ ceramic depends strongly on the particle size of the 

NiO used to make the Ni cermet. While this method of preparing the bilayer obviously 

requires an additional processing step and the use of strong acids, it does have the 

advantage that one can apply the large base of knowledge available for making high-

performance anode structures with Ni cermets to produce the Cu cermets.
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The Effect of Ceria Structure

In Cu-cermet anodes, Cu only plays the role of electronic conductor. The Cu does 

not appear to have any catalytic function and the oxidation reaction in the TPB relies on 

the addition of other components, primarily ceria [10]. The evidence for this is as 

follows. First, Cu-YSZ anodes that do not contain ceria exhibit very low performance, 

even though they are stable in hydrocarbon fuels [10,17]. Second, substitution of Cu with 

Au has essentially no effect on anode performance [18]. Since Au is usually thought to be 

catalytically inert, it seems unlikely that Cu and Au would perform in a similar manner if 

Cu had a catalytic function. 

The addition of ceria to the Cu cermets is crucial for obtaining reasonable anode 

performance. The importance of ceria has also been observed in Ni-cermet anodes, and 

ceria is usually considered to provide mixed, electronic and ionic conductivity [19]. 

However, we suggest that ceria is also playing a catalytic role. The first evidence that 

ceria plays a catalytic role comes from the observation that replacement of ceria with a 

catalytic oxide that is selective for partial oxidation products results in partial oxidation 

of the fuel [10]. Second, relatively small amounts of ceria, ~2 vol%, are required to 

enhance activity and the addition of more ceria does not enhance performance beyond 

what is obtained with a minimum amount [10,20]. If ceria were involved in conduction, 

one should expect that larger amounts would be needed. Finally, as we will demonstrate 

in this section, the best performance is obtained when the added ceria is not calcined to 

high temperatures [20]. If mixed conductivity were important, performance should be 

improved by densification that increases the connectivity.

From a catalytic perspective, the properties of ceria should depend strongly on 

particle size and morphology; and these properties should, in turn, depend on the 

synthesis methods and pretreatment conditions [21,22]. To check the effect of particle 

size on performance, we prepared three otherwise identical cells in which the ceria 

deposits were calcined to various temperatures, with the data shown in Fig. 2 [20]. For 

these cells, the YSZ electrolyte thickness was 60 µm and the porous anode was 600 µm. 

The porosity of the YSZ used to make the anode was approximately 70%, with pores 

made from both PMMA and graphite pore formers, as shown in Fig. 1. After attaching 



6

the LSM (Sr-doped LaMnO3)-YSZ cathode and calcining to 1523 K, ceria was added to 

the porous YSZ to a level of 10 wt% using aqueous solutions of Ce(NO3)3. Then the 

samples with ceria were calcined in air to either 723 K, 1273 K, or 1523 K. Finally, Cu 

was added to each cell using aqueous solutions of Cu(NO3)2 to a level of 20 wt% Cu. The 

Cu(NO3)2 was reduced to metallic Cu without intermediate calcination, while ramping 

the cell temperature for performance testing in H2.

Fig. 2a) shows that the performance levels of the three cells in H2 at 973 K were 

dramatically different. While the open-circuit voltage (OCV) on all three cells was in 

good agreement with the Nernst Equation, the maximum power densities decreased with 

calcination temperature, going from greater than 200 mW/cm2 to less than 70 mW/cm2

after calcination to 1523 K. The impedance spectra in Fig. 2b) demonstrate that the 

performance changes are due to changes in the anode. In all three cells, the electrolyte 

resistance, determined from the high-frequency intercept with the real axis, was ~0.6 

Ω.cm2, in good agreement with the resistance of a 60-µm thick YSZ at this temperature. 

As discussed elsewhere [23], the cathode losses are associated with a 2-kHz arc in cells 

prepared by our methods and the Area-Specific Resistance (ASR) for the cathodes in all 

three of these cells was between 0.2 and 0.3 Ω.cm2. The obvious difference between the 

three cells shown here came in the low-frequency (~4 Hz) arc that can be assigned to the 

anode, with the ASR of the anode increasing from 0.8 Ω.cm2 following calcination at 723 

K, to >1.8 Ω.cm2 at 1273 K and >2.6 Ω.cm2 at 1523 K..

We characterized the ceria in these three cells by XRD and SEM measurements. 

The XRD peaks for CeO2 after calcination were narrower, indicating that there was a 

growth in crystallite size, but there was no evidence for reaction with the YSZ to form a 

solid solution until somewhat higher temperatures than used in these three cells. The 

SEM images of ceria/YSZ calcined at 723 K showed small (<0.1 µm), fluffy particles 

covering the entire surface, while the ceria film was more evenly formed by 1273 K. 

However, the SEM did not provide any obvious indications as to why the performance of 

cells with high-temperature films should change so dramatically.

To determine whether factors other than temperature could affect performance, 

we also used various Ce salts and solvents other than water to add CeO2 to the porous 

YSZ. Of the systems studied, (NH4)2Ce(NO3)6 in ethanol resulted in the best cell 
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performance. The V-I performance curves and impedance spectrum for a cell made with 

(NH4)2Ce(NO3)6 in ethanol are shown in Fig. 3a) and b), together with data for a cell 

made with Ce(NO3)3 in water and low-temperature calcination. The performance of the 

cell made using the ethanol solvent was significantly better, with a maximum power 

density that was more than 20% greater. The impedance spectra in Fig. 3b) also 

demonstrate that the improved performance is primarily the result of better anode 

performance. The anode ASR in H2 at 973 K decreased to ~0.4 Ω.cm2 with the ceria 

prepared from the ethanol solution. While it is not yet clear how changing the 

morphology of ceria affects anode performance, this is clearly an important area for 

further investigation.

Carbon-Containing Anodes

We have recently shown that exposure of Cu-ceria-YSZ anodes to n-butane at 973 

K can lead to a large increase in performance due to the formation of carbonaceous 

residues within the anode [24]. This is shown in Fig. 4, which plots the power density at 

973 K as a function of time, at a cell potential of 0.5 V, for a cell having 20-wt% Cu and 

10-wt% ceria. Initially, the power density in pure H2 is ~70 mW/cm2. Upon switching the 

fuel to pure n-butane, the power density increased to 120 mW/cm2 after a brief period. 

Switching the fuel back to H2 increased the power density to 200 mW/cm2. Based on the 

fact that the increased performance following n-butane exposure is not observed for cells 

that have higher Cu contents, we concluded that the improved performance observed in 

Fig. 4 is due to enhanced electronic conductivity within the anode. Characterization of 

Cu-ceria-YSZ composites following exposure to n-butane suggests that the improved 

conductivity is due to formation of polyaromatic compounds, such as anthracene [25,26], 

in coverages corresponding to a few weight percent of the anode. These compounds are 

removed at relatively low temperatures in temperature-programmed- oxidation (TPO) 

measurements, ~873 K compared to >1100 K for graphite powders.

The question arises whether one can run an SOFC using a carbon-based, ceria-

YSZ anode, without any Cu. Cells were prepared in the same manner as those in which 

the Cu-ceria-YSZ anodes were prepared, except that Cu was not added. Instead, a 

conductive, carbonaceous layer was deposited on the anode by exposing it to flowing, dry 
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n-butane at 973 K for 4 h. 4-probe conductivity measurements indicate that porous YSZ 

wafers treated in dry, flowing n-butane for 4 h exhibit conductivities of approximately 1 

S/cm [25]. 

Performance curves at 973 K for H2, n-butane, and CH4 on a cell having a C-

ceria-YSZ anode are shown in Fig. 5 and demonstrate that reasonable power densities can 

indeed be achieved with this type of anode. (Note: The power density obtained on this 

cell in H2, prior to carbon deposition, was negligible, demonstrating that the amount of 

ceria in this cell was not sufficient to obtain reasonable power densities.) The power 

densities are approximately 20% lower than that which would be obtained on a cell with 

20-wt% Cu in the anode, showing 160 mW/cm2 for H2 and 80 mW/cm2 for n-butane. We 

have used impedance spectroscopy to show that the lower performance of the cell with 

the C-ceria-YSZ anode is due to this cell having a slightly higher ohmic impedance, 0.9 

ohm.cm2 compared to 0.6 ohm.cm2 for a similar cell with a Cu-ceria-YSZ anode. 

Whether the carbon-based anodes have potential for application remains unclear, 

given that the carbon could obviously be removed from the anode by oxidation with 

steam. Based on experiments in which the fuel was a mixture of n-butane, CO2, and H2O, 

in a mixture similar to what the anode would be exposed at 80% fuel conversion, it 

appears that the carbon is reasonably stable for periods of at least 24 hr. However, more 

work is clearly needed.

Precious-Metal Dopants

Among oxides, ceria is one of the better catalysts for total oxidation of 

hydrocarbons [27]. However, precious metals like Pt, Pd and Rh, especially when these 

are supported on ceria, show far higher oxidation activity than ceria or any other oxide. 

Indeed, in an earlier study of ceria-based anodes, the addition of dopant levels of Rh was 

found to significantly enhance the performance of an SOFC in CH4 at 1073 K [28]. Given 

that the performance of the cells in that study were very poor, we decided to reinvestigate 

the effect of adding precious metals to the anode.

Unfortunately, cells that contain both Cu and precious metals result in the 

formation of a catalytically inactive alloy, so that the performance of these cells is 

essentially indistinguishable from cells made without the addition of precious metals. 



9

However, as demonstrated in the previous section, electronic conductivity can be 

obtained in the anode by forming a carbonaceous layer. Fig. 6 shows the performance 

curves at 973 K for a cell in which the anode consisted of 1 wt-% Pd and 10 wt-% CeO2, 

in a YSZ matrix made conductive by exposure to dry n-butane for 4 h. The presence of 

Pd increased the maximum power density in H2 by almost 100%, to 300 mW/cm2, with 

little change to the cell open-circuit voltage (OCV), 1.17V.  

The effect of Pd on CH4 was even more dramatic. With only ceria as a catalyst, 

the cell performance in CH4 was much lower than that obtained with H2, probably due to 

the difficulty of breaking the strong C-H bonds. With the addition of Pd, the performance 

curves in CH4 closely approach the curves obtained with H2, a clear indication that the 

reaction limitation has been significantly reduced. The reduction in the reaction barrier is 

also observed in the OCV measurements. Comparing Figs 5 and 6, one observes an 

increase in the OCV for CH4 upon the addition Pd, going from <1.0 V to almost 1.2 V. A 

more careful analysis of the OCV with defined CH4, H2O, and CO2 pressures 

demonstrated that the OCV on the Pd-doped anode remained below the theoretical Nernst 

potential; but the difference between the observed potentials and the Nernst potential 

decreased dramatically, from ~0.2 V for ceria-only cells to ~0.1 V for cells containing 

Pd, Pt, or Rh [29].

The results for n-butane are also interesting. A comparison of the performance 

curves with and without Pd shows only modest gains in the power densities, although the 

addition of Pd does improve the OCV in n-butane and straighten the curvature in the V-I 

curve that is observed near OCV with the ceria-only catalyst. Given n-butane should be 

much more reactive than CH4 due to the weaker C-H bonds, we suspect that n-butane 

reacts too readily on the metal surface, forming a carbon layer on the catalyst, and that 

this in turn decreases the performance. Clearly, this interpretation of the data remains 

speculative at this time.

Future Directions

Many questions remain about how best to fabricate high-performance SOFC that 

operate on hydrocarbon fuels. We believe that our main contribution to this goal has been 

the development of a synthesis method that is very flexible in allowing the electrodes to 
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be prepared at low temperatures. Low-temperature synthesis allows the use of many 

materials that would not otherwise be compatible with standard ceramic-fabrication 

methods, including the addition of catalytic materials, the controlled fabrication of alloys 

[30], etc. We expect that this capability will result in improved SOFC for the future.
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Figure Captions

Figure 1 SEM of a) a YSZ ceramic made with 36 wt% PMMA , b) PMMA, c) a YSZ 
ceramic made with 36 wt% graphite, and d) graphite.

Figure 2 Performance curves, (a), and impedance spectra, (b), for cells in which the 
ceria was calcined in air at various temperatures, prior to the addition of Cu. 
The impedance spectra were measured at 300 mA/cm2. The data corresponds 
to cells that were calcined at the following temperatures: �, 723 K; �, 1273 
K; �, 1523 K.

Figure 3 Performance curves, (a), and impedance spectra, (b), for cells in which the 
ceria was added using the following salt solutions: �, aqueous solution of 
Ce(NO3)3⋅6H2O; �, ethanol solution of (NH4)2Ce(NO3)6. The impedance 
spectra were measured at 300 mA/cm2.

Figure 4 Power densities at a cell potential of 0.5V as a function of fuel exposure at 
973K. The anode contained 10 wt% CeO2 and 20 wt% Cu.

Figure 5 Performance curves in various fuels at 973 K for a cell where the anode was 
impregnated with 10 wt% CeO2. The cell was exposed to C4H10 for 24 hours 
prior to performance measurements. : � H2; �, C4H10; �, CH4.

Figure 6 Performance curves in various fuels at 973K for a cell where the anode was 
impregnated with 10 wt% CeO2 and 1 wt% Pd. The cell was exposed to 
C4H10 for 5 hours prior to performance measurements. : � H2; �, C4H10; �, 
CH4.
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