
University of Pennsylvania
ScholarlyCommons

Senior Design Reports (CBE) Department of Chemical & Biomolecular
Engineering

4-2011

Model-Based Control with Stochastic Simulators:
Building Process Design and Control Software for
Advanced Materials Processing Technology
Efrem Braun
University of Pennsylvania

Marija Mircevska
University of Pennsylvania

Manuel Molina Villalba
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/25
For more information, please contact libraryrepository@pobox.upenn.edu.

Braun, Efrem; Mircevska, Marija; and Villalba, Manuel Molina, "Model-Based Control with Stochastic Simulators: Building Process
Design and Control Software for Advanced Materials Processing Technology" (2011). Senior Design Reports (CBE). 25.
http://repository.upenn.edu/cbe_sdr/25

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_sdr?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_sdr?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_sdr/25?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_sdr/25
mailto:libraryrepository@pobox.upenn.edu

Model-Based Control with Stochastic Simulators: Building Process
Design and Control Software for Advanced Materials Processing
Technology

Abstract
An analysis was made on the financial feasibility of a start-up company that will sell software developed for the
off-line optimization and on-line control of a thin film deposition process. This analysis found some niche
applications for a potential startup company that sells thin film deposition modeling and control software
solutions. Due to the potential versatility of the software that was developed, other potential markets may
exist. This investigation found that the startup company can be competitive over a five year time horizon with
a 20% IRR. Molecular modeling software that employs the kinetic Monte Carlo method was used for the
simulation of thin film growth. Due to the capability of this model to retain both surface and internal atomic
structure of the thin film, this model can simulate thin film properties such as roughness and porosity.
Development work was done on producing a suitable objective function to represent a set of application-
imposed thin film micro-structure property requirements. This objective function was used in the generation
of an optimal transient profile. A model predictive control framework was designed to control film growth
based on the objective function and the optimal transient evolution of the film. The model predictive control
algorithm was analyzed and shown to perform the desired control.

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/cbe_sdr/25

http://repository.upenn.edu/cbe_sdr/25?utm_source=repository.upenn.edu%2Fcbe_sdr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages

Model-Based Control with Stochastic Simulators:

Building Process Design and Control Software for

Advanced Materials Processing Technology

Chemical and Biomolecular Engineering 459

Professor Leonard A. Fabiano

April 15, 2011

Efrem Braun

Marija Mircevska

Manuel Molina Villalba

Department of Chemical and Biomolecular Engineering

University of Pennsylvania

Project Adviser: Dr. Talid R. Sinno

Project Recommended By: Dr. Talid R. Sinno, University of Pennsylvania

April 15, 2010

Department of Chemical and Biomolecular Engineering

School of Engineering and Applied Sciences

University of Pennsylvania

220 S. 34
th

 Street

Philadelphia, PA 19104

Dear Drs. Talid Sinno and Warren Seider, and Professor Leonard Fabiano,

 Enclosed in this book is the final copy of our Senior Design Report on Model-Based

Control and Stochastic Simulators: Building Process Design and Control Software for Advanced

Materials Processing Technology. A software program was designed to model deposition

processes with kinetic Monte Carlo simulations. Model Predictive Control is utilized to optimize

and control thin film growth by manipulating a single growth parameter. The economic

feasibility of a start-up software company was analyzed. It was found that the product fills a

niche in the marketplace that is currently vacant. The necessary selling price of the product to

achieve a 20% IRR was found to range from $4,000 to $11,000, which is within the range that

industry has shown itself to be willing to pay for such a product.

Sincerely,

Efrem Braun Marija Mircevska Manuel Molina Villalba

Table of Contents
Abstract ... 1

1. Introduction .. 3

1.1. Thin Film Deposition Process and Applications ... 3

1.2. Project Objectives .. 5

1.3. Process Modeling ... 8

2. Kinetic Monte Carlo .. 11

2.1 Events .. 11

2.2. Algorithm ... 15

2.3. Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) .. 18

3. Development of Quantitative Parameters for Control ... 20

3.1. Base Case Material ... 20

3.2. Roughness .. 20

3.3. Porosity .. 23

3.4. Objective Function ... 23

3.4.1. Definition .. 23

3.4.2. Effects of Weighting Factors ... 24

3.5. Dimensionless Parameter to Quantify Film Properties ... 24

3.5.1. Origin and Definition ... 24

3.5.2. Validation of γ as the Only Manipulated Variable .. 26

4. Development of a Base Case Material .. 28

4.1 System Size Selection .. 28

4.2 Optimal Steady-State Profile... 33

4.2.1 Material Behavior .. 33

4.4.2. Effects of Weighting Factors on the Optimal Steady-State Profile ... 35

5. Model Predictive Control: Open Loop Optimizer ... 38

5.1 Introduction to Model Predictive Control .. 38

5.2 Open-loop Optimizer .. 40

5.2.1. Algorithm .. 40

5.2.2. User-Specified Parameters ... 43

5.2.3. Experiments on the Predictive Step and the Action Step ... 44

5.2.4. Validation of Single Variable Input ... 51

5.2.5. Effect of Weighting Factors on the Optimal Transient Profile .. 53

6. Model Predictive Control: Closed Loop Control ... 57

6.1. Model Predictive Control Algorithm .. 57

6.2. Roughness Disturbance Experiment .. 59

6.3. Step Change Experiment .. 64

7. Other 2D Materials ... 68

7.1 Material 1a; Schwoebel Hops ... 68

7.1.1. Optimal Steady-State Profile ... 68

7.1.2. Optimal Transient Profile .. 71

7.2 Material 2; Square Lattice ... 74

7.2.1 Optimal Steady-State Profile .. 74

7.2.2. Optimal Transient Profile .. 80

7.3 Discussion of Open Loop Optimizer Results ... 83

8. Material in 3D ... 84

8.1. Binding Model .. 84

8.2 Material 3 Characterization .. 85

8.3 Optimum Steady-State Profile .. 95

8.4 Optimal Transient Profile .. 96

9. Financial Analysis .. 100

9.1 Start-Up Technology Company Goals ... 100

9.2 Thin Films Market Overview ... 100

9.3 Competitive Environment ... 105

9.4. Business Model .. 106

10. Conclusions ... 114

11. Acknowledgements ... 116

12. Bibliography .. 118

Appendix A Financial Details ... 120

A.1 Clean Room Quote .. 120

A.2 Glove Box Quote ... 121

A.3 Cash Flow Summary (Aggressive) .. 122

A.4 Cash Flow Summary (Conservative) ... 123

Appendix B SPPARKS Input Files ... 124

B.1 Base Case .. 124

B.2 Material 1a with Schwoebel Hops .. 125

B.3 Material 2 with Square 8 Neighbor Lattice ... 126

B.4 Base Case Material with Temperature Step Change .. 127

B.5 Base Case Material with Initial Roughness Disturbance ... 128

B.6 Material 2: Three-dimensional Simulation, GaAs Binding Energies , Simple Cubic 6 neighbors 130

Appendix C Computer Code (C/C++) ... 132

C.1 Open Loop Optimizer Main.cpp .. 132

C.2 Model Predictive Control Main.cpp .. 138

C.3 Property Calculators .. 147

C.3.1 Objective Function Calculator .. 147

C.3.2 Porosity Calculator ... 148

C.3.3 Roughness Calculator ... 150

C.3.4 Growth Calculator .. 153

C.4 Simulation Manipulations ... 154

C.4.1 Create Model Simulation Input File ... 154

C.4.2 Atomic Arrangement Approximation .. 156

C.4.3 Properties Manipulator: Model Predictive Control ... 159

C.4.4 Reference Trajectory Manipulator: Model Predictive Control .. 160

C.5 SPPARKS Post-Processing .. 162

C.5.1 SPPARKS Dump to Profile... 162

C.5.2 Slice Machine: 3-D Simulation to 2-D Images .. 169

Appendix D SPPARKS ... 174

 Braun, Mircevska, Molina Villalba

1

Abstract

An analysis was made on the financial feasibility of a start-up company that will sell

software developed for the off-line optimization and on-line control of a thin film deposition

process. This analysis found some niche applications for a potential startup company that sells

thin film deposition modeling and control software solutions. Due to the potential versatility of

the software that was developed, other potential markets may exist. This investigation found that

the startup company can be competitive over a five year time horizon with a 20% IRR.

Molecular modeling software that employs the kinetic Monte Carlo method was used for the

simulation of thin film growth. Due to the capability of this model to retain both surface and

internal atomic structure of the thin film, this model can simulate thin film properties such as

roughness and porosity. Development work was done on producing a suitable objective function

to represent a set of application-imposed thin film micro-structure property requirements. This

objective function was used in the generation of an optimal transient profile. A model predictive

control framework was designed to control film growth based on the objective function and the

optimal transient evolution of the film. The model predictive control algorithm was analyzed and

shown to perform the desired control.

Model-Based Control with Stochastic Simulators

2

 Braun, Mircevska, Molina Villalba

3

1. Introduction

1.1. Thin Film Deposition Process and Applications
Thin film deposition is a process that is used to deposit solid material on a substrate

surface. A diagram of a typical deposition reactor is presented in Figure 1. Chemical vapor

deposition (CVD) and physical vapor deposition (PVD) are commonly used variants of thin film

deposition. Chemical vapor deposition is a process in which gaseous precursor material flows

into a chamber that contains a heated substrate surface to be coated (Sudarshan & Park, 2001).

The precursor material reacts or decomposes on the surface, resulting in a deposition. The

reaction is usually accompanied by the release of chemical byproducts, which are exhausted out

of the chamber along with any non-reacted precursor gas. Enhanced CVD methods are available

which involve plasma, ions, photons, hot filaments, lasers, etc. which usually increase deposition

rates or lower required temperatures. Physical vapor deposition is a process in which a vaporized

form of the material to be deposited flows over the substrate surface and condenses, resulting in

a deposition (Mattox, 1998). No chemical reaction occurs in this process. Figure 2 compares

PVD to CVD. A PVD model is used in the experiments in this report.

Figure 1: Deposition reactor. A substrate wafer is stationed on the rotating disk. The gas flux is

perpendicular to the substrate surface.

Model-Based Control with Stochastic Simulators

4

Figure 2: Physical and Chemical Vapor Deposition.

Thin film technology has a variety of applications, in microelectronic devices, optics,

micro-electro-mechanical systems (MEMS), and biomedical products. With this process

versatility, there is a vast range of optimal thin film property requirements that are associated

with specific applications. Most of these film property requirements tend to be imposed on the

microstructure of the thin film. For instance, in the semiconductor industry, thin films are

required to have minimal surface roughness and minimal internal defects, which directly relate to

electrical and mechanical properties of microelectronic devices (Hu et al., 2009). In photovoltaic

applications, the surface roughness relates to the optical performance of solar cells (Xinyu et al.,

2010). While surface roughness of thin films is related to interfacial properties at film layer

junctions, internal defects, represented as a porosity measurement, affect mechanical and

electrical properties. Thus, advanced control systems must be developed to obtain the desired

microstructural properties.

 Braun, Mircevska, Molina Villalba

5

1.2. Project Objectives
With the advent of more advanced micro devices, increasingly more stringent

requirements translate into the need for more rigorous control over the surface and internal

morphologies of thin films. With an interest in semiconductor applications, roughness and

porosity must both be minimized for thin films on the order of 1-10 nm film thickness. A model

predictive control algorithm with this purpose is developed in this report.

The project charter in Table 1 briefly describes the goals and scope of the project. Three

primary goals were established, the first of which was to characterize a standardized Kinetic

Monte Carlo Model (KMC) that is part of the Stochastic Parallel Particle Kinetic Simulator

(SPPARKS) suite, used in the microscopic modeling of thin film deposition processes in this

report. The second goal was to build a model predictive control (MPC) framework to

dynamically control the thin film deposition process. Lastly, the third goal was to provide a

feasibility plan for a start-up PVD solutions company that will develop its own robust client-need

based KMC model and sell MPC software to clients that employ vapor deposition reactors.

Model-Based Control with Stochastic Simulators

6

Project Name
Stochastic Simulation and Model Predictive Control of Thin

Film Vapor Deposition Process

Project Champions Talid Sinno

Project Leaders Efrem Braun, Marija Mircevska, and Manuel Molina Villalba

Specific Goals
 To characterize a developed kinetic monte carlo model

 To develop software to optimize and control a thin film

vapor single particle deposition processes

Project Scope

In Scope

 Simulate a generic single particle deposition process

 Observe effects of temperature, deposition rate, lattice size

and binding energies on roughness and porosity of the film

microstructure

 Optimize film deposition reaction

 Develop an off-line Optimization Method to determine an

optimal state trajectory for roughness and porosity

 Develop an on-line Model Predictive Controller to bring a

system to desired state based on optimal profile

Out of Scope

 Modeling a specific single particle substrate deposition

 Modeling multi-particle substrate deposition

 Assessment on the validity of SPPARKS on the

representation of the real chemical process

Deliverables
Software package built around an existing model to optimize

and control thin film single particle growth

Timeline

 4 weeks to characterize SPPARKS

 4 weeks develop Optimization and Model Predictive

Control Software

 4 weeks to develop a case study

Table 1: Project Charter

 Braun, Mircevska, Molina Villalba

7

The innovation map for a film deposition optimization and control product is shown in Figure 3

below.

Figure 3. Innovation Map

CCuussttoommeerr

VVaalluuee

PPrrooppoossiittiioonn

PPrroodduucctt

TTeecchhnnoollooggyy

PPrroodduuccttss

TTeecchhnniiccaall

DDiiffffeerreennttiiaattiioonn

PPrroocceessss

MMaannuuffaaccttuurriinngg

TTeecchhnnoollooggyy

Software Design:
Optimization of

Deposition System

SPPARKS C++

Stochastic
Molecular-scale
Physics Model

MPC Modifiable
Objectives

Integrated on-line Model
Predictive Controller

Software

Smooth
Surfaces

Minimum
Pore

Defects

Optimized
Control of

System

MATLAB

Software Design:
Model-Predictive
Controller (MPC)

Thin Film
Control

Integrated Off-line Thin
Film Deposition

Optimization Software

IInnnnoovvaattiioonn MMaapp:: MMooddeell PPrreeddiiccttiivvee CCoonnttrrooll SSooffttwwaarree ffoorr

DDeeppoossiittiioonn RReeaaccttoorrss::

Model-Based Control with Stochastic Simulators

8

1.3. Process Modeling
It is difficult to obtain real-time measurements of microstructural properties of thin films

during the deposition process. In the design of a model predictive controller, a rigorous process

model will be used to simulate a real PVD process in order to obtain these real-time

measurements. A model predictive control algorithm will use a less rigorous version of the

model to predict the film microstructure after a specified period of time, for different

combinations of input parameters. The controller will calculate film properties based on film

microstructure information provided by the model, and select the input variables which give the

best result for that time period. The selected input variables will be provided as input to the

rigorous deposition model, as well as to the actual physical process which is running in parallel

with the rigorous simulation. Figure 4 below shows a schematic of the overall process.

 Braun, Mircevska, Molina Villalba

9

Real Process

Predictive

Model
Controller

Rigorous

Model

Parallel

Inputs

Figure 4: Process Flow Diagram of the Control Framework

We will use a simplified model of a deposition process, which does not take into account

desorption. The goal of this project is to demonstrate the feasibility of a model predictive control

unit that will control properties on an atomic scale. The controller can easily be modified to

include more accurate process models.

Numerous simulation techniques exist for modeling the processes considered. The two

major categories into which these techniques can be organized are deterministic and stochastic

processes. A deterministic process is one in which the outcome is predetermined by the inputs

(i.e. running the model another time with the same set of initial conditions will always result in

the same outcome), while a stochastic process relies on randomness.

Generally, one develops deterministic simulations by deriving partial differential

Model-Based Control with Stochastic Simulators

10

equations (PDEs), which can be numerically solved to give the outcomes. These PDEs can be on

different scales. On one end is the continuum approximation, which assumes that materials are a

continuous mass rather than discrete particles and builds a macromolecular-scale model based on

dynamic conservation equations. On the other end lie techniques such as molecular dynamics,

which use equations derived from statistical mechanics to predict atomic motion.

These deterministic methods cannot be used to model physical vapor deposition (PVD).

The continuum approximation is invalid, as the microstructure of the film is important in

determining the film’s properties. However, this approximation is useful in modeling the heat

and mass transport processes in the gas phase, which takes the depositing atoms to the surface

where they adsorb. Molecular dynamics is infeasible due to the many calculations that this model

requires; typical timesteps are on the order of one femtosecond, while PVD of thin films takes

minutes to hours.

Kinetic Monte Carlo (KMC) is a general type of stochastic process which can be applied

at any scale and in multiple areas. It is often used when a deterministic method would be

incapable of obtaining a solution. KMC can be used when processes occur with a known rate.

Thin film deposition lends itself to modeling by KMC because a finite number of events can

occur at any given time and the rates of these events are well established; additionally, KMC can

be used to model the evolution of the surface microstructure.

 Braun, Mircevska, Molina Villalba

11

2. Kinetic Monte Carlo

2.1 Events
A Monte Carlo event is characterized by the type of the event and the site at which the

event is executed. For thin film PVD, there are three main types of events: deposition, diffusion

(or migration), and desorption. Only the first two, depicted in Figure 5, will be treated here

because SPPARKS (the KMC software used) does not model desorption.

Model-Based Control with Stochastic Simulators

12

Deposition

Diffusion

Figure 5: Types of KMC events

The deposition rate is considered to be site-independent and proportional to the flux of

the incoming gas; thus, its rate can be stated as a constant in units of atomic depositions per

second per site.

 Equation 1

A diffusion event occurs when an atom is able to overcome an energy barrier arising

from binding energies. Initially, it will be assumed that atoms can only diffuse to their nearest

neighbors (defined in Figure 6 below). Diffusive hops to an atom’s second nearest neighbor,

termed Schwoebel Hops, are discussed in a later section.

 Braun, Mircevska, Molina Villalba

13

Figure 6: Tri-lattice Diagram. Black lines connect nearest neighbors. Black-colored particle in the

center has six nearest neighbors (red-colored particles) and twelve second-nearest neighbors (green-

colored particles).

Due to the similarity between a diffusion event and a chemical reaction, the rate of a

diffusion event is modeled by the Arrhenius Equation. The probability of an individual atom

overcoming the energy barrier to migrate to a neighboring location is in the form of a Boltzmann

distribution.

 Equation 2

Model-Based Control with Stochastic Simulators

14

Figure 7: Energy Level Diagram for a Diffusion Event with a Negative Change in Energy. Note the

similarity to the energy level diagram of a chemical reaction.

 In Equation 2, Q is the barrier energy to diffusion which must be overcome for all

diffusion events. ΔE is the change in energy of the system that would occur as a result of a

diffusion event. The energy of the system is determined by summing the energy of each atom in

the system over the entire system. The energy of each atom is specified by its coordination

number, which is the number of neighboring atoms to which it is bonded. The greater the

coordination number of an atom, the more bonds the atom has, and the greater its binding energy

will be. If ΔE is negative (the diffusion is favorable), ΔE is excluded from Equation 2. This can

be seen from Figure 7 by tracing the reaction coordinate in the positive x-direction; the atom

needs to have enough energy to overcome the barrier Q regardless of the magnitude of the

decrease in energy. Am is a pre-exponential factor, kB is the Boltzmann constant, and T is the

temperature of the system. Clearly, the rate of diffusion is temperature dependent, increasing

with greater temperature.

 Braun, Mircevska, Molina Villalba

15

Different types, or classes, of diffusion events are possible. A type of diffusion event is

defined by the initial and final coordination numbers of the diffusing atom. Equation 2 is applied

for each type of diffusion event. Therefore, several of these rates are associated with each atom.

2.2. Algorithm

A schematic overview of the KMC algorithm used in this project is presented in Figure 8

(page 16). The first step in the KMC algorithm is choosing a general event—deposition or

diffusion— to be executed. The total rate of deposition is:

 Equation 3

where N is the number of surface sites on the lattice. If performing a 2D simulation on a 1D

substrate that is M sites long, N is set to M. If performing a 3D simulation on a 2D substrate that

is M by M sites, N is set to M
2
.

 The total rate of diffusion is:

 Equation 4

where Mi is the number of diffusion events in the system that belong to the i-th class.

 A random number following a uniform distribution in the unit interval, ξ, is generated. If

, a deposition event is selected. If , a diffusion event

is selected.

 This process is then repeated within the general event. For example, if diffusion is

selected, weightings of each class of event are calculated, and a random number is used to select

the class. The process repeats until the exact event to be executed is chosen.

Model-Based Control with Stochastic Simulators

16

 After selecting and executing a process, the program computes the time, Δt by which to

advance the simulation. Again, a random number in the unit interval, ξ, is selected.

 Equation 5

 The combination of the equation for advancing time and the equations for event selection

ensure that the rate of every individual event is approximately followed with stochastic

deviations. This algorithm is repeated until the time meets or exceeds the time set by the user.

This process ensures that the events are treated as Poisson processes.

 Braun, Mircevska, Molina Villalba

17

Initialization of

Surface

Configuration

Initialization of

Rates of

Events

Input Variables

Event

Selection

Site

Selection

Adsorption

Diffusion

0 neighbor

1 neighbor

2 neighbor

...

N neighbor

Execute Event

at Site

Update Time

Update Rates

of Events

t SIMULATION < t FINALYes

No

Simulation

Finish

Figure 8: Schematic Representation of the KMC algorithm used in this project.

Model-Based Control with Stochastic Simulators

18

2.3. Stochastic Parallel PARticle Kinetic Simulator (SPPARKS)
SPPARKS is a standardized open-source Monte Carlo code that can be used to model

various different processes. SPPARKS was designed to be easy to extend; for this reason, it can

be used in two ways. First, it can be made as an executable program into which one sends an

input script which specifies the run’s settings and parameters. Second, it can be put into library

format, which enables the user to build code around the SPPARKS engine and call it as

necessary.

For every process it models, SPPARKS implements an application, which defines events,

probabilities, and acceptance/rejection criteria. Based on spatial considerations, applications can

be classified in 3 categories: on-lattice, which define static event sites with fixed neighbor

connectivity; off-lattice, which define mobile event sites such as particles; and general, which

have no spatial component.

This project uses the on-lattice application diffusion which performs diffusive hops on a

lattice whose sites are either occupied or unoccupied (vacant). It can model diffusion on 2D or

3D lattices. Sites are assigned discrete values, called spins, which can be in one of two states,

designating a site as occupied or vacant. Neighboring sites can exchange their spins, simulating a

diffusion event. Although many of SPPARKS applications can be run on parallel processors, the

application diffusion is only capable of using a single processor, which can significantly increase

processing time.

 Braun, Mircevska, Molina Villalba

19

Model-Based Control with Stochastic Simulators

20

3. Development of Quantitative Parameters for Control

3.1. Base Case Material
In order to explore different aspects of the control system, a base case material must be

defined. This sample material was modeled on a 2-dimensional triagonal lattice (Figure 6 on

page 12) using a binding model typical of semiconducting materials such as gallium arsenide

(GaAs) or silicon. Values for the bond energy, diffusion barrier, and pre-exponential frequency

factor, and ranges for realistic temperature and deposition rate are presented in Table 2. Binding

energy was computed as a linear function of the number of bonds a particle forms. Only nearest

neighbor hops were allowed in this model. The effect of adding Schwoebel hops is investigated

later in section 7.1. Simulation run time was adjusted to grow a total of 30 monolayers.

Common Parameters GaAs Base Case

Material

Single Bond

Energy

[eV]

Ebond 0.27 0.27

Diffusion Barrier

[eV]

Q 1.82 1.58

Diffusion

Frequency Factor

kdes 5.8*10
13

 10
13

Deposition Rate

[monolayer/sec]

rdep 1-4

Temperature

[K]

T 500-900

Table 2: GaAs and Base Case Material KMC Algorithm Parameters

3.2. Roughness

Roughness is measured as the root mean square of the surface profile. The surface profile

of a system is defined by its surface particles, which are the particles that occupy the highest

filled site of any vertical column. Figure 9 below shows a typical surface profile on a 2

 Braun, Mircevska, Molina Villalba

21

dimensional triagonal lattice. The root mean square surface roughness is calculated as follows.

Equation 6 is applicable for a 2-dimensional lattice, and Equation 7 is applicable for a 3-

dimensional lattice.

 Equation 6

 Equation 7

Figure 9: 2D surface profile. Gray colored particles are considered surface particles. White colored

particles are all filled sites below the surface. Empty sites are not explicitly drawn.

Equations 6 and 7 measure height variations on a single particle scale. For a silicon atom,

this is on the order of 100 pm. Height differences on this scale are unlikely to significantly affect

film properties. A high-pass filter was developed using an alternative formula that defines

contiguous vertical columns of fixed length that contain n number of sites in the lateral direction

in 2 dimensions, and fixed surface area that contain n x n number of sites in 3 dimensions. The

number n is called the ―segment size.‖ The average height of every possible column constructed

in this way (local average) is computed and the roughness is defined as the standard deviation of

Model-Based Control with Stochastic Simulators

22

the local average from the global average. Roughness computed in this way filters out variations

on a scale smaller than the segment size. In 2 dimensions, the filtered roughness formula is as

follows:

 Equation 8

where is roughness on a scale n, N is the lattice size, n is the segment site, is the global

average, and is the local average computed as follows:

 Equation 9

where is the height of the surface site at x-coordinate i. In 3 dimensions, the corresponding

equations are the following:

 Equation 10

 Equation 11

where is the height of the surface site at (x,y)-coordinate (i,j).

 Braun, Mircevska, Molina Villalba

23

3.3. Porosity

Porosity (is defined as the fraction of vacant sites within the film to total number of

sites that are part of the film. A vacant site is part of the film if it is below a surface site. Porosity

is calculated as follows:

 Equation 12

where M is the number of vacant sites in the film, and Ntotal is the total number of sites in the

film.

3.4. Objective Function

3.4.1. Definition

For the purpose of designing a control mechanism, roughness and porosity can be

combined into a single parameter, constructed such that its minimum corresponds to the most

desirable combination of roughness and porosity values. This single parameter is termed an

objective function; the benefit of defining it is that it allows the user to easily change the

importance of any given parameter simply by modifying the objective function to be minimized,

without necessitating making any changes in the control algorithm. Other parameters, such as

rate of growth, can easily be added to the objective function as well. An objective function

defined for the base case material has the following form:

 Equation 13

Model-Based Control with Stochastic Simulators

24

where ρ and σ are roughness and porosity, defined in Equations 8 (page 21) and 12 (page 22)

respectively; ρmax and σmax are the maximum roughness and porosity values in a dataset; A and B

are user determined weighting factors based on the relative priority of each parameter.

3.4.2. Effects of Weighting Factors

Different weighting factors can be placed on roughness and porosity in order to ensure

that the objective function is capable of controlling for different types of films. In the final user-

friendly version of the controller, it is expected that the user will be able to select a high,

medium, or low weighting factor for each of the measured film properties. The software would

then generate an optimal profile through the open-loop optimizer, and the controller would act to

keep the real process on this profile. This will be further explored in Section 5.

3.5. Dimensionless Parameter to Quantify Film Properties

3.5.1. Origin and Definition

Film microstructure is directly dependent on the two surface microprocesses described

earlier: diffusion and deposition. Diffusion events are a function of temperature and system

configuration, and they act to minimize the energy of the system by kinetically favoring diffusive

hops that lead to more extensively bonded particles. Therefore, diffusion acts to minimize

surface area, reducing pores and smoothing the surface. Deposition events, on the other hand, are

independent of system configuration; candidate sites for deposition are selected at random, with

no regard for the effect on the system energy. Film microstructure, therefore, is determined by

the relative frequencies of diffusion to deposition events.

A dimensionless parameter, γ, was defined to combine the effects of diffusion and

deposition into a single parameter that dictates film properties. γ is defined as the ratio of the rate

of diffusion to the rate of deposition on a per site basis. Since diffusion is dependent on system

 Braun, Mircevska, Molina Villalba

25

configuration, several rates of diffusion can be defined depending on the effects that a diffusive

event has on the system configuration. For diffusion events which result in a negative energy

change (more bonds are formed than are broken), the only obstacle to diffusion is the diffusive

energy barrier. The rate of diffusion events per site is then given by:

 Equation 14

where Q is the diffusive energy barrier.

 Conversely, for diffusion events which result in a positive system energy change, the

obstacle to diffusion is a sum of the diffusive energy barrier and the total energy of the net

number of broken bonds. For a lattice which specifies N number of neighbors, assuming that

particles are not allowed to desorb (gain a configuration number of 0) and that a particle with a

full number of neighbors cannot diffuse, the number of net broken bonds can vary from 0 to N-1.

Therefore, N-1 different rates of diffusion can be defined, as follows:

 Equation 15

where ∆n can vary from 0 to N-1. When ∆n is zero, Equation 14 reduces to Equation 13.

For simplicity, and under the assumption that the fastest rate of diffusion, r0, is dominant,

γ is defined in terms of r0 only, as follows:

 Equation 16

where m is the number of sites in one monolayer.

Model-Based Control with Stochastic Simulators

26

 For the binding model of the base case material, r0 is 10
3
 times greater than r1 and 10

5

times greater than r2 at 600K, and 30 times greater than r1 and 10
3
 times greater than r2 at 900K.

Therefore, the assumption that r0 always dominates introduces a small error in the calculation of

γ at high temperatures.

3.5.2. Validation of γ as the Only Manipulated Variable

To verify that γ is the only parameter that dictates film properties, four simulations were

run at two different γ values. For a given value of γ, two different combinations of temperature

and deposition rate (such that they result in the same value of γ, according to Equation 16) were

tested. Simulation run time was adjusted such that the same number of monolayers was

deposited in each simulation. Measured film properties, roughness and porosity, are shown in

Figure 10 and 11 below. The roughness and porosity profiles for the same value of γ at different

temperature and deposition rate combinations coincide, demonstrating that film properties indeed

depend only on γ, and not on temperature or deposition rate individually.

 Braun, Mircevska, Molina Villalba

27

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Monolayers

R
o

u
g

h
n

e
s
s

Gamma=10, T
low

Gamma=10, T
high

Gamma=10
3
, T

low

Gamma=10
3
, T

high

Figure 10: Comparison of Roughness between Runs of Similar γ, at Different Deposition Rates and

Temperature Combinations.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Monolayers

P
o

ro
s
it
y

Gamma=10, T
low

Gamma=10, T
high

Gamma=10
3
, T

low

Gamma=10
3
, T

high

Figure 11: Comparison of Porosity between Runs of Similar γ, at Different Deposition Rate and

Temperature Combinations

Model-Based Control with Stochastic Simulators

28

4. Development of a Base Case Material

4.1 System Size Selection
It is important that the controller has the ability to simulate events quickly in order to not

introduce too much lag time into the control process. The computational demands of KMC can

be large if many calculations need to be performed. Several KMC solvers are available within

SPPARKS which enable the user to minimize computational time; the linear solver was selected,

which chooses an event by scanning the list of events in a linear fashion. Hence the time cost to

pick an event scales as a function of the number of events. The number of events scales linearly

with lattice size, where lattice size is defined as the number of lattice sites available for each

monolayer of the simulation. It was found that the function that relates computational time to the

lattice size is approximately quadratic. Table 3 below shows approximate computational times

for runs of constant γ on different lattice sizes. Figure 12 shows the quadratic curve fitting. This

experiment was performed with the base case material: two-dimensional growth on a one-

dimensional substrate.

Lattice Size Computational Time [seconds]

100 165

250 657

500 2,470

1000 6,650

2000 26,100

Table 3: Computational Time as a function of Lattice Size. All experiments were run as two-

dimensional film growth on a one-dimensional lattice. γ was kept constant as 10
5
, which

corresponds to a temperature of 731 K.

 Braun, Mircevska, Molina Villalba

29

Figure 12: Plot of the data from Table 3. Computational time is a quadratic function of lattice size.

Though decreasing the lattice size results in a faster simulation, it also increases the noise

inherent in a stochastic simulation. Although it is expected that no two simulations with all

parameters exactly the same will give results that are exactly the same, it is crucial that the

simulation converges to the same film properties that would be seen in the actual process. Thus,

an important early step in the development of a controller is determining an optimal lattice size

to use for the simulation, with the goal of using as small a lattice size as possible without

distorting the results of the simulation. To determine this optimal lattice size, four simulations

were run, each on lattice sizes ranging from 100 to 2000, keeping γ constant throughout. These

simulations were run for 100 monolayers: longer than only the first 30 monolayers of growth in

Model-Based Control with Stochastic Simulators

30

order to evaluate how film properties will change with increased time. Figure 13 below shows

that the variance of roughness decreases with increasing lattice size as expected, with the

exception of the 1000 wide lattice. The odd result on the 1000 wide lattice is probably a result of

four runs not being sufficient to completely eliminate the noise from this experiment. The

variance of porosity behaves oddly, which is due to the fact that these experiments were run at

relatively high γ, so little porosity was noticeable early on in the experiment. Small changes in

porosity when the pores began to develop have exaggerated effects. A lattice size of 1000 was

chosen for the rigorous thin film growth model (the simulated real process) as a good balance

between computational time and variability.

(figure continued on next page)

100 wide
lattice

250 wide
lattice

 Braun, Mircevska, Molina Villalba

31

Figure 13: Roughness and Porosity vs. Monolayer for lattice sizes of 100, 250, 500, 1000, and 2000.

All experiments were run on a tri lattice, with constant γ of 10
5
 and temperature of 730 K. Error bars

shown are two standard deviations above and below the mean for each timestep. Four runs were done

with each lattice size.

 Due to the fact that computational time does not scale linearly with lattice size, it would

be more efficient to average the results of several small-lattice runs rather than attempt one large-

lattice run. It would take as much time to do forty runs on a lattice size of 100 as it would take to

500 wide
lattice

1000 wide
lattice

2000 wide
lattice

Model-Based Control with Stochastic Simulators

32

do one run on a lattice size of 1000. Figure 14 below shows that over the first 30 monolayers,

averaging four 100 wide lattice runs is sufficient to stay within the 95% confidence interval of

the low-variance 2000 wide lattice runs (at 20 monolayers, it is slightly out of range). For future

work in which more than 30 monolayers are grown, more averaging runs will be needed. The

controller averaged five 100 wide lattice runs for extra safety at the cost of some computational

time.

Figure 14: Roughness vs. Monolayer for lattice sizes of 100, 250, 500, 1000, and 2000. Within the first

30 monolayers, averaging four 100 wide lattice runs is sufficient as a substitute for one 2000 wide lattice

run.

 Braun, Mircevska, Molina Villalba

33

4.2 Optimal Steady-State Profile

4.2.1 Material Behavior

The base case material was characterized by examining its behavior after 30 monolayers

of growth in terms of roughness and porosity at different values of γ. Figure 15 shows film

images at five different γ values, and Figures 16 and 17 show corresponding time evolutions of

porosity and roughness, respectively.

Figure 15: Film Images. a. γ=10; b. γ=10
2
; c. γ=10

3
; d. γ=10

4
; e. γ=10

5
. 30 monolayers

deposited.

As expected, porosity decreases with increasing γ. Roughness, however, shows an

interesting behavior. At low values of γ, it is high as expected, and decreasing with increasing γ.

However, it reaches a minimum at γ=10
3
, and proceeds to rise as γ increases further. Examining

the film images, it can be seen that when γ is greater than 10
3
, the surface profile exhibits a

sinusoidal behavior, and the wavelength and amplitude of the roughness waves increases with γ.

Model-Based Control with Stochastic Simulators

34

As discussed in Section 3.2, surface roughness is computed such that it ignores roughness on a

small scale, defined by the segment size specified. Since the amplitude of the wavelength

increases with γ, so does the computed roughness. The base case material, therefore, has a

minimum computed roughness at an intermediate value of γ.

Figure 16: Time Evolution of Porosity. Porosity decreases with increasing γ.

 Braun, Mircevska, Molina Villalba

35

Figure 17: Time Evolution of Roughness. Roughness reaches a minimum at γ=10
3
 and proceeds to

increase as γ increases further

4.4.2. Effects of Weighting Factors on the Optimal Steady-State Profile

Experiments were conducted using two different weighting factor combinations to see

how they would affect the optimal steady-state profile: one in which the weighting factors were

94% porosity and 6% roughness—Weighting 1 (high porosity, low roughness)—and one in

which the weighting factors were 0.04% porosity and 99.96% roughness (low porosity, high

roughness)—Weighting 2. Weighting 1 was used to indicate to the controller that porosity must

be minimized (minimizing roughness need only be considered when the choice of two different γ

values would result in the same level of porosity), while Weighting 2 signals that roughness is

Model-Based Control with Stochastic Simulators

36

the more critical value to minimize. It is expected that the optimal profile under Weighting 1

would be rougher and less porous than under Weighting 2.

Figure 18: Time evolution of Objective Function with Weighting 1 (94% porosity, 6% roughness) at

different γ values. The optimal film forms at γ=10
4
.

 Braun, Mircevska, Molina Villalba

37

Figure 19: Time evolution of Objective Function with Weighting 2 (0.04% porosity,

99.96% roughness) at different γ values. The optimal film forms at γ=10
3
.

As can be seen from Figure 18 and Figure 19 above, changing the weighting factors on

the objective function changes which value of γ is the optimal to run at steady state. With

Weighting 1, γ=10
4
 is best, as this film is tied with γ=10

5
 for the lowest porosity, and it has a

lower roughness than γ=10
6
. With Weighting 2, γ=10

3
 is best, as this film has the lowest

roughness. To see what these different films look like, see Figure 15 (page 32). Thus, these

weighting factors can be used to control for the film properties of interest. This will be expanded

upon in section 5.2.5 shortly.

Model-Based Control with Stochastic Simulators

38

5. Model Predictive Control: Open Loop Optimizer

5.1 Introduction to Model Predictive Control
 Due to difficulties in measuring roughness, porosity, and other parameters of thin films in

real time during the film-growth process, control systems based on modeling thin film growth

have been shown much interest. Model Predictive Control (MPC), which was first explored by

industrial engineers in 1978, is one such control system that has attracted attention. The block-

flow diagram for MPC is shown in Figure 20 below. In an industrial setting, a rigorous

simulation of a deposition process is run in parallel with an actual deposition process. However,

for the purposes of this study, no actual deposition process is run. From this simulation,

important film properties can be measured. A simulation designated as the ―model‖ is considered

to be a less rigorous representation of the real process and is used to predict the future

morphology of the system. At a given starting point, film properties are taken from the rigorous

simulation and fed into the model process. The model process simulates a time step, known as

the predictive step, at the current temperature and compares the film properties to the properties

in a reference trajectory, which is fed to the controller before the run. If the properties are within

an allowable error of each other, the rigorous simulation and the real process moves forward a

time step, known as an action step. If, however, the properties are not within the allowable error

of each other, the model process simulates the predictive step at several different temperatures to

see which temperature gives the lowest error between the simulated film properties and the

optimal profile properties. This ―optimal temperature‖ is input to the rigorous simulation and to

the real process, which moves forward the action step.

 Braun, Mircevska, Molina Villalba

39

Two points are worth noting. First, the objective function is used in place of multiple film

parameters in order to simplify the problem from a Single Input Multiple Output (SIMO)

problem to a Single Input Single Output (SISO) problem. Second, although this algorithm

explicitly changes temperature while keeping the deposition rate constant, it is implicitly

changing γ. As explained in section 3.5.2, this single variable is valid as the sole manipulated

variable. This will be explored further shortly.

FILM GROWTH PROCESS

MODEL

Run for AS

INPUTS

ROUGHNESS

POROSITY

CALCULATOR

SMALL SCALE

KMC

SIMULATION

OPTIMAL

PROFILE
|E| < ε

OPTIMIZER

ROUGHNESS

POROSITY

CALCULATOR

R
SP

(K+PS)

P
SP

(K+PS)

R(K+PS)

P(K+PS)

R(K+PS)

P(K+PS)

R
SP

(K+PS)

P
SP

(K+PS)

TTEST

T(K+1) = TOPT

T(K+1) = T(K)

TRUE

FALSE

+

-

ERROR

SMALL SCALE

KMC

SIMULATION

R(K)

P(K)

Model-Based Control with Stochastic Simulators

40

Figure 20: Model Predictive Controller Algorithm: AS represents the action step, PS is the predictive

step, K is the current state of the real process, sp represent set point properties taken from the optimal

profile, T is the process temperature.

 The presence of the reference trajectory is intended to decrease the computational time necessary

for the controller, thereby decreasing the controller’s dead time. Using a reference trajectory, the

controller need not solve the receding horizon optimization problem of minimizing the difference

between the final surface properties and the desired values; the controller only needs to solve the fixed

short-horizon optimization problem of minimizing the difference between the instantaneous surface

properties and the reference values. Any feasible reference trajectory can be used, but if the controller’s

intent is to guide the film towards optimal properties, an optimal profile trajectory must first be found.

The process of finding an optimal profile, which is computationally demanding, is usually done off-line.

5.2 Open-loop Optimizer

5.2.1. Algorithm

 The algorithm for finding an optimal profile is an ideal open-loop deposition (it is

assumed to be the result of an undisturbed process in which there is no set point comparison

made to create a control action). Essentially, it is the MPC algorithm with an adjustment: no

optimal profile is provided; instead, the process always enters the control loop, and the optimal

temperature is the one which absolutely minimizes the objective function. This algorithm is

presented in block-flow diagram form in Figure 21 below. The open-loop optimization algorithm

begins with a flat substrate, with the optimal steady state temperature set as the initial

temperature. It was postulated that this is a good first approximation of an optimal initial

temperature.

 Braun, Mircevska, Molina Villalba

41

FILM GROWTH PROCESS

MODEL

(Run for AS)

INPUTS

OPTIMIZER

ROUGHNESS

POROSITY

CALCULATOR

R(K+PS)

P(K+PS)

TTEST
T(K) = TOPT

SMALL SCALE

KMC

SIMULATION

R(K)

P(K)

Figure 21: Open-loop Optimizer. K is the current state of the process, R is surface roughness, P is

porosity, PS is the predictive step, AS is the action step, T is temperature.

 Similarly to the algorithm for MPC, two simulations are executed over the course of the

open-loop optimizer. The simulation intended to model the real process is considered to be a

rigorous representation of the real deposition process, while the simulation designated as the

―model‖ is considered to be a less rigorous model representation of the real process and is used

to predict the future morphology of the system. The two simulations differ by the simulation

system size, which is measured in terms of substrate sites on the lattice. The ratio of the size of

the rigorous simulation to the size of the model simulation is specified by the user. As discussed

in section 4.1 on page 27, many smaller simulations can be executed in the time taken to execute

one larger simulation; thus, a small system is used for the model simulation and several runs are

Model-Based Control with Stochastic Simulators

42

averaged. The deposition rate for the model simulation is scaled to give the same monolayer

growth rate as the real process simulation according to Equation 17 below.

 Equation 17

where N is the number of sites in a monolayer, d is the deposition rate onto the substrate, R

denotes the rigorous simulation properties, and M denotes the model simulation properties.

A method for approximating the morphology of the model simulation from the rigorous

simulation was formulated; this approximation takes place during the initialization of the model

simulations before the execution of the predictive step. Figure 22 displays the procedure for the

approximation of the atomic arrangement of the model simulation, which is achieved by

cropping a fraction of the atomic arrangement from the real process simulation. The morphology

is always cropped from the (0,0) or (0,0,0) coordinate of the rigorous process’s atomic

arrangement to the desired size. After the cropping procedure, the model simulations are

executed for the predictive step at the scaled deposition rate given by Equation 17 above.

Figure 22:Approximation of model simulation atomic arrangement from the real process. R

represents the atomic arrangement of the rigorous simulation resulting from the previous Action Step. M

represents the approximation of the atomic arrangement that is used to initiate the model simulation in the

predictive step.

 Braun, Mircevska, Molina Villalba

43

For each optimization cycle, model simulations are executed for a predictive step at

various sample temperatures within a specified temperature range. This temperature range

represents the maximum temperature deviation from the previous temperature that the reactor

can physically change. The number of temperatures tested within this range is specified by the

user; they are chosen at equal intervals within the range allowed. Multiple runs are done at each

temperature and averaged to reduce noise. The number of runs that get averaged is also specified

by the user.

5.2.2. User-Specified Parameters

For the following experiments, except where otherwise specified, the user-specified

parameters were set to the values presented in Table 4. The deposition rates and temperature

ramp rates that were used in the open-loop optimizations are typical to thin film deposition

processes. The time to deposit a full monolayer of atoms equates to 1 second, resulting in a 1

atom/(second*sites) deposition rate. This is a typical deposition rate of many deposition

processes. The temperature was allowed to change a maximum of 20˚C per monolayer deposited

for all open-loop optimizer experiments. This results in a maximum temperature ramp rate of

20˚C/s. Different reactors have different maximum temperature rates, running from 5˚C/s to rates

up to 2000˚C/s; thus, the specified maximum temperature ramp rate was considered to be

acceptable. The amount of model simulations to average and the size of the model simulations

were decided based on lattice size considerations, which are discussed in section 4.1. The

number of temperatures within the range tested is a significant parameter with regards to the time

require for the optimization. Seven trials allow an average open-loop optimizer to run for 15

hours to deposit 30 monolayers. The choice for the weightings on roughness and porosity in the

objective function are discussed in the objective function section. These weightings emphasize

Model-Based Control with Stochastic Simulators

44

the importance of the reduction of porosity over surface roughness. All parameters are shown in

Table 4 below. The choices for the length of time of the action step and predictive step are

explored in Section 5.2.3 below.

Parameter Specification

Predictive Step 2 monolayer

Action Step 1 monolayers

Rigorous Size : Model Size 1000:100

No. Model Simulations to

Average

5

Temperature Range [˚C] 20

No. Temperature Trials 7

Roughness Weighting 0.06

Porosity Weighting 0.94

Table 4: Open-Loop Optimizer Parameters

5.2.3. Experiments on the Predictive Step and the Action Step

 The length of time of the predictive step and the action step are also user-specified. The

predictive step must be long enough for the film to be able to experience changes in morphology

due to the change in temperature before the predictive step simulation. However, it must not be

so long so as to prevent the controller from ―realizing‖ that it has the capacity to change the

temperature within smaller increments of time. It is hypothesized that the action step should be

as short as possible within no limit other than computational time; feasibly, the action step could

be a single deposition or diffusion event. After this step, the controller would re-enter the loop

and calculate a new optimal temperature running forward another predictive step. However, at

 Braun, Mircevska, Molina Villalba

45

some point the decrease in action step should have little value and can be very computationally

expensive.

Experiments were designed to obtain a proper combination of predictive step and action

step execution that yields the best optimal profile that represents the most optimal evolution of

thin film morphology. To characterize these step parameters, Table 5 summarizes experiments of

predictive step and action step combinations that were done on the base case material using the

open-loop optimizer. Five prediction and action step combinations were used in the experiments.

These combinations were designed to examine the effects that predictive step had on the

optimization holding the action step constant and action step holding the predictive step constant.

To reduce noise, the open-loop optimizer was run on each experimental combination three times.

Predictive Step Action Step

1 Monolayer 1 Monolayer

2 Monolayers 1 Monolayer

3 Monolayers 1 Monolayer

3 Monolayers 2 Monolayers

3 Monolayers 3 Monolayers

Table 5: Open-loop Optimizer Experiments

In the step combination experiments, the open-loop optimizer produced different optimal

transient profiles for the various prediction step (PS) and action step (AS) combinations, which

demonstrates that these parameters play an important role in the generation of the optimal

profile. Figure 23 shows the resulting optimal profiles of objective function for each step

Model-Based Control with Stochastic Simulators

46

combination experiment. Figure 24 summarizes the control actions on γ. Figure 26 and Figure

27 are important with regards to deciding on a PS and AS combination that is to be used in later

experiments.

Figure 23: Optimal Transient Profile Comparison of Various Predictive and Action step

Experiments. Each optimal profile is constucted from 3 open loop optimizer runs on the same step

combination experiment.

In Figure 23, the optimizer demonstrates similar optimal levels of evolution for all of the

combination steps during the first 5 monolayers (ML) of deposition, as indicated by a 5%

standard deviation from the average of all the step combination objective functions at the 5 ML

as seen in Figure 25 (page 47). This is an important result, since it indicates that for very thin

film applications, on the order of 1 nanometer, more advanced film deposition control may be

needed. From Figure 24, the 3 PS and 3 AS combination has the largest increase in γ during this

 Braun, Mircevska, Molina Villalba

47

early stage in the process. However, the objective function does not change relative to other step

combinations. This indicates that at early stages of the film deposition process, the film growth

will have negligible benefit from changes in γ.

Figure 24: Transient γ Profile Comparison of Various Predictive and Action step Experiments.

Each γ profile is constructed from 3 open loop optimizer runs on the same step combination experiment

Model-Based Control with Stochastic Simulators

48

Figure 25: Objective Function of Step Combination Experiments After 5 ML

By observing the experiments in which the PS was kept constant while the AS varied, it

becomes apparent that lowering the AS always has beneficial effects on the optimal profile, as

expected. Isolating the experiments in which the AS was kept constant while the PS varied

shows that varying the PS has unknown effects, also as expected. The best optimal profile was

found with 2 PS and 1 AS. This profile was used as the reference trajectory for the MPC runs,

which will be explored in Chapter 6. Images of the films after 30 monolayers of growth are

shown below in Figure 27. The roughness profiles and porosity profiles are shown in Figures 28

and 29. It appears that a final steady-state value for roughness has been approached for the 2 PS

and 1 AS combination, but porosity is still increasing.

 Braun, Mircevska, Molina Villalba

49

Figure 26: Final Objective Function Values Comparison. Various step combinations after 30

monolayers of simulated growth

Figure 27: Step Combination Experiments Open-Loop Optimizer. Comparison of films resulting

from a) 1ML PS 1ML AS, b)2ML PS 1ML AS, c) 3ML PS 1ML AS, d) 3ML PS 2ML AS, e) 3ML PS

Model-Based Control with Stochastic Simulators

50

3ML AS. The 2ML PS 1ML AS results in the smoothest film. Due to film morphology considerations the

2ML PS 1ML AS combination was used for subsequent optimizations in this report.

Figure 28: Transient Roughness Profiles at Different γ values.

 Braun, Mircevska, Molina Villalba

51

Figure 29: Transient Porosity Profiles at Different γ values.

5.2.4. Validation of Single Variable Input

As discussed previously, film properties vary as a function of γ. Therefore, the two

available manipulated variables, temperature and deposition rate, can be combined into a single

input variable, γ. This effectively transforms the Multiple Input Single Output control problem

into a much simpler Single Input Single Output problem. However, an important limitation

pertaining to the controller action must be noted. The control algorithm changes γ implicitly by

modifying temperature explicitly. Since temperatures are sampled at equal intervals within a

fixed range above and below the system temperature and γ is an exponential function of

temperature, a fixed range of temperatures results in a variable range of γ values depending on

the system temperature (Figure 30). When temperature is the only variable used to manipulate γ,

at higher system temperatures the controller will not be able to change γ as rapidly as it would at

lower temperatures, resulting in a more sluggish response. Therefore, the optimum transient

profiles of two processes at different fixed deposition rates (therefore requiring different

Model-Based Control with Stochastic Simulators

52

temperatures to keep γ constant) will be different, merely because the evolution of γ with time

will be different. Thus, the optimal profile that the open-loop optimizer program gives is not

entirely applicable for all deposition rates that the reactor could have. Within a range, it is

acceptable. This is not a fault of γ as the manipulated variable, but is simply due to the fact that

only temperature and deposition rate can be specified by the user for the SPPARKS input script.

600 650 700 750 800 850
0

500

1000

1500

2000

2500

3000

Temperature [K]

G
a

m
m

a

Dep.rate=10
-16

 particles/s

Dep.rate=10
-15

 particles/s

Dep.rate=10
-14

 particles/s

Dep.rate=10
-13

 particles/s

Figure 30: Change of γ Over a Constant Temperature Range. For each deposition rate, γ is plotted as

a function of temperature over a range of 40K (T±20K), where T was chosen such that γ at T and the

given deposition rate is equal to 1000. It is clear than for a constant change in temperature (40K), there is

different change in γ, depending on the value of T.

 Braun, Mircevska, Molina Villalba

53

5.2.5. Effect of Weighting Factors on the Optimal Transient Profile

As explained earlier in Section 4.4.2, the controller will allow the user to manipulate

weightings on roughness and porosity in order to control for different types of film that the user

is interested in. It was shown that applying two different weightings—Weighting 1 with 94%

porosity and 6% roughness, and Weighting 2 with 0.04% porosity and 99.96% roughness—gave

different results for the best steady-state γ. It is important to show that inputting these different

weightings into the Open Loop Optimizer program will give the user an optimal profile to follow

which leads to the desired film. The program was run three times each for the two weightings. A

roughness profile is shown in Figure 31 below. As expected, over most of the run Weighting 2

gave a film with lower roughness. Unexpectedly, after rising quickly the roughness of the films

with Weighting 1 had a sharp downturn towards the end of the run, ending with slightly lower

roughness than films with Weighting 2. This may indicate that the algorithm used to determine

an optimal profile may need further development; it was created on the assumption that obtaining

the minimum objective function could best be obtained by minimizing the objective function at

all time steps prior. If this assumption is incorrect, the algorithm may be giving a profile that puts

the film into a local minimum of the objective function which may not enable the film to get to

the minimum at the end of the growth.

Model-Based Control with Stochastic Simulators

54

Figure 31: Optimum Transient Roughness Profiles at Different Weighting Factors.

A porosity profile of the two weightings is shown in Figure 32 below, and the γ profile in

Figure 33. It appears that Weighting 2 did a better job of controlling porosity than Weighting 1,

even though the intention was for Weighting 1 to control porosity more. However, observing the

scale, it seems apparent that all profiles are within the noise of the system. It may be the case that

for Material 1, increasing γ over time controls for both roughness and porosity, but when γ

increases too much, the system gets into an excited state in which single-site pores form and

quickly diffuse to the bottom of the film (as can be seen in Figure 34 below). The open loop

optimizer may have increased γ for Weighting 1 in order to prevent the formation of large pores,

inadvertently creating smaller pores. The open loop optimizer was started at a higher γ for

Weighting 1 in accordance with the protocol to start the program at the optimal steady-state γ.

 Braun, Mircevska, Molina Villalba

55

Figure 32: Optimum Transient Porosity Profile at Different Weighting Factors

Model-Based Control with Stochastic Simulators

56

Figure 33: Optimum Transient γ Profile at Different Weighting Factor

Figure 34: a. weighting 1; b. weighting 2.

 Braun, Mircevska, Molina Villalba

57

6. Model Predictive Control: Closed Loop Control

6.1. Model Predictive Control Algorithm
Once the optimal profile has been established for a thin film deposition process, a model

predictive control (MPC) strategy can be developed to control the complex microscopic

interactions. The algorithm for this process is shown in Figure 20 on page 38. It was explained

briefly in Section 5.1. It is known as closed-loop control due to the introduction of a set point

Model-Based Control with Stochastic Simulators

58

(the reference trajectory) and a possible disturbance. The optimal profile serves as a reference

trajectory that the deposition process is controlled to follow, resulting in a film with the

properties specified in the open-loop optimization. This control strategy makes use of the same

types of simulations that are used in the open-loop optimizer: a rigorous simulation represents

the actual process in order to get real-time measurements, and less rigorous models predict

results of a control action. This control strategy also makes use of the established terminology for

the action step and the predictive step.

 The largest difference between the MPC algorithm and the open-loop optimizer

algorithm discussed in the previous chapter is that the MPC algorithm does not always go into

the control loop. The model simulation simulates a predictive step at the initial temperature of

the reactor. The objective function weightings that were used to develop the optimal profile are

used to calculate the objective function of this prediction. This objective function is compared to

the optimal profile of the process to produce an error measurement, expressed by Equation 18.

 Equation 18

where OF is the objective function, p denotes a process variable, and sp denotes a set point

variable.

If the calculated error is within acceptable tolerances, the rigorous process will continue

to simulate the next action step without adjusting temperature. If the error is greater than the

tolerance, different temperatures are sampled for a predictive step. The optimizer samples

temperatures in the same manner as the open-loop optimizer and with the parameters presented

in Table 4 on page 43. The optimizer’s objective is to minimize the squared residual of the

 Braun, Mircevska, Molina Villalba

59

objective functions of the model simulation prediction and the optimal profile set point, Equation

19.

 Equation 19

The temperature that meets this objective is used as the control action for the next action

step. For the purposes of this design the controller is assumed to be a perfect controller, since the

rigorous process simulation is paused while the control action is computed. The control action

cycle is repeated until all the set points of the profile are exhausted.

Parameter Specification

Predictive Step 2 monolayer

Action Step 1 monolayers

Rigorous Size : Model size 1000:200

Model Simulations to Average 5

Error Tolerance 0.001

Temperature Range [˚C] 20

No. Temperature Trials 7

Roughness Weighting 0.06

Porosity Weighting 0.94

Table 6: Model Predictive Controller Parameters.

6.2. Roughness Disturbance Experiment
In the photovoltaic and semiconductor industries, initial surface disturbances cannot be

entirely eliminated. A model predictive control system must be able to compensate for these

defects and yield the desired film morphology within reasonable response times. It is assumed

that the best way to accomplish this is to get the disturbed film’s objective function trajectory to

Model-Based Control with Stochastic Simulators

60

join the optimal process trajectory, which was obtained starting from an undisturbed film. The

model predictive controller was tested on a surface with an initial roughness disturbance, shown

in Figure 35. The morphology resembles peaks and troughs, with peaks having a height of 15

monolayers and the troughs 7 monolayers. The peaks have a periodicity of 200 lattice sites on a

2000 site lattice. The reference trajectory that was used for these experiments was the optimal

transient profile that was developed in the open-loop optimizer section for a surface with no

disturbance.

Figure 35: Initial Roughness Disturbance to a Model Predictive Controlled process. Note that it’s

zoomed so not all 10 peaks are displayed.

Figure 36 shows the objective function profiles resulting from the model predictive

control process as compared to the optimal transient profile. For comparison, the optimal steady-

state temperature was also run on the roughness disturbed surface. These results indicate that the

controller is taking action to correct the morphology of the film. Comparing the model predictive

control profile with the optimal steady state profile, there is a significant adjustment of the

controlled process towards following the reference trajectory of the optimal transient process.

Figure 37 shows the adjustments made to the thin film deposition process γ by the controller. It

is evident that the γ adjustments of the controller lag the γ adjustments that the optimized process

requires. However, the same adjustment trend exists.

 Braun, Mircevska, Molina Villalba

61

Figure 36: Objective Function Profiles of the Roughness Disturbance Experiment. The MPC did a

better job than the optimal steady-state temperature at achieving an optimal film.

Model-Based Control with Stochastic Simulators

62

Figure 37: Gamma Profiles of the Roughness Disturbance Experiment.

The most important result from the controller is the resulting thin film morphologies.

Since the controller is using a numerical representation of the desired properties, it is important

to confirm that when the process’s objective function trajectory is adjusted to follow a reference

optimal profile of the process that it results in the desired film. With this effort in mind, Figure

38 displays a comparison of the thin film morphologies resulting from the open-loop optimizer,

the model predictive control process, and the optimal steady state process. Although the

morphology of the model predictive control on an initial roughness disturbance is not completely

similar to the desired morphology, the morphology of the controlled film has been improved

 Braun, Mircevska, Molina Villalba

63

over the steady state film. With more time, the model predictive controller might even exactly

match the optimal film.

Figure 38: Model Predictive Control Comparison of Resulting Film Morphologies. a. The desired or

reference film resulting from the Open-loop Optimizer, b. the film resulting from model predictive control

of a rough initial disturbance on the film, c. film resulting from the Optimal Steady State Temperature.

From a comparison to the optimal steady state film with no control, the model predictive control has

demonstrated corrective action to produce the desired film. It is hypothesized that for a longer process the

resulting morphologies of the reference and the controlled film will be very similar.

 The proposed model predictive control strategy has been shown to perform necessary

adjustments to control the morphology of the film. However, it is important to note that a more

rigorous study must be undertaken to better characterize the model predictive controller. Some

possible experiments may consist of performing similar step combination experiments as

presented for the open-loop optimizer. Measurement noise must also be considered. It is

noteworthy that sometimes the controller failed to make proper adjustments due to noisy predictions.

Model-Based Control with Stochastic Simulators

64

6.3. Step Change Experiment
 The reference trajectory that the MPC follows does not necessarily have to be of the

optimal profile. Any trajectory can be fed in to the MPC and followed. One experiment

conducted, which took advantage of this fact, observed the effect of a step change in γ

(temperature). An objective function profile was constructed by setting up a run on an initially

smooth surface in which γ was suddenly increased after 30 monolayers of growth. Figures 40a

and 40b demonstrate that the model predictive controller was successful in tracking γ and

temperature. Figure 40b demonstrates that the maximum ramp rate performed by the controller

was just 10 ⁰C/s, although it had a maximum allowable temperature ramp rate of 20 ⁰C/s. That

the controller was not adjusting as quickly as it could to the step change suggests that some lag is

present in the system. After 55 monolayers of growth, the objective function of the model

predictive controller came to within 6% of the objective function of the reference profile. Then,

the reference trajectory was exhausted, which stopped the controller simulation at a point during

the overshoot of the controller. The profile did not extend to a point in the process at which the

controller was allowed to settle at the new temperature. Thus, further experiments must be

undertaken to fully characterize the response of this controller. These may include a step

response experiment in temperature that allows the system to settle to obtain control variables

such as gains and response times.

 Braun, Mircevska, Molina Villalba

65

Figure 39: Objective Function Profiles for the Model Predictive Controller Temperature Step

Change.

Model-Based Control with Stochastic Simulators

66

Figure 40a: Temperature Profiles for the Model Predictive Controller Temperature Step Change.

Figure 40b: Temperature Profiles for the Model Predictive Controller Temperature Step Change.

 Braun, Mircevska, Molina Villalba

67

On a qualitative basis, the controller produced a similar morphology to that of the

reference material. Figure 41.a shows that at the bottom of the reference film the structure is

more porous. This corresponds to the lower γ experienced by the film for the first 30 monolayers

deposited. For the surface of the film, a higher temperature corresponding to a higher γ induces

relaxation of the morphology. The particles begin to fill in pores after 30 monolayers and smooth

out rough edges. The film resulting from the model predictive control run in Figure 41.b has a

similar morphology to that of the reference material.

Figure 41: Resulting Morphologies of the Reference Material (a) and the Controlled Material (b).

The purpose of the model predictive controller is to obtain a desired morphology represented by the

reference material. The controller controls the process based on the specific requirements as represented

by the objective function. As the controller tracks predicted changes and attempts to follow the optimum

transient profile, the controller is subjecting the film to control actions that are sensitive to the materials

process history. This produces the desired morphologies such as the reference material.

Model-Based Control with Stochastic Simulators

68

7. Other 2D Materials

7.1 Material 1a; Schwoebel Hops

7.1.1. Optimal Steady-State Profile

In addition to the base case material, other two-dimensional materials were explored. One

of the other materials explored used the same binding energies as the base case, but it allowed

Schwoebel hops. This is termed Material 1a as it is a slight adjustment on the base case material.

As explained in the Kinetic Monte Carlo section, Schwoebel hops occur when an atom hops to

its second nearest-neighbor. The diffusion barrier of these Schwoebel hops was specified to be

1.84 eV, in comparison to a 1.58 eV barrier for nearest-neighbor hops. This resulted in

approximately one-fifth the number of Schwoebel hops as there were nearest-neighbor hops.

Experiments were run at the same γs, temperatures, and deposition rates as were used to

characterize the base case material.

Figure 42: Roughness vs. Monolayer for Material 1a. Schwoebel hops allowed.

 Braun, Mircevska, Molina Villalba

69

Figure 43: Porosity vs. Monolayer for Material 1a. Schwoebel hops allowed.

Figure 44: Film images of Material 1a. Schoebel hops allowed, 30 monolayers deposited. a: γ=10. b:

γ=10
2
. c: γ=10

3
. d: γ=10

4
. e: γ=10

5
.

Model-Based Control with Stochastic Simulators

70

 As can be seen from Figure 42, roughness decreases with increasing γ. Interestingly,

exploring the same γ range as had been explored for the base case material (up to 10
4
), it was

found that roughness found a local minimum at a value of 10
2
. Had experiments not been

conducted setting γ to 10
5
, Material 1a might have been found to have the same roughness

response as the base case material. This leads one to question if the optimal steady-state

temperature found for the base case is truly the optimal steady-state temperature. γ ranges were

explored that were physically reasonable, so within that limit, the optimal steady-state

temperature found for the base case material is correct, but increasing γ above that limit might

have resulted in a much smoother film. More developmental work is necessary to explore this

hypothesis.

 As can be seen from Figure 43, Material 1a reaches a porosity of zero at a γ much lower

than that in Material 1. The images in Figure 44 suggest that Material 1a is very similar to the

base case; it reacts to γ in the same fashion while similar reactions can be seen at one order of

magnitude lower γ than the reactions of the base case material. This again suggests that if the γ

of the base case material had been increased beyond physical limitations, a smoother film would

have developed.

 Due to the fact that both roughness and porosity decrease with increasing γ, an open-loop

optimizer program was unable to be run on Material 1a as there was no control problem. The

open-loop optimizer program would simply increase temperature as much as it could to decrease

both roughness and porosity. A third parameter needs to be set such that increasing γ would

increase the value of this parameter, which would give a control problem. Such a parameter

would be efficiency, which is only possible is desorption is allowed; since SPPARKS does not

allow for desorption, such a parameter cannot be used. As the controller changes γ, it implicitly

 Braun, Mircevska, Molina Villalba

71

changes growth rate, but without Multiple Input Single Output it not possible to distinguish

whether changes to γ are due to changes in temperature or growth rate.

7.1.2. Optimal Transient Profile

 For Material 1a, the same objective function weightings as with the base case

material (6% roughness, 94% porosity) were used. As shown in Figure 45 and 46 below, the

optimal steady-state γ was found to be 10
5
, the highest value tested. It is likely that a higher value

of γ would have yielded a more optimal steady-state profile.

Figure 45: Time evolution of objective functions at different γ values for Material 1a. Weightings for

the objective function were 6% roughness and 94% porosity. The optimal steady-state γ was found to be

10
5
. A close-up with γ=10 excluded is found in Figure 46 below.

Model-Based Control with Stochastic Simulators

72

Figure 46: Time evolution of objective functions at different γ values for Material 1a. Weightings for

the objective function were 6% roughness and 94% porosity. The optimal steady-state γ was found to be

10
5
. This is figure 45 zoomed in to exclude γ=10.

 As explained earlier, the open-loop optimizer program was started at the optimal γ. For

Material 1a, temperature was allowed to change 40 K per second, which is 20 K per monolayer.

The γ profile with respect to monolayers deposited is shown below in Figure 47. As can be seen,

the program seemed to form a sinusoidal pattern with γ, oscillating around 5X10
5
, a value

slightly higher than the optimal steady-state γ. This is not unreasonable, as higher values of γ

were not tested when finding the optimal steady-state value. As shown in Figure 48 below, the

transient profile was approximately as good as the best steady-state profile. Figure 49 shows the

 Braun, Mircevska, Molina Villalba

73

image of the best steady-state temperature film and the image of the open-loop optimizer film,

which look nearly identical.

Figure 47: Optimum Transient Gamma Profile of Material 1a.

Model-Based Control with Stochastic Simulators

74

Figure 48: Objective Function Profile for Material 1a. The optimal transient profile does no better than

the optimal steady-state profile.

Figure 49: Film images of Material 1a, with Schwoebel hops, at 30 monolayers deposited. a. Optimal

Steady-State; b. Optimal Transient Profile.

7.2 Material 2; Square Lattice

7.2.1 Optimal Steady-State Profile

 Another material explored had a square lattice. This lattice is shown in Figure 50 below.

Every atom has eight nearest-neighbors and sixteen second nearest-neighbors. This material was

 Braun, Mircevska, Molina Villalba

75

given the same bonding energies as the base case material; Schwoebel hops were not permitted.

This material is termed Material 2.

Figure 50: Square-lattice diagram. Shows nearest neighbors (red) and next-nearest neighbors (green)

This material behaved in a very different manner from the base case material and

Material 1a. As shown in Figure 51 below, roughness was observed to be constant, regardless of

γ. No sinusoidal waves formed on the material’s surface, and it was relatively flat.

Model-Based Control with Stochastic Simulators

76

Figure 51: Time evolution of roughness at different γ values for Material 2. Roughness is not a

function of γ.

 As shown in Figure 52 below, porosity also behaved in a very different manner than the

base case material or Material 1a. As γ increases from 10
-2

 to 10
1
, porosity decreases as

expected. However, as γ increases from 10
1
 to 10

3
, porosity increases. Looking at the material in

Figure 53 below, this porosity increase as γ increases from 10
1
 to 10

3
 is not seen. However, by

zooming in on the material, shown in Figure 54, one sees that in this higher range of γ very small

single-site pores form in such a quantity that many of these small pores create greater porosity

than fewer large pores. By the highest γ, the system was in a state such that most of the bottom

monolayer was unfilled. Essentially, the system had enough energy to assume any state.

 Braun, Mircevska, Molina Villalba

77

Figure 523: Time evolution of porosity at different γ values for Material 2. Porosity decreases with

increasing γ, as expected, until many small single-site pores begin to form, at which point porosity

increases with increasing γ.

Model-Based Control with Stochastic Simulators

78

Figure 534: Film images of Material 2, with a square lattice, at 30 monolayers deposited. a: γ=10
-2

.

b: γ=10
-1

. c: γ=10
0
. d: γ=10

1
. e: γ=10

2
. f: γ=10

3
.

 Braun, Mircevska, Molina Villalba

79

Figure 545: Film images of Material 2, with a square lattice, at 30 monolayers deposited. Zoom 3X.

a: γ=10
-2

. b: γ=10
-1

. c: γ=10
0
. d: γ=10

1
. e: γ=10

2
. f: γ=10

3
. Many small, single-site pores are observed to

form at high γ, increasing porosity.

Model-Based Control with Stochastic Simulators

80

7.2.2. Optimal Transient Profile

 For Material 2, the same objective function weightings as were used with the base case

material (6% roughness, 94% porosity) were used. As shown in Figure 55 below, the optimal

steady-state γ was found to be 10
1
.

Figure 556: Time evolution of objective functions at different γ values for Material 2. Weightings for

the objective function were 6% roughness and 94% porosity. The optimal steady-state γ was found to be

10
1
.

 The open-loop optimizer program was again started at the optimal γ. For Material 2,

temperature was allowed to change 40 K per second, which is 20 K per monolayer. The γ profile

with respect to monolayers deposited is shown below in Figure 56. As can be seen, the program

quickly lowered γ, and then held it at a steady-state value. It is likely that the optimal steady-state

 Braun, Mircevska, Molina Villalba

81

γ was 2 instead of 10, but that Figure 55 did not have enough resolution. As shown in Figure 57

below, the transient profile was approximately as good as the best steady-state profile. Figure 58

shows the image of the best steady-state temperature film and the image of the open-loop

optimizer film at 3X zoom, which look nearly identical.

Figure 567: Profile of γ vs. Monolayer for the open-loop optimizer. Initial γ was 10. Temperature,

which implicitly changes γ, was allowed to change by 20 K every monolayer. The deposition rate was 2

monolayers per second.

Model-Based Control with Stochastic Simulators

82

Figure 578: Profile of Objective Function vs. Monolayer for the open-loop optimizer. Initial γ was

10. Temperature, which implicitly changes γ, was allowed to change by 20 K every monolayer. The

deposition rate was 2 monolayers per second. Weightings for the objective function were 6% roughness

and 94% porosity. The open-loop optimizer did no better than the optimal steady-state temperature.

Figure 589: Film images of Material 2, with a square lattice, at 30 monolayers deposited. Zoom 3X.

a: Optimal Steady-State. b: Optimal Transient Profile.

 Braun, Mircevska, Molina Villalba

83

7.3 Discussion of Open Loop Optimizer Results
It is unclear why the optimal transient profiles of Material 1a and Material 2 had γ stay

approximately constant while the optimal transient profile of the base case material had γ

increasing. It is not possible to tell from the steady-state profiles how a material will change its

temperature during the Open-Loop Optimizer program. It is possible that different materials

simply exhibit different behavior in regard to the γ profile of their optimal transient pathway.

Another explanation is that the full range of γ was not explored in the steady-state analysis of

Material 1, due to physical limitations that were imposed upon the deposition rate and the

temperature, while Material 2 was explored more fully. Thus, the value of γ that gave a universal

minimum was found for the objective function for Material 2, while it is possible that only a

local minimum was found for Material 1. It is very possible that had higher ranges of γ been

explored for Material 1, the objective function might have been found to be declining

indefinitely for larger values of γ. The implications of this would be that for some materials the

objective function has a minimum at a finite value of γ, while for other materials the objective

function always decreases with increasing values of γ. For the latter type of materials, another

parameter, such as growth rate, would have to be added to the objective function in order for a

control problem to exist. As stated earlier, without being able to model desorption this becomes

difficult. Thus, the fully developed controller may need to use a simulation program that is not

SPPARKS.

Model-Based Control with Stochastic Simulators

84

8. Material in 3D

8.1. Binding Model
Material 3 was again loosely modeled after a GaAs binding model, this time in 3

dimensions. The values of the bond energy, diffusion energy barrier, pre-exponential frequency

factor, deposition rate, and temperature ranges are presented in Table 7 below. Second-nearest

neighbor hops (Schwoebel hops) were allowed in this model. Binding energy was modeled as a

linear function of the number of bonds. Desorption was not allowed. In order to maintain

temperature and growth rate within a reasonable range, γ was constrained to values on the order

of 1 to 10
5
. A simple cubic lattice with 6 neighbors per site was used. Figure 59 below shows the

lattice structure and neighbor associations. Due to computational power constraints, an 80x80

lattice size was used, and 20 monolayers were deposited.

Common Parameters GaAs Material 1

Single Bond

Energy

[eV]

Ebond 0.27 0.27

Nearest Neighbor

Diffusion Barrier

[eV]

Q1 1.82 1.58

Schwoebel Hop

Diffusion Barrier

[eV]

Q2 - 1.89

Diffusion

Frequency Factor

kdes 5.8*10
13

 10
13

Deposition Rate

[monolayer/sec]

rdep - 1-4

Temperature

[K]

T - 500-1000

Table 7. Material 3 KMC Algorithm Parameters

 Braun, Mircevska, Molina Villalba

85

Figure 59. Simple Cubic Lattice Structure with 6 Neighbors. Black lines connect nearest neighbors.

Consider the particle circled in red: 6 blue-colored particles are its nearest neighbors. 12 red-colored

particles + additional 6 particles in the planes above, below, north, south, east, and west (not shown)

make up 18 second-nearest neighbors.

8.2 Material 3 Characterization
To characterize the behavior of this material, simulations were run at several different γ

values, depositing 20 monolayers in each simulation. Figures 60 through 71 show surface

profiles, and Figure 72 shows cross-sectional areas of the film (YZ-plane) at x=40, after

deposition of 20 monolayers at different γ values. Similarly to the base case material, the

Material 3 surface has a sinusoidal profile in the x- and y- directions; in this case, with increasing

wavelength and decreasing amplitude as γ increases. Note that the surface profiles’ color scale

varies with the difference between the two extreme colors held constant. Materials with higher

porosity have greater height after the same amount of deposition.

Model-Based Control with Stochastic Simulators

86

Figure 60. Surface Profile, 20 monolayers deposited; γ = 1

Figure 6110. Contour Plot, 20 monolayers deposited; γ=1

 Braun, Mircevska, Molina Villalba

87

Figure 62. Surface Profile, 20 monolayers deposited; γ = 10

Figure 6311. Contour Plot, 20 monolayers deposited; γ=10

Model-Based Control with Stochastic Simulators

88

Figure 6412. Surface Profile, 20 monolayers deposited; γ = 10
2

Figure 6513. Contour Plot, 20 monolayers deposited; γ = 10
2

 Braun, Mircevska, Molina Villalba

89

Figure 6614. Surface Profile, 20 monolayers deposited; γ = 10
3

Figure 6715. Contour Plot, 20 monolayers deposited; γ = 10
3

Model-Based Control with Stochastic Simulators

90

Figure 6816. Surface Profile, 20 monolayers deposited; γ = 10
4

Figure 69. Contour Plot, 20 monolayers deposited; γ = 10
4

 Braun, Mircevska, Molina Villalba

91

Figure 7017. Surface Profile, 20 monolayers deposited; γ = 10
5

Figure 7118. Contour Plot, 20 monolayers deposited; γ = 10
5

Model-Based Control with Stochastic Simulators

92

Figure 7219. Film Porosity. Cross-section snapshot of the YZ-plane at x=40. 20 monolayers deposited:

a. γ=1; b. γ=10; c. γ=10
2
; d. γ=10

3
; e. γ=10

4
; f. γ=10

5
.

 Braun, Mircevska, Molina Villalba

93

For values of γ ranging from 1 to 10
5
, the time evolution of roughness is plotted in Figure

73. At low values of γ (below 10
2
) the roughness features are quite pronounced and highly

irregular; however, they are on a scale of several surface sites. The roughness filter, with a

segment size of 10, deemphasizes roughness on this scale, so the roughness profiles at γ of 1 and

10 are relatively low. At γ of 10
2
, roughness features begin to resemble wave-like structures,

with high amplitudes, on a scale large enough to be detectable by the roughness filter. As γ

increases further, the roughness features become more regular and decrease in amplitude.

Roughness reaches a minimum when γ is on the order of 10
3
. As the wavelength of the surface

waves increases, such that the segment size becomes an increasingly smaller fraction of it, the

deviation of the average segment height from the global average becomes larger. This results in

increased roughness, since roughness is a direct measure of the standard deviation of the average

segment size. Therefore, the roughness profiles at values of γ greater than 10
3
 begin to increase.

It should be noted, however, that the amplitude of the surface waves decreases as the wavelength

increases, which may cause a decrease in roughness at high enough values of γ, when the effects

of the decreasing amplitude overpower the effects of the increasing wavelength.

Model-Based Control with Stochastic Simulators

94

Figure 73. Time evolution of Roughness at different values of γ

Figure 74 shows the time evolution of porosity at different γ values. To visualize

porosity, 2 dimensional images of vertical cross-sections with a thickness of one particle were

shown in Figure 72. These do not contain complete information about porosity, as they only

capture the porosity of a fraction of the film. They are intended to serve as visual complements to

the porosity profiles ploted in Figure 74. As expected, similarly to the base case material,

porosity decreases with increasing γ, but it does so much more rapidly. It can be seen, both from

the porostiy profile plots and the film images, that porosity is virtually zero for orders of γ higher

than 10
2
.

 Braun, Mircevska, Molina Villalba

95

Figure 7420. Time evolution of Roughness at different values of γ

8.3 Optimum Steady-State Profile
An objective function for this film, constructed such that it places equal weightings on

roughness and porosity, is plotted in Figure 75 below. Since porosity is high at low values of γ,

the porosity weighting factor results in a high objective function at values of γ on the order of 10
2

or lower. At high values of γ, porosity is negligible but roughness increases, resulting again in a

high objective function. When γ = 10
3
, roughness reaches a minimum, and porosity is equal to

zero. The optimum steady-state profile, therefore, corresponds to the objective function profile at

γ=10
3
. It should be noted that this is the optimum steady state profile only within the range of γ

values considered. As γ increases to high enough values, roughness may begin to decrease as a

Model-Based Control with Stochastic Simulators

96

function of γ.

Figure 75: Objective Function Profiles at Steady-State for Material 3.

8.4 Optimal Transient Profile
The optimal transient profile for material 3 was obtained by running the open loop

optimizer on a 80x80 lattice, starting at the best steady state γ value of 10
3
, determined in section

11.3. Five temperatures in a range of 20 K above and below the system temperature were

sampled for the predictive runs. Three predictive runs were averaged at every temperature.

Figure 76 compares the optimal transient profile and the optimal steady state profile. The

transient objective function is consistently lower than the best steady-state objective function.

 Braun, Mircevska, Molina Villalba

97

Figure 77 plots the time evolution of γ for the optimizer run. It describes the controller action at

every time step.

Figure 76: Objective Function Profile for Material 3. The optimal transient profile was better than the

optimal steady-state profile.

Figure 77: Gamma profile for Material 3. The open-loop optimizer consistently increases gamma,

much as it did for the base case material.

Model-Based Control with Stochastic Simulators

98

It is evident from the plot that the effect of the controller is to continually increase γ. As

was the case for the base case material, this is contrary to the expected result of the controller

action, which is to keep γ at an intermediate value since at steady state values of γ a minimum

was found at γ=10
3
. Similarly to the base case material, since steady state profiles were obtained

for a limited range of γ values which were deemed physically realistic, it is possible that the

minimum at γ = 10
3
 is only a local minimum. The controller is allowed to increase γ indefinitely,

so it would be able to find a value of γ which results in a lower objective function. Figure 78

shows the surface profile after 20 monolayers have been deposited at the optimal transient γ,

which is indeed smoother than the surface profile at γ = 10
3
 (Figure 66 on page 88).

Figure 78: Surface Profile, 20 monolayers deposited; optimal transient run.

 Braun, Mircevska, Molina Villalba

99

Model-Based Control with Stochastic Simulators

100

9. Financial Analysis

9.1 Start-Up Technology Company Goals
 The company’s product will be a control system software package. Before analyzing the

market in which the product would be launched, an exploration of the goals of a start-up is in

order. Technology in the chemical and physical vapor deposition markets is changing quickly;

technologies that get introduced often have a lifetime of just a few years before they get replaced

by a newer and better technology. With that in mind, the company expects that the initial

software product will have a lifecycle lasting just five years.

 With this short of a product lifecycle, the startup company would have to invest into

Research and Development to prepare for the next generation of product. This money can be

obtained in several ways: namely, by being acquired by a larger company, going public, or

having a large influx of cash flows shortly after launch. The third option is clearly the most

optimal, but for the company to be successful this cannot be assumed to be the case. Thus, the

company will be focused on obtaining customers as soon as possible to demonstrate to the

acquisition market and to the public market that it is worth investing in.

9.2 Thin Films Market Overview
 The most important application of a system that controls a vapor deposition process for

roughness, porosity, and throughput is the thin films market, particularly for photovoltaics. It is

crucial that thin film solar cells have the correct roughness and porosity in order to have high

conversion of solar energy and good mechanical stability. Other chemical vapor deposition and

physical vapor deposition processes would benefit from such a controller, but companies that use

such processes for purposes that are not thin-films do not have as much incentive to accurately

control for surface microstructure; many of these companies make thick wafers in which the bulk

 Braun, Mircevska, Molina Villalba

101

is more important than the surface. Additionally, these wafer-making processes are more fully

developed than the thin films market, so controllers that do not need to model the surface

morphology may already be commercially available.

 The thin films market data is presented in Table 8 and Figure 79 below. As one can see,

the vast majority of thin film shipments are for photovoltaic applications, and this segment is

expected to grow at a Compound Annual Growth Rate (CAGR) of 23.6% over the next several

years. $3.3 billion dollars is expected to be spent in 2013 on photovoltaic thin films.

Model-Based Control with Stochastic Simulators

102

Type 2007 2008 CAGR % 2007-

2008

2013 CAGR% 2008-

2013

Photovoltaics 916.4 1160.9 26.7 3344.2 23.6

Fuel Cells 82.5 98.7 19.6 301.0 25.0

Batteries 36.0 39.2 8.9 98.1 20.1

Nuclear 25.2 25.9 2.8 31.3 5.0

Concentrating

Solar Power

14.7 23.4 59.2 93.0 31.8

Geothermal 2.7 3.0 11.1 5.3 12.1

Total 1077.5 1351.1 25.4 3874.7 23.5

Table 8: Projected global shipments of thin films for energy, through 2013 ($ millions). Source: BCC

Research.

Figure 7921: Projected global shipments of thin films for energy, through 2013 ($ millions). Source:

BCC Research.

 Braun, Mircevska, Molina Villalba

103

 In addition to deciding on the market sector, a geographic segment is a crucial factor in

determining a young company’s success. Data on global thin film photovoltaic manufacturing is

presented in Table 9 and Figure 80 below. China and Asia/Pacific (largely Japan) seem to be the

best markets, but succeeding in these markets would require a cross-national sales team that a

small startup would be unable to initially afford. Therefore, the initial target market would be

North America, which makes up no small portion of the total market. If the company were to

launch by 2013, it would be entering a market that is 3344.2 million dollars large in total, with

18.3% being in North America. This comes to 612 million dollars in the market. However, much

of this is spent on raw materials, equipment, and other non-software related supplies. A better

estimate of the target market is given in Section 9.3.

Model-Based Control with Stochastic Simulators

104

Region 2007 2008 2013

Asia/Pacific 39.5 37.6 30.7

Europe 23.8 23.5 22.0

North America 16.7 16.9 18.3

Rest of World 11.0 10.7 8.9

China 9.0 11.3 20.1

Total 100.0 100.0 100.0

Table 9: Global thin film PV manufacturing by region, 2007–2013 (%). Source: BCC Research.

Figure 8022: Global thin film PV manufacturing by region, 2007–2013 (%). Source: BCC Research.

 Braun, Mircevska, Molina Villalba

105

9.3 Competitive Environment
 Several companies exist that provide for simulations of chemical vapor deposition, with

many of them using the Monte Carlo method. Some of these companies (like Applied Materials)

also offer control solutions for the photolithographic part of the chip fabrication process.

However, of the companies investigated (Applied Materials, KLA-Tencor, STR Group, and

Synopsys, Inc.), none seem to offer control solutions for the thin film deposition process itself.

Thus, this control systems software seems to have found a niche that may be relatively

unexplored.

 However, upon introducing this controls software to the market, it is fully expected that

companies that have existing simulation solutions on the market will quickly develop control

systems themselves. Thus, it is crucially important for the company to gain a first-mover

advantage in the new market it is opening up.

 One company investigated, STR Group, provides software services focused on the

modeling of crystal growth. One product, called CVDSim, models epitaxial growth in mass-

production and research scale reactors. An annual single-node license of this software costs

$11,500. STR Group’s product will not be competitive with the designed product, but this cost

will later serve as a comparison.

Model-Based Control with Stochastic Simulators

106

 An estimate of the number of systems that the company could be targeting can be derived

from Applied Materials’s 10-K, filed in December, 2010. It states that there are over 34,000

systems in place at fabrication facilities and that 12% of their 2010 sales were in North America.

20% market share is estimated. This leads to the calculation:

Equation 20

 This estimate of 20,400 systems in the company’s target market will be used to develop a

pricing model in the Business Model section XX.

9.4. Business Model
 With the company’s goals, the market overview, and the competitive environment

explored, a detailed financial analysis of the venture can now be made. Due to limited data,

several assumptions need to be made. First, it assumed that the company will have no sales in the

first year, as much more Research and Development needs to be conducted on the controller

before it can be made into a commercial product. Due to the short product lifecycle, it is assumed

that the company’s first product will be on the market for a total of five years. It is difficult to

evaluate how much customers would be willing to pay for this product on a value basis; instead,

it is assumed that a 20% internal rate of return will be needed for a buyout, and the product is

subjected to several different growth models to find what price will be required. 3% inflation is

assumed.

 Braun, Mircevska, Molina Villalba

107

 SPPARKS, at least in its current form, will not be used for simulations in the final

software product. Two major problems with the SPPARKS application that used are that it does

not allow for the modeling of desorption and it can only run on a single processor. The company

will need to hire software developers to either code a new Kinetic Monte Carlo solver or extend

the current SPPARKS code to meet the simulator’s needs. SPPARKS is distributed under the

terms of the GNU Public License, which means that ―anyone is free to use, modify, or extend

SPPARKS in any way they choose, including for commercial purposes.‖ Legal counsel will have

to ensure that this interpretation is correct, in addition to ensuring that the company will be

capable of acquiring intellectual property for a SPPARKS-incorporated software package.

 In order to ensure that the simulations of the deposition process accurately predict what

happens in real reactors, the company needs to be able to operate a thin film deposition reactor.

This laboratory equipment is expensive, but necessary. A clean room will be needed to perform

procedures on the wafer surfaces. Costs for computers and measurement instruments were

conservatively estimated, as well as operating costs. Quotes for the bare module costs are found

in Appendices A1 and A2.

 A breakdown of costs the company expects to incur follows.

Model-Based Control with Stochastic Simulators

108

Cost Breakdown

 Bare Module/Capital Costs Unit Price Units Quantity Total

Clean Room $ 345.00 /sq ft 1600 $ 552,000.00

Deposition Reactor $ 300,000.00 /reactor 1 $ 300,000.00

Fume Hood $ 2,000.00 /hood 5 $ 10,000.00

Glove Box $ 8,730.00 /box 2 $ 17,460.00

Computers $ 5,000.00 /pc 9 $ 45,000.00

Servers $ 15,000.00 /server 3 $ 45,000.00

AFM $ 100,000.00 /microscope 1 $ 100,000.00

Profilometer $ 15,000.00 /unit 1 $ 15,000.00

Refractometer $ 15,000.00 /unit 1 $ 15,000.00

 $ 1,099,460.00

 Operating Cost Unit Price Units Quantity Total

Office Space $ 20.00 /sq ft/yr 5000 $ 100,000.00

Supplies and Utilities $ 2,000.00 /yr 1 $ 2,000.00

Reactor Maintenance (1% purchase) $ 3,000.00 /seat/yr 1 $ 3,000.00

Clean Room Maintenance (2% purchase) $ 11,040.00 /yr 1 $ 11,040.00

Cost of Sales (10% sales)

 $ 116,040.00

 Labor Cost Unit Price Units Quantity Total

Software Developer $ 85,000.00 /person/yr 3 $ 255,000.00

Lab Coordinator $ 85,000.00 /person/yr 1 $ 85,000.00

Lab Technician $ 65,000.00 /person/yr 2 $ 130,000.00

Marketing $ 85,000.00 /person/yr 1 $ 85,000.00

Implementation/Customer Service $ 65,000.00 /person/yr 3 $ 195,000.00

CEO $ 175,000.00 /person/yr 1 $ 175,000.00

VP-Legal $ 150,000.00 /person/yr 1 $ 150,000.00

 $ 1,075,000.00

Recurring Fixed Costs $ 1,191,040.00

Capital Costs

 $ 1,099,460.00

Initial Investment $ 2,290,500.00

Table 10: Cost Breakdown

 Braun, Mircevska, Molina Villalba

109

The internal rate of return (IRR) is the interest rate at which the net present value (NPV)

of all cash flows is zero. In the semiconductor industry, a common firm’s IRR is in the range of

15-30%. Under the assumption that an IRR of 20% is satisfactory, sales necessary to achieve this

IRR were calculated under three different scenarios. A moderate sales scenario calls for an initial

market penetration of 1% in the second year, followed by 50% sales growth. An aggressive sales

scenario estimates the same initial market penetration, but with 100% sales growth. Finally, a

conservative model calls for an initial penetration of 0.5% with a yearly increase of 0.5%.

Straight-line depreciation with a five-year life is assumed. It is also assumed that the company

will be able to use its losses in the first year to carry forward to the following years to reduce

taxes. A tax rate of 35% is used. The cash flow summary for the moderate scenario follows.

Summaries for aggressive and conservative scenarios are presented in Appendix A.3 and A.4.

Model-Based Control with Stochastic Simulators

110

Cash Flow Summary (Moderate)

Year

%

Market Sales Capital Costs Fixed Costs Costs of Sales

Depreciation

Allowance

1 0.00% $ - $(1,099,460.00) $(1,191,040.00) $ - $ -

2 1.00% $ 1,348,799.66 $ - $(1,226,771.20) $ (134,879.97) $ (219,892.00)

3 1.50% $ 2,083,895.47 $ - $(1,263,574.34) $ (208,389.55) $ (219,892.00)

4 2.25% $ 3,219,618.51 $ - $(1,301,481.57) $ (321,961.85) $ (219,892.00)

5 3.38% $ 4,981,679.94 $ - $(1,340,526.01) $ (498,167.99) $ (219,892.00)

Year

(cont.) Taxable Income

Income Tax

Calculation

Income Tax

Costs Net Earnings

Annual Cash

Flow

Interest

Adjusted

1 $(1,191,040.00) $ 416,864.00 $ - $(1,191,040.00) $(2,290,500.00) $(2,290,500.00)

2 $ (232,743.51) $ 81,460.23 $ - $ (232,743.51) $ (12,851.51) $ (10,709.59)

3 $ 392,039.59 $ (137,213.86) $ - $ 392,039.59 $ 611,931.59 $ 424,952.49

4 $ 1,376,283.09 $ (481,699.08) $ (120,588.71) $ 1,255,694.38 $ 1,475,586.38 $ 853,927.30

5 $ 2,923,093.94 $(1,023,082.88) $(1,023,082.88) $ 1,900,011.06 $ 2,119,903.06 $ 1,022,329.79

NPV $ 0.00

Inflation= 3%

Tax Rate= 35%

Interest Rate= 20%

Table 11: Cash Flow Summary

 Braun, Mircevska, Molina Villalba

111

 With the estimate that $1,348,800 in sales are needed in the first year to achieve an IRR

of 20%, the price the company needs to charge per unit can be estimated under the three different

sales scenarios. This follows in Table 12.

Model-Based Control with Stochastic Simulators

112

Sales Breakdown

 Aggressive

 Year Total Market Units % of Market Units Sold Price

1 20400 0.00% 0

2 20400 1.00% 204 $ 3,825.88

3 20400 2.00% 408 $ 3,940.66

4 20400 4.00% 816 $ 4,058.88

5 20400 8.00% 1632 $ 4,180.65

 Moderate

 Year Total Market Units % of Market Units Sold Price

1 20400 0.00% 0

2 20400 1.00% 204 $ 6,611.76

3 20400 1.50% 306 $ 6,810.12

4 20400 2.25% 459 $ 7,014.42

5 20400 3.38% 689.52 $ 7,224.85

 Conservative

 Year Total Market Units % of Market Units Sold Price

1 20400 0.00% 0

2 20400 0.50% 102 $ 10,821.50

3 20400 1.00% 204 $ 11,146.14

4 20400 1.50% 306 $ 11,480.53

5 20400 2.00% 408 $ 11,824.94

 Table 12: Sales Breakdown

 Braun, Mircevska, Molina Villalba

113

 Prices needed to achieve a 20% IRR range from $3,826 to $6,612 to $10,822. Based on

the $11,500 current market cost of STR Group’s CVDSim software, industry seems willing to

pay these prices. In fact, even higher prices might be justified since this software incorporates a

control element in addition to simulations. Thus, an IRR of 20% or more is expected.

Model-Based Control with Stochastic Simulators

114

10. Conclusions
An analysis of the current thin films marketplace shows that a small start-up with a

versatile modeling and control software product is poised to be competitive in growing thin film

markets such as photovoltaics. The proposed product will improve control over thin film surface

and internal microstructure. With evidence that companies are paying on the order of $12,000 for

a one year license for similar software products, the proposed startup company can remain

competitive until it is bought by selling each software license for $3,826, $6,612, or $10,822 per

year, depending on the growth of sales. These pricings will allow the company to maintain a

20% IRR for a five year horizon.

The software will have a wide range of applicability as a result of being able to model

surface roughness and porosity. The software will aim to maximize the control objectives in

order to minimize surface and internal defects. As computational efficiencies increase, more

rigorous process simulations can be performed while more computationally intensive property

calculations may become more accessible. Such a computationally intensive property is pore

size distribution, which can be a control problem of interest for the catalyst industry. The easily

modifiable modeling, optimization and control parameters allow for versatility in the study of

various systems.

The control system that was developed in this report demonstrates that model predictive

control is an effective tool in controlling micro-structural properties of thin films. The

developmental work done to produce optimal films demonstrates the value of modeling a

stochastic process. Modeling makes the search for optimal operating conditions possible. The

reference trajectory was used successfully by the model predictive controller to correct a

disturbed film, resulting in a film with almost optimal microstructure. This proves that this

 Braun, Mircevska, Molina Villalba

115

product will provide potential clients with more advanced control of the thin film manufacturing

process.

Model-Based Control with Stochastic Simulators

116

11. Acknowledgements
The authors would like to express their gratitude for the advice and guidance provided by

Professor Leonard A. Fabiano, Dr. Warren Seider, and Dr. Talid R. Sinno. Professor Fabiano

provided the group with general guidance regarding the writing and timeline of the report. Dr.

Seider provided assistance in learning about effective control strategies and he taught the

fundamental skills required to complete a successful product design project through our design

course last fall. Dr. Sinno explained the details of the simulation process and discussed much of

the science behind the control issues. Additionally, the design consultants provided useful

suggestions and advice from an industrial point of view.

 Braun, Mircevska, Molina Villalba

117

Model-Based Control with Stochastic Simulators

118

12. Bibliography
Applied Materials, Inc. . (2010). Retrieved Abril 11, 2011, from Edgar Online:

http://yahoo.brand.edgar-online.com/displayfilinginfo.aspx?FilingID=7602548-940-

541878&type=sect&dcn=0000950123-10-112754

Christofides, P. D., Armaou, A., Lou, Y., & Varshney, A. (2009). Control and Optimization of

Multiscale Process Systems. (W. S. Levine, Ed.) New York: Birkhauser.Boston.Basel.Berlin.

D., N., & Christofides, P. D. (2005). Dynamics and Control of Thin Film Microstructure in a

Complex Deposition Process. Chemical Engineering Science , 60, 1603.

Franssila, S. (2010). Introduction to Micro Fabrication (First ed.). West Sussex, United

Kingdom: John Wiley & Sons, Ltd.

Hu, G., Orkoulas, G., & Christofides, P. D. (2009). Model Predictive Contol of Film Porosity

inThin Film Deposition. 2009 American Control Conference, (pp. 4797-4804). St. Louis.

Hu, G., Orkoulas, G., & Christofides, P. D. (2009). Modeling and Control of Film Porosity in

Thin Film Deposition. Chemical Engineering Science , 64, 3668-3682.

Hu, G., Orkoulas, G., & Christofides, P. D. (2009). Regulation of Film Thickness, Surface

Roughness and Porosity in Thin Film Growth Using Deposition Rate. Chemical Engineering

Science , 64, 3903-3913.

Hu, G., Orkoulas, G., & Christofides, P. D. (2009). Simultaneous Regulation of Surface

Roughness and Porosity in Thin Film Growth. Ind. Eng. Chem. Res. , 48 (14), 6690–6700.

Hu, G., Orkoulas, G., & Christofides, P. D. (2009). Stochastic Modeling and Simultaneous

Regulation of Surface Roughness and Porosity in Thin Film Deposition. Ind. Eng. Chem. Res. ,

48, 6690-6700.

Huang, J., Hu, G., Orkoulas, G., & Christofides, P. D. (n.d.). Model Predictive Control of Film

Surface Root-Mean-Square Roughness and Slop: Application to Thin Film Solar Cells.

Lou, Y., & Christofides, P. D. (2003). Feedback Control of Growth Rate and Surface Roughness

in Thin Film Growth. AICHE Journal , 49, 2099.

Mattox, D. M. (1998). Handbook of Physical Vapor Deposition (PVD) Processing. Westwood:

Noyes Publications.

Sudarshan, T. S., & Park, J. H. (Eds.). (2001). Chemical Vapor Deposition. Materials Park, OH:

ASM International.

Willey, R. R. (2007). Practical Monitoring and Control of Optical Thin Films (2nd ed.).

Michigan: Willey Optical, Consultants.

 Braun, Mircevska, Molina Villalba

119

Zhang, X., Hu, G., Orkoulas, G., & Christofides, P. D. (2010). Predictive Contol of Surface

Mean Slope and Roughness in a Thin Film Deposition Process. Chemical Engineering Science ,

65, 4720-4731.

Zhang, X., Hu, G., Orkoulas, G., & Panagiotis, C. D. (2010). Controller and Estimator Design

for Regulation of Film Thickness, Surface Roughness, and Porosity ina Multiscale Thin Film

Growth. Ind. Eng. Chem. , 49, 7795-7806.

Model-Based Control with Stochastic Simulators

120

Appendix A Financial Details

A.1 Clean Room Quote

 Braun, Mircevska, Molina Villalba

121

A.2 Glove Box Quote

Model-Based Control with Stochastic Simulators

122

A.3 Cash Flow Summary

(Aggressive)

Year

%

Market Sales Capital Costs Fixed Costs Costs of Sales

Depreciation

Allowance

1 0.00% $ - $(1,099,460.00) $(1,191,040.00) $ -

2 1.00% $ 780,480.36 $(1,226,771.20) $ (78,048.04) $ (219,892.00)

3 2.00% $ 1,607,789.54 $(1,263,574.34) $ (160,778.95) $ (219,892.00)

4 4.00% $ 3,312,046.45 $(1,301,481.57) $ (331,204.64) $ (219,892.00)

5 8.00% $ 6,822,815.68 $(1,340,526.01) $ (682,281.57) $ (219,892.00)

Year

(cont.) Taxable Income

Income Tax

Calculation

Income Tax

Costs Net Earnings

Annual Cash

Flow

Interest

Adjusted

1 $(1,191,040.00) $ 416,864.00 $ - $(1,191,040.00) $(2,290,500.00) $(2,290,500.00)

2 $ (744,230.88) $ 260,480.81 $ - $ (744,230.88) $ (524,338.88) $ (436,949.06)

3 $ (36,455.75) $ 12,759.51 $ - $ (36,455.75) $ 183,436.25 $ 127,386.28

4 $ 1,459,468.24 $ (510,813.88) $ - $ 1,459,468.24 $ 1,679,360.24 $ 971,851.99

5 $ 4,580,116.10 $(1,603,040.63) $(1,423,750.20) $ 3,156,365.90 $ 3,376,257.90 $ 1,628,210.79

NPV $ 0.00

Inflation= 3%

Tax Rate= 35%

Interest Rate= 20%

 Braun, Mircevska, Molina Villalba

123

A.4 Cash Flow Summary

(Conservative)

Year

%

Market Sales Capital Costs Fixed Costs Costs of Sales

Depreciation

Allowance

1 0.00% $ - $(1,099,460.00) $(1,191,040.00) $ -

2 0.50% $ 1,103,792.82 $(1,226,771.20) $ (110,379.28) $ (219,892.00)

3 1.00% $ 2,273,813.21 $(1,263,574.34) $ (227,381.32) $ (219,892.00)

4 1.50% $ 3,513,041.41 $(1,301,481.57) $ (351,304.14) $ (219,892.00)

5 2.00% $ 4,824,576.86 $(1,340,526.01) $ (482,457.69) $ (219,892.00)

Year

(cont.) Taxable Income

Income Tax

Calculation

Income Tax

Costs Net Earnings

Annual Cash

Flow

Interest

Adjusted

1 $(1,191,040.00) $ 416,864.00 $ - $(1,191,040.00) $(2,290,500.00) $(2,290,500.00)

2 $ (453,249.66) $ 158,637.38 $ - $ (453,249.66) $ (233,357.66) $ (194,464.72)

3 $ 562,965.55 $ (197,037.94) $ - $ 562,965.55 $ 782,857.55 $ 543,651.08

4 $ 1,640,363.70 $ (574,127.29) $ (195,663.86) $ 1,444,699.84 $ 1,664,591.84 $ 963,305.46

5 $ 2,781,701.16 $ (973,595.41) $ (973,595.41) $ 1,808,105.76 $ 2,027,997.76 $ 978,008.18

NPV $ 0.00

Inflation= 3%

Tax Rate= 35%

Interest Rate= 20%

Model-Based Control with Stochastic Simulators

124

Appendix B SPPARKS Input Files

B.1 Base Case
log log.GaAs.1000wide.8493G.900K

#GaAs model from 2009 Senior Design report

#Energy and barrier values are in multiple of 0.27 eV, and temperature is in

#terms of T[K]*(kb[eV*K^-1]/0.27[eV]

#In other words, multiply temperature by 3133 to get Kelvin, and divide time

#by 10^13 to get seconds.

#Gamma = 52461

seed 325377

app_style diffusion nonlinear hop

dimension 2

lattice tri 1.0

region simulationbox block 0 1000 0 100 -0.5 0.5

create_box simulationbox

create_sites box

barrier hop 6

ecoord 0 100000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if y < 10

set site value 3 if y > 170

set site value 3 if x = 1 if y = 0

set site value 3 if x = 999 if y = 0

set site value 3 if x = .5 if y < 1

set site value 3 if x = 999.5 if y < 1

solve_style linear

deposition 0.0000000002 0 -1 0 1 2 6

temperature 0.287

diag_style diffusion stats yes

stats 10000000000000

dump mydump 10000000000000 dump.GaAs.1000wide.8493G.900K

run 360000000000000.0

 Braun, Mircevska, Molina Villalba

125

B.2 Material 1a with Schwoebel Hops
log log.GaAs.1000wide.8493G.900K

#GaAs model from 2009 Senior Design report

#Energy and barrier values are in multiple of 0.27 eV, and temperature is in

#terms of T[K]*(kb[eV*K^-1]/0.27[eV]

#In other words, multiply temperature by 3133 to get Kelvin, and divide time

#by 10^13 to get seconds.

#Gamma = 52461

seed 325377

app_style diffusion nonlinear schwoebel 6 1

dimension 2

lattice tri 1.0

region simulationbox block 0 1000 0 100 -0.5 0.5

create_box simulationbox

create_sites box

barrier hop 6

barrier schwoebel 7

ecoord 0 100000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if y < 10

set site value 3 if y > 170

set site value 3 if x = 1 if y = 0

set site value 3 if x = 999 if y = 0

set site value 3 if x = .5 if y < 1

set site value 3 if x = 999.5 if y < 1

solve_style linear

deposition 0.0000000002 0 -1 0 1 2 6

temperature 0.287

diag_style diffusion stats yes

stats 10000000000000

dump mydump 10000000000000 dump.GaAs.1000wide.8493G.900K

run 150000000000000.0

Model-Based Control with Stochastic Simulators

126

B.3 Material 2 with Square 8 Neighbor Lattice
log log.GaAs.1000wide.22G.700K

#GaAs model from 2009 Senior Design report

#Energy and barrier values are in multiple of 0.27 eV, and temperature is in

#terms of T[K]*(kb[eV*K^-1]/0.27[eV]

#In other words, multiply temperature by 3133 to get Kelvin, and divide time

#by 10^13 to get seconds.

#Gamma = 52461

seed 325377

app_style diffusion nonlinear hop

dimension 2

lattice sq/8n 1.0

region simulationbox block 0 1000 0 150 -0.5 0.5

create_box simulationbox

create_sites box

barrier hop 6

ecoord 0 100000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if y < 13

set site value 3 if y > 145

set site value 3 if y < 2

set site value 2 if x = 0 if y = 0

solve_style linear

deposition 0.0000000002 0 -1 0 1 3 8

temperature 0.223428

diag_style diffusion stats yes

stats 10000000000000

dump mydump 10000000000000 dump.GaAs.1000wide.22G.700K

run 150000000000000.0

 Braun, Mircevska, Molina Villalba

127

B.4 Base Case Material with Temperature Step Change
log log.GaAs.1000wide.unitstep

#GaAs model from 2009 Senior Design report

#Energy and barrier values are in multiple of 0.27 eV, and temperature is in

#terms of T[K]*(kb[eV*K^-1]/0.27[eV]

#In other words, multiply temperature by 3133 to get Kelvin, and divide time

#by 10^13 to get seconds.

seed 325377

app_style diffusion nonlinear hop

dimension 2

lattice tri 1.0

region simulationbox block 0 1000 0 250 -0.5 0.5

create_box simulationbox

create_sites box

barrier hop 6

ecoord 0 100000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if y < 10

set site value 3 if y > 429

set site value 3 if x = 1 if y = 0

set site value 3 if x = 999 if y = 0

set site value 3 if x = .5 if y < 1

set site value 3 if x = 999.5 if y < 1

solve_style linear

deposition 0.0000000002 0 -1 0 1 2 6

temperature 0.1915

diag_style diffusion stats yes

stats 10000000000000

dump mydump 10000000000000 dump.GaAs.1000wide.unitstep

run 300000000000000.0

temperature .2394 # Temperature Step Change

run 1200000000000000.0

Model-Based Control with Stochastic Simulators

128

B.5 Base Case Material with Initial Roughness Disturbance
log GaAs.1000w.rough

#GaAs model from 2009 Senior Design report

#Energy and barrier values are in multiple of 0.27 eV, and temperature is in

#terms of T[K]*(kb[eV*K^-1]/0.27[eV]

#In other words, multiply temperature by 3133 to get Kelvin, and divide time

#by 10^13 to get seconds.

seed 3253777

app_style diffusion nonlinear hop

dimension 2

lattice tri 1.0

region simulationbox block 0 1000 0 120 -0.5 0.5

create_box simulationbox

create_sites box

barrier hop 6

ecoord 0 100000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if y < 1.75

set site value 2 if y < 3.5 if x >= 0 if x < 25.5

set site value 2 if y < 5.25 if x >= 25 if x < 50.5

set site value 2 if y < 7 if x >= 50 if x < 75.5

set site value 2 if y < 5.25 if x >= 75 if x < 100.5

set site value 2 if y < 3.5 if x >= 100 if x < 125.5

set site value 2 if y < 5.25 if x >= 125 if x < 150.5

set site value 2 if y < 7 if x >= 150 if x < 175.5

set site value 2 if y < 5.25 if x >= 175 if x < 200.5

set site value 2 if y < 5.25 if x >= 225 if x < 250.5

set site value 2 if y < 7 if x >= 250 if x < 275.5

set site value 2 if y < 5.25 if x >= 275.5 if x < 300.5

set site value 2 if y < 3.5 if x >= 300 if x < 325.5

set site value 2 if y < 5.25 if x >= 350 if x < 375.5

set site value 2 if y < 7 if x >= 375 if x < 400.5

set site value 2 if y < 5.25 if x >= 400 if x < 425.5

set site value 2 if y < 3.5 if x >= 425 if x < 450.5

set site value 2 if y < 5.25 if x >= 450 if x < 475.5

set site value 2 if y < 7 if x >= 475 if x < 500.5

set site value 2 if y < 5.25 if x >= 500 if x < 525.5

set site value 2 if y < 3.5 if x >= 525 if x < 550.5

set site value 2 if y < 5.25 if x >= 550 if x < 575.5

set site value 2 if y < 7 if x >= 575 if x < 600.5

set site value 2 if y < 5.25 if x >= 600 if x < 625.5

set site value 2 if y < 3.5 if x >= 625 if x < 650.5

 Braun, Mircevska, Molina Villalba

129

set site value 2 if y < 5.25 if x >= 650 if x < 675.5

set site value 2 if y < 7 if x >= 675 if x < 700.5

set site value 2 if y < 5.25 if x >= 700 if x < 725.5

set site value 2 if y < 3.5 if x >= 725 if x < 750.5

set site value 2 if y < 5.25 if x >= 750 if x < 775.5

set site value 2 if y < 7 if x >= 775 if x < 800.5

set site value 2 if y < 5.25 if x >= 800 if x < 825.5

set site value 2 if y < 3.5 if x >= 825 if x < 850.5

set site value 2 if y < 5.25 if x >= 850 if x < 875.5

set site value 2 if y < 7 if x >= 875 if x < 900.5

set site value 2 if y < 5.25 if x >= 900 if x < 925.5

set site value 2 if y < 3.5 if x >= 925 if x < 950.5

set site value 2 if y < 5.25 if x >= 950 if x < 975.5

set site value 2 if y < 7 if x >= 975 if x < 1000.5

set site value 3 if y > 170

set site value 3 if x = 1 if y = 0

set site value 3 if x = 999 if y = 0

set site value 3 if x = .5 if y < 1

set site value 3 if x = 999.5 if y < 1

solve_style linear

deposition 0.0000000002 0 -1 0 1 2 6

temperature 0.3147

diag_style diffusion stats yes

stats 100000000000000000

#dump mydump 1e13 dump.SS.GaAs1000w_rough

#run 1.6e14

Model-Based Control with Stochastic Simulators

130

B.6 Material 2: Three-dimensional Simulation, GaAs Binding Energies , Simple

Cubic 6 neighbors
test10 sq/6n lattice GaAs binding model Schwoebel hops

depositing 1 monolayer/second --> scale time by *10e13

(divide all rates by 10^13 to get spparks rates, therefore,

multiply time by 10^13 to get spparks time)

temperature ranges from 0.20044(626.6K) to 0.32572 (1020.5K)

gamma ranges from 1 to 10e5

growing 20 monolayers

gamma = 1000

log log.spparks.sc6.gaas.y.1e3.txt

seed 987654

app_style diffusion nonlinear schwoebel 6 1

dimension 3

lattice sc/6n 1.0

region simulationbox block 0 80 0 80 0 50

create_box simulationbox

create_sites box

barrier hop 6

barrier schwoebel 7

ecoord 0 1000000000000000

ecoord 1 5

ecoord 2 4

ecoord 3 3

ecoord 4 2

ecoord 5 1

ecoord 6 0

set site value 1

set site value 2 if z < 4

set site value 3 if z < 2

set site value 3 if z > 48.91

set site value 2 if x = 0 if y = 0 if z = 0

solve_style linear

deposition 6.4e-10 0 0 -1 0.6 1 6

temperature 0.26058

diag_style diffusion stats yes

stats 2e13

dump mydump 2e13 dump.sc6.gaas.y.1e3

run 2e14

 Braun, Mircevska, Molina Villalba

131

Model-Based Control with Stochastic Simulators

132

Appendix C Computer Code (C/C++)

C.1 Open Loop Optimizer Main.cpp
/*

* Creates an optimal control profile for a given input script. Input script

* must not include the following commands:

* log, dump, run, stats. Script must include deposition and temperature

* commands. Deposition command will be used the same throughout,

* changing the deposition rate to take into account desorption. Temperature *

* command will be used as an initial guess. Region command

* must in the form "region block xlo xhi ylo yhi zlo zhi". Currently cannot

* have particles floating in the air. User must input

* constants such as number of sub runs and runtime in beginning of main.

* Should check that the actual runtime of the process

* is close to the runtime you put in. If it isn't, an individual timestep

* might be running for much longer than how long you wanted

* it to run because events are happening slowly. Prints both the dump file of

* the main run (to dump.main)

* and the profile of that dump file to a file the user specifies.

*/

/* Open-Loop Optimizer

 * Date: 4-13-11

 * Programed by: Efrem Braun

 * Marija Mircevska

 * Manuel Molina Villalba

 */

#include <iostream>

#include <fstream>

#include "library.h"

#include <stdio.h>

#include <math.h>

#include "CreateDataFile.h"

#include "ObjectiveFunctionCalculator.h"

#include "DumpToProfile.h"

#include "smallSitesData.h"

#include "smallKMCInput.h"

#define MAXLENGTHFILE 100

#define MAXLENGTHBUFFER 100

using namespace std;

int main(){

 /*User Inputs*/

 char inputscript[MAXLENGTHFILE] = "GaAs.1000wide"; //Name of input file.

File must be in same directory as the main

 const int SUBRUNS = 5; //Number of sub runs of SPPARKS that will be run

for each timestep to find optimal temperature. Must be an odd integer

 const double RUNTIME = 150000000000000.0; //Approximate length of total

run in seconds.

 const double TIMESTEP = RUNTIME / 15.0; //Timestep at which it will run

each subrun.

 const double ADVANCETIME = RUNTIME / 30.0; //Time it will advance the

 Braun, Mircevska, Molina Villalba

133

main SPPARKS run by after the control loop

 const double dumpsize = RUNTIME / 30.0;

 const int segmentsize = 10; //Segment size for roughness calculator

 const int SHRINKSIZE = 10; //Number by which the main lattice will

 be shrunk for subruns.

 const int SHRINKRUNS = 4; //Number of shrunk runs that will be

 averaged for each subrun

 //The maximum amount the temperature can change per timestep. Currently

 20K
 const double MAXTEMPCHANGE = 0.006384;

 //Define variables.

 double DBLSHRINKSIZE = (double) SHRINKSIZE;

 char outputprofile [MAXLENGTHBUFFER], buffer[MAXLENGTHBUFFER],

tempbuffer[MAXLENGTHBUFFER], depbuffer[MAXLENGTHBUFFER],

runbuffer[MAXLENGTHBUFFER], timebuffer[MAXLENGTHBUFFER];

 char blank[1] = "";

 char *cptr = blank;

 double temperature, temparray[SUBRUNS], objectivefunctionarray[SUBRUNS],

miniobjectivefunctionarray[SHRINKRUNS], lowestobjectivefunction,

deprate, netdeprate, netdeprateadj, dirx, diry, dirz, dO, currenttime,

xlo, xhi, ylo, yhi;

 int lo, hi, dimension, ctr1, ctr;

 FILE *fpinputscript, *fpoutputtemp;

 //Name of output profile

 sprintf(outputprofile, "%s%s%s", "profile.", inputscript, ".txt");

 ofstream newStream(outputprofile, fstream::out);

 if(!newStream.is_open()){

 cerr << "Failed to open out put file ..."<<endl;

 exit(1);

 }

 newStream << "TIME ROUGHNESS GROWTHRATE POROSITY OBJECTIVE_FUNTION"

<<endl;

/* Opens input file and gathers initial temperature, gross deposition

rate(not taking desorption based on temperature into account),

deposition vector, deposition capture distance, min and max

coordination numbers for deposition, and box size. */

 {

 //Open for reading the input script file

 if ((fpinputscript = fopen(inputscript, "r")) != NULL){ ;}

 else{

 fprintf(stderr, "\nError opening input script");

 fcloseall();

 exit(1);

 }

 //Gathers constants

 while (!feof(fpinputscript)){

 fgets(buffer, MAXLENGTHBUFFER, fpinputscript);{

 if (strncasecmp(buffer, "temperature", 11) == 0){

 sscanf(buffer, "%*s %lf", &temperature);

 }

 if (strncasecmp(buffer, "deposition", 10) == 0){

 sscanf(buffer, "%*s %lf %lf %lf %lf %lf %d %d", &deprate,

 &dirx, &diry, &dirz, &dO, &lo, &hi);

 }

Model-Based Control with Stochastic Simulators

134

 if (strncasecmp(buffer, "region", 6) == 0){

 sscanf(buffer, "%*s %*s %*s %lf %lf %lf %lf", &xlo, &xhi,

&ylo, &yhi);

 }

 }

 }

 }

 //Open for writing the output temp profile

 char tempprofilebuffer[MAXLENGTHBUFFER];

 sprintf(tempprofilebuffer, "tempprofile.%s.txt", inputscript);

 fstream temperatureProfile(tempprofilebuffer, fstream::out);

 if (!temperatureProfile.is_open()){

 fprintf(stderr, "\nError opening output temp profile file");

 exit(1);

 }

 //Header of temp profile

 //fprintf(fpoutputtemp, "timestep(approx) temperature\n");

 temperatureProfile << "timestep(approx) temperature" <<endl;

 //Open the main instance of SPPARKS

 int a = 1;

 int *ptra = &a;

 int **ptrmain = &ptra;

 spparks_open(1, &cptr, 0, (void **) ptrmain);

 //Open a sub instance of SPPARKS

 int b = 1;

 int *ptrb = &b;

 int **ptrsub = &ptrb;

 spparks_open(1, &cptr, 0, (void **) ptrsub);

 //Run the main instance of SPPARKS for 0 time. Collect the dimension.

Makes a data file.

 char logbuffer[MAXLENGTHBUFFER];

 sprintf(logbuffer, "log log.%s", inputscript);

 spparks_command(*ptrmain, logbuffer);

 spparks_file(*ptrmain, inputscript);

 char dumpbuffer[MAXLENGTHBUFFER];

 sprintf(dumpbuffer, "dump mydump %lf dump.%s", dumpsize, inputscript);

 spparks_command(*ptrmain, dumpbuffer);

 //spparks_command(*ptrmain, "read_sites sites.data");

 dimension = *((int*)spparks_extract(*ptrmain, "dimension"));

 CreateDataFile(ptrmain, "datamain");

 //Run the sub instance of SPPARKS for 0 time to input settings.

 char minibuffer[MAXLENGTHBUFFER];

 sprintf(minibuffer, "mini.%s", inputscript);

 smallKMCInput(inputscript, minibuffer, SHRINKSIZE);

 spparks_file(*ptrsub, minibuffer);

 smallSitesData((void **)ptrmain, "datasub", SHRINKSIZE);

 //Test (part 1 of 2)

 FILE *fptest;

 char testbuffer[MAXLENGTHBUFFER];

 sprintf(testbuffer, "test.%s.txt", inputscript);

 Braun, Mircevska, Molina Villalba

135

 if ((fptest = fopen(testbuffer, "w")) != NULL){

 ;

 }

 else{

 fprintf(stderr, "\nError opening test output file");

 fcloseall();

 exit(1);

 }

 fprintf(fptest, "timestep temperature roughness growthrate porosity

objectivefunction\n");

 //Control loop

 for (ctr1 = 0; ctr1 < RUNTIME / ADVANCETIME; ctr1++){

 //Create a temperature array for the temperatures that the sub

 instances of SPPARKS will be running.

 for (ctr = 0; ctr < SUBRUNS; ctr++){

//Temp can only change +-MAXTEMPCHANGE at most

temparray[ctr] = temperature - MAXTEMPCHANGE + (2 * MAXTEMPCHANGE

* ((double)ctr) / ((double) SUBRUNS - 1));

 }

//Run the sub instance of SPPARKS SUBRUNS times for TIMESTEP seconds

with temperature and deposition commands as given.

 for (ctr = 0; ctr < SUBRUNS; ctr++){

 temperature = temparray[ctr];

 if (temperature < 0) temperature = 0;

 if (dimension == 2)

 {

 netdeprate = deprate / DBLSHRINKSIZE;

 netdeprateadj = netdeprate * DBLSHRINKSIZE;

 }

 else if (dimension == 3)

 {

 netdeprate = deprate / (DBLSHRINKSIZE * DBLSHRINKSIZE);

 netdeprateadj = netdeprate * DBLSHRINKSIZE * DBLSHRINKSIZE;

 }

 else

 {

 fprintf(stderr, "\nError: dimension is not 2 or 3\n");

 exit(1);

 }

 //Run the subrun SHRINKRUNS times, and then take average

objective function.

 for (int ctr2 = 0; ctr2 < SHRINKRUNS; ctr2++)

 {

 sprintf(depbuffer, "deposition %.30lf %lf %lf %lf %lf %d %d",

netdeprate, dirx, diry, dirz, dO, lo, hi);

 sprintf(tempbuffer, "temperature %lf", temperature);

 sprintf(runbuffer, "run %lf", TIMESTEP);

 currenttime = ADVANCETIME * ((double) ctr1);

 sprintf(timebuffer, "reset_time %lf", currenttime);

//Note: this reset is only approximate, and should always lag

the main run's actual time.

 spparks_command(*ptrsub, timebuffer);

 spparks_command(*ptrsub, "read_sites datasub");

Model-Based Control with Stochastic Simulators

136

 spparks_command(*ptrsub, tempbuffer);

 spparks_command(*ptrsub, depbuffer);

 spparks_command(*ptrsub, runbuffer);

miniobjectivefunctionarray[ctr2] =

ObjectiveFunctionCalculator(ptrsub, netdeprateadj, deprate,

segmentsize);

 //Test (part 2 of 2)

fprintf(fptest, "%lf %lf %lf %lf %lf %lf\n", currenttime,

temperature, RoughnessCalculator(ptrsub,

segmentsize), netdeprateadj / deprate,

PorosityCalculator(ptrsub),

miniobjectivefunctionarray[ctr2]);

 }

 double subobjectivefunction = 0;

 for (int ctr2 = 0; ctr2 < SHRINKRUNS; ctr2++){

 subobjectivefunction += miniobjectivefunctionarray[ctr2];

 }

 objectivefunctionarray[ctr] = subobjectivefunction / SHRINKRUNS;

 }

 //Find the temperature which minimizes the objective function

 temperature = temparray[0];

 lowestobjectivefunction = objectivefunctionarray[0];

 for (ctr = 1; ctr < SUBRUNS; ctr++){

 if (objectivefunctionarray[ctr] < lowestobjectivefunction){

 lowestobjectivefunction = objectivefunctionarray[ctr];

 temperature = temparray[ctr];

 }

 }

 //Output temp to temp profile

 temperatureProfile <<currenttime<<" "<<temperature<<endl;

//Run the main instance of SPPARKS for TIMESTEP seconds with the best

temperature as given from the sub runs

sprintf(depbuffer, "deposition %.30lf %lf %lf %lf %lf %d %d",

deprate, dirx, diry, dirz, dO, lo, hi);

 sprintf(tempbuffer, "temperature %lf", temperature);

 sprintf(runbuffer, "run %lf", ADVANCETIME);

 spparks_command(*ptrmain, "read_sites datamain");

 spparks_command(*ptrmain, tempbuffer);

 spparks_command(*ptrmain, depbuffer);

 spparks_command(*ptrmain, runbuffer);

//Log Current Properties for post processing

 newStream.precision(20);

 newStream.width(20);

 newStream << currenttime<<" ";

 newStream.precision(20);

 newStream.width(20);

 newStream << RoughnessCalculator(ptrmain, segmentsize)<<" ";

 newStream.precision(20);

 newStream.width(20);

 Braun, Mircevska, Molina Villalba

137

 newStream << netdeprateadj / deprate<<" ";

 newStream.precision(20);

 newStream.width(20);

 newStream << PorosityCalculator(ptrmain)<<" ";

 newStream.precision(20);

 newStream.width(20);

 newStream << ObjectiveFunctionCalculator(ptrmain, netdeprateadj,

deprate, segmentsize)<<" "<<endl;

 //Create two new data files

 CreateDataFile(ptrmain, "datamain");

 smallSitesData((void **)ptrmain, "datasub", SHRINKSIZE);

 }

 //Close all instances of SPPARKS

 spparks_close(*ptrmain);

 spparks_close(*ptrsub);

 //Close open files

 fcloseall();

 //Print profile

 puts("Creating profile from dump file. Please wait.");

 char dumpbuffer2[MAXLENGTHBUFFER];

 sprintf(dumpbuffer2, "dump.%s", inputscript);

 DumpToProfile(dumpbuffer2, dimension, outputprofile, segmentsize,

deprate);

 return 0;

}

Model-Based Control with Stochastic Simulators

138

C.2 Model Predictive Control Main.cpp
/*

 * CBE 459: Senior Design

 *

 * MODEL PREDICTIVE CONTROL V 1.0.0

 * Date: March 31, 2011

 * Authors: Efrem Braum

 * Marija Mircevska

 * Manuel Molina Villalba

 */

#include <cstring>

#include <ctime>

#include <sys/time.h>

#include <cstdio>

#include <iostream>

#include <iomanip>

#include <fstream>

#include <limits>

#include <map>

#include <string>

#include <vector>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "growth.h"

#include "library.h"

#include "mpi.h"

#include "setPoints.h"

#include "simulationPoints.h"

#include "smallKMCInput.h"

#include "smallSitesData.h"

#include "objectiveFunction.h"

#include "porosity.h"

#include "roughness.h"

#define MAXBUFFER 100

using namespace std;

int main(){

 srand(time(0)); /* Random number generator seed */

 int seed = rand(); /* User defined: To be used to

create new simulations */

 /**---------------------- MPC Variable Definitions BEGIN ----------------------**/

 /**User Set Variables to modify**/

 const double error = 0.001; /* User defined: controller error tolerance for

comparator, to skip optimization*/

 const double processTime = 200000000000000000; /* User defined: Time real

process is to be controlled for */

 const double simulationStep = 1000000000000000.0 * 0.01; /* User defined: Step

command for spparks real simulation */

 const double predictiveStep = 1000000000000000.0* 0.02; /* User defined: Step

command for spparks optimizer */

const int denominator = 10; /* User defined: Denominator of fraction of the

lattice size */

 const int average = 8; /* User defined: Number of different simulations to

run and average at each small KMC run */

 const int SUBRUNS = 7; /* User defined: No. of runs that are to be run by

the optimizer */

 int segmentSize = 10; /* User defined: The size of the segment to be used

 Braun, Mircevska, Molina Villalba

139

for roughness calculations */

 const double tempRange = 0.00638365784; /* Temperature Range of the optimizer

below and above the current temperature*/

 /**Simulation Variables do not modify !!!**/

 int **real;

 int **model;

 double currentTime = 0; /* Time of real process */

 vector<double> temporarySPProperties; /* Vector to hold set point roughness,

growth rate, porosity for optimizer*/

 vector<double> temporaryProperties; /* Vector to hold roughness, growth

rate, porosity for model simulations*/

 vector<double> currentProperties; /* Vector to hold roughness, growth

rate, porosity for current simulation*/

 vector<double> setPointProperties; /* Vector to hold set point roughness,

growth rate, porosity*/

 double controlError = 0; /* Hold the current control error*/

 double currentTimer = 0; /* Times each control action*/

 double pastTimer = 0; /* Holds the time for control action

for logging*/

 /* After the first real process step, this deposition rate, netDepositionsRate,

 will take over as SPPARKS deposition command input for the real process

 simulation. This will fluctuate around the variable depositionRate. */

 double netDepositionRate;

 /* Files to manage: SPPARKS input file, MPC data file, Reference Trajectory */

 char inputFilename[MAXBUFFER] = "GaAs.1000wide.unitstep";

 char referenceTrajectory[MAXBUFFER] = "profile.GaAs.1000wide.unitstep";

 ofstream logMPC;

 ofstream optimizerLog;

 /* Real Simulation variables */

 double temperature;

 int dimension;

 /* depositionRate WILL NOT CHANGE THROUGHOUT THE MPC CONTROL. This is the initial

 deposition rate that is to correspond to the constant deposition at constant

 gas flow. Will be used in the netDepositionRate calculations.*/

 double depositionRate;

 double depX, depY, depZ, depDO; /* Deposition incident angle variables

XYZ and d0 */

 int depLo, depHi; /* Deposition variables low and high

coordination limit */

 double xLo, xHi,yLo,yHi; /* Region length and with variables */

 char tempBuffer[MAXBUFFER];

 char depBuffer[MAXBUFFER];

 char resetBuffer[MAXBUFFER];

 /**----------------------- MPC Variable Definitions END -----------------------**/

 /**---

 ----------------------- Model Predictive Controller BEGIN -----------------------

 --**/

 /**--------- Extract Temperature and Deposition from input file BEGIN ---------**/

 /** Open SPPARKS input file **/

 fstream inputFile(inputFilename);

 if(!inputFile){

 cerr << "Error opening SPPARKS Input file" << endl;

 exit(1);

 }

Model-Based Control with Stochastic Simulators

140

 /** Extract Temperature and Deposition variables from the SPPARKS input file **/

 string line;

 while(inputFile >> line){

 int bad_input;

 if((line == "temperature") | (line == "deposition") | (line == "region")

| (line == "seed")){

 do{

 bad_input = 0;

 char buffer[MAXBUFFER];

 if(line == "seed")

 inputFile >> seed;

 else if(line == "temperature")

 inputFile >> temperature;

 else if(line == "deposition"){

 inputFile.getline(buffer,

numeric_limits<streamsize>::max(),'\n');

 sscanf(buffer, "%lf %lf %lf %lf %lf %d %d",

 &netDepositionRate, &depX, &depY, &depZ, &depDO,

&depLo, &depHi);

 depositionRate = netDepositionRate;

 }

 else if(line == "region"){

 inputFile.getline(buffer,

numeric_limits<streamsize>::max(),'\n');

 sscanf(buffer, "%*s %*s %lf %lf %lf %lf", &xLo, &xHi,

&yLo, &yHi);

 }

 if(!inputFile){

 bad_input = 1;

 inputFile.clear();

 inputFile.ignore(numeric_limits<streamsize>::max(),'

');

 }

 }while(bad_input);

 }

 }

 inputFile.close();

 cout <<"netDepositionRate, depX, depY, depZ, depDO, depLo, depHi ";

 cout <<netDepositionRate<<" "<<depX<<" "<<depY<<" "<<depZ<<" "<<depDO<<"

"<<depLo<<" "<<depHi<<endl<<endl;

/************* Extract Temperature and Deposition from input file END **************/

 /** Create a MPC log file **/

 char MPCdata[MAXBUFFER];

 strcpy(MPCdata, inputFilename);

 logMPC.open(strcat(MPCdata,"_MPC.log"), fstream::trunc);

 if(!logMPC.is_open()){

 cerr << "Error opening MPC log file" << endl;

 exit(1);

 }

 /* LOG HEADERS */

 logMPC << "TIME TEMPERATURE NET_DEPOSITION_RATE ROUGHNESS ";

 logMPC << "GROWTHRATE POROSITY OBJECTIVE_FUNCTION spROUGHNESS ";

 logMPC << "spGROWTHRATE spPOROSITY spOBJECTIVE_FUNCTION ERROR

 CONTROL_TIME"<<endl;

 /** Create a optimizer log file **/

 char optimizerName[MAXBUFFER];

 strcpy(optimizerName, inputFilename);

 optimizerLog.open(strcat(optimizerName,"_optimizer.log"), fstream::trunc);

 if(!optimizerLog.is_open()){

 Braun, Mircevska, Molina Villalba

141

 cerr << "Error opening Optimizer Log" << endl;

 exit(1);

 }

 /* LOG HEADERS */

 optimizerLog << "TEMPERATURE NET_DEPOSITION_RATE ROUGHNESS ";

 optimizerLog << "GROWTH_RATE POROSITY OBJECTIVE_FUNCTION

 spROUGHNESS ";

 optimizerLog << "spGROWTHRATE spPOROSITY spOBJECTIVE_FUNCTION

OPTIMIZER_OF"<<endl;

 /** Begin SPPARKS objects **/

 char blank[1] = "";

 char *cptr = blank;

 int *ptr = 0;

 real = &ptr;

 int *point = 0;

 model = &point;

 /*SPPARKS object that is to be used for the real process model*/

 spparks_open(1, &cptr, 0, (void**)real); /*SPPARKS Command*/

 /*SPPARKS object that is to be used for the small KMC model*/

 spparks_open(1, &cptr, 0, (void**)model); /*SPPARKS Command*/

 /** Begin real SPPARKS simulation **/

 spparks_file(*real, inputFilename); /*SPPARKS Command*/

 //spparks_command(*real, "read_sites porous.sites"); /*SPPARKS Command*/

 spparks_command(*real, "dump mydump 100000000000000.0 dump.GaAs.1000wide.rough");

 dimension = *((int*)spparks_extract(*real, "dimension")); /*Get Dimension of

simulation*/

 /** Begin model SPPARKS simulation**/

 smallKMCInput(inputFilename,"smallKMCInput",denominator); /*Create an input file

for the small KMC model*/

 spparks_file(*model, "smallKMCInput"); /*SPPARKS Command*/

 spparks_command(*model, "log GaAs.1000wide_smallKMCSPPARKS.log");

 /*SPPARKS Command*/

 /** Obtain the set point and current properties at this time **/

 setPointProperties = setPoints(currentTime, referenceTrajectory);

 currentProperties = simulationPoints((void**) real, netDepositionRate,

depositionRate, segmentSize);

 /* Check if the reference file is empty */

 /* If the setPointProperties vector contains all -1 the file was parsed and the

time was not found meaning that the currentTime is greater than the last time

in the reference trajectory file. The control loop should stop here if that is

the case. */

 int stop = 0;

 for(vector<double>::iterator i = setPointProperties.begin();i <

setPointProperties.end(); ++i){

 if(*i != -1){

 ++stop;

 }

 }

 if(!stop){

 cout << "Reference Trajectory has no values. Now exiting..."<<endl;

 return 0;

 }

 /***************************** Begin Control Loop *******************************/

 while(currentTime <= processTime){

 /** Log values for the current time to the MPC log **/

 logMPC.width(13); logMPC <<currentTime<<" ";

 logMPC.width(11); logMPC <<temperature<<" ";

Model-Based Control with Stochastic Simulators

142

 logMPC.width(19); logMPC <<netDepositionRate<<" ";

 logMPC.width(13); logMPC <<currentProperties[0]<<" ";

 logMPC.width(10); logMPC <<currentProperties[1]<<" ";

 logMPC.width(13); logMPC <<currentProperties[2]<<" ";

 logMPC.width(18); logMPC <<objectiveFunction(currentProperties)<<" ";

 logMPC.width(13); logMPC <<setPointProperties[0]<<" ";

 logMPC.width(13); logMPC <<setPointProperties[1]<<" ";

 logMPC.width(13); logMPC <<setPointProperties[2]<<" ";

 logMPC.width(20); logMPC <<objectiveFunction(setPointProperties)<<" ";

 logMPC.width(13); logMPC <<controlError<<" ";

 logMPC.width(13); logMPC <<pastTimer<<endl;

 cout << endl << "Current time of the real process is: " << currentTime <<endl

<< endl;

 /**Current Timer Start**/

 timeval t1;

 gettimeofday(&t1, NULL);

 /** Run real process to step K **/

 char run[MAXBUFFER];

 char seedCommand[MAXBUFFER];

 sprintf(run, "run %lf", simulationStep);

 cout <<endl<<run<<endl<<endl;

 spparks_command(*real, run); /*Run Real Process to step K*/

 /** Increment current time of the MPC **/

 currentTime += simulationStep;

/** Obtain current simulation properties and set point properties at the

current time**/

 /*These are to be logged at the next loop iteration*/

 currentProperties = simulationPoints((void**) real, netDepositionRate,

depositionRate,segmentSize);

 setPointProperties = setPoints(currentTime, referenceTrajectory);

 /** Run model of process to step K + 1 **/

 sprintf(run, "run %e", predictiveStep);

 sprintf(tempBuffer,"temperature %lf", temperature);

 switch(dimension){

 case 2:{

 sprintf(depBuffer,"deposition %.30lf %lf %lf %lf %lf %d

%d",(depositionRate/denominator),depX,depY,depZ,

 depDO, depLo, depHi);

 break;

 }

 case 3:{

 sprintf(depBuffer,"deposition %.30lf %lf %lf %lf %lf %d

%d",(depositionRate/(denominator*denominator)),

 depX,depY,depZ, depDO, depLo, depHi);

 break;

 }

 }

 /** Create sites data file for SPPARKS read_sites command **/

 smallSitesData((void**)real,"smallKMC.data",denominator);/*Create sites data

file for SPPARKS read_sites command*/

 sprintf(resetBuffer, "reset_time %e", currentTime);

 /** Obtain the set point at time K + 1**/

 temporarySPProperties = setPoints((currentTime + predictiveStep),

 Braun, Mircevska, Molina Villalba

143

referenceTrajectory);

 /** Check if the reference file is empty**/

 int stop = 0;

 for(vector<double>::iterator i = temporarySPProperties.begin();

 i < temporarySPProperties.end(); ++i){

 if(*i != -1)

 ++stop;

 }

 if(!stop){

 cout << "All reference points used. Control run is finished. Now

exiting..."<<endl;

 logMPC.close(); optimizerLog.close(); spparks_close(*real);

spparks_close(*model);

 return 0;

 }

 /** Average multiple model SPPARKS runs to reduce stochasticity **/

 /* The amount of simulations to average can be specified with the variable

average*/

 vector< vector<double> > toAverage;

 for(int i = 0; i < average; ++i){

 sprintf(seedCommand, " seed %d", i + seed);

 spparks_command(*model,resetBuffer); /*SPPARKS Command*/

 spparks_command(*model,"read_sites smallKMC.data"); /*SPPARKS Command*/

 spparks_command(*model, seedCommand); /*SPPARKS Command*/

 spparks_command(*model, run); /*SPPARKS Command*/

 toAverage.push_back(simulationPoints((void**) model, netDepositionRate,

depositionRate,segmentSize));

 //cout <<endl<< "Running simulation "<<average<<endl<<endl;

 }

 /** Obtain the average current properties at time K + 1**/

 vector<double> temporary;

 for(int j = 0; j < average; ++j){

 double sum = 0;

 for(vector<vector<double> >::size_type k = 0; k < toAverage.size(); ++k){

 sum += toAverage[k][j];

 }

 temporary.push_back(sum/average);;

 }

 temporaryProperties = temporary;

 /** Objective function comparator **/

 double currProp = objectiveFunction(temporaryProperties);

 double spProp = objectiveFunction(temporarySPProperties);

 controlError = (currProp - spProp) / spProp;

 /**Control action timer stop**/

 timeval t2;

 gettimeofday(&t2,NULL);

 currentTimer = currentTimer + (t2.tv_sec - t1.tv_sec);

 cout <<endl<< "currProp and spProp"<<currProp<< ", " <<spProp<<endl;

 cout <<endl << "Error is " << controlError <<endl;

 /**-------------------------- Optimizer BEGIN ----------------------------**/

 if(fabs(controlError) > error){

 cout <<endl << "*************BEGIN OPTIMIZER*************"<<endl<<endl;

 cout <<"Current time of real process is "<<currentTime<<endl<<endl;

 /** Obtain the set point at time K + 1**/

Model-Based Control with Stochastic Simulators

144

 temporarySPProperties = setPoints(currentTime + predictiveStep,

referenceTrajectory);

 /** Check if the reference file is empty**/

 int stop = 0;

 for(vector<double>::iterator i = temporarySPProperties.begin();

 i < temporarySPProperties.end(); ++i){

 if(*i != -1)

 ++stop;

 }

 if(!stop){

 cout << "All reference points used. Control run is finished. Now

exiting..."<<endl;

 logMPC.close(); optimizerLog.close(); spparks_close(*real);

spparks_close(*model);

 return 0;

 }

 /**Timer start add to current timer**/

 gettimeofday(&t1,NULL);

 /** Create arrays to hold the values for each test simulation **/

 double tempArray[SUBRUNS];

 double objectiveArray[SUBRUNS];

 for(int i = 0; i < SUBRUNS; ++i){

 //Temp can only change by tempRange / 2 at most

 tempArray[i] = temperature - tempRange + (2 * tempRange * ((double

)i) / ((double) SUBRUNS - 1));

 if(tempArray[i] < 0) tempArray[i] = 0;

 }

 /** Calculate objective function for each test simulation j **/

 double netDepRateBig;

 for(int j = 0; j < SUBRUNS; ++j){

 double netDepRate;

 switch(dimension){

 case 2:

 netDepRate = depositionRate/ denominator;

 netDepRateBig = depositionRate * denominator;

 break;

 case 3:

 netDepRate = depositionRate / denominator * denominator;

 netDepRateBig = depositionRate * denominator * denominator;

 break;

 default:

 cout << endl << "Error: dimesion is not 2 or 3." << endl;

 exit(1);

 break;

 }

 /** Begin model SPPARKS simulation at step K + 1 **/

 sprintf(depBuffer,"deposition %.30lf %lf %lf %lf %lf %d

%d",netDepRate,depX,depY,depZ, depDO, depLo, depHi);

 sprintf(tempBuffer,"temperature %lf", tempArray[j]);

 sprintf(resetBuffer, "reset_time %e", currentTime);

 sprintf(run, "run %e", predictiveStep);

 /* Average multiple model SPPARKS runs to reduce stochasticity */

 toAverage.clear();

 for(int i = 0; i < average; ++i){

 /** Begin model SPPARKS simulation at step K**/

 /*SPPARKS Commands to model simulation*/

 sprintf(seedCommand, " seed %d", i + seed);

 spparks_command(*model,"read_sites smallKMC.data");

 Braun, Mircevska, Molina Villalba

145

/*SPPARKS Command*/

spparks_command(*model, seedCommand);

/*SPPARKS Command*/

spparks_command(*model, resetBuffer);

 /*SPPARKS Command*/

spparks_command(*model, depBuffer);

/*SPPARKS Command*/

 spparks_command(*model, tempBuffer);

 /*SPPARKS Command*/

spparks_command(*model, run);

/*SPPARKS Command*/

 toAverage.push_back(simulationPoints((void**) model,

netDepRateBig, depositionRate,segmentSize));

 }

 temporary.clear();

 for(int m = 0; m < average; ++m){

 double sum = 0;

 for(vector<vector<double> >::size_type k = 0; k <

toAverage.size(); ++k){

 sum += toAverage[k][m];

 }

 temporary.push_back(sum/average);

 }

 /** Obtain the average current properties at time K + 1 **/

 temporaryProperties = temporary;

 /** Objective function to be minimized by the optimizer **/

 objectiveArray[j] = pow(objectiveFunction(temporarySPProperties) –

objectiveFunction(temporaryProperties),2);

 /** End and add to current control action timer**/

 gettimeofday(&t2,NULL);

 currentTimer = currentTimer + (t2.tv_sec - t1.tv_sec);

 /** Log all the test simulation, j, values to the Optimizer Log **/

 optimizerLog.width(15); optimizerLog <<tempArray[j]<<" ";

 optimizerLog.width(19); optimizerLog <<netDepRate<<" ";

 optimizerLog.width(15); optimizerLog <<temporaryProperties[0]<<" ";

 optimizerLog.width(15); optimizerLog <<temporaryProperties[1]<<" ";

 optimizerLog.width(15); optimizerLog <<temporaryProperties[2]<<" ";

 optimizerLog.width(18);

 optimizerLog <<objectiveFunction(temporaryProperties)<<" ";

 optimizerLog.width(15); optimizerLog <<temporarySPProperties[0]<<" ";

 optimizerLog.width(15); optimizerLog <<temporarySPProperties[1]<<" ";

 optimizerLog.width(15); optimizerLog <<temporarySPProperties[2]<<" ";

 optimizerLog.width(20);

 optimizerLog <<objectiveFunction(temporarySPProperties);

 optimizerLog <<" "<<objectiveArray[j]<<endl;

 }

 optimizerLog <<endl;

 /** Start and add to current timer **/

 gettimeofday(&t1,NULL);

 /** Search for the temperature that minimizes the objective function **/

 double objectiveTemp = tempArray[0];

 double minObjective = objectiveArray[0];

 for(int i = 1; i < SUBRUNS; ++i){

 if(objectiveArray[i] < minObjective){

 minObjective = objectiveArray[i];

 objectiveTemp = tempArray[i];

 }

Model-Based Control with Stochastic Simulators

146

 }

 /**End and add to current control action timer**/

 gettimeofday(&t2,NULL);

 currentTimer = currentTimer + (t2.tv_sec - t1.tv_sec);

/** Change the temperature in the real process with the one that yields

the best objective and change the netDepositionRate of the real process

to the new net deposition rate corresponding to the new temperature. **/

 temperature = objectiveTemp;

 /*** Issue new SPPARKS commands to the real process ***/

 char depBuffer[MAXBUFFER];

 sprintf(depBuffer,"deposition %e %lf %lf %lf %lf %d %d",netDepositionRate

,depX,depY,depZ, depDO, depLo, depHi);

 char tempBuffer[MAXBUFFER];

 sprintf(tempBuffer,"temperature %lf", temperature);

 spparks_command(*real, tempBuffer); /*SPPARKS Command*/

 cout <<endl<< "New temperature and net deposition rates are:

"<<temperature<<" and " <<netDepositionRate<<endl<<endl;

 cout <<endl << "*************END OPTIMIZER*************"<<endl<<endl;

 }

 /**----------------------------- Optimizer END ---------------------------**/

 /** Save the currentTimers time and reset it for the next loop **/

 pastTimer = currentTimer;

 currentTimer = 0;

 }

 /**------------------------------ Control Loop END ----------------------------**/

 /**---

 ------------------------- Model Predictive Controller END -----------------------

 --**/

 /** Close All Streams **/

 logMPC.close(); optimizerLog.close(); spparks_close(*real); spparks_close(*model);

 return 0;

}

 Braun, Mircevska, Molina Villalba

147

C.3 Property Calculators

C.3.1 Objective Function Calculator
/* Function that returns the objective function It accepts a pointer to a

SPPARKS object */

#ifndef OBJECTIVEFUNCTIONCALCULATOR_H_INCLUDED

#define OBJECTIVEFUNCTIONCALCULATOR_H_INCLUDED

#include <stdio.h>

#include <stdlib.h>

#include "library.h"

#include "RoughnessCalculator.h"

#include "PorosityCalculator.h"

using namespace std;

double ObjectiveFunctionCalculator (int ** model, double netdeprate, double

deprate, int segmentsize);

#endif // OBJECTIVEFUNCTIONCALCULATOR_H_INCLUDED

#include "ObjectiveFunctionCalculator.h"

double ObjectiveFunctionCalculator (int ** model, double netdeprate, double

deprate, int segmentsize)

{

 double wtroughness = 100.0;

 double wtgrowthrate = 0.0;

 double wtporosity = 1.0;

 double roughness = RoughnessCalculator(model, segmentsize);

 double growthrate = netdeprate / deprate;

 double porosity = PorosityCalculator(model);

 double objectivefunction = (wtroughness * roughness) - (wtgrowthrate *

growthrate) + (wtporosity * porosity);

 return objectivefunction;

}

Model-Based Control with Stochastic Simulators

148

C.3.2 Porosity Calculator

/* Function that returns the roughness. It accepts a pointer to a SPPARKS

object */

#ifndef POROSITYCALCULATOR_H_INCLUDED

#define POROSITYCALCULATOR_H_INCLUDED

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "library.h"

#include <fstream>

#include <iostream>

#include <iomanip>

#include <map>

#include <math.h>

using namespace std;

double PorosityCalculator (int ** model);

#endif // POROSITYCALCULATOR_H_INCLUDED

#include "PorosityCalculator.h"

double PorosityCalculator (int ** model){

 int *dimension = ((int*)spparks_extract(*model, "dimension"));

 int *sites = ((int*) spparks_extract(*model, "nglobal"));

 int *atomicState = ((int*) spparks_extract(*model, "site"));

 double **atomicGrid = ((double**) spparks_extract(*model, "xyz"));

 double porosity;

 if(*dimension == 3){

 map<double, map<double, double> > xlattice;

 double **start = atomicGrid;

 for(int *begin = atomicState, *end = atomicState + *sites;begin !=

end; ++begin, ++start){

 map<double, double> *ylattice = &xlattice[**start];

 double zlattice = (*ylattice)[*(*start + 1)];

 if (*begin == 2){

 if (*(*start + 2) > zlattice)

 (*ylattice)[*(*start + 1)] = *(*start + 2);

 }

 }

 double sumheight = 0;

 for (map <double, map <double, double> >::iterator i =

xlattice.begin(); i != xlattice.end(); ++i){

 map <double, double> temp = (*i).second;

 for (map <double, double>::iterator j = temp.begin(); j !=

temp.end(); ++j){

 Braun, Mircevska, Molina Villalba

149

 sumheight += (*j).second;

 }

 }

 double unfilled = 0;

 double total = 0;

 start = atomicGrid;

 for(int *begin = atomicState, *end = atomicState + *sites;begin !=

end; ++begin, ++start){

map<double, double> *ylattice = &xlattice[**start];

double zlattice = (*ylattice)[*(*start + 1)];

 if ((*begin == 1) && (*(*start + 2) <= zlattice)){

 unfilled++;

 }

 if (*(*start + 2) <= zlattice){

 total++;

 }

 }

 porosity = unfilled / total;

 }

 else if(*dimension == 2){

 map<double, double> lattice;

 double **start = atomicGrid;

 for(int *begin = atomicState, *end = atomicState + *sites ;begin !=

end; ++begin, ++start){

 double y = lattice[**start];

 if (*begin == 2){

 if (*(*start + 1) > y)

 lattice[**start] = *(*start + 1);

 }

 }

 double unfilled = 0;

 double total = 0;

 start = atomicGrid;

 for (int *begin = atomicState, *end = atomicState + *sites; begin !=

end; ++begin, ++start){

 if ((*begin == 1) && (*(*start + 1) <= lattice[**start])){

 unfilled++;

 }

 if (*(*start + 1) <= lattice[**start]){

 total++;

 }

 }

 porosity = unfilled / total;

 }

 return porosity;

}

Model-Based Control with Stochastic Simulators

150

C.3.3 Roughness Calculator
/* Function that returns the roughness. It accepts a pointer to a SPPARKS

object */

#ifndef ROUGHNESSCALCULATOR_H_INCLUDED

#define ROUGHNESSCALCULATOR_H_INCLUDED

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "library.h"

#include <fstream>

#include <iostream>

#include <iomanip>

#include <map>

#include <math.h>

using namespace std;

double RoughnessCalculator (int ** model, int segmentsize);

#endif // ROUGHNESSCALCULATOR_H_INCLUDED

#include "RoughnessCalculator.h"

double RoughnessCalculator (int ** model, int segmentsize){

 int ctr = 0, ctr2 = 0, ctr3 = 0, ctr4 = 0, ctr5 = 0;

 double sumsegmentheight, averagesegmentheight;

 int *dimension = ((int*)spparks_extract(*model, "dimension"));

 int *sites = ((int*) spparks_extract(*model, "nglobal"));

 int *atomicState = ((int*) spparks_extract(*model, "site"));

 double **atomicGrid = ((double**) spparks_extract(*model, "xyz"));

 double roughness = 0;

 /* 3 Dimensional Roughness */

 if(*dimension == 3){

 map<double, map<double, double> > xlattice;

 double **start = atomicGrid;

 for(int *begin = atomicState, *end = atomicState + *sites;begin !=

end; ++begin, ++start){

 map<double, double> *ylattice = &xlattice[**start];

 double zlattice = (*ylattice)[*(*start + 1)];

 if (*begin == 2){

 if (*(*start + 2) > zlattice)

 (*ylattice)[*(*start + 1)] = *(*start + 2);

 }

 }

 double sumheight = 0;

 for (map <double, map <double, double> >::iterator i =

xlattice.begin(); i != xlattice.end(); ++i){

 Braun, Mircevska, Molina Villalba

151

 map <double, double> temp = (*i).second;

 for (map <double, double>::iterator j = temp.begin(); j !=

temp.end(); ++j){

 sumheight += (*j).second;

 }

 }

 double averageheight = sumheight / (xlattice.size()*xlattice.begin()-

>second.size());

 //Calculate roughness

 double roughnessnumer = 0;

 ctr = 0;

 for (map <double, map <double, double> >::iterator i =

xlattice.begin(); ctr < ((int)xlattice.size() - segmentsize

+ 1); ++i, ++ctr){

 map <double, double> temp = (*i).second;

 ctr2 = 0;

 for (map <double, double>::iterator j = temp.begin(); ctr2 <

((int)xlattice.begin()->second.size() - segmentsize + 1);

++j, ++ctr2){

 sumsegmentheight = 0;

 ctr3 = 0;

 for (map <double, map<double, double> >::iterator i2 = i;

ctr3 < segmentsize; ++i2, ++ctr3){

 map <double, double> temp2 = (*i2).second;

 ctr4 = 0;

 for (map <double, double>::iterator j2 = temp2.begin();

ctr4 < segmentsize; ++j2, ++ctr4){

 for (ctr5 = 0; ctr5 < ctr2 && ctr4 < 1; ctr5++) j2++;

 sumsegmentheight += j2->second;

 }

 }

 averagesegmentheight = sumsegmentheight / (segmentsize *

segmentsize);

 roughnessnumer += pow((averagesegmentheight- averageheight),

2.0);

 }

 }

 roughness = sqrt(roughnessnumer / ((xlattice.size() - segmentsize +

1) * (xlattice.begin()->second.size() - segmentsize + 1)));

 }

 /* 2 Dimensional Roughness */

 else if(*dimension == 2){

 map<double, double> lattice;

 double **start = atomicGrid;

 for(int *begin = atomicState, *end = atomicState + *sites ;begin !=

end; ++begin, ++start){

 double y = lattice[**start];

 if (*begin == 2){

 if (*(*start + 1) > y)

 lattice[**start] = *(*start + 1);

 }

 }

 double sumheight = 0;

Model-Based Control with Stochastic Simulators

152

 map<double, double>::iterator end = lattice.end();

 for (map<double, double>::iterator it = lattice.begin(); it != end;

++it)

 sumheight += it->second;

 double averageheight = sumheight / (lattice.size());

 //Calculate roughness

 double roughnessnumer = 0;

 ctr2 = 0;

 for (map<double, double>::iterator it = lattice.begin(); ctr2 <

((int)lattice.size() - segmentsize + 1); ++it, ++ctr2){

 sumsegmentheight = 0;

 ctr = 0;

 for (map<double, double>::iterator it2 = it; ctr <

segmentsize; ++it2, ++ctr){

 sumsegmentheight += it2->second;

 }

 averagesegmentheight = sumsegmentheight / segmentsize;

 roughnessnumer += pow((averagesegmentheight - averageheight),

2.0);

 }

 roughness = sqrt(roughnessnumer / (lattice.size() - segmentsize +

1));

 }

 return roughness;

}

 Braun, Mircevska, Molina Villalba

153

C.3.4 Growth Calculator
#ifndef GROWTH_H_INCLUDED

#define GROWTH_H_INCLUDED

using namespace std;

double growth(double netDepRate, double depRate);

#endif // GROWTH_H_INCLUDED

#include "growth.h"

double growth(double netDepRate, double depRate){

 return netDepRate / depRate;

};

Model-Based Control with Stochastic Simulators

154

C.4 Simulation Manipulations

C.4.1 Create Model Simulation Input File
/* Create a SPPARKS input file for the model simulations. This function takes

a SPPARKS input file for the real simulation and modifies the commands

according to the given denominator, which is the ratio of the size of the

real simulation lattice to the size of the desired reduce lattice size. */

#ifndef SMALLKMCINPUT_H_INCLUDED

#define SMALLKMCINPUT_H_INCLUDED

#include <iostream>

#include <iomanip>

#include <fstream>

#include <string>

#include <sstream>

#include <stdlib.h>

using namespace std;

void smallKMCInput(string inputFilename, string newInputFilename, int

denominator);

#endif // SMALLKMCINPUT_H_INCLUDED

#include "smallKMCInput.h"

void smallKMCInput(string inputFilename, string newInputFilename, int

denominator){

 cout <<endl<< "Creating small KMC input file ..." <<endl<<endl;

 int dimension = 0;

 double xlo, xhi, ylo, yhi, zlo, zhi;

 double rate;

 int x, y, z, d, lo, hi;

 ifstream inputFile(inputFilename.c_str());

 ofstream newInputFile(newInputFilename.c_str());

 if(!inputFile.is_open()){

 cerr << "Error opening SPPARKS Input file" << endl;

 exit(1);

 }

 if(!newInputFile.is_open()){

 cerr << "Error opening SPPARKS small KMC Input file" << endl;

 exit(1);

 }

 while(!inputFile.eof()){

 string line;

 getline(inputFile,line);

 stringstream currentLine(line);

 if(line.find("dimension") != string::npos){

 string discard;

 currentLine >> discard;

 currentLine >> dimension;

 newInputFile << line <<endl;

 }

 else if(line.find("deposition") != string::npos){

 string discard;

 Braun, Mircevska, Molina Villalba

155

 currentLine >> discard;

 currentLine.precision(30);

 currentLine >>rate>>x>>y>>z>>d>>lo>>hi;

 switch(dimension){

 case 2:{

 newInputFile <<"deposition"<<'\t';

 newInputFile.precision(30);

 newInputFile << rate / denominator <<" ";

 newInputFile <<x<<" "<<y<<" "<<z<<" "<<d<<" "<<" "<<lo<<"

"<<hi<<endl;

 break;

 }

 case 3:{

 newInputFile <<"deposition"<<'t'<< rate /

(denominator*denominator) <<" ";

 newInputFile <<" "<<x<<" "<<y<<" "<<z<<" "<<d<<" "<<lo<<"

"<<hi<<" "<<endl;

 }

 }

 }

 else if(line.find("set") != string::npos){

 continue;

 }

 else if(line.find("region") != string::npos){

 stringstream newLine;

 string region;

 string regionName;

 string regionArgument;

 currentLine >> region>>regionName >> regionArgument;

 currentLine >>xlo>>xhi>>ylo>>yhi>>zlo>>zhi;

 newLine.precision(11);

 switch(dimension){

 case 2:{

 newLine <<region<<'\t'<<'\t'<<" "<<regionName<<"

"<<regionArgument<<" ";

 newLine <<xlo<<" "<<xhi/denominator;

 newLine <<" "<<ylo<<" "<<yhi<<" "<<zlo<<" "<<zhi<<endl;

 break;

 }

 case 3:{

 newLine <<region<<'\t'<<'\t'<<regionName<<"

"<<regionArgument<<" ";

 newLine <<xlo<<" "<<xhi/denominator<<" ";

 newLine <<ylo<<" "<<yhi/denominator<<" "<<zlo<<"

"<<zhi<<endl;

 break;

 }

 }

 newInputFile << newLine.str();

 }

 else{

 newInputFile << line <<endl;

 }

 }

 inputFile.close();

 newInputFile.close();}

Model-Based Control with Stochastic Simulators

156

C.4.2 Atomic Arrangement Approximation
/* This function crops a ‘fraction’ of the atomic arrangement of the supplied

SPPARKS simulation from the (0,0,0) coordinate of the simulation the

specified value calculated as (Lattice sites of the SPPARKS

Simulation)/Fraction. This function outputs a datafile of name filename to be

used by the read_sites command by SPPARKS */

#ifndef SMALLSITESDATA_H_INCLUDED

#define SMALLSITESDATA_H_INCLUDED

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <vector>

#include <stdio.h>

#include <stdlib.h>

#include "library.h"

#include "mpi.h"

using namespace std;

void smallSitesData(void **spk, const char *filename, int fraction);

#endif // SMALLSITESDATA_H_INCLUDED

#include "smallSitesData.h"

void smallSitesData(void **spk, const char *filename, int fraction){

 srand(time(0));

 cout <<endl<<"Creating sites for small KMC model"<<endl<<endl;

 /* SPPARKS simulation state variables */

 const int *sites = ((int*) spparks_extract(*spk, "nglobal"));

 const int dimension = *((int*)spparks_extract(*spk, "dimension"));

 int *id = ((int*) spparks_extract(*spk, "id"));

 int *atomicState = ((int*) spparks_extract(*spk, "site"));

 double **atomicGrid = ((double**) spparks_extract(*spk, "xyz"));

 double xlo = *((double*) spparks_extract(*spk, "boxxlo"));

 double xhi = *((double*)spparks_extract(*spk, "boxxhi"));

 double ylo = *((double*) spparks_extract(*spk, "boxylo"));

 double yhi = *((double*) spparks_extract(*spk, "boxyhi"));

 double zlo = *((double*)spparks_extract(*spk, "boxzlo"));

 double zhi = *((double*)spparks_extract(*spk, "boxzhi"));

 /* Open modelData file to write sites data into */

 ofstream siteData(filename,fstream::trunc);

 if(!siteData.is_open()){

 cout << "Error opening SPPARKS Site Data file" << endl;

 exit(1);

 }

 vector<int> siteID;

 vector<int> siteType;

 int newXSize = xhi / fraction;

 Braun, Mircevska, Molina Villalba

157

 int newYSize = yhi / fraction;

 int newSites = 1;

 int *state = atomicState;

 double **grid = atomicGrid;

 switch(dimension){

 case 2:{

 int firstX = 0;

 for(int*iterator=id,*end=id+*sites;iterator!=end;++iterator,

++state,++grid){

 if(**grid >= firstX && **grid < (firstX + newXSize)){

 if((**grid >=(firstX + newXSize - 1)&&*(*grid + 1)== 0) |

 //site to the left of 0,0

(**grid == firstX + 1 && *(*grid + 1) == 0) |

//site to the right of 0,0

(**grid==firstX&&*(*grid + 1)<=3&&*(*grid + 1)!= 0)|

//site above 0,0

 (**grid>=(firstX + newXSize - 1)&&*(*grid + 1)<= 3) |

 //site upperleft of 0,0

(**grid<=firstX+1&&*(*grid+1)<=3&&**grid!=firstX)){

//site upperright of 0,0

 siteID.push_back(newSites);

 siteType.push_back(3);

 ++newSites;

 }

 else{

 siteID.push_back(newSites);

 siteType.push_back(*state);

 ++newSites;

 }

 }

 }

 break;

 }

 case 3:{

 int firstX = 0;

 int firstY = 0;

 for(int*iterator=id,*end=id+*sites;iterator!=end;++iterator,

++state, ++grid){

 if(**grid>=firstX&&*(*grid+1)>=firstY&&**grid<=(firstX+

newXSize)&&*(*grid+1)<=(firstY+newYSize)){

 if(**grid>=(firstX+newXSize-2)&&*(*grid+2)==(firstY+

newYSize-2)){

 siteID.push_back(newSites);

 siteType.push_back(3);

 ++newSites;

 }

 else{

 siteID.push_back(newSites);

 siteType.push_back(*state);

 ++newSites;

 }

 }

 }

 break;

 }

 }

 siteData.precision(14);

Model-Based Control with Stochastic Simulators

158

 siteData << "Skip This Line" << endl<<endl;

 siteData << dimension << " dimension" << endl<<endl;

 siteData << newSites-1 << " sites"<<endl<<endl;

 switch(dimension){

 case 2:{

 siteData << xlo << " " << newXSize << " xlo xhi" << endl;

 siteData << ylo << " "<< yhi << " ylo yhi" << endl;

 break;

 }

 case 3:{

 siteData << xlo << " " << newXSize << " xlo xhi" << endl;

 siteData << ylo << " "<< newYSize << " ylo yhi" << endl;

 break;

 }

 }

 siteData << zlo << " " << zhi << " zlo zhi" << endl<<endl;

 siteData << endl << "Values" << endl << endl;

 for(int i = 0; i < newSites - 1; i++){

 siteData << siteID[i] <<" "<< siteType[i] <<endl;

 }

};

 Braun, Mircevska, Molina Villalba

159

C.4.3 Properties Manipulator: Model Predictive Control
/* Call the property calculators and organize the data for manipulation for

the Model Predictive Control Simulation. The properties are calculated from

the SPPARKS simulation, and a vector of the properties, {Roughness, Growth

Rate, Porosity}, is returned*/

#ifndef SIMULATIONPOINTS_H_INCLUDED

#define SIMULATIONPOINTS_H_INCLUDED

#include <vector>

#include "roughness.h"

#include "growth.h"

#include "porosity.h"

using namespace std;

vector<double> simulationPoints(void **spk, double netDepostionRate, double

depositionRate,int segmentsize);

#endif // SIMULATIONPOINTS_H_INCLUDED

#include "simulationPoints.h"

vector<double> simulationPoints(void **spk, double netDepRate, double

depRate,int segmentsize){

 vector<double> toReturn(3,0);

 toReturn[0] = roughness(spk,segmentsize);

 toReturn[1] = growth(netDepRate,depRate);

 toReturn[2] = porosity(spk);

 return toReturn;

};

Model-Based Control with Stochastic Simulators

160

C.4.4 Reference Trajectory Manipulator: Model Predictive Control
/* This function manipulates data in the reference trajectory to return a

vector of property set points, {Roughness, Growth Rate, Porosity}, for use in

the Model Predictive Control Simulation. Linear interpolations will be used

if a specific point is not found in the trajectory. If the list of set

points in the reference trajectory file is exhausted, this function returns

the vector {-1, -1, -1}. This signals that the end of the profile has been

reached signaling to the Model Predictive Controller to stop the simulation.

*/

#ifndef SETPOINTS_H_INCLUDED

#define SETPOINTS_H_INCLUDED

#include <iostream>

#include <iomanip>

#include <vector>

#include <fstream>

#include <limits>

#include <stdio.h>

#include <stdlib.h>

using namespace std;

vector<double> setPoints(const double &xa, const char *reference);

#endif // SETPOINTS_H_INCLUDED

#include "setPoints.h"

vector<double> setPoints(const double &xa, const char *referenceTrajectory){
 /*Variables needed for possible interpolation in the form (x1,y1) and (x2,y2)*/
 double x1 = 0, x2 = 0;
 vector<double> properties1(3,0);
 vector<double> properties2(3,0);
 int bad_input = 0;
 ifstream reference;
 /*Open the reference trajectory file*/
 reference.open(referenceTrajectory, fstream::out);
 if(!reference.is_open()){
 cout << "Failed to open reference trajectory." << endl;
 reference.close();
 exit(1);
 }

 /*Ignore the first line*/
 reference.ignore(numeric_limits<streamsize>::max(),'\n');

 /*Loop through the entire file looking for the correct time interpolate

` if necesary*/

 while(!reference.eof()){

 do{

 //cout<<"Looking for next x2..."<<endl;

 bad_input = 0;

 reference.precision(30);

 Braun, Mircevska, Molina Villalba

161

 reference >> x2;

 if(!reference){

 bad_input = 1;

 reference.clear();

 reference.ignore(numeric_limits<streamsize>::max(),' ');

 }

 }while(bad_input);

 for(int i = 0; i < 3; ++i){

 double prop;

 do{

 bad_input = 0;

 reference.precision(30);

 reference >> prop;

 if(!reference){

 bad_input = 1;

 reference.clear();

 reference.ignore(numeric_limits<streamsize>::max(),' ');

 }

 }while(bad_input);

 properties2[i] = prop;

 }

 if(xa == x2){

 reference.close();

 cout<<endl;

 return properties2;

 }

 else if (x1 <= xa && xa <= x2){

 vector<double> toReturn(3);

 for(int k = 0; k < 3; ++k)

 toReturn[k] = properties1[k] + (xa-x1)/(x2-

x1)*(properties2[k] - properties1[k]);

 reference.close();

 cout<<endl;

 return toReturn;

 }

 /*Ignore the rest of this line*/

 reference.ignore(numeric_limits<streamsize>::max(),'\n');

 x1 = x2;

 properties1 = properties2;

 /*A Blank line indicated by immediate '\n' character indicates

 *following this line is the end of reference data

 */

 if(reference.peek() == '\n')

 break;

 }

 reference.close();

/* Upon returning the default vector the MPC will stop due to an

indication of a failed attempt to retrieve data or the end of the

reference trajectory */

 vector<double> defaultReturn(3,-1);

 return defaultReturn;

};

Model-Based Control with Stochastic Simulators

162

C.5 SPPARKS Post-Processing

C.5.1 SPPARKS Dump to Profile
#include <iostream>

#include "DumpToProfile.h"

#define MAXLENGTHFILE 100

using namespace std;

int main()

{

 char DumpFile[MAXLENGTHFILE] = "dump.GaAs.1000wide.unitstep";

 int dimension = 2;

 char OutputFile[MAXLENGTHFILE] = "profile.GaAs.1000wide.unitstep.txt";

 int segmentsize = 10;

 double deprate = 0.0000000002;

 cout << "Please wait while profile is generated" << endl;

 // DumpToProfile("dump.GaAs.1000wide.porositydisturbed", dimension,

"profile.GaAs.1000wide.porositydisturbed.txt", segmentsize, deprate);

 DumpToProfile("dump.GaAs.1000wide.unitstep", dimension,

"profile.GaAs.1000wide.unitsteptxt", segmentsize, deprate);

 return 0;

}

#ifndef DUMPTOPROFILE_H_INCLUDED

#define DUMPTOPROFILE_H_INCLUDED

#include <string.h>

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "DumpObjectiveFunctionCalculator.h"

#include <map>

void DumpToProfile(char *DumpFile, int dim, char *OutputFile, int

segmentsize, double deprate);

#endif // DUMPTOPROFILE_H_INCLUDED

 Braun, Mircevska, Molina Villalba

163

//Accepts dump file in the form id, type, x, y, z with 1 or more timesteps,

and prints a text file with timestep

//in the first column, roughness of that timestep in the second column,

growth rate in the third column.

//and porosity in the fourth column. Roughness is as defined in

//"Dynamics and control of thin film surface microstructure in a complex

deposition process" by "Dong Ni et. al."

//The denominator is the number of lattice sites in x (2D) or in x and y

(3D).

//If 2-D growth on a 1-D substrate, numerator of equation has only 1

summation, and denominator has only 1 N.

//Cannot compare roughness between simulations of different size lattice.

Does not do 1D.

//Do not compare roughnesses between lattices of different types (apples and

oranges) because,

//for example, a perfectly flat sc6n will have a roughness of 0, but a

perfectly flat fcc will have a roughness greater

//than 0, simply because not all sites at the top of an fcc lattice have the

same height.

//Bottom row(s) (rows if the bottom row does not contain all x or x,y values)

must be filled with type 2.

#include "DumpToProfile.h"

using namespace std;

void DumpToProfile(char *DumpFile, int dim, char *OutputFile, int

segmentsize, double deprate){

 FILE *fpinputdump, *fpoutput;

 const int MAXBUFFER = 100;

 char buffer[MAXBUFFER];

 int ctr = 0, ctr2 = 0, ctr3 = 0, ctr4 = 0, ctr5 = 0, ctrtimesteps = 0,

sites;

 long position;

 double timestep = 0, timestep_last, xmin, xmax, ymin, ymax, zmin, zmax,

sumheight, sumsegmentheight, averageheight, averagesegmentheight,

roughnessnumer, roughness, netdeprate, porosity, sites_filled =

0, sites_filled_last, sites_filled_initial;

 //Open for reading the input dump file

 if ((fpinputdump = fopen(DumpFile, "r")) != NULL){ ;}

 else{

 fprintf(stderr, "\nError opening read file\n");

 fcloseall();

 exit(1);

 }

 //Open for writing the output file, unless user entered a "no"

 if (strcasecmp(OutputFile, "no") != 0){

 if ((fpoutput = fopen(OutputFile, "w")) != NULL){

 ;

 }

 else{

 fprintf(stderr, "\nError opening write file\n");

 fcloseall();

 exit(1);

 }

Model-Based Control with Stochastic Simulators

164

 }

 //Header of output file

 fprintf(fpoutput, "timestep roughness growthrate porosity

objectivefunction\n");

 while (!feof(fpinputdump))

 {

 //Skip first line, while testing it for a blank which would signal

 end of file, Get timestep, then Skip line

 fgets(buffer, MAXBUFFER, fpinputdump);

 if (feof(fpinputdump))

 {

 goto locationend;

 }

 fgets(buffer, MAXBUFFER, fpinputdump);

 timestep_last = timestep;

 timestep = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 //Get number of sites and box bounds

 fgets(buffer, MAXBUFFER, fpinputdump);

 sites = atoi(buffer);

 fgets(buffer, MAXBUFFER, fpinputdump);

 fgets(buffer, MAXBUFFER, fpinputdump);

 xmin = atof(buffer);

 xmax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 ymin = atof(buffer);

 ymax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 zmin = atof(buffer);

 zmax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 //Save file's position indicator

 position = ftell(fpinputdump);

//Reset sites_filled value for each timestep. Remember last value of

sites_filled

 sites_filled_last = sites_filled;

 sites_filled = 0;

 if (dim == 2){

 map <double, double> lattice;

 for (ctr = 0; ctr < sites; ctr++)

 {

 double x, y, z;

 int type;

 fgets(buffer, MAXBUFFER, fpinputdump);

 type = atoi(strchr(buffer, ' '));

 x = atof(strchr(strchr(buffer, ' ')+1,' '));

 y = atof(strchr(strchr(strchr(buffer, ' ')+1,' ')+1,' ')+1);

 z = atof(strchr(strchr(strchr(strchr(buffer,' ')+1,' ')+ 1,'

 ')+ 1,' ')+1);

 double tmpy = lattice[x];

 Braun, Mircevska, Molina Villalba

165

 if (type == 2){

 if (y > tmpy){

 lattice[x] = y;

 }

 }

 //Get number of filled sites for growth rate

 if (type ==2){

 sites_filled += 1;

 }

 }

 //Calculate average height

 sumheight = 0;

 map<double, double>::iterator end = lattice.end();

 for (map<double, double>::iterator it = lattice.begin(); it !=

end; ++it){

 sumheight += it->second;

 }

 averageheight = sumheight / (lattice.size());

 //Calculate roughness

 roughnessnumer = 0;

 ctr2 = 0;

 for (map<double,double>::iterator it =lattice.begin();ctr2<

((int)lattice.size()-segmentsize+1);++it,++ctr2){

 sumsegmentheight = 0;

 ctr = 0;

 for (map<double, double>::iterator it2 = it; ctr <

segmentsize; ++it2, ++ctr){

 sumsegmentheight += it2->second;

 }

 averagesegmentheight = sumsegmentheight / segmentsize;

 roughnessnumer += pow((averagesegmentheight –

averageheight), 2.0);

 }

 roughness=sqrt(roughnessnumer/(lattice.size()-segmentsize+

1));

 //Porosity calculation

 double unfilled = 0;

 double total = 0;

 if (fseek(fpinputdump, position, SEEK_SET) != NULL)

 {

 fprintf(stderr, "\nError using fseek().");

 fcloseall();

 exit(1);

 }

 for (ctr = 0; ctr < sites; ctr++)

 {

 double x, y, z;

 int type;

 fgets(buffer, MAXBUFFER, fpinputdump);

 type = atoi(strchr(buffer,' '));

Model-Based Control with Stochastic Simulators

166

 x = atof(strchr(strchr(buffer,' ')+1,' '));

 y = atof(strchr(strchr(strchr(buffer,' ')+1,' ')+1,' ')+1);

 z = atof(strchr(strchr(strchr(strchr(buffer, ' ')+1,' ')+1,'

')+1,' ')+1);

 for (map<double, double>::iterator it=lattice.begin();

it!=end; ++it){

 if ((x == it->first)&&(type == 1)&&(y <= it->second)){

 unfilled++;

 }

 if ((x == it->first) && (y <= it->second)){

 total++;

 }

 }

 }

 porosity = unfilled / total;

 }

 if (dim == 3){

 map<double, map<double, double> > xlattice;

 for (ctr = 0; ctr < sites; ctr++){

 fgets(buffer, MAXBUFFER, fpinputdump);

 int type = atoi(strchr(buffer,' '));

 double x = atof(strchr(strchr(buffer,' ')+1,' '));

 double y = atof(strchr(strchr(strchr(buffer,' ')+1,' ')+1,'

')+1);

 double z = atof(strchr(strchr(strchr(strchr(buffer, ' ')+1,'

')+1,' ')+1,' ')+1);

 map<double, double> *ylattice = &xlattice[x];

 double zlattice = (*ylattice)[y];

 if (type == 2){

 if (z > zlattice){

 (*ylattice)[y] = z;

 }

 }

 //Get number of filled sites for growth rate

 if (type ==2){

 sites_filled += 1;

 }

 }

 //Calculate average height

 sumheight = 0;

 for (map <double, map <double, double> >::iterator i =

xlattice.begin(); i != xlattice.end(); ++i){

 map <double, double> temp = (*i).second;

 for (map <double, double>::iterator j = temp.begin(); j !=

temp.end(); ++j){

 sumheight += (*j).second;

 }

 }

 averageheight = sumheight / (xlattice.size()*xlattice.begin()-

>second.size());

 //Calculate roughness

 roughnessnumer = 0;

 Braun, Mircevska, Molina Villalba

167

 ctr = 0;

 for (map <double, map <double, double> >::iteratori=

xlattice.begin();ctr<((int)xlattice.size()-

segmentsize+1);++i,++ctr){

 map <double, double> temp = (*i).second;

 ctr2 = 0;

 for (map <double, double>::iterator j = temp.begin(); ctr2 <

((int)xlattice.begin()->second.size() - segmentsize +

1); ++j, ++ctr2){

 sumsegmentheight = 0;

 ctr3 = 0;

 for (map <double, map<double, double> >::iterator i2 = i;

 ctr3 < segmentsize; ++i2, ++ctr3){

 map <double, double> temp2 = (*i2).second;

 ctr4 = 0;

 for (map <double, double>::iterator j2 =

temp2.begin(); ctr4 < segmentsize; ++j2,

++ctr4){

 for (ctr5 = 0; ctr5 < ctr2 && ctr4 < 1; ctr5++)

j2++;

 sumsegmentheight += j2->second;

 }

 }

 averagesegmentheight = sumsegmentheight / (segmentsize *

segmentsize);

 roughnessnumer += pow((averagesegmentheight-

averageheight), 2.0);

 }

 }

 roughness = sqrt(roughnessnumer / ((xlattice.size() - segmentsize

+ 1) * (xlattice.begin()->second.size() - segmentsize +

1)));

 //Porosity calculation

 double unfilled = 0;

 double total = 0;

 if (fseek(fpinputdump, position, SEEK_SET) != NULL)

 {

 fprintf(stderr, "\nError using fseek().");

 fcloseall();

 exit(1);

 }

 for (ctr = 0; ctr < sites; ctr++)

 {

 double x, y, z;

 int type;

 fgets(buffer, MAXBUFFER, fpinputdump);

 type = atoi(strchr(buffer, ' '));

 x = atof(strchr(strchr(buffer,' ')+1,' '));

 y = atof(strchr(strchr(strchr(buffer,' ')+1,' ')+1,' ')+1);

 z = atof(strchr(strchr(strchr(strchr(buffer,' ')+1,' ')+1,'

') + 1, ' ') + 1);

 for (map <double, map <double, double> >::iterator i =

xlattice.begin(); i != xlattice.end(); ++i)

Model-Based Control with Stochastic Simulators

168

 {

 map <double, double> temp = (*i).second;

 for (map <double, double>::iterator j = temp.begin(); j

!= temp.end(); ++j)

 {

 if ((x == i->first) && (y == j->first) && (type ==

1) && (z <= j->second))

 {

 unfilled++;

 }

 if ((x == i->first) && (y == j->first) && (z <= j-

>second))

 {

 total++;

 }

 }

 }

 }

 porosity = unfilled / total;

 netdeprate = (sites_filled - sites_filled_last) / (timestep –

timestep_last);

 if (ctrtimesteps == 0) sites_filled_initial = sites_filled;

 ctrtimesteps++;

 if (strcasecmp(OutputFile, "no") != 0){

 fprintf(fpoutput, "%lf %lf %.20lf %lf %lf\n", timestep,

roughness, netdeprate, porosity,

DumpObjectiveFunctionCalculator(roughness, netdeprate,

deprate, porosity));

 }

 printf("Done with snapshot %d\n", ctrtimesteps - 1);

 }

 locationend: ;

 if (strcasecmp(OutputFile, "no") != 0)

 {

 netdeprate = (sites_filled - sites_filled_initial) / timestep;

 fprintf(fpoutput, "Cumulative Profile: %lf %.20lf %lf %lf\n",

roughness, netdeprate, porosity,DumpObjectiveFunctionCalculator(

roughness, netdeprate, deprate, porosity));

 }

 fcloseall();

}

 Braun, Mircevska, Molina Villalba

169

C.5.2 Slice Machine: 3-D Simulation to 2-D Images
#include <iostream>

#include "SliceMachine.h"

#define MAXLENGTHFILE 100

#define MAXLENGTHBUFFER 100

using namespace std;

int main()

{

 //User Inputs

 char inputdump[MAXLENGTHFILE] = "dump.Experiment39";

 const char constantcross = 'z';

 const double crossselect = 1.0; //If constantcross is x or y, this is the

 cross-section selection. If constantcross is z, this is the z at which it

 will cutt off all z above or at this point. For z, I recommend selecting

 the next highest point.

 char outputdump[MAXLENGTHBUFFER];

 if (constantcross == 'x' || constantcross == 'y') sprintf(outputdump,

"%s.constant%c=%.1lf",inputdump, constantcross, crossselect);

 if (constantcross == 'z') sprintf(outputdump, "%s.%c<%.1lf",inputdump,

 constantcross, crossselect);

 SliceMachine(inputdump, outputdump, constantcross, crossselect);

 return 0;

}

#ifndef DUMPTOPROFILE_H_INCLUDED

#define DUMPTOPROFILE_H_INCLUDED

#include <string.h>

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <map>

void SliceMachine(char *DumpFile, char *OutputFile, char constantcross,

double crossselect);

#endif // DUMPTOPROFILE_H_INCLUDED

//Accepts dump file in the form id, type, x, y, z with 1 or more timesteps,

and prints a text file with timestep

Model-Based Control with Stochastic Simulators

170

//in the first column, roughness of that timestep in the second column,

growth rate in the third column.

//and porosity in the fourth column. Roughness is as defined in

//"Dynamics and control of thin film surface microstructure in a complex

deposition process" by "Dong Ni et. al."

//The denominator is the number of lattice sites in x (2D) or in x and y

(3D).

//If 2-D growth on a 1-D substrate, numerator of equation has only 1

summation, and denominator has only 1 N.

//Cannot compare roughness between simulations of different size lattice.

Does not do 1D.

//Do not compare roughnesses between lattices of different types (apples and

oranges) because,

//for example, a perfectly flat sc6n will have a roughness of 0, but a

perfectly flat fcc will have a roughness greater

//than 0, simply because not all sites at the top of an fcc lattice have the

same height.

//Bottom row(s) (rows if the bottom row does not contain all x or x,y values)

must be filled with type 2.

#include "SliceMachine.h"

using namespace std;

void SliceMachine(char *DumpFile, char *OutputFile, char constantcross,

double crossselect){

 FILE *fpinputdump, *fpoutputdump;

 const int MAXBUFFER = 100;

 char buffer[MAXBUFFER];

 long position;

 int constant;

 if (constantcross == 'x') constant = 1;

 else if (constantcross == 'y') constant = 2;

 else if (constantcross == 'z') constant = 3;

 else fprintf(stderr, "Constant cross must be x or y");

 //Open for reading the input dump file

 if ((fpinputdump = fopen(DumpFile, "r")) != NULL){ ;}

 else{

 fprintf(stderr, "\nError opening read file\n");

 fcloseall();

 exit(1);

 }

 //Open for writing the output file

 if ((fpoutputdump = fopen(OutputFile, "w")) != NULL){ ;}

 else{

 fprintf(stderr, "\nError opening write file\n");

 fcloseall();

 exit(1);

 }

 //Read the input dump's first timestep to figure out how many atoms there

will be and what box bounds to use.

 for (int ctr = 0; ctr < 4; ctr++) fgets(buffer, MAXBUFFER, fpinputdump);

 Braun, Mircevska, Molina Villalba

171

 int totalsites = atoi(buffer);

 for (int ctr = 0; ctr < 2; ctr++) fgets(buffer, MAXBUFFER, fpinputdump);

 double xmin = atof(buffer);

 double xmax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 double ymin = atof(buffer);

 double ymax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 double zmin = atof(buffer);

 double zmax = atof(strchr(buffer, ' '));

 fgets(buffer, MAXBUFFER, fpinputdump);

 int subsites = 0;

 for (int ctr = 0; ctr < totalsites; ctr++)

 {

 fgets(buffer, MAXBUFFER, fpinputdump);

 double x = atof(strchr(strchr(buffer, ' ')+1,' '));

 double y = atof(strchr(strchr(strchr(buffer,' ')+1,' ')+1,' ')+1);

 double z = atof(strchr(strchr(strchr(strchr(buffer,' ')+1,' ')+1,' ')

+1,' ')+1);

 switch (constant)

 {

 case 1:

 if (x == crossselect) subsites++;

 break;

 case 2:

 if (y == crossselect) subsites++;

 break;

 case 3:

 if (z < crossselect) subsites++;

 }

 }

 rewind(fpinputdump);

 while (!feof(fpinputdump)){

 //Skip first line, while testing it for a blank which would signal

 end of file, Get timestep, then Skip line

 fgets(buffer, MAXBUFFER, fpinputdump);

 if (feof(fpinputdump)){

 goto locationend;

 }

 fprintf(fpoutputdump, "%s", buffer);

 for (int ctr = 0; ctr < 2; ctr++){

 fgets(buffer, MAXBUFFER, fpinputdump);

 fprintf(fpoutputdump, "%s", buffer);

 }

 fgets(buffer, MAXBUFFER, fpinputdump);

 fprintf(fpoutputdump, "%d\n", subsites);

 fgets(buffer, MAXBUFFER, fpinputdump);

 fprintf(fpoutputdump, "%s", buffer);

 switch (constant){

 case 1:{

 fprintf(fpoutputdump, "%lf %lf\n", ymin, ymax);

 fprintf(fpoutputdump, "%lf %lf\n", zmin, zmax);

 fprintf(fpoutputdump, "0 0\n");

 break;

Model-Based Control with Stochastic Simulators

172

 }

 case 2:{

 fprintf(fpoutputdump, "%lf %lf\n", xmin, xmax);

 fprintf(fpoutputdump, "%lf %lf\n", zmin, zmax);

 fprintf(fpoutputdump, "0 0\n");

 break;

 }

 case 3:{

 fprintf(fpoutputdump, "%lf %lf\n", xmin, xmax);

 fprintf(fpoutputdump, "%lf %lf\n", ymin, ymax);

 fprintf(fpoutputdump, "%lf %lf\n", zmin, crossselect);

 }

 }

 for (int ctr = 0; ctr < 4; ctr++)

fgets(buffer, MAXBUFFER, fpinputdump);

 fprintf(fpoutputdump, "%s", buffer);

 for (int ctr = 0; ctr < totalsites; ctr++)

 {

 fgets(buffer, MAXBUFFER, fpinputdump);

 int id = atoi(buffer);

 int type = atoi(strchr(buffer, ' '));

 double x = atof(strchr(strchr(buffer,' ')+1,' '));

 double y = atof(strchr(strchr(strchr(buffer,' ')+1,' ')+1,' ')+

1);

 double z = atof(strchr(strchr(strchr(strchr(buffer,' ')+1,' ')+

1,' ')+1,' ')+1);

 switch (constant){

 case 1:

 if (x == crossselect) fprintf(fpoutputdump, "%d %d %lf

%lf 0\n", id, type, y, z);

 break;

 case 2:

 if (y == crossselect) fprintf(fpoutputdump, "%d %d %lf

%lf 0\n", id, type, x, z);

 break;

 case 3:

 if (z < crossselect) fprintf(fpoutputdump, "%d %d %lf %lf

%lf\n", id, type, x, y, z);

 }

 }

 }

 locationend: ;

 fcloseall();

}

 Braun, Mircevska, Molina Villalba

173

Model-Based Control with Stochastic Simulators

174

Appendix D SPPARKS
The SPPARKS software can be used to model several different types of processes, via

the app_style command. For the purposes of this project, the diffusion application is used. It is an

on-lattice application which performs diffusive hops on a lattice whose sites are occupied or

unoccupied (vacant). It can be used to model diffusion on 2D or 3D lattices. It is equivalent to a

2-state Ising model with Kawasaki dynamics, in which neighboring sites exchange their spins (1

for vacant, 2 for occupied) as the model evolves. SPPARKS allows the user to specify how

energy is used in computing the probability of executing a diffusive event through the estyle

command, and which kind of diffusive hops are allowed via the dstyle command.

Three options are available for the estyle setting: off, linear, and nonlinear. They are

related to the computation of the Hamiltonian of the system. If estyle is set to off, the

Hamiltonian for an occupied or vacant site is set to zero, which simply means that energy is not

used in calculating the probability of executing an event. The barrier command is used instead,

to specify a diffusive hop barrier in units of energy. For the estyle setting linear, the Hamiltonian

of an occupied site is defined as follows:

 , Equation 20

 where is zero if site j is occupied, and 1 is site j is vacant.

If estyle is set to nonlinear, the Hamiltonian of an occupied site is calculated via the

following equation:

 , Equation 21

where is 1 if site j is occupied and zero if site j is vacant. This is equivalent to calculating the

coordination number of site i. The function Eng() is a tabulated function specified via the ecoord

 Braun, Mircevska, Molina Villalba

175

command which assigns a value in units of energy to an occupied site with a given coordination

number. The Hamiltonian of a vacant site in all cases is zero.The energy of the system is

computed as the sum of Hi over all sites i.

System temperature is specified via the temperature command, in units of energy. The

probability of executing a diffusive event for different combination of parameters is given in

Table 13 below.

The dstyle setting can be set to hop, which allows nearest neighbor hops only, or

schwoebel, which allows second-nearest-neighbor (Schwoebel) hops as well. The energy barrier

for a Schwoebel hop can also be set via the barrier command, with arguments schwoebel, and

value.

Dimension for the simulation (2D or 3D) has to be defined via the dimension command.

A region is created via the region command, which specifies a region ID and style. For the

diffusion application, the region style is block, which takes minimum and maximum x, y, and z

coordinate values, in units of length, as arguments. For a 2-dimensional simulation, the zmin and

zmax are set to -0.5 and 0.5, respectively. After the region is defined, the simulation box is

created via the create_box application, which takes the region ID as its argument. The lattice

command defines the type of lattice structure, whose dimension must match that specified by the

dimension command, and the create_sites command creates a site at every lattice point.

Model-Based Control with Stochastic Simulators

176

Table 13: Probability of Executing a Diffusion Event. In column 1, Energy is yes if estyle setting is

linear or nonlinear, and no if estyle setting is off. In column 2, Barrier is yes if an energy barrier is

specified via the barrier command, and no otherwise. In column 3, Direction is down if the diffusive hop

lowers the energy of the system, i.e. if the particle’s coordination number increases after it migrates, and

up if the hop increases the energy of the system, as discussed in the estyle section. In column 4,

Temperature is 0.0 or finite, specified via the temperature command. Column 5 gives the probability of

an event with a combination of parameters defined in columns 1-4. Q is the diffusive energy barrier

specified by the barrier command, dE is the system energy change defined in the estyle section, k is the

Boltzman constant, and T is the system temperature.

The set command can be used to set specific site values. The allowed site values for the

diffusion application are 1 for a vacant site, 2 for an occupied site, and 3 for an occupied site of

type which cannot diffuse or bind to particles of type 2. Site value 3 is useful in several ways.

The simulation box has periodic boundary conditions in every direction, which means that

particles in the bottom layer are allowed to diffuse to the top of the simulation box when

diffusing down beyond the box’s boundaries. Setting the sites at the top layer to value 3 prevents

this from happening. Additionally, the deposition command discussed below requires that site

(x,y,z) = (0,0,0) be occupied by a particle of type 2 throughout the simulation. This particle

 Braun, Mircevska, Molina Villalba

177

cannot migrate away from that site because this turns off the deposition command for the rest of

the simulation.Once this happens, no more particles are deposited when that happens. Therefore,

sites that are neighbors of site (0,0,0) are set to value 3, preventing the particle at (0,0.0) from

diffusing. This is believed to be a software bug inherent to the construction of SPPARKS. This

was an ad hoc solution that was found during development. Site values can also be specified via

the read_sites command, which reads a provided datafile containing a matrix of site IDs and site

values, and sets the site values in the simulation box accordingly.

The diffusion application allows the use of a deposition command, which has the

following syntax:

deposition rate dirx diry dirz d0 lo hi

This command adds particles of type 2 to the simulation box at candidate deposition sites, at the

specified rate inparticles per second. Deposition events compete with diffusion events. Every

time a deposition event is selected, a random starting point at the top of the simulation box is

chosen, and a trajectory is projected along an incident direction specified by the 3-dimensional

vector dirx, diry, dirz. For a 3-dimensional simulation, it is required that dirz < 0. For a 2-

dimensional simulation, dirz = 0, and diry < 0. Candidate deposition sites are characterized by

the parameters d0, lo, and hi. d0 specifies a radius, measured perpendicularly to the incident

direction, within which a cadidate site for deposition canlie. lo and hi specify the minimum and

maximum coordination number that a site is allowed to have, in order to qualify as a candidate

deposition site. Of all the candidate sites for a selected event, the one closest to the starting point

along the incident trajectory is selected for deposition.

The frequency with which deposition and diffusion events occur is given by Equations 3

and 4 in section 2.2 on page 14, where the rate of diffusion is specified by Equation 2, with the

Model-Based Control with Stochastic Simulators

178

exponential term following the rules in Table 13 for the probability of executing a diffusion

event. The pre-exponential Am factor cannot be specified in SPPARKS. Therefore, all time

components are scaled by this factor. This means that the supplied deposition rate is the actual

deposition rate divided by Am, and the specified simulation run time is the actual run time

multiplied by Am.

The solve_style command specifies a kMC solver to be used. The solver picks events to

perform from a list of events and their associated probabilities, using a standard Gillespie or

BKL algorithm, which also computes a timestep during which a chosen event occurs. The

difference between the various solver styles available is the algorithm they use to select events,

which affects their speed and scalability as a function of the number of events available to

choose from. The linear style is suitable for simulations with few events, while the tree or group

solers should be used for larger simulations.

The diag_style, stats, and dump commands specify the format of the SPPARKS

simulation output. The diag_style command and the stats command output statistical information

such as time elapsed, number of diffusion events, number of deposition events, and

computational time.The dump command outputs surface information at every time step, such as

site ID, (x,y,z) coordinates, and site value. Sandia National Laboratories provides the pizza.py

toolkit, which can process and image a SPPARKS generated dumpfile. Additionally, the

information contained in the dumpfile can be used to calculate roughness and porosity of the

film, as well as generate MATLAB surface profiles. The programs that are used for these

purposes are present in the following sections.

	University of Pennsylvania
	ScholarlyCommons
	4-2011

	Model-Based Control with Stochastic Simulators: Building Process Design and Control Software for Advanced Materials Processing Technology
	Efrem Braun
	Marija Mircevska
	Manuel Molina Villalba
	Model-Based Control with Stochastic Simulators: Building Process Design and Control Software for Advanced Materials Processing Technology
	Abstract

	tmp.1343153536.pdf.yKI9E

