

University of Pennsylvania ScholarlyCommons

Senior Design Reports (CBE)

Department of Chemical & Biomolecular Engineering

4-2011

Electrical Energy Storage Using Fuel Cell Technology

Erica Harkins University of Pennsylvania

Mark Pando Unviersity of Pennsylvania

David Sobel University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cbe_sdr

Harkins, Erica; Pando, Mark; and Sobel, David, "Electrical Energy Storage Using Fuel Cell Technology" (2011). *Senior Design Reports* (*CBE*). 27.

http://repository.upenn.edu/cbe_sdr/27

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_sdr/27 For more information, please contact libraryrepository@pobox.upenn.edu.

Electrical Energy Storage Using Fuel Cell Technology

Abstract

The goal of this project was to design three different energy storage systems utilizing reversible solid oxide fuel cells. Two of the systems use gaseous feed stocks and require storage for the gas produced by electrolysis. In the third design, molten antimony oxide is reduced to pure antimony during electrolysis rather than storing the energy in a gas. The three systems discussed in this report use electric power during off-peak demand hours to electrolyze a chemical feedstock. The resulting products are then stored for use during peak demand time in fuel cell operation. The systems were designed to store 1 MW of electrical power over a 12 hour period of off-peak demand and release power during a 12 hour period of peak demand. In the two gaseous systems, the fuel cell is made of an yttria-stabilized-zirconia (YSZ) electrolyte with porous nickel at the anode and YSZ-LaMnO₃ composite at the cathode.

In the electrolysis of steam to form hydrogen, the hydrogen is stored in pressurized vessels at 100 psi. During fuel cell mode, the hydrogen gas is oxidized in the fuel cell to form water, which is again stored for use in electrolysis the following day. The operating temperature for both electrolysis and fuel cell operation is 1472°F. The overall efficiency for the hydrogen system is 52.4%, with the main losses occurring as heat supplied to the electrolyzer.

The second design electrolyzes a mixture of steam to hydrogen and carbon dioxide to carbon monoxide at 1292°F and 147 psia. The resulting syngas is fed through a methanation reactor to produce a methane rich stream. The overall efficiency of the methane-based system is 55.7%, with the main losses coming from compression and heating for electrolysis mode.

The molten antimony fuel cell uses an equimolar mixture of antimony and antimony trioxide as the feedstock for electrolysis. The electric current in the electrolyzer reduces the antimony trioxide to form a stream of pure molten antimony. Both the electrolyzer and fuel cell operate isothermally at 1292°F and 14.7 psia. The overall efficiency for the antimony design is 53.7%, with the main losses coming from heat supplied to the electrolyzer.

For profitability analysis, off peak electricity was priced at \$0.06/kWh and peak power was priced at \$0.20/kWh. Under these optimistic assumptions, the return on investment (ROI) for the hydrogen design was calculated to be -26.1%. For the methane system, the ROI was calculated to be -19.2%. For the antimony case, the ROI was found to be -34.2%. These designs serve as a framework for future work with electrical energy storage. However, we believe that with improvements in system efficiency and reductions in the initial capital investment, future reversible fuel cell systems will be profitable and competitive with other forms of electrical energy storage.

Electrical Energy Storage Using Fuel Cell Technology

Senior Design Project Written Report

Erica Harkins, Mark Pando, and David Sobel 4/12/2011

Faculty Advisor: Dr. Raymond J. Gorte

Professor Leonard A. Fabiano

Department of Chemical and Biomolecular Engineering University of Pennsylvania 220 South 33rd Street Philadelphia, PA 19104

April 12, 2011

Dear Mr. Fabiano, and Dr. Gorte,

This spring, our design team was presented with the task of designing three different processes for electrical energy storage using reversible solid oxide fuel cells (SOFCs). The project called for the design of a system that would store 1 MW of energy from either a renewable source or nuclear power plant. The reversible SOFC would run in electrolysis mode during off peak hours, converting the 1 MW of energy to a fuel that could be used to produce energy during peak hours by running the SOFC in fuel cell mode. To evaluate the feasibility of such a process, the economics and efficiencies of each system were examined.

The first system uses hydrogen as a fuel, producing only water in fuel cell mode. The second system uses both hydrogen and methane as fuels, converting them to carbon dioxide and water. A methanator is used in electrolysis mode to generate methane from carbon monoxide. The third system uses molten antimony as a fuel, converting it to antimony oxide in fuel cell mode. The profit for this process is generated by the difference in price of off peak and peak electricity.

Analysis of the systems indicates that at the current state of technology for reversible SOFCs and an electricity price difference of \$0.14/kWh, for our specific designs given the time constraints, none of the three systems is profitable. The capital costs are too high compared to the small profit margin, and the yearly costs are greater than the revenues generated from electricity sales. Additionally, efficiencies achieved are all below 60%. The majority of losses are caused by fuel cell inefficiencies and heat requirements, factors that can only be improved by advancement in technology, no matter the process design surrounding the cell. The process designs, economic analyses, and recommendations are further discussed in this report.

Erica Harkins

Mark Pando

David Sobel

Table of Contents

Abstract	1
Introduction and Project Charter	2
Project Charter	
Fuel Cells	4
Reversible Fuel Cells for Energy Storage	4
Hydrogen Base Case	5
Methane Case	5
Antimony Case	5
Key Reactions	7
Market and Competitive Analyses	8
Customer Requirements	8
Efficient Energy Storage	8
Technology-Readiness Assessment	10
Innovation Map	10
Preliminary Process Synthesis	11
Thermodynamics	11
These equations were taken from the Department of Energy Fuel Cell Handbook	12
Electrolysis Mode	12
Fuel Cell Mode	12
Hydrogen Base Case	13
Concept Stage	14
Operating Conditions of the Fuel Cell	14
Heat Integration	15
Storage Pressure Selection	15
Process Flow Diagrams and Material Balances - Electrolysis	18
Process Description	22
Energy Balance and Utility Requirements	23
Process Flow Diagram and Material Balances - Fuel Cell Mode	26
Process Description	30
Energy Balance and Utility Requirements	31

Equipment List and Unit Descriptions	
Electrolysis Mode	
Fuel Cell Mode	
Equipment Cost Summary	
Other Important Considerations	73
Environmental and Safety Problems and Concerns	
Startup and Shutdown	
Operating Costs	75
Overall Economic Analysis	77
System Efficiency	79
Methane Case	
Concept Stage	
Operating Pressure and Voltage Selection	
Composition Selection	
Methanation Reaction	
Feedstock Preparation	
Reformation	
Storage Pressure Selection	
Process Flow Diagrams and Material Balances - Electrolysis	
Process Description	
Process Flow Diagrams and Material Balances – Fuel Cell Mode	
Process Description	
Equipment Summary	
Energy Balance and Utility Requirements	
Equipment Cost Economic Analysis	
Gas Storage	
Compression Costs	
Fixed-Capital Investment Summary	
Additional Considerations	
Environmental and Safety Concerns	
Operating Costs	

Overall Economic Analysis	
System Efficiency	
Cell Efficiency	
Compression Losses	
Electrolysis Heat Requirements	
Antimony Case	
Concept Stage	
Operating Conditions Choices	
Electrolysis Heating	
Antimony Storage	
Process Flow Diagram and Material Balances - Electrolysis	
Process Description	
Energy Balance and Utilities	
Process Flow Diagram and Material Balances – Fuel Cell Mode	
Process Description	146
Energy Balance and Utilities	
Equipment List and Unit Descriptions	
Specification Sheets	151
Fixed Capital Investment Summary	
Operating Costs	
Overall Economic Analysis	
Overall Efficiency	
Conclusions and Recommendations	
Efficiency	
Profitability	
Overall Analysis and Recommendation	
Acknowledgments	
References	
Appendix	
Problem Statement	
Sample Calculations	

Profitability Analysis Spreadsheets	191
Hydrogen System	192
Methane System	200
Antimony System	208
ASPEN Results	217
Hydrogen System	217
Methane System	258
Material Safety Data Sheets	329
Methanation Catalyst Information	361

<u>Abstract</u>

The goal of this project was to design three different energy storage systems utilizing reversible solid oxide fuel cells. Two of the systems use gaseous feed stocks and require storage for the gas produced by electrolysis. In the third design, molten antimony oxide is reduced to pure antimony during electrolysis rather than storing the energy in a gas. The three systems discussed in this report use electric power during off-peak demand hours to electrolyze a chemical feedstock. The resulting products are then stored for use during peak demand time in fuel cell operation. The systems were designed to store 1 MW of electrical power over a 12 hour period of off-peak demand and release power during a 12 hour period of peak demand. In the two gaseous systems, the fuel cell is made of an yttria-stabilized-zirconia (YSZ) electrolyte with porous nickel at the anode and YSZ-LaMnO₃ composite at the cathode.

In the electrolysis of steam to form hydrogen, the hydrogen is stored in pressurized vessels at 100 psi. During fuel cell mode, the hydrogen gas is oxidized in the fuel cell to form water, which is again stored for use in electrolysis the following day. The operating temperature for both electrolysis and fuel cell operation is 1472°F. The overall efficiency for the hydrogen system is 52.4%, with the main losses occurring as heat supplied to the electrolyzer.

The second design electrolyzes a mixture of steam to hydrogen and carbon dioxide to carbon monoxide at 1292°F and 147 psia. The resulting syngas is fed through a methanation reactor to produce a methane rich stream. The overall efficiency of the methane-based system is 55.7%, with the main losses coming from compression and heating for electrolysis mode.

The molten antimony fuel cell uses an equimolar mixture of antimony and antimony trioxide as the feedstock for electrolysis. The electric current in the electrolyzer reduces the antimony trioxide to form a stream of pure molten antimony. Both the electrolyzer and fuel cell operate isothermally at 1292°F and 14.7 psia. The overall efficiency for the antimony design is 53.7%, with the main losses coming from heat supplied to the electrolyzer.

For profitability analysis, off peak electricity was priced at \$0.06/kWh and peak power was priced at \$0.20/kWh. Under these optimistic assumptions, the return on investment (ROI) for the hydrogen design was calculated to be -26.1%. For the methane system, the ROI was calculated to be -19.2%. For the antimony case, the ROI was found to be -34.2%. These designs serve as a framework for future work with electrical energy storage. However, we believe that with improvements in system efficiency and reductions in the initial capital investment, future reversible fuel cell systems will be profitable and competitive with other forms of electrical energy storage.

Introduction and Project Charter

The inspiration for this design project was a paper by Bierschenk et al.¹ that suggested using reversible solid oxide fuel cells as the basis for an efficient energy storage system. The basic concept behind the three design cases investigated in this project is the conversion of electrical into chemical energy through oxidation and reduction reactions. Bierschenk offers a variety of options for operating conditions, and the data presented in this paper was used as the foundation for two of the three fuel cell design options, the hydrogen and methane cases, presented in this report. The third option offers a completely novel method for using fuel cells reversibly; in this case, electrical energy is used to convert molten antimony into antimony oxide, eliminating this need for gas storage tanks. These three proposals could be used to store electricity generated by renewable energy technologies, or these systems could be used simply to store excess electricity from the grid. The goal of this design project was to determine the overall efficiency and cost of each of these systems.

Project Charter

Project Charter—Electrical Energy Storage Using Fuel Cell Technology

Project Champion: Dr. Raymond J. Gorte **Project Members:** Erica Harkins, Mark Pando, and David Sobel **Specific Goals**

- Design an energy storage system based on a reversible fuel cell system with a porous nickel anode capable of storing 1 MW of electrical energy
- Design an energy storage system based on a reversible fuel cell system with a molten antimony oxide anode capable of storing 1 MW of electrical energy
- Determine a cost of energy storage (\$/kWh) for both systems

Project Scope

In Scope

- Storage capacity of 12 MWh off-peak electricity for use during peak demand
- Design storage tanks for molten Sb/Sb₂O₃
- Determine whether pure, stored oxygen or oxygen from ambient air is more economically advantageous
- Cost comparison of the three fuel cell designs

Out of Scope

- Cost comparison to other energy storage devices
- Explore possibility of using the high temperature exit gas to drive gas turbines
- Explore possibility of using a heat exchanger to transfer waste heat to steam for additional power generation

Deliverables

- Fully specified process designs for each energy storage system
- Process flow diagrams
- Successful ASPEN models

Business Feasibility

• Does the increase in capacity during peak demand from stored electricity justify the cost of these systems?

Time Line

• The project will be completed by April 12, 2011 and presented on April 21, 2011.

Fuel Cells

A fuel cell is an apparatus that produces power through an electrochemical reaction rather than combustion. In this regard, a fuel cell is like a battery, but it allows for a continuous supply of fuel and electricity. The absence of combustion in fuel cells translates to a substantial decrease in emissions when compared to traditional methods of power generation, so these technologies are more environmentally-responsible than fossil fuel combustion or burning coal. Furthermore, there are many different types of fuel cells that cater to many different aspects of energy management. From energy storage for intermittent renewable energy sources like solar and wind to primary power generation, fuel cells are an innovative technology that could prove to be an integral part of future energy portfolios.

The basic concept behind any fuel cell design is as follows: The side of the cell that houses the fuel is the anode, and the side that contains oxygen is the cathode. At the anode, the fuel is oxidized, producing electrons. The electrons then pass through an external circuit, extracting them from the system. At the cathode, the oxygen is reduced by addition of electrons. The two reactants are separated by an electrolyte barrier, through which ions, but not electrons, can pass.

Solid oxide fuel cells (SOFCs) are a particular type of fuel cell that use a solid ceramic electrolyte. SOFCs are often more efficient than other types of fuel cells due to the high operating temperature. The high operating temperature of SOFCs can also be advantageous for combined heat and power generation, which uses the "waste" heat to heat a fluid to turn a turbine, increasing the efficiency of the entire system. The elimination of liquid materials from operations can also extend the life of SOFCs since corrosion, the chemical degradation of components, cannot occur in a solid electrolyte. Also, SOFCs can process a wider range of chemicals than other types of fuel cells. In standard fuel cells, pure hydrogen is necessary for operation. The fuel for SOFCs is typically a mixture of hydrogen and carbon monoxide, both of which can be produced internally within the fuel cell from natural gas and water. Since the fuel can be reformed internally, external reformers for the fuel, which can be quite expensive, are not required. These simplifications can allows for more economically advantageous designs than one possible with other types of fuel cells, allowing SOFCs to expand into regions of the market dominated by more traditional means of power production. In order for an alternative energy source to replace combustion and fossil fuels, it needs to be able to carry a similar energy load as well as be financially competitive. Research demonstrates that SOFCs may be able to compete on this level.

Reversible Fuel Cells for Energy Storage

In addition to the option of using fuel cells for primary power generation, they can also be used reversibly for energy storage. In this process, excess electricity is used to electrolyze water and/or carbon dioxide to produce fuel for later consumption. This excess electricity can come from a renewable source, such as wind or solar, or it can be excess grid electricity during off-peak hours.

This project explores the possibility of utilizing SOFCs for energy storage. Three base cases, as described below, have been proposed, and each has been modeled and analyzed for overall efficiency and profitability. Each of the cases operates on a reversible SOFC with a YSZ electrolyte. During off-peak hours while operating as an electrolyzer, the fuel cell converts 1

MW of electricity into stored chemical energy. When demand levels increase during the day, that stored chemical energy is converted back into electricity. The hydrogen and methane cases store chemical energy in the form of a gas, and the work of Beirschenk et al. was used as the foundation. Alternatively, the molten antimony uses electricity to convert Sb_3O_2 to Sb, and no storage gas is needed. These three cases are detailed below.

Hydrogen Base Case

During electrolysis, liquid water from storage is vaporized and fed to the fuel cell, producing hydrogen that goes to storage and oxygen that is exhausted to the environment. In fuel cell mode, hydrogen is consumed and the liquid water is stored. These reactions are shown below in Table 1 in the Key Reactions section. In electrolysis mode, the operating voltage and current density are 1.07 V and -0.5 A/cm² respectively, and in fuel cell mode, they are 0.86 V and 0.55 A/cm². A turnover period of 30 minutes was assumed between each process. For the design presented in this report, an overall efficiency of 52% was achieved.

Methane Case

For this case, methane is internally reformed in the anode during fuel cell operation and the syngas that is produced is used as the fuel, producing water and carbon dioxide. These products are then reacted to syngas during electrolysis. These reactions can be seen in Table 2 of the Key Reactions section.

The presence of carbon dioxide in the electrolysis process allows for more flexibility in the fuel composition during fuel cell operation. Another advantage to the carbon dioxide base case is that the syngas can be further reacted to produce methane and reduce the storage vessel volume. This methanation reaction, Equation 1, is performed over a nickel catalyst.

$$3H_2 + CO \stackrel{Ni}{\leftrightarrow} CH_4 + H_2O$$

Equation 1

The number of moles of gas for storage is reduced by a factor of four when the water is condensed out of the gas stream, significantly reducing storage costs. Furthermore, the additional cost of the methanation reactor is not significant. In electrolysis mode, the operating voltage and current density are 1.06 V and -0.5 A/cm² respectively, and in fuel cell mode, they are 0.923 V and 0.55 A/cm². A turnover period of 30 minutes was assumed between each process. For the design presented in this report, an overall efficiency of 55.7% was achieved.

Antimony Case

For the antimony case, the feed to for electrolysis mode is a molten, equimolar mixture of antimony and antimony trioxide. The antimony trioxide in the mixture is completely reduced in the electrolyzer, to produce an effluent stream of pure molten antimony. These

reactions can be seen below in Table 3 of the Key Reactions section. Molten antimony is a conductor of electrons acts as both a product and the electrode. The molten nature of the anode allows for electrons to be easily transported throughout the mixture, which minimizes inefficiencies of typical fuel cells associated with transport of the reactants to the electrodes.

The pure antimony stream that is produced in electrolysis is stored for use as the fuel when operation shifts to fuel cell mode. The principle advantage of the antimony-based system is the significant reduction in fuel storage volume since the molten metal is much denser than the product gases for the hydrogen and methane systems. In electrolysis mode, the operating voltage and current density are 0.83 V and -0.20 A/cm² respectively, and in fuel cell mode, they are 0.662 V and 0.22 A/cm². A turnover period of 30 minutes was assumed between each process. For the design presented in this report, an overall efficiency of 55.7% was achieved.

Key Reactions

Table 1 - Hydrogen System Reactions

Electrolysis	Fuel Cell
Cathode: $H_2O + 2e^- \rightarrow H_2 + O^{2-}$	Cathode: $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Anode: $O^{2-} \rightarrow \frac{1}{2}O_2 + 2e^-$	Anode: $H_2 + 0^{2-} \rightarrow H_2 0 + 2e^{-}$
$Overall: H_2O \rightarrow H_2 + \frac{1}{2}O_2$	Overall: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

Table 2 - Methane System Reactions

Electrolysis	Fuel Cell
Cathode: $CO_2 + 2e^- \rightarrow CO + O^{2-}$ $H_2O + 2e^- \rightarrow H_2 + O^{2-}$	Cathode: $O_2 + 4e^- \rightarrow 20^{2-}$
Anode: $20^{2-} \rightarrow 0_2 + 4e^-$	Anode: $\begin{array}{c} H_2 + \ 0^{2-} \rightarrow H_2 0 + 2e^- \\ C0 + \ 0^{2-} \rightarrow CO_2 + 2e^- \end{array}$
$\textit{Overall:} \textit{CO}_2 + \textit{H}_2\textit{O} \rightarrow \textit{CO} + \textit{H}_2$	$Overall: H_2 + CO + O_2 \rightarrow H_2O + CO_2$

Table 3 - Antimony System Reactions

Fuel Cell

Electrolysis

Market and Competitive Analyses

SOFC devices can be used in both centralized and distributed applications since the designs are modular and can be scaled up easily. Additionally, the high operating temperature of SOFCs leads to a large amount of waste heat that can be used for combined heat and power generation systems in larger, centralized installations. SOFCs can achieve very high efficiencies without the use of expensive, precious metals like platinum. In addition, SOFCs can run off of fuels already widely available, allowing them to become integrated into the market with ease.

Energy storage is a young market that is likely to expand in the coming years as fuel prices continue to rise and carbon dioxide emissions become increasingly regulated. Responsible energy storage, increased use of renewable energy sources, and improved control infrastructures are all essential components of the Smart Grid, and the implementation of these could save vast amounts of resources and money. Energy prices will continue to increase in the coming years, and increases in efficiency will generate increasing saving as prices rise. Energy storage systems are essential to improving the efficiency of the grid, and fuel cell systems are particularly attractive due to their high efficiency, flexible design, and site independence. Fuel cells do not depend on natural resources such as wind or water reservoirs, so they can be implemented in wide range of sites. Current energy storage systems include pumped water storage, flywheels, advanced batteries, high-temperature solar thermal storage, and salt ponds. Other energy storage systems are being implemented, but some of these technologies are site-specific. For example, excess electricity generated during off-peak hours can be used to pump water uphill into a reservoir, but this method of energy storage requires a large amount of land and water.

Customer Requirements

Efficient Energy Storage

Energy storage to balance demand loads is a major component of the Smart Grid strategy proposed by the United States Department of Energy², and there are many creative engineering solutions being investigated for large-scale energy storage. Many of these technologies are still in the development stage, and market-proven solutions are needed. Low-cost energy storage will also improve the economic outlook for intermittent, renewable forms of energy, such as wind and solar power.

These fuel cell systems will be competing against a host of advanced technology energy storage solutions, yet fuel cells have unique characteristics that allow them to be suitable for a wide range of sites. The U.S. Department of Energy hopes to achieve a capital cost target of \$1,250/kW and efficiency ratings about 80% for energy storage technologies over the next several years. These targets are ambitious, and they are long-term goals. Some energy storage options have already been deployed in large-scale installations, and the costs of these technologies will serve as points of comparison for future energy storage projects.

Pumped-hydro storage is a well-established energy storage technology that uses off-peak electricity to pump water uphill into a reservoir. During times of high demand, the water is allowed to flow downhill through turbines, regenerating electricity. These systems are

typically 76-85% efficient³. However, these systems are only appropriate for sites with large amounts of available land and a natural rise in elevation.

Technology-Readiness Assessment

Innovation Map

Figure 1: Innovation Map

Innovation Map

The YSZ electrolyte is the material technology that allows this process to yield high efficiency energy storage. This electrolyte can withstand extremely high temperatures, which leads to high ionic conductivity and improves cell efficiency. The process technology that implements the electrolyte is the solid oxide fuel cell. SOFCs can be part of fuel cell systems for both primary generation and reversible systems for energy storage. There are several different types of reversible fuel cell systems. The three examined in this use report utilize three different fuels, hydrogen, syngas and molten metal. The two gas-based fuel cell systems and the molten antimony system all produce the same product, energy storage of low-value off-peak electricity. Each system has its pros and cons, but each one allows the customer to increase power output during peak demand hours, increase plant flexibility and to efficiently store energy.

Preliminary Process Synthesis

Thermodynamics

The amount of chemical energy that can be converted into electricity depends on the Gibbs free energy of the system. The operating voltages and corresponding current densities were selected from the V-i curves in the papers by Bierschenk et al. and Gorte and Gross⁴. Figure 2 is the experimental V-i curve compiled by Bierschenk et al. This graph provides the fundamental electrical data for the hydrogen and methane cases. As seen below, the open cell voltage is observed at a current density of zero.

The Nernst potential can be calculated using Equation 2, in which ΔG° is the standard Gibbs free energy change of the reaction, n is the number of moles of electrons transferred in the reaction, and F is Faraday's constant.

$$E^{o} = -\frac{\Delta G^{o}}{nF}$$

Equation 2

The open circuit voltage can then be calculated using Equation 3, using partial pressures, where the i species are the reactants and the j species are the products.

$$E = E^{\circ} + \frac{RT}{nF} ln \left(\frac{\prod_{i} p_{i}^{v_{i}}}{\prod_{j} p_{j}^{v_{j}}} \right)$$

Equation 3

Ideally, the fuel cell operates at the open circuit potential, but voltage must be applied to drive the reactions. This additional voltage leads to heat losses due to cell inefficiencies,

and the heat generated by the overpotential difference can be calculated using , in which V is the operating voltage, V_{OC} is the open cell voltage, i is the current density, and A is the cell area.

$$Heat = |V - V_{OC}| \times i \times A$$

Equation 4

These equations were taken from the Department of Energy Fuel Cell Handbook⁵.

Electrolysis Mode

During electrolysis mode, electrical energy is converted into stored chemical energy as previously discussed. These reactions are endothermic, so heat must be supplied to the fuel cell during electrolysis mode in order to maintain a constant operating temperature. Some of the necessary heat is provided by the difference in operating voltage and open cell voltage, as demonstrated in Equation 4, but the remainder of this heat must be supplied from external sources. This heat can be supplied in a variety of ways. The fuel cell can be run at the thermoneutral voltage, or the feed stream can be heated above the operating temperature. A combination of these two methods of supplying heat can also be used. Regardless of how the heat is supplied to the system, this need for additional energy is a major contributor to the system efficiency. Another major consideration in electrolysis mode is storage. Each of the three cases in this project store different chemicals, and the cost of storage is significant in each case.

Fuel Cell Mode

Fuel cell mode is when electricity is reconverted from stored chemical energy. The reactions in this mode are highly exothermic, and heat is also produced by the difference in operating voltage and open cell voltage as in electrolysis mode. Large amounts of heat must be removed from the system as a result of these two factors. This can be accomplished by running excess air through the fuel cell.

Hydrogen Base Case

Concept Stage

The design of the hydrogen reversible fuel cell system can be divided into three major parts: determination of operating conditions, heat integration, and storage. The operating voltage and current must be decided before performing the mass and energy balances. Heat integration is especially vital to this system due to the high operating temperature of the fuel cell, and the outlet, high-temperature streams are used to preheat the inlet streams. The third element of the process design is the storage of the product streams in electrolysis mode. The pressure at which the gases are stored strongly affects the capital costs of the system.

Operating Conditions of the Fuel Cell

The operating conditions for our design were based on data from the Bierschenk et al. for a 50%/50% feed of water and hydrogen as seen in Figure 2. A linear approximation of this curve was calculated, shown below in Figure 3. As seen in the figure, the linear approximation held for the range of current densities from -1.0 A/cm^2 to 1.0 A/cm^2 . A high conversion was desired for the process; therefore our design used a feedstock composition of 90% water and 10% hydrogen. Since the concentration of the feed does not have a large effect on open cell voltage for this case, the data from the linearized curve was used as the basis for the new feed composition.

A variety of factors affected the selection of the operating voltages and corresponding current densities. The operating times of electrolysis and fuel cell modes were determined first. The operating time of electrolysis was specified as 12 hours; we chose to include a down time between each change in mode to allow for changes in equipment, including valve control and thermal control. The U.S. Department of Energy has set a target of 20 minutes for start-up time by the year 2020⁶, and we added 10 extra minutes onto this target. The result of this decision is that fuel cell mode operates 11 hours a day. In order to react all of the hydrogen being stored in the 12 hours of electrolysis mode, the current density of fuel cell mode had to be increased due to the reduction in operating time. This resulted in a slight loss of efficiency since the voltage had to be decreased to raise the current density, but it was decided that fully utilizing the storage gas justified this loss.

For the hydrogen case, the open circuit voltage is 0.97 V for the conditions of our system. However, to carry out electrolysis, a higher potential must be applied, with losses proportional to the difference between the actual voltage and the Nernst potential. Based on these reasons and the suggestions given in Bierschenk et al., 1.07 V and -0.5 A/cm^2 were chosen as the operating conditions for electrolysis. To allow for the operating time difference, 0.55 A/cm^2 and 0.87 V were selected for the operating conditions for fuel cell mode. The efficiency of the cell when run at these conditions was calculated to be 80.4%.

Heat Integration

The next component in the design of the hydrogen system was heat integration. The heating and cooling loads of each stream were matched in heat exchangers for maximum efficiency and the lowest utility load. In electrolysis mode, the feed stream entered the cell above the operating temperature since the electrolysis reaction is endothermic and requires heating during operation. The outlet streams from the electrolyzer did not have enough energy to completely vaporize and heat the inlet water stream, so additional heat had to be added to the system. The most significant energy sink for the inlet streams was the vaporization of water. Therefore, two options were examined to determine which would yield the lowest additional energy input.

The first option was using a normal kettle vaporizer to boil all of the water. The water would be pumped at a pressure slightly above operating pressure and then vaporized to steam before entering the heat exchangers where it would be heated by the hot outlet streams. The second option was to use a flash vessel, incorporating a pressure swing along with heat. In this option, the water would be pumped to a high pressure, heated to the saturation temperature by an outlet stream, and then vaporized in a flash vessel that both increased the temperature and lowered the pressure of the feed. The flash method required less energy and was therefore chosen for the process.

Storage Pressure Selection

The third important component of the hydrogen system is the storage pressure of the product gases. There was a tradeoff in price between storage volume and wall thickness of the vessel. However, since vessels of a given diameter need to have a minimum wall thickness so that they can support their own weight, the most costly storage tanks are

those with relatively low storage pressures, large volumes, and large diameters. Additionally, the aspect ratio (L/D) of the sample storage tanks was varied to determine which dimensions would yield the lowest price at each storage pressure.

Even though higher storage pressures result in smaller tanks, the cost of the hydrogen compression had to be considered in the sensitivity analysis. As suggested by one of the industrial consultants, the hydrogen should not exceed $250^{\circ}F$ during compression for safety reasons. Therefore, intercoolers using cooling water were included between each compression stage, cooling the compressed hydrogen to $100^{\circ}F$ before entering the next intercooler. Based on these specifications, the bare module cost of both compressors and intercoolers was determined, using an average value of U=14 Btu/ft²-hr-°F for the intercooler heat transfer coefficients and carbon steel as the materials. Figure 9 shows the minimum bare module cost of vessel, compressors, and intercoolers for storage pressures from 75 psi to 700 psi.

From the above graph, the minimum total bare module cost of \$1,354,524 occurs at a storage pressure of 500 psi. At pressures above 500 psi, the costs of compression and cooling water exceed the vessel cost savings. However, the bare module cost for the storage pressure of 100 psi is \$1,383,042. Because this is quite close to the cost at 500 psi, the difference in power required by the compressors and cooling water required by the intercoolers was examined.

Since the cooling water is inexpensive, its cost is negligible compared to the cost of the storage vessel. The difference in required power, however, affects both the cost and the overall efficiency of the system. The power required for compression to 100 psi is 34.0 kW, and the required power to compress to 500 psi is 64.5 kW. This 30.5 kW difference in compression power over the course of one year, at a rate of \$0.06/kWh, is approximately \$7,250. Therefore, over the lifetime of the equipment, the 100 psi storage system will be both less expensive and more efficient because it consumes less energy. Sample calculations for costs of these units can be seen in the Appendix on page 180 for the vessel, page 179 for compressors, and page 178 for intercoolers.

Process Flow Diagrams and Material Balances - Electrolysis Figure 5: Process Flow Diagram for Electrolysis Mode of the Hydrogen Case

		1	2	3	4	5	9	1	∞
From			P-100	E-100	F-100	F-100	E-101	E-102	E-103
To		P-100	E-100	F-100	E-101		E-102	E-103	M-100
Substream: MIXED									
Phase:		Liquid	Liquid	Liquid	Vapor	Missing	Vapor	Vapor	Vapor
Component Mole Flow									
WATER	LBMOL/HR	42.71	42.71	42.71	42.71	00'0	42.71	42.71	42.71
HYDROGEN	LBMOL/HR	0.00	0.00	0.00	00.0	00'0	00'0	0.00	0.00
OXYGEN	LBMOL/HR	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00
Component Mass Flow									
WATER	LB/HR	769.38	769.38	769.38	769.38	0.00	769.38	769.38	769.38
HYDROGEN	LB/HR	0.00	0.00	0.00	0.00	00'0	00'0	0.00	0.00
OXYGEN	LB/HR	00.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
Mole Flow	LBMOL/HR	42.71	42.71	42.71	42.71	00'0	42.71	42.71	42.71
Mass Flow	LB/HR	769.38	769.38	769.38	769.38	00'0	769.38	769.38	769.38
Volume Flow	CUFT/HR	12.39	12.39	13.89	13238.09	00'0	30783.36	36136.33	46771.24
Temperature	ш	75.00	76.21	263.33	242.19		918.86	1133.99	1500.00
Pressure	PSIA	14.70	214.70	214.70	24.00	24.00	20.50	20.20	19.20
Vapor Fraction		0.00	0.00	0.00	1.00		1.00	1.00	1.00
Liquid Fraction		1.00	1.00	1.00	0.00		0.00	0.00	0.00
Molar Enthalpy	BTU/LBMOL	-1.24E+05	-1.24E+05	-1.20E+05	-1.03E+05		-9.68E+04	-9.48E+04	-9.12E+04
Mass Enthalpy	BTU/LB	-6.90E+03	-6.90E+03	-6.68E+03	-5.70E+03		-5.37E+03	-5.26E+03	-5.06E+03
Enthalpy Flow	BTU/HR	-5.31E+06	-5.31E+06	-5.14E+06	-4.38E+06		-4.13E+06	-4.05E+06	-3.89E+06
Molar Entropy	BTU/LBMOL-R	-40.97051	-40.92901	-34.67038	-9.443277		-3.30626	-1.923016	0.206747
Mass Entropy	BTU/LB-R	-2.274209	-2.271905	-1.924499	-5.24E-01		-1.84E-01	-1.07E-01	1.15E-02
Molar Density	LBMOL/CUFT	3.44805	3.445809	3.075152	3.23E-03		1.39E-03	1.18E-03	9.13E-04
Mass Density	LB/CUFT	6.21E+01	6.21E+01	5.54E+01	5.81E-02		2.50E-02	2.13E-02	1.64E-02

Table 4: Stream Summaries for Electrolysis Mode of the Hydrogen Case

		6	10	11	12	13	14	15	16
From		M-100	FC-SPLIT	S-100	S-100	E-101	E-100	E-104	E-104
To		R-100	S-100	E-101	M-100	E-100	E-104	C-100	
Substream: MIXED									
Phase:		Vapor	Vapor	Vapor	Vapor	Vapor	Mixed	Vapor	Liquid
Component Mole Flow									
WATER	LBMOL/HR	43.24	4.81	4.28	0.53	4.28	4.28	0.03	4.25
HYDROGEN	LBMOL/HR	4.80	43.23	38.43	4.80	38.43	38.43	38.43	0.00
OXYGEN	LBMOL/HR	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Component Mass Flow									
WATER	LB/HR	779.01	86.70	77.07	9.63	70.77	77.07	0.54	76.53
HYDROGEN	LB/HR	9'68	87.15	77.47	9.68	77.47	77.47	77.47	0.00
OXYGEN	LB/HR	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Mole Flow	LBMOL/HR	48.04	48.04	42.71	5.34	42.71	42.71	38.46	4.25
Mass Flow	LB/HR	788.69	173.85	154.54	19.31	154.54	154.54	78.01	76.53
Volume Flow	CUFT/HR	52556.08	51883.90	46119.60	5764.30	27165.38	14327.14	12461.37	1.23
Temperature	F	1497.54	1472.00	1472.00	1472.00	672.00	131.00	100.00	100.00
Pressure	PSIA	19.20	19.20	19.20	19.20	19.10	18.85	18.55	18.55
Vapor Fraction		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Liquid Fraction		00'0	0.00	0.00	00.00	0.00	0.00	0.00	1.00
Molar Enthalpy	BTU/LBMOL	-8.11E+04	-305.7493	-305.7493	-3.06E+02	-6.18E+03	-1.01E+04	7.80E+01	-1.22E+05
Mass Enthalpy	BTU/LB	-4.94E+03	-84.49623	-84.49623	-8.45E+01	-1.71E+03	-2.79E+03	3.84E+01	-6.80E+03
Enthalpy Flow	BTU/HR	-3.90E+06	-14689.68	-13057.65	-1632.023	-2.64E+05	-4.31E+05	2998.521	-5.20E+05
Molar Entropy	BTU/LBMOL-R	1.676249	8.270702	8.270702	8.270702	4.364414	-0.334624	-0.169587	-38.21244
Mass Entropy	BTU/LB-R	1.02E-01	2.285674	2.285674	2.29E+00	1.21E+00	-9.25E-02	-8.36E-02	-2.12E+00
Molar Density	LBMOL/CUFT	9.14E-04	9.26E-04	9.26E-04	9.26E-04	1.57E-03	2.98E-03	3.09E-03	3.441537
Mass Density	LB/CUFT	1.50E-02	3.35E-03	3.35E-03	3.35E-03	5.69E-03	1.08E-02	6.26E-03	6.20E+01

(ED le Flow	17 C-100 E-105	19						
	C-100 E-105	PT	19	20	21	22	23	24
	E-105	E-105	C-101	E-106	C-102	E-107	FC-SPLIT	E-102
		C-101	E-106	C-102	E-107		E-102	
	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor
LBMOL/HR	0.03	0.03	0.03	0.03	0.03	0.03	0.00	0.00
LBMOL/HR	38.43	38.43	38.43	38.43	38.43	38.43	0.00	0.00
LBMOL/HR	0.00	00.0	00.0	0.00	00.0	00.0	19.21	19.21
LB/HR	0.54	0.54	0.54	0.54	0.54	0.54	00.00	0.00
LB/HR	77.47	77.47	77.47	77.47	77.47	77.47	0.00	0.00
LB/HR	00.00	00.00	00.00	0.00	00.00	00.00	614.84	614.84
LBMOL/HR	38.46	38.46	38.46	38.46	38.46	38.46	19.21	19.21
LB/HR	78.01	78.01	78.01	78.01	78.01	78.01	614.84	614.84
CUFT/HR	8922.77	7295.89	5176.72	4193.01	2908.87	2319.09	20751.94	15076.57
F	231.42	100.00	235.32	100.00	244.95	100.00	1472.00	929.00
PSIA	32.00	31.70	55.51	55.21	100.30	100.00	19.20	19.00
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
BTU/LBMO	9.90E+02	7.84E+01	1.02E+03	7.93E+01	1087.337	80.83992	1.09E+04	6.39E+03
BTU/LB	4.88E+02	3.87E+01	5.02E+02	3.91E+01	536.0707	39.85509	3.39E+02	2.00E+02
BTU/HR	38073.77	3016.34	39158.34	3048.22	41818.09	3109.037	2.09E+05	1.23E+05
BTU/LBMO	-R 0.2100873	-1.233909	-0.8446195	-2.336089	-1.923533	-3.516454	9.235022	6.54463
BTU/LB-R	1.04E-01	-6.08E-01	-4.16E-01	-1.15E+00	-0.948326	-1.733656	2.89E-01	2.05E-01
LBMOL/CUI	T 4.31E-03	5.27E-03	7.43E-03	9.17E-03	0.0132213	0.0165837	9.26E-04	1.27E-03
LB/CUFT	8.74E-03	1.07E-02	0.0150691	1.86E-02	0.0268174	0.0336376	2.96E-02	4.08E-02

Process Description

This section discusses the electrolysis mode of the hydrogen system, which operates for 12 hours per day during off-peak electricity demand. In electrolysis mode, 42.71 lbmol/hr of water is fed into the system from a storage tank. After being vaporized and preheated by the electrolyzer outlet streams, it is fed to the cathode of the electrolyzer which uses 1 MW of energy supplied from the power plant to convert it to hydrogen and oxygen. The hydrogen product stream is stored in a pressurized vessel after giving heat to the inlet streams. The oxygen formed at the anode is cooled and then discarded to the atmosphere.

The water feed (Stream 1) is pumped (P-100) from its storage tank to a pressure of 214.7 psi and then heated by the product stream (Stream 13) in a double pipe heat exchanger (E-100) to 263°F. This high pressure liquid water stream then goes into a flash vessel (F-100) where it is flashed into a vapor at 24 psi. By pumping the liquid, heating it, and then flashing it, the overall energy required by the system is less than if a standard boiler had been used. Additionally, pumping a liquid is less energy intensive than compressing a gas, saving the system energy.

After being flashed, the vapor stream (Stream 4) passes through another double pipe heat exchanger (E-101) where it gains heat from the same product stream (Stream 11), exiting at 919°F. Next, the stream passes through a final double pipe exchanger (E-102) where it gets heated by the oxygen product stream (Stream 23) to 1134°F before passing through a fired heater (E-103) to reach its final temperature, 1500°F (Stream 8). It is then combined with the product recycle (Stream 12) and fed into the electrolyzer at 1498°F (Stream 9).

The electrolyzer (R-100) operates at 1472°F and 19.2 psi. The hydrogen-rich product stream (Stream 10) exits at 1472°F and gets split into the recycle and product streams (Streams 12 & 1). The oxygen product stream (Stream 23) exits the electrolyzer at 1472° F and is then exhausted to the environment after giving heat to the feed stream as described above. The hydrogen product stream passes through multiple heat exchangers as described above and exits the final feed preheater at 131°F (Stream 14). In a double pipe partial condenser (E-104), 4.25 lbmol/hr of water is condensed out (Stream 16) using cooling water and stored in a tank (V-102), leaving a dry hydrogen stream at 100°F (Stream 15) to be stored. This stream of 38.43 lbmol/hr of hydrogen and 0.03 lbmol/hr of water then goes through multistage compression with intercooling (C-100-2 and E-105-7). It exits the final cooler at 100°F and 100 psi and is stored in a large pressure vessel (V-101).

Energy Balance and Utility Requirements

The energy and utility requirements for the hydrogen system in electrolysis mode are listed below in Table 5. The annual costs are based on the 12 hours of operation per day throughout the operating year.

Cooling Water					
Equipment	Unit No.	Flow Rate (lb/hr)	Annual Flowrate (lb)	Price (\$/lb)	Annual Cost
Partial Condenser	E-104	2884.2	11,421,432	9.01E-06	\$102.86
Intercooler 1	E-105	1172.7	4,643,892	9.01E-06	\$41.82
Intercooler 2	E-106	1260	4,989,600	9.01E-06	\$44.94
Intercooler3	E-107	1324.8	5,246,208	9.01E-06	\$47.25
Total Cooling W	ater	6641.7	26,301,132		\$236.87

 Table 5: Utility and Energy Requirements for Electrolysis

Low Pressure St	eam				
Equipment	Unit No.	Flow Rate (lb/hr)	Annual Flowrate (lb)	Price	Annual Cost
Flash Vessel	F-100	828.5	3,280,911	\$ 3.00/1000 lb	\$9,842.732

Natural Gas					
Equipment	Unit No.	Heat Duty (Btu/hr)	Flow Rate (SCF/hr)	Cost	Annual Cost
Fired Heater	E-103	152,339	159.5	\$3.20/1000 SCF	\$2,021.40

Electricity					
Equipment	Unit No.	Power (kW)	Annual consumption (kWh)	Price (off peak)	Annual Cost
Storage Compressor 1	C-100	10.28	40,721	\$.06/kWh	\$2,443.26
Storage Compressor 2	C-101	11.05	43,763	\$.06/kWh	\$2,625.78
Storage Compressor 3	C-102	11.63	46,037	\$.06/kWh	\$2,762.22
Water Pump	P-100	0.46	1,801	\$.06/kWh	\$108.06
Electrolyzer	R-100	1000	3,960,000	\$.06/kWh	\$237,600.00
Total Electricity		1,033.4	4,092,323	\$.06/kWh	\$245,539.30

Additional Heat to Electrolyzer									
Equipment	Unit No.	Heat Duty (Btu/hr)	Electricity (kW)	Annual Heat (Btu)	Annual Electricity (kWh)				
Electrolyzer	R-100	678,143	198.7	2,685,445,001	787,026				

The major utilities used in electrolysis mode are cooling water, low pressure steam, natural gas, and electricity. Since this process will occur at a power plant, all of these utilities will be readily available and inexpensive.

Cooling water is used to condense the water product and cool the hydrogen in the intercoolers during compression. The flow rates of water needed were calculated using a temperature increase of 90°F to 120°F in ASPEN and the cost of cooling water is from Table 23.1 of *Product and Process Design Principles*⁷.

Low pressure steam supplies the heat used to vaporize the water in the flash vessel (F-100). The flow rate needed was calculated by ASPEN and the cost is also from Table 23.1 of *Product and Process Design Principles*.

Natural gas is used to supply the heat for the fired heater (E-103) that heats the water feed to operating temperature. The LHV of natural gas was used, obtained from Table 23.2 of *Product and Process Design Principles*. The cost of natural gas was taken from Table 23.1 of the same source.

The electricity needed for this process comes directly from the power plant and is purchased at the off-peak, wholesale price. This price is \$0.06/kWh, found in Table 23.1 of *Product and Process Design Principles*. The electrolyzer runs on 1 MW of power, while the pumps and compressors throughout the system require 33.4 kW. Of this 1 MW of power, 93.46 kW is waste heat that heats the electrolyzer as discussed in the thermodynamics section of this report on page 15.

However, in addition to this heat, as shown above in Table 5, 678,143 Btu/hr or 198.7 kW need to be supplied to keep the electrolyzer running at 1472°F. This heat can be supplied in two ways: as more overvoltage or as additional heat to the feed stream. To be supplied as more heat, the inlet stream must be 831°F hotter, or to be supplied as overvoltage, the operating voltage must be increased by 0.11 V. While these two options are the extremes, the most feasible solution would be a combination of both. A discussion of how these two options effect efficiency will be discussed later on page 82 of this report.

		25	26	27	28	29	30	31	32
From			P-101	E-108		P-102	E-109	M-101	M-102
To		P-101	E-108	M-101	P-102	E-109	M-101	M-102	R-100
Substream: MIXED									
Phase:		Vapor	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor	Vapor
Component Mole Flow									
WATER	LBMOL/HR	0.00	0.00	0.00	4.70	4.70	4.70	4.70	5.29
HYDROGEN	LBMOL/HR	42.28	42.28	42.28	0.00	0.00	00.0	42.28	47.56
NITROGEN	LBMOL/HR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OXYGEN	LBMOL/HR	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Component Mass Flow									
WATER	LB/HR	0.00	0.00	0.00	84.64	84.64	84.64	84.64	95.23
HYDROGEN	LB/HR	85.23	85.23	85.23	0.00	00.0	00.00	85.23	95.88
NITROGEN	LB/HR	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
OXYGEN	LB/HR	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00
Mole Flow	LBMOL/HR	42.28	42.28	42.28	4.70	4.70	4.70	46.98	52.85
Mass Flow	LB/HR	85.23	85.23	85.23	84.64	84.64	84.64	169.87	191.11
Volume Flow	CUFT/HR	2435.873	14546.97	22140.09	1.362652	1.362665	2431.35	24590.15	27893.7
Temperature	Ŀ	75	75.4035	3.50E+02	7.50E+01	7.50E+01	3.50E+02	3.50E+02	3.56E+02
Pressure	PSIA	100	16.7	1.66E+01	1.47E+01	1.77E+01	1.67E+01	1.66E+01	1.66E+01
Vapor Fraction		1	1	1	0.00E+00	0.00E+00	1.00E+00	1.00E+00	1.00E+00
Liquid Fraction		0	0	0	1.00E+00	1.00E+00	0	0	0
Molar Enthalpy	BTU/LBMOL	-10.41634	-1.04E+01	1.90E+03	-1.24E+05	-1.24E+05	-1.02E+05	-8.47E+03	-8.42E+03
Mass Enthalpy	BTU/LB	-5.167143	-5.17E+00	9.42E+02	-6900.115	-6900.085	-5648.883	-2.34E+03	-2.33E+03
Enthalpy Flow	BTU/HR	-440.3871	-440.3871	80254.38	-5.84E+05	-5.84E+05	-4.78E+05	-3.98E+05	-4.45E+05
Molar Entropy	BTU/LBMOL-R	-3.835697	-0.274671	2.614683	-40.97051	-40.96989	-7.525772	2.246091	2.304926
Mass Entropy	BTU/LB-R	-1.902741	-0.136254	1.297043	-2.274209	-2.274174	-0.417744	0.621138	0.6374136
Molar Density	LBMOL/CUFT	0.0173566	2.91E-03	1.91E-03	3.44805	3.448016	1.93E-03	1.91E-03	1.89E-03
Mass Density	LB/CUFT	0.0349888	5.86E-03	3.85E-03	6.21E+01	6.21E+01	3.48E-02	6.91E-03	6.85E-03

		33	34	35	36	37	38	39	40
From		FCSPLIT	E-110		C-104	E-111	MULTIPLY	C-103	E-112
To		E-110		C-104	E-111	M-102	C-103	E-112	R-100
Substream: MIXED									
Phase:		Vapor	Liquid	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor
Component Mole Flow									
WATER	LBMOL/HR	47.56	46.98	0.59	0.59	0.59	0.00	0.00	0.00
HYDROGEN	LBMOL/HR	5.29	00.0	5.29	5.29	5.29	0.00	0.00	0.00
NITROGEN	LBMOL/HR	0.00	00.0	0.00	0.00	00.00	147.83	147.83	147.83
OXYGEN	LBMOL/HR	0.00	00.0	0.00	0.00	00.0	39.30	39.30	39.30
Component Mass Flow									
WATER	LB/HR	856.88	846.33	10.58	10.58	10.58	00.0	00.0	0.00
HYDROGEN	LB/HR	10.66	00.0	10.66	10.66	10.66	00.0	00.0	0.00
NITROGEN	LB/HR	0.00	00.0	0.00	0.00	00.0	4141.26	4141.26	4141.26
OXYGEN	LB/HR	0.00	00.0	0.00	0.00	00.0	1257.45	1257.45	1257.45
Mole Flow	LBMOL/HR	52.85	46.98	5.87	5.87	5.87	187.13	187.13	187.13
Mass Flow	LB/HR	867.54	846.33	21.24	21.24	21.24	5398.71	5398.71	5398.71
Volume Flow	CUFT/HR	65599.27	13.97502	2655.583	2507.152	3283.582	73049.38	55974.66	85834.1
Temperature	ш	1472	180.5008	1.81E+02	2.04E+02	4.10E+02	7.50E+01	1.73E+02	450
Pressure	PSIA	16.7	15.2	1.52E+01	1.67E+01	1.67E+01	1.47E+01	2.27E+01	21.29595
Vapor Fraction		1	0	1.00E+00	1.00E+00	1	1	1	1
Liquid Fraction		0	1	0	0.00E+00	0	0	0	0
Molar Enthalpy	BTU/LBMOL	-81342.89	-1.21E+05	-9.67E+03	-9.50E+03	-8.04E+03	-1.68E+01	6.65E+02	2.63E+03
Mass Enthalpy	BTU/LB	-4955.37	-6717.692	-2674.102	-2627.512	-2.22E+03	-5.84E-01	2.31E+01	90.99591
Enthalpy Flow	BTU/HR	-4.30E+06	-5.69E+06	-5.68E+04	-5.58E+04	-47208.22	-3151.911	1.25E+05	4.91E+05
Molar Entropy	BTU/LBMOL-R	1.825084	-35.79586	0.7570315	0.8284207	2.746903	0.9894893	1.298281	3.992828
Mass Entropy	BTU/LB-R	0.1111832	-1.986972	0.2093665	0.2291101	0.7596903	0.0342972	0.0450004	0.1383977
Molar Density	LBMOL/CUFT	8.06E-04	3.361601	2.21E-03	2.34E-03	1.79E-03	2.56E-03	3.34E-03	2.18E-03
Mass Density	LB/CUFT	0.0132248	60.56018	8.00E-03	8.47E-03	6.47E-03	7.39E-02	9.64E-02	0.062897

		41	42	43	44	45
From		NOTREAL	E-112	E-108	E-109	E-111
To		E-112	E-108	E-109	E-111	
Substream: MIXED						
Phase:		Vapor	Vapor	Vapor	Vapor	Vapor
Component Mole Flow						
WATER	LBMOL/HR	00.0	0.00	0.00	0.00	0.00
HYDROGEN	LBMOL/HR	0.00	0.00	0.00	00.0	0.00
NITROGEN	LBMOL/HR	147.83	147.83	147.83	147.83	147.83
OXYGEN	LBMOL/HR	18.16	18.16	18.16	18.16	18.16
Component Mass Flow						
WATER	LB/HR	00'0	0.00	0.00	00.00	0.00
HYDROGEN	LB/HR	00.0	0.00	00.0	00.00	0.00
NITROGEN	LB/HR	4141.26	4141.26	4141.26	4141.26	4141.26
OXYGEN	LB/HR	581.02	581.02	581.02	581.02	581.02
Mole Flow	LBMOL/HR	165.99	165.99	165.99	165.99	165.99
Mass Flow	LB/HR	4722.28	4722.28	4722.28	4722.28	4722.28
Volume Flow	CUFT/HR	1.62E+05	1.54E+05	1.52E+05	1.57E+05	1.61E+05
Temperature	H	1.47E+03	1.19E+03	1127.942	1044.674	1.04E+03
Pressure	PSIA	21.3	1.91E+01	18.6	17.1	1.66E+01
Vapor Fraction		1.00E+00	1.00E+00	1	1	1.00E+00
Liquid Fraction		0	0	0	0	0
Molar Enthalpy	BTU/LBMOL	1.03E+04	8.12E+03	7633.238	6995.196	6.94E+03
Mass Enthalpy	BTU/LB	363.0571	285.397	268.3089	245.8817	244.0627
Enthalpy Flow	BTU/HR	1.71E+06	1.35E+06	1.27E+06	1.16E+06	1.15E+06
Molar Entropy	BTU/LBMOL-R	9.288209	8.269167	8.021578	7.775835	7.800313
Mass Entropy	BTU/LB-R	0.3264813	0.2906619	0.2819591	0.2733212	0.2741816
Molar Density	LBMOL/CUFT	1.03E-03	1.08E-03	1.09E-03	1.06E-03	1.03E-03
Mass Density	LB/CUFT	0.0292197	3.07E-02	0.0310447	0.0301214	2.94E-02

Process Description

This section discusses the fuel cell mode of the hydrogen system, which operates for 10.9 hours per day during peak electricity demand. 42.28 lbmol/hr of hydrogen (Stream 25) from storage is expanded through a valve (P-101) to lower its pressure from 100 psi to 16.7 psi (Stream 26). It is heated in a preheater (E-108) by the air exhaust stream (Stream 42) to 350°F (Stream 27). Parallel to the hydrogen stream, 4.70 lbmol/hr of water (Stream 28) from storage is pumped (P-102) and then vaporized and heated by the air exhaust (Stream 43) in a heat exchanger (E-109) to 350°F (Stream 30). The hydrogen and water streams are combined in a mixer (Stream 31) and then combined with the product recycle (Stream 37) in another mixer before being sent into the anode of the fuel cell at 356°F (Stream 32). Additionally, air at 1.86 times excess, 187.13 lbmol/hr, (Stream 38) is compressed (C-103) and then preheated to 450°F (Stream 40) by the exhaust air stream (Stream 41) in a heat exchanger (E-112) before entering the cathode of the fuel cell.

The difference between operating temperature and inlet stream temperature in this system is the same as in the Siemens Westinghouse 4.5 MW SOFC system on page 8-58 of *The Fuel Cell Handbook*. Since the fuel cell itself is exothermic, some of this extra heat went towards heating the inlet streams to operating temperature. The rest of the heat generated was absorbed by the excess air. A sensitivity analysis was run on the amount of excess air vs. cooling load needed on the fuel cell, and with a 186% air excess, the cooling load was equal to zero.

The fuel cell (R-100) operates at 1472°F. A pressure gradient exists across the electrolyte, with the fuel being fed at 16.6 psi and the air entering at 21.3 psi. Since the electrolyte is a ceramic material, this strain is allowed. The air exhaust stream (Stream 41) is used to preheat the three inlet streams as stated above, exiting from the third preheater at 1045°F (Stream 44). The exhaust then enters one final heat exchanger (E-111) where it reheats the recycle stream (Stream 36) and is then discarded to the environment (Stream 45). The product stream from the fuel cell (Stream 33) enters a partial condenser (E-110), and the water product of 46.98 lbmol/hr at 180.5°F (Stream 34) is sent to storage (V-100). The vapor recycle (Stream 35) passes through the recycle blower (C-104) before being reheated to 410°F (Stream 37) and being combined with the water and hydrogen feeds to be sent into the fuel cell.

Energy Balance and Utility Requirements

The energy and utility requirements for the hydrogen system in fuel cell mode are listed below in Table 6. The annual costs are based on the 10.9 hours of operation per day throughout the operating year.

Cooling Water					
Equipment	Unit	Flow Rate (lb/hr)	Annual Flowrate (lb)	Price	Annual Cost
Product Stream Partial Condenser	E-110	48,264	173,606,354	9.01E-06	\$1563.50

Electricity					
Equipment	Unit	Power (kW)	Annual consumption (kWh)	Price (peak)	Annual Cost
Inlet Air Blower	C-103	37.41922	134,597	\$0.20/kWh	\$26,919.40
Recycle Blower	C-104	0.2900773	1,043	\$0.20/kWh	\$208.60
Feed Pump	P-102	0.0007457	3.00	\$0.20/kWh	\$0.60
Fuel Cell	R-100	(884.116)	(3,180,129)	\$0.20/kWh	(\$636,025.80)
Total Electricity		846.40	3,044,486	\$0.20/kWh	

The major utilities used in fuel cell mode are cooling water, and electricity. Since this process will occur at a power plant, both of these utilities will be readily available and inexpensive.

Cooling water is used to condense the water from the fuel cell product stream. The flow rate of water needed was calculated using a temperature increase of 90°F to 120°F in ASPEN and the cost of cooling water is from Table 23.1 of *Product and Process Design Principles*.

In fuel cell operation, electricity is produced, and therefore the electricity required by pumps and compressors is provided by the fuel cell. Fuel cell operation produces a net 846.4 kW which is sold at the peak, commercial cost per kilowatt-hour of 0.20/kWh⁸.

Just as electrolysis mode generated waste heat to counter the endothermic reaction in the system, the fuel cell produces waste heat in addition to being exothermic, meaning that heat needs to be removed to keep it operating at 1472°F. This heat is removed by the inlet streams entering the cell at a lower than operating temperature, and additionally, as mentioned above, by excess air. The temperatures of the inlets and excess air in this system absorb all the heat, leaving no heat duty on the cell.

Equipment List and Unit Descriptions

Electrolysis Mode

Table 7: Equipment List for Hydrogen System Electrolys	Tabl	le 7	7:	Equi	pment	List	for	Hydro	gen S	System	Electro	lysis
--	------	------	----	------	-------	------	-----	-------	-------	--------	---------	-------

Unit No.	Unit Type	Function	Size	Material	Oper. T (°F)	Oper. P (psi)
C-100	Storage Compressor 1	Increase the pressure of H_2 product stream	$P_{\rm C} = 13.79 \; \rm hp$	Carbon Steel	231.4	32.0
C-101	Storage Compressor 2	Increase the pressure of H_2 product stream	$P_{C} = 14.82 \text{ hp}$	Carbon Steel	241.1	55.5
C-102	Storage Compressor 3	Increase the pressure of H_2 product stream	$P_{\rm C} = 15.59 \; \rm hp$	Carbon Steel	248.3	100.3
E-100*	Water Preheater 1	Preheat the liquid water before being flashed	$A = 18.19 \text{ ft}^2$ Q = 167,094 Btu/hr	Stainless Steel	263.3	214.7
E-101*	Water Preheater 2	Preheat the water vapor stream	$A = 25.28 \text{ ft}^2$ Q = 250,848 Btu/hr	Stainless Steel	918.9	24.0
E-102*	Water Preheater 3	Preheat the water vapor stream	$A = 189.63 \text{ ft}^2$ Q = 85,822 Btu/hr	Stainless Steel	1134	20.5
E-103*	Fired heater	Preheat the water vapor stream	Q = 153,570 Btu/hr	Stainless Steel	1500	19.2
E-104*	Product Partial Condenser	Remove water from the product stream prior to compression	$A = 201.05 \text{ ft}^2$ Q = 86,234	Stainless Steel	100	18.55
E-105*	Intercooler for C- 100	Keep the H ₂ stream from getting too hot	A =61.01 ft^2 Q =35,058 Btu/hr	Stainless Steel	100	31.0
E-106*	Intercooler for C- 101	Keep the H ₂ stream from getting too hot	$A = 60.89 \text{ ft}^2$ Q = 37,673 Btu/hr	Stainless Steel	100	54.51
E-107*	Intercooler for C- 102	Keep the H ₂ stream from getting too hot	$A = 60.11 \text{ ft}^2$ Q = 38,709 Btu/hr	Stainless Steel	100	45.4
F-100	Flash Vessel	To vaporize the water using heat and a pressure swing	$A = 55.29 \text{ ft}^2$ Q = 755265 Btu/hr	Stainless Steel	243.3	24.0
P-100	Water Feed Pump	Raise the pressure of the inlet water stream	$P_{\rm C} = 0.61 \ \rm hp$	Stainless Steel	75	214.7
R-100	Electrolyzer/ Fuel Cell	Convert Water to Hydrogen using electricity	$I = 0.5 \text{ A/cm}^2$ V = 1.07 V Area = $1.869E+06 \text{ cm}^2$	YSZ, porous Nickel, LaMnO ₃	1472	17.6
V-100	Large Water Storage Tank	Large storage vessel for water	V = 1105.3 gal	Stainless Steel	75	14.7
V-101	Hydrogen Storage Tank	Pressurized storage tank for H ₂	D=11.8 ft L = 236.0 ft	Carbon Steel	75	100
V-102	Small Water Storage Tank	Small storage vessel for water	V = 110.5 gal	Stainless Steel	75	14.7

* To be consistent in our calculations of heat exchanger area and price, all heat exchangers were designed in ASPEN Heat Exchange Design⁹, and the heat transfer coefficient and pressure drops calculated were transferred into the ASPEN flow sheet.

Storage Compressor 1 (C-100)

The first compressor in the three stage compression of hydrogen is a screw compressor with an electric drive, constructed out of carbon steel. As stated above, the temperature of the hydrogen during compression could not exceed 250°F. This limited the amount of compression that could occur in each compressor. In this first compressor, the hydrogen is compressed to 32 psi. The net work of the compressor is 13.79 hp, with a bare module cost of \$48,552.86. Please refer to the Specification Sheet on page 37 and sample calculations on page 179.

Storage Compressor 2 (C-101)

The second compressor in the three stage compression of hydrogen is also a screw compressor with an electric drive, constructed out of carbon steel. The hydrogen is compressed from 31.7 psi to 55.51 psi. The net work of the compressor is 14.82 hp, with a bare module cost of \$51,121.70. Please refer to the Specification Sheet on page 38 and sample calculations on page 179.

Storage Compressor 3 (C-102)

The third and final compressor in the three stage compression of hydrogen is also a screw compressor with an electric drive, constructed out of carbon steel. The hydrogen is compressed from 55.21 psi to 100.3 psi to account for the pressure drop across the intercooler. It is then put into the storage tank. The net work of this compressor is 15.59 hp, with a bare module cost of \$53,032.05. Please refer to the Specification Sheet on page 39 and sample calculations on page 179.

Water Preheater 1 (E-100)

The first water preheater increases the temperature of the high pressure liquid feed prior to flashing and evaporating. The temperature of the water stream is to rise from 76.21°F to 263.33°F by heat transfer with the hot product stream. ASPEN was unable to give accurate heat transfer coefficients and pressure drops. Therefore, the hot and cold stream inlet and outlet conditions were input into ASPEN Heat Exchange Design, and the calculated pressure drop and heat transfer coefficient were input into ASPEN, giving more accurate areas for heat exchange and pressure drops across heat exchangers. The calculated area for this unit was small, and therefore this heat exchanger is a double pipe heat exchanger, with stainless steel as both the inner and outer pipe material. The bare module cost of this unit is \$10,900.23. Please refer to the Specification Sheet on page 40 and sample calculations on page 178.

Water Preheater 2 (E-101)

The second water preheater heats the steam feed stream by using the electrolyzer product stream. The temperature of the steam rises from 242°F to 919°F. The same procedure as stated in Water Preheater 1 was used to obtain an accurate area for heat transfer. Once again, a small area was calculated and double pipe geometry was used. For a stainless steel inner and outer tube construction, the bare module cost of the exchanger is \$11,489.44. Please refer to the Specification Sheet on page 41 and the sample calculations on page 178.

Water Preheater 3 (E-102)

The third water preheater heats the steam from 919°F to 1134°F using the oxygen product stream produced at the cathode of the electrolyzer. Using the same method as the previous two preheaters, a larger heat transfer area was calculated, but still within the double pipe geometry range. With stainless steel inner and outer tubes, the bare module cost of the unit is \$15,863.66. Please refer to the Specification Sheet on page 42 and the sample calculations on page 178.

Fired Heater (E-103)

The fourth and final water preheater is a fired heater that uses natural gas as a fuel. The natural gas consumption of this unit can be found in the Energy and Utilities section on page 26. The heater increases the temperature of the feed from 1134°F to 1500° F, slightly above the operating temperature of the electrolyzer. Based on a stainless steel, shop fabricated unit, the bare module cost is \$48,304.46. Please refer to the Specification Sheet on page 43 and the sample calculations on page 179.

Product Partial Condenser (E-104)

This partial condenser is used to remove almost all of the water from the product stream, as well as cool the hydrogen product stream prior to compression. The cold utility used for is cooling water, bringing the product stream from 131°F to 100°F. The details of the cooling water flow rate can be found in the Energy and Utilities section on page 26. Based on the same heat transfer area calculation method as stated above, the geometry of this heat exchanger is a double pipe. With stainless steel as the material for both the inner and outer pipes, the bare module cost is \$16,010.00. Please refer to the Specification Sheet on page 44 and the sample calculations on page 178.

Intercooler for C-100 (E-105)

This intercooler cools the hydrogen product stream after it passes through its first stage of compression. It is cooled from 231.4°F to 100°F using cooling water, keeping it from reaching the 250°F threshold mentioned previously. For details on cooling water flow rates, please refer to page 26, in the Energy and Utilities section. Using the same methods as previously described, the area for heat transfer calculated allowed for double pipe geometry. For stainless steel

construction, the bare module cost of this unit is \$13,228.98. Please refer to the Specification Sheet on page 45 and the sample calculations on page 178.

Intercooler for C-101 (E-106)

This intercooler cools the hydrogen product stream after it passes through the second stage of compression. It is cooled from 235°F to 100°F using cooling water. For details on cooling water flow rates, please refer to page 26, in the Energy and Utilities section. Using the same methods for heat transfer area calculation, the area for heat transfer calculated allowed for double pipe geometry. For stainless steel construction, the bare module cost of this unit is \$13,224.76. Please refer to the Specification Sheet on page 46 and the sample calculations on page 178.

Intercooler for C-102 (E-107)

This intercooler cools the hydrogen product stream after it passes through its final stage of compression, prior to entering the storage vessel. It is cooled from 245°F to 100°F using cooling water. For details on cooling water flow rates, please refer to page 26, in the Energy and Utilities section. Using the same methods for heat transfer area calculation, the area for heat transfer calculated allowed for double pipe geometry. For stainless steel construction, the bare module cost of this unit is \$13,231.22. Please refer to the Specification Sheet on page 48 and the sample calculations on page 178.

Flash Vessel (F-100)

To evaporate the inlet water stream, rather than using a heater, a flash vessel is used. This allows for a pressure swing to work along with a heat duty, vaporizing the water at a lower total energy cost. The water is flashed from 214.7 psi to 24.0 psi, and the heat duty required by the unit is provided by 50 psig steam. The amount of steam required can be found in the Energy and Utilities section on page 26. For a stainless steel construction, the total bare module factor of this unit is \$13,022.33. Please refer to the Specification Sheet on page 49 and the sample calculations on page 178.

Water Feed Pump (P-100)

The water feed pump is a small, low power pump used to raise the pressure of the inlet water stream from out of the storage tank at atmospheric pressure to 200 psig, providing enough pressure to perform a good flash and still move through the system. The size of this unit is too small for the correlations in *Product and Process Design Principles*. We therefore found a price for a comparable pump online. Based on the cost of a Wel-Bit Cast Iron Clear water pump¹⁰ multiplied by a materials factor for stainless steel of two, the bare module cost of this unit is \$398.00. Please refer to the Water Feed Pump Specification Sheet on page 50.

Fuel Cell/Electrolyzer (Electrolysis)

This unit is a reversible SOFC, made of YSZ with a porous nickel catalyst at the anode and LaMnO₃-doped YSZ catalyst at the cathode. In electrolysis mode, this unit takes in 1.0 MW of electricity and converts water to hydrogen and oxygen. Based on data from Bierschenk¹, an operating voltage of 1.07 V and current density of 0.5 A/cm² was selected. Based on these values, the electrode area required was determined to be $1.8692*10^{6}$ cm². The feed stream to the cell enters at 1500°F, slightly above the operating temperature. Since the electrolyzer operates endothermically, this slightly higher temperature of the inlet helps to keep it at operating temperature. As mentioned previously, the electrolyzer is assumed to be a CSTR for ease of calculations, and therefore all streams exit at the operating temperature, 1472°F. Based on DOE targets for fuel cell factory costs in 2020^{2} , this unit had a bare module cost of \$450,000. A bare module factor of 1 was assumed for this unit since fuel cells come from the factory ready for use. Please refer to the Specification Sheet on page 51.

Large Water Storage Tank (V-100)

The water feed for electrolysis mode and water product from fuel cell operation is stored in this tank. The water for this process must be pure, and therefore stainless steel is used as the material of construction. The tank is designed to hold an extra 200 gallons of water in case additional water needs to be stored or added to the system. Based on a cone roof liquid storage tank design, the bare module cost of this unit is \$10,264.95. Please refer to the Specification Sheet on page 52.

Hydrogen Storage Tank (V-101)

This pressure vessel is for storing the hydrogen product from electrolysis mode and feed for fuel cell operation. As described previously on page 17, the storage pressure was chosen to be 100 psi by an economic optimization of the compression and storage system. The vessel is a horizontal, carbon steel cylinder with an aspect ratio of 20. It has a bare module cost \$1,383,042. Please refer to the Specification Sheet on page 53 and sample calculations on page 180.

Small Water Storage Tank (V-102)

This tank is used to store the water in the product stream during electrolysis operation and provide water for the feed in fuel cell operation. The tank is designed to hold an extra 20 gallons in case additional water needs to be stored or added to the system. Based on a cone roof liquid storage tank design of stainless steel, the bare module cost of this unit is \$3,172.17. Please refer to the Specification Sheet on page 54.

Electrolysis Specification Sheets

The following lists the page number of the specification sheets detailing the different units within electrolysis operation, followed by the specification sheets.

Page	<u>Unit No.</u>	<u>Unit Name</u>				
38	C-100	Storage Compressor 1				
39	C-101	Storage Compressor 2				
40	C-102	Storage Compressor 3				
41	E-100*	Water Preheater 1				
42	E-101*	Water Preheater 2				
43	E-102*	Water Preheater 3				
44	E-103*	Fired heater				
45	E-104*	Product Partial Condenser				
46	E-105*	Intercooler for C-100				
47	E-106*	Intercooler for C-101				
48	E-107*	Intercooler for C-102				
49	F-100	Flash Vessel				
50	P-100	Water Feed Pump				
51	R-100	Electrolyzer/ Fuel Cell				
52	V-100	Large Water Storage Tank				
53	V-101	Hydrogen Storage Tank				
54	V-102	Small Water Storage Tank				

		S	Storage Co	ompressor 1		
Identificatio	on Item Item No. No. Require	ed	Compressor C-100 1		Date By	4/5/11 EH/MP/DS
Function:		Increase the	pressure of H	² product stream for	storage	
Operation:		12 hours, da	uily			
Materials H Stream ID	andled Quantity (ll Compositio Temperatur Pressure (pr Vapor Frac	o/hr) on: Water Hydrogen re (°F) si) tion		Inlet 15 78.01 0.54 77.47 100 18.55 1		Outlet 17 78.01 0.54 77.47 231.4 32 1
Design Data	Type Material Net Work (Efficiency C _P C _{BM}	HP) \$ \$	22,568.77 48,522.86	Screw Compressor Carbon Steel 13.79 0.72		

		S	Storage Co	ompressor 2		
Identificatio	on Item Item No. No. Require	ed	Compressor C-101 1		Date By	4/5/11 EH/MP/DS
Function:		Increase the	pressure of H	¹ ₂ product stream for s	storage	
Operation:		12 hours, da	aily			
Materials H Stream ID	andled Quantity (It Compositio Temperatur Pressure (pr Vapor Frac	o/hr) n: Water Hydrogen e (°F) si) tion		Inlet 18 78.01 0.54 77.47 100 31.7 1		Outlet 19 78.01 0.54 77.47 235.3 55.51 1
Design Data	Type Material Net Work (Efficiency C _P C _{BM}	HP) \$ \$	23,777.54 51,121.70	Screw Compressor Carbon Steel 14.82 0.72		

		S	Storage Co	ompressor 3		
Identificatio	on Item Item No. No. Require	ed	Compressor C-102 1		Date By	4/5/11 EH/MP/DS
Function:		Increase the	pressure of H	² product stream for s	storage	
Operation:		12 hours, da	uily			
Materials H Stream ID	Iandled Quantity (It Compositio Temperatur Pressure (pr Vapor Frac	o/hr) m: Water Hydrogen re (°F) si) tion		Inlet 20 78.01 0.54 77.47 100 55.21 1		Outlet 21 78.01 0.54 77.47 244.95 100.3 1
Design Data	а Туре Material Net Work (Efficiency С _Р С _{ВМ}	HP) \$ \$	24,666.07 53,032.05	Screw Compressor Carbon Steel 15.59 0.72		

Water Preheater 1						
Identification Item Item No. No. Required	H	Heat Exchang E-100 1	ger	Date By		4/5/11 EH/MP/DS
Function:	Increase the ter	Increase the temperature of the inlet liquid water stream				
Operation:	12 hours, daily	7				
Materials Handled			Н	ot	Col	d
Stream ID Quantity (lb/hr) Composition:	Water Hydrogen		Inlet 13 154.54 77.07 77.47	Outlet 14 154.54 77.07 77.47	Inlet 2 769.40 769.40 0.00	Outlet 3 769.40 769.40 0.00
Temperature (°F) Pressure (psi) Vapor Fraction			672 19.1 1	131 18.85 1	76.21 214.7 0	263.33 214.7 0
Design Data Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficient (Btu/hr-ft ² -F) Heat Transfer Area (ft ²)					Double Pipe Stainless Steel 167,094 52.16 18.19	
C _P C _{BM}	\$ \$	6,055.68 10,900.23				

	Water Preheater 2						
Identification Item Item No. No. Required	He E-	eat Exchang 101 1	ger	Date By		4/5/11 EH/MP/DS	
Function:	Increase the tem	Increase the temperature of the steam feed stream					
Operation:	12 hours, daily						
Materials Handled			Н	ot	Cold	l	
Stream ID Quantity (lb/hr) Composition:	Water		Inlet 11 154.54 77.07	Outlet 13 154.54 77.07	Inlet 4 769.40 769.40	Outlet 6 769.40 769.40	
Temperature (°F) Pressure (psi) Vapor Fraction	Hydrogen		1472 19.2 1	672 19.1 1	0.00 242.2 24 1	0.00 918.9 20.5 1	
Design Data Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficient (Btu/hr-ft ² -F) Heat Transfer Area (ft ²)					Double Pipe Stainless Steel 250,848 20.30 25.28		
C _P C _{BM}	\$ \$	6,383.02 11,489.44					

	Water Preheater 3						
Identification Item Item No. No. Required		Heat Exchange E-102 1	er	Date By		4/5/11 EH/MP/DS	
Function:	Increase the te	mperature of th	ie steam fe	ed stream			
Operation:	12 hours, daily	У					
Materials Handled			Н	iot	Cole	1	
			Inlet	Outlet	Inlet	Outlet	
Stream ID			23	24	6	7	
Quantity (lb/hr)			614.84	614.84	769.40	769.40	
Composition:							
	Water		0.00	0.00	769.40	769.40	
	Hydrogen		0.00	0.00	0.00	0.00	
	Oxygen		614.84	614.84	0.00	0.00	
Temperature (°F)			1472.0	929.0	918.9	1134.0	
Pressure (psi)			19.2	19.0	20.5	20.2	
Vapor Fraction			1	1	1	1	
Design Data							
Туре					Double Pipe		
Material					Stainless Steel		
Heat Transfer (Bt	.u/hr)	2			85,822		
Heat Transfer Co	efficient (Btu/hr	-ft ² -F)			4.84		
Heat Transfer Are	$ea (ft^2)$				189.6		
C	\$	8 813 9/					
Cp C	Ψ ¢	15 962 66					
C_{BM}	ф	15,805.00					

Fired Heater							
Identificatio	on Item Item No. No. Required	F E	ired Heater -103 1		Date By		4/5/11 EH/MP/DS
Function:	Increase the temperature of the steam feed stream						
Operation:	12 hours, daily						
Materials H Stream ID	Iandled Quantity (lb/h Composition: Temperature (Pressure (psi) Vapor Fractio	r) Water °F) n		Inlet 7 769.40 769.40 1134.0 20.2 1		Outlet 8 769.40 769.40 1500.0 19.2 1	
Design Data Type Material Bare-Module Type Heat Transfer (Btu/hr)		22,056.83			Fired Heater Stainless Steel Shop Fabricated 153,569		
	C _{BM}	\$	48,304.46				

	Product Partial Condenser							
Identification Item Item No. No. Required	Heat Exchanger Date E-104 By 1					4/5/11 EH/MP/DS		
Function:	Cool hydroge	Cool hydrogen product stream and condense water product						
Operation:	12 hours, dai	12 hours, daily						
Materials Handled								
			Inlet	Outlet	Condensate			
Stream ID			14	15	16			
Quantity (lb/hr)			154.54	78.01	76.53			
Composition:	XX /		77.07	0.54				
	Water		77.07	0.54	76.53			
	Hydrogen		//.4/	//.4/	0			
Tomporatura (°F)			131.0	100.0	100.0			
Pressure (nsi)			10 1	18.0	18.0			
Vapor Fraction			1	1	0			
Design Data								
Туре					Double Pipe			
Material					Stainless Steel			
Heat Transfer (Bt	u/hr)				86,234			
Heat Transfer Co	efficient (Btu/h	nr-ft ² -F)			40.88			
Heat Transfer Are	ea (ft^2)				201.05			
Cold Utility					Cooling Water			
Ср	\$	8,894.44						
	\$	16 010 00						
CBM	Ψ	10,010.00						

Intercooler for C-100							
Identificatio	n Item Item No. No. Required	Heat Exchanger E-105 1	Date By		4/5/11 EH/MP/DS		
Function:	Cool the hydrogen product stream in between compressors						
Operation:	12 hours, daily						
Materials Ha	andled	Inl	at	Outlet			
Stream ID		17	51	18			
Stream ID	Quantity (lb/hr)	78 ()1	78.01			
	Composition:	70.0	/1	/0.01			
	Water	0.5	4	0.54			
	Hydrogen	77.4	17	77.47			
	Temperature (°F)	231	.4	100.0			
	Pressure (psi)	32.	0	31.7			
	Vapor Fraction	1		1			
Design Data							
_	Туре			Double Pipe			
	Material			Stainless Steel			
	Heat Transfer (Btu/hr)			35,057			
	Heat Transfer Coefficien	nt (Btu/hr-ft ² -F)		13.66			
	Heat Transfer Area (ft ²)			61.01			
	Cold Utility			Cooling Water			
	C _P \$	7,349.43					
	C _{BM} \$	13,228.98					

Intercooler for C-101								
Identificatio	n Item Item No. No. Required	Heat Exchanger E-106 1	Date By		4/5/11 EH/MP/DS			
Function:	Cool the h	Cool the hydrogen product stream in between compressors						
Operation:	12 hours, c	12 hours, daily						
Materials Ha	andled	Inle	f	Outlet				
Stream ID		19	ι	20				
Su cam 1D	Quantity (lh/hr)	78.0	1	78.01				
	Composition:	70.0	1	/0.01				
	Water	0.54	ł	0.54				
	Hydrogen	77.4	7	77.47				
	Temperature (°F)	235.	3	100.0				
	Pressure (psi)	55.5	5	55.2				
	Vapor Fraction	1		1				
Design Data				-	-			
	Туре			Double Pipe				
	Material			Stainless Steel				
	Heat Transfer (Btu/hr)			36,110				
	Heat Transfer Coefficie	ent (Btu/hr-ft ² -F)		13.77				
	Heat Transfer Area (ft ²)		60.89				
	Cold Utility			Cooling Water				
	C _P \$	7,347.09						
	C _{BM} \$	13,224.76						

	Intercooler for C-102							
Identificatio	n Item Item No. No. Required	Heat Exchanger E-107 1	Date By		4/5/11 EH/MP/DS			
Function:	Cool the hydrogen product stream after the final compressor							
Operation:	12 hours, daily							
Materials Ha	andled	Inl	et	Outlet				
Stream ID		2		22				
	Quantity (lb/hr)	78	01	78.01				
	Composition:	,		10101				
	Water	0.5	54	0.54				
	Hydrogen	77.	47	77.47				
	Temperature (°F)	245	5.0	100.0				
	Pressure (psi)	100).3	100.0				
	Vapor Fraction	1		1				
Design Data								
	Туре			Double Pipe				
	Material			Stainless Steel				
	Heat Transfer (Btu/hr)			38,709				
	Heat Transfer Coefficier	nt (Btu/hr-ft ² -F)		13.92				
	Heat Transfer Area (ft ²)			60.11				
	Cold Utility			Cooling Water				
	C _P \$	7,350.68						
	C _{BM} \$	13,231.22						

	Flash Vessel						
Identification Item Item No. No. Required	Flash Vesse F-100	51 1	Date By	4/5/11 EH/MP/DS			
Function:	To vaporize water us	sing heat and	a pressure swing				
Operation:	12 hours, daily						
Materials Handled		Inlet	Outlet				
Stream ID Quantity (lb/hr) Composition: Temperature (°F)	Water	769.40 769.40 263.33	769.40 769.40 242.19				
Pressure (ps1) Vapor Fraction		214.7 0	24 1				
Design Data Type Material Heat Transfer (Btr Heat Transfer Coe Heat Transfer Are	u/hr) efficient (Btu/hr-ft ² -F) va (ft ²)		Kettle Double Pipe Stainless Steel 755,265 300 55.29				
C _P C _{BM}	\$ 7,234. \$ 13,022.	63 33					

Water Feed Pump									
Identificatio	on								
	Item		Pump		Date	4/5/11			
	Item No		P-100		Bv	EH/MP/DS			
	No. Req	uired	1		ý				
Function:		Increa	ase the pres	ssure of the water feed pump					
Operation:	on: 12 hours, daily								
Materials Handled Stream ID			Inlet 15	Outlet 17					
~	Quantity	/ (lb/hr)		769.40	769.40				
	Compos	ition:							
		Wate		769.40	769.40				
	Tempera	ature (°F)	75	76.21				
	Pressure	e (psi)		14.7	214.7				
	Vapor F	raction		0	0				
Design Data	a								
	Type			Wel-Bilt Cast Iron Clear Water Pump					
	Material	l		Stainless Steel					
	Net Woi	rk (HP)		0.61					
	Efficien	су		0.4					
	C _P	\$	120.00						
	C_{BM}	\$	396.00						

	Fuel Cell	/Electro	olyzer (Electrolysi	s)	
Identification Item Item No. No. Required	Elect R-10	rolyzer 0 1		Date By	4/5/11 EH/MP/DS
Function:	Reduces water to	hydrogen	and oxygen with supplied	electricity	
Operation:	12 hours, daily				
Materials Handled			Inlet	O	utlet
Stream ID			9	10	23
Quantity (lb/hr)			788.69	173.85	614.84
Composition:					
	Water		779.01	86.70	0.00
	Hydrogen		9.68	87.15	0.00
	Oxygen		0.00		614.84
Temperature (°F)		1497 5	1472	1472
Pressure (psi))		19.2	19.2	19.2
Vapor Fraction			1	1	1
Design Data					
Туре			Reversible Fuel Cell		
Material		Y	SZ, porous Nickel, LaMn	O ₃	
Heat Duty (Btu/h	nr)		3.189E+05		
Electricity Suppl	ied (kW)		1000		
Operating T (°F))		1472		
Operating P (psi))		19.2		
Voltage (V)			1.07		
Current (A/cm ²)	2		0.5		
Electrode Area (cm ²)		1.8692E+06		
Cr	\$ 150.0				
	\$ 450.0	00.00			

Large Water Storage Tank								
Identification Item Item No. No. Requi	n ired	Storage Tank V-100	1	Date By	EH/MP/DS	4/5/11		
Function:	Store th	ne water produced	from fuel cell mode					
Operation:	Contin	uous						
Materials Ha Stream ID	andled		Inlet (fuel cell) 34		Outlet (electro	olysis)		
Quantity ((lb/hr)		846.33		769.34			
Compositi	ion: Water		846.33		769.34			
Temperatu Pressure (j Vapor Fra	ure (°F) psi) action		75 14.7 0		75 14.7 0			
Design Data Type Material Liquid Vo Tank Volu	blume (gal) ume (gal)		Cone Roof Stainless Steel 1105.3 1300					
C _P C _{BM}	\$ \$	10,264.9 10,264.9	5 5					

Hydrogen Storage Tank							
Identification Item Item No. No. Require	ed	Storage Tank V-101 1		Date By	4/5/11 EH/MP/DS		
Function:	Store the hy-	drogen produced i	n electrolysis mode				
Operation:	Continuous						
Materials Handled			Inlet (electrolysis)		Outlet (fuel cell)		
Ouantity (lb/hr)			78.01		769.34		
Compositio	n:						
	Water		0.54		0.59		
Hydrogen			77.47		85.23		
Temperatur	e (°F)		75		75		
Pressure (ps	si)		100		100		
Vapor Fraction			1		1		
Design Data							
Type			Horizontal Vessel				
Material			Stainless Steel				
Gas Volum	$e(ft^3)$	26665.86349					
Diameter (ft)		7.5					
Length (ft)			600				
Wall Thickness (ft)			0.032821367				
Ср	\$	453,456.39					
C _{BM}	\$	\$1,383,042					

Small Water Storage Tank									
Identification Item Item No. No. Required	Storage Tank V-102 1		Date By	4/5/11 EH/MP/DS					
Function: Store the excess water from electrolysis mode									
Operation: C	Operation: Continuous								
Materials Handled Inlet (electrolysis) Outlet (fuel cell)									
Stream ID		16		28					
Ouantity (lb/hr)		76.53		84.64					
Composition:									
V	Vater	76.53		84.64					
Temperature (°	F)	75		75					
Pressure (psi)	-)	14.7		14.7					
Vapor Fraction		0		0					
Design Data									
Туре		Cone Roof							
Material		Stainless Steel							
Liquid Volume	(gal)	110.5							
Tank Volume (Tank Volume (gal)130								
C _P \$	3.172.17								
C_{BM}	3,172.17								

Fuel Cell Mode

 Table 8: Equipment List for Fuel Cell Mode of the Hydrogen Case

Unit No.	Unit Type	Function	Size	Material	Oper. T (°F)	Oper. P (psi)
C-103	Inlet Air Blower	Increase the pressure of the air inlet stream to pass through system	$P_{\rm C} = 50.18 \; \rm hp$	Cast Iron	75	14.7
C-104	Recycle Blower	Blow the recycle stream back to the fuel cell feed	$P_{\rm C} = 0.39 \; \rm hp$	Cast Iron	181	16.7
E-108	Hydrogen Preheater	Increase the temperature of the hydrogen feed stream	$A = 9.48 \text{ ft}^2$ Q = 80,695 Btu/hr	Stainless Steel	350	16.6
E-109	Water Vaporizer and Preheater	Vaporize and increase the temperature of water feed	$A = 5.9 \text{ ft}^2$ Q = 10,590 Btu/hr	Stainless Steel	350	16.7
E-110	Product Stream Partial Condenser	Cool fuel cell product and condense product water	$A = 25.77 \text{ ft}^2$ Q = 352,393 Btu/hr	Stainless Steel	180.5	15.2
E-111	Recycle Heater	Increase the temperature of the recycle stream	$A = 1.66 \text{ ft}^2$ Q = 8,589 Btu/hr	Stainless Steel	410	16.7
E-112	Air Preheater	Heat the air feed stream prior to entering the fuel cell	$A = 50.78 \text{ ft}^2$ Q = 366,733 Btu/hr	Stainless Steel	450	20
P-102	FC Water Feed Pump	Increase the pressure of the water feed stream	$P_{\rm C} = 0.001 \text{ hp}$	Stainless Steel	75	17.7
R-100	Fuel Cell/Electrolyzer	Oxidizes hydrogen to water, producing electricity	$I = 0.55 \text{ A/cm}^2$ V = 0.86 V Area = $1.869E+06 \text{ cm}^2$	YZS, porous nickel, LaMnO ₃	1472	16.6
V-100	Large Water Storage Tank	Large storage vessel for water	V = 1105.3 gal	Stainless Steel	75	14.7
V-101	Hydrogen Storage Tank	Pressurized storage tank for H ₂	D=7.5 ft L = 600 ft	Carbon Steel	75	100
V-102	Small Water Storage Tank	Small storage vessel for water	V = 110.5 gal	Stainless Steel	75	14.7

Inlet Air Blower (C-103)

This blower provides the air with enough pressure head to pass through the entire system and exit at atmospheric pressure. The air inlet stream leaves the blower at 22.7 psi, just enough pressure to pass through all of the units in its flow path and exit at 14.7 psi. Based on a rotary straight-lobe blower made of cast iron with cast aluminum blades, the bare module cost of this unit is \$46,839.67. Please refer to the Specification Sheet on page 60 and sample calculations on page 179.

Recycle Blower (C-104)

This small blower is used to move a small fraction of the product stream back to the entrance of the fuel cell to mix with the inlet streams. It supplies enough pressure, 1.5 psi, to move the stream through the single heat exchanger it must pass through. Using a torayry straight-lobe deisgn with cast iron and cast aluminum blades, the bare module cost of this unit is \$1,197.61. Please refer to the Specification Sheet on page 61 and sample calculations on page 179.

Hydrogen Preheater (E-108)

The hydrogen preheater uses the exhaust air stream to heat the hydrogen feed from 75.4°F to 350°F before being combined with the water feed stream. Using the same heat transfer coefficient calculation method as for the preheaters in electrolysis mode, a small area of heat transfer was calculated, allowing for a double pipe exchanger. Using stainless steel for both the inner and outer pipes, a bare module cost of \$9,821.48 was calculated. Please refer to the Specification Sheet on page 62 and sample calculations on page 178.

Water Vaporizer and Preheater (E-109)

The function of this heat exchanger is to increase the temperature of the inlet water, vaporize it, and then increase the temperature further, from 75°F liquid to 350°F steam. Using the same method of heat transfer coefficient calculation as in previous heat exchangers, a small area was obtained, and double pipe geometry could be used. For a stainless steel construction, the bare module cost of this unit is \$9,103.97. Please refer to the Specification Sheet on page 63 and sample calculations on page 178.

Product Stream Partial Condenser (E-110)

The product stream partial condenser uses cooling water to cool the fuel cell product stream from 1472°F to 180.5°F, causing water to condense out for storage. For details on cooling water flow rates, please refer to page 24 in the Energy and Utilities section. Using the same method of heat transfer coefficient calculation, a small area was calculated and double pipe geometry could be used. For stainless steel pipes, the bare module cost of this unit is \$11,525.05. Please refer to the Specification Sheet on page 64 and sample calculations on page 178.

Recycle Heater (E-111)

The recycle heater uses the air exhaust stream to reheat the recycle stream after the water has been condensed out. Its temperature rises from 204°F to 410°F before being combined with the feed streams. Using the same method of heat transfer coefficient calculation to find an area, a small heat transfer area was required. Therefore, a double pipe geometry could be used. For stainless steel pipes, the bare module cost of this unit is \$7,432.88. Please refer to the Specification Sheet on page 65 and sample calculations on page 178.

Air Preheater (E-112)

The air preheater heats the blown air feed stream from 173°F to 450°F using the air exhaust as the heat source. Using the same method of heat transfer coefficient calculation, a small heat transfer area was obtained, and a double pipe geometry could be used. For stainless steel construction, the bare module cost of this unit is \$12,846.26. Please refer to the Specification Sheet on page 66 and sample calculations on page 178.

Fuel Cell Water Feed Pump (P-102)

The water feed pump for fuel cell operation requires 0.001 hp for operation since the pressure of the water stream only needs to increase by 3 psi. Since the size of this unit is far below the correlations within *Product and Process Design Principles*, a cost for this pump was determined by a Wel-Bit cast iron clear water pump⁷ multiplied by the material factor for stainless steel. Therefore, the bare module cost of this unit is \$398.00. Please refer to the Specification Sheet on page 67.

Fuel Cell/Electrolyzer (Fuel Cell)

As was stated before, this unit is a reversible fuel cell made of YSZ with a porous nickel at the anode and LaMnO₃ at the cathode. It operates at 0.55 A/cm² so that there is time during the day for turnover between fuel cell and electrolysis mode. Based on data from Bierschenk et al.**Error! ookmark not defined.**, this current density corresponds to a voltage of 0.86 V, and at the same area as stated previously, produces 884 kW over the course of the 10.9 hours during each operating day. It operates slightly above atmospheric pressure and at 1472°F. As stated before, the bare module cost of this unit is \$450,000 based on Department of Energy targets. Please refer to the Specification Sheet on page 68.

Fuel Cell Specification Sheets

The following pages list the page number of the specification sheets detailing the different units within fuel cell operation.

Page	<u>Unit</u> <u>No.</u>	<u>Unit Type</u>
60	C-103	Inlet Air Blower
61	C-104	Recycle Blower
62	E-108	Hydrogen Preheater
63	E-109	Water Vaporizer and Preheater
64	E-110	Product Stream Partial Condenser
65	E-111	Recycle Heater
66	E-112	Air Preheater
67	P-102	FC Water Feed Pump
68	R-100	Fuel Cell/Electrolyzer
52	V-100	Large Water Storage Tank
53	V-101	Hydrogen Storage Tank
54	V-102	Small Water Storage Tank

Table 9: Equipment Summary for Fuel Cell Mode of the Hydrogen Case

Inlet Air Blower								
Identificatio	on Item Item No. No. Requin	red	Blower C-103 1		Date By	4/5/11 EH/MP/DS		
Function:	Increase the pressure of the inlet air stream							
Operation:	10.9 hours, daily							
Materials H Stream ID	Handled Quantity (lb/hr) Composition: Oxygen Nitrogen		gen gen	Inlet 38 5398.70 1257.45 4141.26 75	Outlet 39 5398.70 1257.45 4141.26			
	Pressure (psi) Vapor Fraction			14.7 1		22.7 1		
Design Data	a Type Material Net Work (HP) Efficiency			Rotary Straight-Lobe Cast Iron, Cast Aluminum Blades 50.18 0.72				
	C _P C _{BM}	\$ \$	21,785.89 46,839.67					

Recycle Blower							
Identificatio	on Item		Date 4/5/11				
	Item No. No. Requir	ed	C-104		By	EH/MP/DS	
Function:	1.0.104	Blow	the recycle st	ream to the entrance of the fuel cell			
Operation:	: 10.9 hours, daily						
Materials Handled				Inlet 35	Outlet 36		
	Quantity (l Compositio	b/hr) on:		21.24	21.24		
	Water Hydrogen			10.58 10.66	10.58 10.66		
	Temperatu Pressure (p Vapor Frac	re (°F) si) tion		181 15.2 1	204 16.7 1		
Design Data	Type Material Net Work ((HP)		Rotary Straight-Lobe Cast Iron, Cast Aluminum Blades 0.39			
	C _P	\$	557.03	0.72			
	C _{BM}	\$	1,197.61				

Hydrogen Preheater								
Identification Item Item No. No. Required	He E-	eat Excha 108 1	anger	Date By		4/5/11 EH/MP/DS		
Function:	Increase the tem	perature	of the hydr	rogen feed s	tream			
Operation:	10.9 hours, dail	у						
Materials Handled			Н	ot	Col	d		
			Inlet	Outlet	Inlet	Outlet		
Stream ID			42	43	26	27		
Quantity (lb/hr)			4722.28	4722.26	85.23	85.23		
Composition:								
_	Hydrogen		0.00	0.00	85.23	85.23		
	Nitrogen		4141.26	4141.26	0.00	0.00		
	Oxygen		581.02	581.02	0.00	0.00		
Temperature (°F)			1190	1128	75 4	350		
Pressure (nsi)			19.1	18.6	167	16.6		
Vapor Fraction			1	10.0	0	0		
			-	-	Ũ	Ŭ		
Design Data								
Type					Double Pipe			
Material					Stainless Steel			
Heat Transfer (Bt	Heat Transfer (Btu/hr) 80.695							
Heat Transfer Co	Heat Transfer Coefficient (Btu/hr-ft ² -F) 9.03							
Heat Transfer Are	$ea (ft^2)$,			9.48			
СР	\$ 5	,456.38						
	\$ 9	.821 48						
	+	,521.10						
Water Vaporizer and Preheater								
---	---------------	--------------------------	-------------	--------------	-----------------	--------------------		
Identification Item Item No. No. Required		Heat Excha E-109 1	anger	Date By		4/5/11 EH/MP/DS		
Function:	Increase the	e temperatur	e and vapor	ize water in	let			
Operation:	10.9 hours,	daily						
Materials Handled			Н	ot	Col	d		
			Inlet	Outlet	Inlet	Outlet		
Stream ID			43	44	29	30		
Quantity (lb/hr)			4722.28	4722.26	84.64	84.64		
Composition:								
	Water		0.00	0.00	84.64	84.64		
	Nitrogen		4141.26	4141.26	0.00	0.00		
	Oxygen		581.02	581.02	0.00	0.00		
Temperature (°F)			1128	1044 67	75 /	350		
Pressure (nsi)			18.6	17 1	17.7	167		
Vapor Fraction			1	1	0	1		
Design Data								
Туре					Double Pipe			
Material					Stainless Steel			
Heat Transfer (Bt	u/hr)				105,908			
Heat Transfer Coefficient (Btu/hr-ft ² -F)					20.62			
Heat Transfer Are	ea (ft^2)				5.9			
Ch	\$	5 057 76						
C _P	Ψ \$	9 103 07						
Свм	Ψ	7,103.77						

Product Stream Partial Condenser							
Identificatior	I Item Item N No. Re	lo. equired	Heat Exchar E-110 1	ager	Date By		4/5/11 EH/MP/DS
Function:		Cool fuel ce	ll product strea	am to conc	lense proc	luct water	
Operation:		10.9 hours, c	laily				
Materials Ha	ndled			T 1 /			
				Inlet	Outlet	Condensate	
Stream ID	•	•		33	35	34	
	Quant	ity (lb/hr)		867.54	21.24	846.33	
	Comp	osition:		056.00	10.50	046.22	
		Water		856.88	10.58	846.33	
		Hydrogen		10.66	10.66	0.00	
	Tempe	erature (°F)		1472	180.5	180.5	
	Pressu	re (psi)		16.7	15.2	15.2	
	Vapor	Fraction		1	1	0	
Design Data							
	Type					Double Pipe	
	Mater	ial				Stainless Steel	
	Heat 7	Transfer (Btu/l	nr)			352,393	
	Heat 7	Transfer Coeff	icient (Btu/hr-	-ft ² -F)		29.31	
	Heat 7	Transfer Area	(ft^2)			25.77	
	Cold U	Utility				Cooling Water	
	C _P C _{BM}	\$ \$	6,402.81 11,525.05				

Recycle Heater						
Identification Item Item No. No. Required	H E	eat Excha -111 1	unger	Date By		4/5/11 EH/MP/DS
Function:	Increase the ten	nperature	of the recy	cle stream		
Operation:	10.9 hours, dail	У				
Materials Handled			н	ot	Cold	1
Materials Hanarea			Inlet	Outlet	Inlet	Outlet
Stream ID			44	45	36	37
Quantity (lb/hr) Composition:			4722.28	4722.26	85.23	85.23
	Hydrogen		0.00	0.00	10.66	10.66
	Water		0.00	0.00	10.58	10.58
	Nitrogen		4141.26	4141.26	0.00	0.00
	Oxygen		581.02	581.02	0.00	0.00
Temperature (°F)			1045	1038	204	410
Pressure (psi)			17.1	16.6	16.7	16.7
Vapor Fraction			1	1	1	1
Design Data Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficient (Btu/hr-ft ² -F) Heat Transfer Area (ft ²)				Double Pipe Stainless Steel 8,589 7.08 1.66		
C _P C _{BM}	\$ 4 \$ 7	4,129.38 7,432.88				

Air Preheater						
Identification Item Item No. No. Required	Hea E-1	t Exchang 12 1	ger	Date By		4/5/11 EH/MP/DS
Function:	Increase the tem	perature of	of the air fe	eed stream		
Operation:	10.9 hours, daily	7				
Materials Handled			Н	ot	Cole	1
Stream ID Quantity (lb/hr) Composition: Temperature (°F)	Nitrogen Oxygen		Inlet 41 4722.28 4141.26 581.02 1472	Outlet 42 4722.26 4141.26 581.02 1191	Inlet 39 5398.71 4141.26 1257.45 173	Outlet 40 5398.71 4141.26 1257.45 450
Pressure (psi) Vapor Fraction			17.1 1	16.6 1	22.7 1	21.3 1
Design Data Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficient (Btu/hr-ft ² -F) Heat Transfer Area (ft ²)		-2-F)			Double Pipe Stainless Steel 366,733 7.08 50.78	
C _P C _{BM}	\$ 7 \$ 12	,136.81 ,846.26				

FC Water Feed Pump							
Identificatio	on Item Item No. No. Required	Pum P-10 1	р)2			Date By	4/5/11 EH/MP/DS
Function:	ç	Slightly incre	ease the press	sure of the wat	er feed		
Operation:	1	0.9 hours, d	aily				
Materials H Stream ID	andled Quantity (lb/h Composition: V Temperature Pressure (psi) Vapor Fractic	nr) Water (°F) on		Inlet 28 84.64 84.64 75 14.7 0		Outlet 29 84.64 84.64 75 17.7 0	
Design Data	Type Material Net Work (HI Efficiency C _P	P) 6 1 6 3	Wel-Bilt Cas Si 120.00 398.00	t Iron Clear Wa tainless Steel 0.001 0.4	ater Pump		

Fuel Cell/Electrolyzer (Fuel Cell)					
Identification					
Fu	el		_		
Item Ce	211		Date	4/5/	11
Item No. R-	100		Ву	EH/MP/D	S
No. Required	1				
Function: Oxidizes hyd	lrogen to water	to produce electricity			
Operation: 10.9 hours, c	aily				
Materials Handled		Inlet		Out	tlet
Stream ID		32	40 5398.7	33	41 4722.2
Quantity (lb/hr)		191.11	1	867.54	8
Composition:					
Water		95.23	0.00	856.88	0.00
Hydrogen		95.88	0.00 1257.4	10.66	0.00
Oxygen		0.00	5	0.00	581.02
			4141.2		4141.2
Nitrogen		0.00	6	0.00	6
Temperature (°F)		356	450	1472	1472
Pressure (psi)		16.6	21.3	16.6	21.3
Vapor Fraction		1	1	1	1
Design Data Type		Reversible Fuel Cell YSZ, porous Nickel,			
Material		LaMnO ₃			
Heat Duty (Btu/hr)		0.00			
Electricity Produced (kW)		884.11			
Operating T (°F)		1472			
Operating P (psi)		16.6			
Voltage (V)		0.87			
Current (A/cm^2)		0.55			
Electrode Area (cm ²)		1.8692E+06			
Съ \$	450,000				
C _{BM} \$	450,000				

Equipment Cost Summary

Table 10: Summary of Purchase Cost and Bare Module Cost for All Units

Unit No	Unit Name	Purchase Cost	Bare Module Factor	Bare Module Cost
C-100	Storage Compressor 1	\$22.569	2.15	\$48.523
C-101	Storage Compressor 2	\$23.778	2.15	\$51.122
C-102	Storage Compressor 3	\$24,666	2.15	\$53.032
E-100	Water Preheater 1	\$6.056	1.80	\$10,900
E-101	Water Preheater 2	\$6,383	1.80	\$11,489
E-102	Water Preheater 3	\$8,814	1.80	\$15,865
E-103	Fired Heater	\$22,057	2.19	\$48,304
E-104	Product Partial Condenser	\$8,894	1.80	\$16,010
E-105	Intercooler for C-100	\$7,349	1.80	\$13,229
E-106	Intercooler for C-101	\$7,347	1.80	\$13,225
E-107	Intercooler for C-102	\$7,351	1.80	\$13,231
F-100	Flash Vessel	\$7,235	1.80	\$13,022
P-100	Water Feed Pump	\$120	3.30	\$396
R-100	Fuel Cell/Electrolyzer	\$450,000	1.00	\$450,000
V-100	Large Water Storage Tank	\$10,265	1.00	\$10,265
V-101	Hydrogen Storage Tank	\$453,456	3.05	\$1,383,041
V-102	Small Water Storage Tank	\$3,172	1.00	\$3,172
Electroly	sis Subtotal	\$1,069,511		\$2,154,827
	Fi	uel Cell Equipment		
Unit				
No.	Unit Name	Purchase Cost	Bare Module Factor	Bare Module Cost
C-103	Inlet Air Blower	\$21,786	2.15	\$46,840
C-14	Recycle Blower	\$557	2.15	\$1,198
E-108	Hydrogen Preheater	\$5,456	1.80	\$9,821
E-109	Water Vaporizer & Preheater	\$5,058	1.80	\$9,104
E-110	Product Stream Partial Condenser	\$6,403	1.80	\$11,525
E-111	Recycle Heater	\$4,129	1.80	\$7,433
E-112	Air Preheater	\$7,137	1.80	\$12,846
P-10	FC-Water Feed Pump	\$120	3.30	\$396
Fuel Cell	Subtotal	\$50,646		\$99,163
	System Total	\$1,120,157		\$2,253,990

Table 10 shows the equipment cost summary for each piece of major equipment in the hydrogen system, both electrolysis and fuel cell modes. The purchase cost is the cost to buy the physical equipment, and the bare module cost is the purchase cost including installation costs. The bare

module factors are a function of the specific type of equipment and can be found listed in Table 22.11 of *Product and Process Design Principles*. The purchase cost of most of these units has been estimated using correlations throughout Chapter 22 of *Product and Process Design Principles*.

C _{BM}	Equipment Bare Module Costs		\$	857,512
C _{store}	Storage Vessel Bare Module costs		\$	1,396,478
		Ствм	\$	2,253,990
Direct Perma	anent Investment			
Ствм	Total Bare Module Cost		\$	2,253,990
C _{site}	Site Preparation		\$	112,700
C _{serv}	ServiceFacilities		\$	112,700
C _{alloc}	Allocated Costs for Utility Plants		\$	0
		C _{DPI}	\$	2,479,389
Total Depred	siable Canital			
	Direct Permanent Investment		\$	2.479.389
C	Contingencies and Contractors Fees		¢ ¢	446 290
Ccont	Contingencies and Contractors Tees	C	φ •	2 025 670
		C _{TDC}	Φ	2,923,079
Total Perma	nent Investment			
C _{TDC}	Total Depreciable Capital		\$	2,925,679
Cland	Land		\$	0
Croylty	Royalty		\$	0
C _{startup}	Plant Startup		\$	292,568
	(unadjusted)	C _{TPI}	\$	3,218,247
		F _{site}		1.1
		C _{TPI}	\$	3,540,072
Total Carita	Investment			
	Total Darmanant Investment		¢	2 540 072
CTPI			¢	5,540,072
C _{wc}	working Capital		\$	143,126
		C _{TCI}	\$	3,683,198

Table 11: Fixed Capital Investment Summary for Hydrogen Process

The Fixed Capital Investment Summary in Table 11 lists the various capital investments estimated for the hydrogen system. The direct permanent investment, C_{DPI} , includes the total bare module cost of all equipment for the process, the cost of site preparation, and the cost of service facilities. As shown above, the total bare module cost of all equipment is \$2,253,990, while the cost of services and site preparations are estimated at 5% of total bare module costs. Since the energy storage system will be located at a previously established plant, no additional allocated cost for utilities is required. All utilities will already exist at established price levels, provided by the power plant. The total depreciable capital, C_{TDC} , is calculated by adding the contractors and contingencies fees, 18% of C_{TDC} , to C_{DPI} .

The total permanent investment, C_{TPI} , is the sum of total depreciable capital and other nondepreciable investments, such as the cost of land, royalties, and plant startup. Since the system will be implemented at an existing power plant, there is no cost for the land, and no royalties need to be paid. Startup, however, was estimated as 10% of C_{TDC} . To account for the plant being located in the North East, a site factor of 1.1 was used, taken from Table 22.13 in *Product and Process Design Principles*. Adding working capital to this adjusted C_{TPI} yields a total capital investment, C_{TCI} , of \$3,683,198. All approximations for costs are taken from Chapter 22 of *Product and Process Design Principles*.

Other Important Considerations

Environmental and Safety Problems and Concerns

While there are no toxic materials used in the hydrogen system, many streams throughout the system will be very hot. Therefore, the system needs to be either enclosed in some sort of insulation as to protect the surrounding environment or fenced off a safe distance away. Additionally, as the system is currently designed, the exhaust streams leave at very high temperatures. These streams would need to be further cooled before being exhausted to the environment.

The temperature at which the system operates is well above the auto-ignition point of hydrogen. This means that there is the chance of an explosion if a spark goes off or oxygen is accidentally mixed with the hydrogen. Therefore, care needs to be taken to make sure all seals are perfect and there are no leaks of oxygen into the hydrogen pipes.

Additionally, the presence of hydrogen with metals can lead to hydrogen embrittlement. This is when hydrogen, ue to its small size, will dissolve into the metal and cause it to weaken and be more prone to fracturing. In the pipes throughout the system, since the gas will be moving at high velocity, this is not a big problem. However, in the storage vessel, where the hydrogen is stored at high pressure for longer periods of time, this can become a serious issue, weakening the structure and possibly leading to safety hazards. To help relieve this problem, we found a hydrogen-shielding polymer that could line the inside of the vessel and reduce the hydrogen contact with the metal, allowing the structure to last much longer. This polymer is EVALTM M100¹¹, seen at the end of the appendix of this report. With a thickness of 0.1 mm, this polymer significantly hinders hydrogen permeability. Based on a cost received from the company of \$5 per liter, and the amount of polymer needed, approx. 10 L, the cost of the polymer becomes negligible compared to the rest of the process.

Startup and Shutdown

At the initial startup of the system, very pure water must be purchased and used in electrolysis mode to generate hydrogen, starting the cycle. The amount needed, approximately 1100 gallons, could be purchased for a total cost of \$0.75 based on the cost of process water listed in Table 23.1 of *Product and Process Design Principles*. After this water has been purchased, since the process is cyclical, no additional feeds need to be purchased.

Additionally, the system will have to startup two times each day, once for electrolysis mode and once for fuel cell operation. The flow rates of each cycle were designed such that a 30-minute period exists for turnover. During this time period, the operators can turn equipment on, allowing them to heat up to operating temperature. However, because the heat exchangers that preheat the inlet streams use heat from the exhaust streams of the

reversible fuel cell, additional heat will be needed during startup when no streams exit the cell. This would most likely require an additional fired heater that can provide enough energy to vaporize and heat all inlet streams, used in both fuel cell and electrolysis operation. This fired heater would be more expensive, and would require a lot more fuel than the fired heater currently in the process design, adding to the overall variable and equipment costs of the process.

Operating Costs

This section describes the operating costs of the hydrogen reversible fuel cell system. The Variable Costs are listed below in Table 12.

	Annual Cost
General Expenses	
Selling / Transfer Expenses:	\$ 41,200.44
Direct Research:	\$ 0.00
Allocated Research:	\$ 0.00
Administrative Expense:	\$ 27,466.96
Management Incentive Compensation:	\$ 17,166.85
Total General Expenses	\$ 85,834.25
Raw Materials	\$ 0.00
Byproducts	\$ 0.00
Utilities	
Low P Steam	\$ 9,842.73
Cooling Water	\$ 1,800.37
Electricity	\$ 319,889.46
Natural Gas	\$ 2,021.40
Total Utilities	333,553.96
Total Variable Costs	\$ 419,388.21

Table 12:	Variable	Cost Summary	of Hydrogen	System
1 abic 12.	v al labic	Cost Summary	of flyur ogen	bystem

The variable costs of this process include utilities and other general expenses. Under general expenses, since there is no research associated with the system, the research costs are \$0. Additionally, there are no raw materials or byproducts produced in this system, and therefore both of these costs are also \$0. The utilities include all electrolysis and fuel cell inputs, including the additional heating to the electrolyzer (accounted for as electricity above). The general costs are estimations based on values from Chapter 23 of *Product and Process Design Principles*. As seen in Table 12, the total variable costs are \$419,388.21 per year. The fixed costs for the hydrogen system are summarized below in Table 13.

	Annual Cost
Operations	
Direct Wages and Benefits	\$327,600
Direct Salaries and	\$49,140
Benefits	
Operating Supplies and	\$19,656
Services	
Total Operations	\$396,396
Maintenance	
Wages and Benefits	\$131,656
Salaries and Benefits	\$32,914
Materials and Services	\$131,656
Maintenance Overhead	\$6,583
Total Maintenance	\$302,808
Operating Overhead	
General Plant Overhead:	\$38,433
Mechanical Department Services:	\$12,991
Employee Relations	\$31,937
Department:	
Business Services:	\$40,057
Total Operating	\$123,419
Overhead	
Property Taxes and Insurance	\$58,514
Total Fixed Costs	\$881,136

Table 13: Fixed Costs for the Hydrogen Case

The annual fixed costs for the hydrogen system are the costs incurred regardless of the production of electricity. As seen in Table 13, these costs include operating costs, maintenance costs, operating overhead, and property taxes and insurance. These values have all been determined as a percentage of total depreciable capital as suggested in Section 23.2 of *Product and Process Design Principles*³. The total operating costs are calculated with the assumption that the process is responsible for the payment of 1.5 operators per shift, since some power plant operators will already be present. Maintenance costs include costs for keeping equipment clean and in acceptable order, personnel salaries, and maintenance overhead. The operating overhead costs include the costs of providing services that are not directly related to plant operation, such as first aid and medical services, fire protection, warehousing, and other costs. As seen above, the total annual fixed costs add up to \$881,136.

Overall Economic Analysis

The overall profitability of the hydrogen system has been evaluated using the Profitability Analysis Spreadsheet (see page 192 of the Appendix). A summary of the results from the spreadsheet is shown below.

	Costs
Annual Sales	554,683
Annual Costs	\$ (1,224,459)
Variable Costs	\$ (381,470.59)
Fixed Costs	\$ (881,135.95)
Depreciation	\$ (283,206)
Income Tax	\$ 0
Net Earnings	\$ (952,983)
Total Capital Investment	\$ 3,650,842
ROI	\$ -26.10%

Table 14: ROI Analysis for the Third Year of Operation

As shown by Table 14, the hydrogen system we designed is not profitable; the annual costs are more than twice the annual sales revenue. Since there is a negative net income, the income tax is zero.

Additionally, the system has an ROI in the third year of operation of -26.10%. This can be attributed to the low profit margin. The only revenue generated by this process is the electricity that it can produce, and since it is inherently less than 100% efficient, the profit margin (peak price minus off-peak price) is the only factor that could make the process profitable. This ROI value was calculated with off-peak energy prices at \$0.06/kWh and peak energy prices at \$0.20/kWh, a \$0.14/kWh profit margin. Both of these prices are fairly reasonable based on data we found from the New York State Energy Research and Development Authority¹².

To see what the profit margin would need to be for the process to get a positive ROI in its third year of operation, a sensitivity analysis was conducted. The results are shown on the next page.

Peak Cost (\$/kWh)	Profit Margin (\$/kW)	ROI
0.25	0.19	-22.47%
0.30	0.24	-18.86%
0.35	0.29	-15.28%
0.40	0.34	-11.71%
0.45	0.39	-8.17%
0.50	0.44	-4.65%
0.55	0.49	-1.15%
0.60	0.54	2.33%
0.65	0.59	5.78%
0.70	0.64	9.22%

Table 15 ROI at Varying Profit Margins

To achieve an ROI of 0%, the peak electricity price would need to be \$0.57/kWh, much higher than any reasonable electricity price in the United States. At this price, this system would not be competitive with any other form of electrical energy storage.

System Efficiency

While this system is not economically profitable, it achieves a relatively high electrical efficiency. During the operation of the reversible fuel cell itself, ignoring the rest of the system, the efficiency is less than 100% because of waste heat caused by overvoltage, as stated previously. For the currents and voltages of the hydrogen system, the fuel cell efficiency is 80.4%. To calculate the other efficiencies of the system, Table 16 below lists the electricity sources and sinks.

	Electricity Sinks	S
Unit No.	Electricity (kW)	Electricity (kWh/day)
C-100	1.03E+01	444,234
C-101	1.11E+01	477,415
C-102	1.16E+01	502,220
P-100	4.55E-01	19,651
R-100	1.00E+03	43,200,000
C-103	3.74E+01	1,469,565
C-104	2.90E-01	11,392
P-101	7.46E-04	29
Total w/o additiona	al energy	46,124,506
Additional Energy	1.99E+02	8,585,741
Total		54,710,247
	Energy Sources	
Unit No.	Electricity (kW)	Electricity (kWh/day)
R-100	8.84E+02	34,721,495

Table 16: Electricity Inputs and Outputs

The overall electrical efficiency is defined as the electricity output divided by all the electricity inputs. For this system, counting the excess energy to the electrolyzer as a heat source, the overall electrical efficiency is 75.3%. If the excess energy to the electrolyzer is counted as electricity, the electrical efficiency falls to 63.5%. The additional energy to the electrolyzer accounts for 11.8% efficiency losses alone. If implemented, the electrical efficiency would be in between these two values because the additional energy would be supplied as a mixture of overvoltage and heat to the inlet stream.

In addition to electrical efficiency, the overall efficiency of the system can be calculated. This is defined as the useful energy out of the system divided by all energy inputs into the system. Based on all electrical inputs and utilities of this design, the overall efficiency of the system is 52.4%, meaning that 47.6% of the energy put into the system is lost. To determine the cause of these

losses, we further explored the energy inputs of the system. Table 17 summarizes the efficiency losses.

	Losses (kWh)	% of Total
Fuel Cell	2,355	26.93%
Compression	807	9.23%
Pumping	5	0.06%
Heat to Electrolyzer	5,577	63.78%
Total Losses	8,744	100%

Table 17: Efficiency Losses of the Hydrogen System

Figure 7: Efficiency Losses in Hydrogen System

The two biggest efficiency losses in the system are caused by the heat needed to keep the electrolyzer running at operating temperature and the losses caused by running a reversible fuel cell. Both of these efficiency losses are unavoidable in a reversible fuel cell system. The reaction occurring in electrolysis mode is always going to be very endothermic and therefore require large amounts of heat to keep its temperature up. This required heat accounts for 63.78% of the losses incurred by this system. Additionally, the round-trip efficiency of a fuel cell can never be 100% because there will always be heat losses due to overvoltage at both the anode and cathode. These losses accounted for 26.93% of the total losses in the system.

The compression losses that occur are due to pressure drop of streams across heat exchangers and other units throughout the system and only account for 9.23% of total losses. Since the compression of the streams is equal the minimum pressure drop through the system based on results from ASPEN Heat Exchanger Design, these losses have been minimized. Therefore, in order to increase the overall efficiency of this system, the improvements must come from operating conditions closer to the open circuit voltage and other ways to heat the electrolyzer.

Methane Case

Concept Stage

Operating Pressure and Voltage Selection

The selection of the operating pressure and voltage of the fuel cell during electrolysis mode were coupled due to the relationship between the Nernst equation and pressure. The operating pressure of 10 atm was selected due to the increased cell efficiency at this elevated pressure. At 10 atm, difference between the operating voltage and the open cell voltage is much lower than at atmospheric pressure, and this translates to higher reversible cell efficiency. Bierschenk proposes an operating pressure of 10 atm due to the efficiency benefits that can be realized at higher operating pressures and the lower thermoneutral voltage. The thermoneutral voltage of the cell is the voltage at which the heat generated by the inefficiencies in the cell are equal to the amount of energy that is consumed by the endothermic reaction in electrolysis, so it is ideal to minimize the difference in voltage between V_{TN} and the operating voltage of the cell during electrolysis mode. Additionally, a lower V_{TN} values translates to a lower heat duty on the fuel cell during fuel cell mode, and this further increases the efficiency of fuel cell mode by reducing parasitic losses. Figure 10 – Potential as a Function of Temperature and Pressure from Bierschenk demonstrates how the thermoneutral voltage range decreases as the operating pressure increases. The dark gray shaded region in Figure 8 represents the range of Nernst potentials that can be achieved during electrolysis mode running at 10 atm with Beirschenk's experimental composition. The lighter gray region represents the Nernst potentials that can be achieved when operating the cell at atmospheric pressure. Figure 8 clearly demonstrates how the voltage range of operation can be optimized at higher pressures.

Figure 10 – Potential as a Function of Temperature and Pressure

Bierschenk supplied a full V-i curve for different operating conditions, so careful approximations were used to determine the operating cell voltages for electrolysis and fuel cell modes. The open cell voltage of 0.99 V was calculated based on the operating pressure of 10 atm and the composition of the electrolysis Stream 9. This value is 0.09 V

higher than the open cell voltage at an operating pressure of 1 atm. The operating voltage for electrolysis was then determined to be 1.06 V using a linear approximation based on Beirschenk's data. The V-i curve, Figure 1, for methane operating demonstrated a linear relationship between operating voltage and current density at atmospheric conditions, and it was assumed that this linear behavior would exist at 10 atm as well. The difference between the upper and lower limits was divided by a current density of 0.5 A/cm², and this value was added to the open cell voltage to arrive at the operating pressure of the cell during electrolysis mode. The same V-i curve slope was used to determine the operating voltage during fuel cell mode.

A linear approximation The V-i curve that Bierschenk compiled at 1 atm revealed a difference in voltage between electrolysis and fuel cell mode of 0.12 V, and this translates to a cell efficiency of 88.1% when running at -0.5 A/cm² and +0.5 A/cm² in electrolysis and fuel cell modes, respectively. However, this does not take into account the additional efficiency of operating at a slightly higher current density during fuel cell mode. This must be done in order to allow for the difference in operation times.

Composition Selection

The composition and molar flowrate of the feed stream in electrolysis mode was chosen based on the amount of oxygen that needed to be produced to store 12 MWh of electricity. Both reactions for this case produce oxygen during electrolysis, so the sum of the extents of reaction for the reduction of water and carbon dioxide must be equal to the extent of reaction of the oxidation of O^{2^-} ions at the cathode. The power input was divided by the current density and multiplied by the electrolysis operating voltage in order to determine the number of moles of electrons that had to be removed from the oxygen ions to produce the desired amount of oxygen. Please refer to the calculations on pages 185 to 186 for further details about this procedure.

An initial composition of roughly 90% reactant, a combination of water and carbon dioxide, and 10% product, hydrogen gas and carbon monoxide, was chosen for high conversion. It was assumed that the product stream in electrolysis mode would be in equilibrium, so the final composition of the product stream was determined by solving for the two extents of reaction for the reduction of water and carbon dioxide. These reactions could not be modeled in ASPEN due to the separation of the gases at the anode and the cathode. Therefore, all equilibrium calculations were performed in Microsoft Excel. The sum of the extents of these two reactions was set equal to the extent of reaction of the oxidation at the cathode to conserve mass.

The relative amounts of carbon dioxide and water were selected based on the desired composition of the storage gas. The methanation reaction results in a 4:1 reduction in the number of moles of gas that need to be stored, and 3 moles of hydrogen are consumed for each mole of methane consumed. Based on this stoichiometric ratio, it was decided that the fuel cell product stream should have an excess of hydrogen relative to carbon monoxide to achieve maximum reduction in the number of moles of gas to minimize the volume of the storage vessel.

The extents of the two reactions were then calculated based on the equilibrium constants of the two reactions. The change in Gibbs free energy was calculated for each reaction,

and these values were then used to determine K_{eq} values for the two reactions. Expressions for the final molar composition of the product were then built in Microsoft Excel, using an initial estimate for the extent of each reaction to calculate the final molar amount of each species. Thefinal molar compositions were then set equal to the overall K_{eq} value, and the extents of the two reactions were then found iteratively. Since Keq is very large for these reactions, the two reactions proceed nearly to completion. These molar extent values were converted to conversion values and put into ASPEN to model the fuel cell as an RSTOICH block.

Methanation Reaction

The next process in the electrolysis process for the methane case is the methanation reaction. As previously discussed, this reaction was included to reduce the volume and cost of the storage vessel for electrolysis mode. The methanation reaction was also assumed to proceed to equilibrium conditions, and it was modeled with an RGIBBS block in ASPEN, process block R-101. The equilibrium of this reaction is favored at high pressures and low temperatures, and an isothermal condition of 400°F was used to calculate the equilibrium composition. While this temperature is on the lower end of the range of acceptable operating temperatures for the catalyst, it was selected since the exit stream would have to be cooled additionally before storage. The cost of cooling water is relatively insignificant for the amount of heat that needs to be transferred out of the reactor. A packed bed shell and tube reactor design was selected so that the highly exothermic reaction could be cooled to prevent catalyst sintering. The catalyst used in this process is Haldor Topsoe PK-7R, and the properties of this catalyst are summarized in the Appendix on pages 360-362. The equilibrium composition of the methanation product Stream 12 modeled by APSEN confirms the success of the operating pressure selection; the product stream is 70% methane. This reaction also forms a significant amount of water, and this is removed from the storage gas stream by a condenser, E-104, cooled with cooling water later on in the process. The dehumidified product gas is stored at 143.5 psi for future use in fuel cell mode.

The amount of catalyst needed for this reaction was calculated so that the cost of the reactor could be estimated. The methanation reaction has been studied carefully, and the kinetics are well known. A kinetic model for methanation over a nickel-alumina catalyst proposed by Xu and Froment¹³ was selected for the basis of this calculation due to the similarities between the operating conditions used in the paper and the operating conditions of this project. The kinetics were based on the rate of change of the mole fraction of CO in the reactor, and this resulted in a catalyst mass requirement of 0.043 g_{catalyst}*hr/mole_{CO}. When multiplied of the flowrate of carbon monoxide through the reactor, the mass of catalyst required was calculated to be 1095 kg. The void fraction and catalyst density were then used to find the volume of catalyst needed, 13.7 ft³, and the price, \$10,970.00. The reactor was then sized by modeling it in ASPEN as a heat exchanger.

Feedstock Preparation

The stored gas from electrolysis and the water needed for steam reformation must be heated before being processed by the fuel cell. Both feed streams are heated using the product streams from the fuel cell, and the water is heated further by a fired heater for complete vaporization. Once the water is vaporized, the two streams are mixed and heated again.

Reformation

In order for the methane in the feed stream to be processed by the fuel cell, it must be reformed into hydrogen and carbon dioxide. This reaction can be performed within the fuel cell as previously discussed due to the high operating temperature capable with SOFCs. At the operating temperature of 800°C, full conversion of methane can be assumed¹⁴. This reaction is endothermic, and it assists in cooling the fuel cell. The heat absorbed by this reaction on an hourly basis was calculated to be 265 kW.

Storage Pressure Selection

A sensitivity analysis was performed in order to determine the optimal storage pressure. Storing the fuel gas in both modes at a higher pressure than 10 atm would reduce the storage vessel size and cost, but it would also increase the cost of compression. The cost of compressions is twofold; compression requires both additional equipment and energy to drive the compression. Using an aspect ratio (length/diameter) of 10,000 and a gas flowrate of 17.3 ft³/minute, the purchase costs of the storage vessel and compressor were calculated based on purchase cost equations from *Product and Process Design Principles*. The cost of electricity was calculated based on the horsepower required by the compressor, and this value was added to the purchase cost of the compressor to yield a total cost of compression. As Figure 11: Storage Pressure Selection Sensitivity Analysis demonstrates, the total purchase cost increased with storage pressure. Even though the overall storage vessel would decrease with an increase in storage pressure, the wall thickness of the storage vessel would have to be greatly increased in order to withstand the high pressures. Due to the high purchase cost of additional compressors, it was decided that the storage gases would not be compressed above the operating pressure.

Figure 11: Storage Pressure Selection Sensitivity Analysis

This analysis was repeated for operating pressures of 1 atm and 5 atm to observe the effect of operating pressure on equipment purchase cost. Even though compressors would not be necessary at an operation pressure of 1 atm, the purchase cost of the storage vessel would be \$4,000,000. Additionally, running the process at atmospheric pressure would negatively affect the equilibrium in the methanation reaction and would lead to slightly lower conversion.

Process Flow Diagrams and Material Balances - Electrolysis Figure 12: Process Flow Diagram for Electrolysis Mode of the Methane Case

		1	2	3	4	5	9
From			E-100		P-100	E-101	E-102
To		E-100	M-100	P-100	E-101	E-102	M-100
Substream: MIXED							
Phase:		Vapor	Vapor	Liquid	Liquid	Mixed	Vapor
Component Mass Flow							
HYDROGEN	LBMOL/HR	3.527396	3.527396	0	0	0	0
CARBO-01	LBMOL/HR	8.818491	8.818491	0	0	0	0
CARBO-02	LBMOL/HR	2.204623	2.204623	0	0	0	0
WATER	LBMOL/HR	0	0	29.54194	29.54194	29.54194	29.54194
METHANE	LBMOL/HR	0	0	0	0	0	0
OXYGEN	LBMOL/HR	0	0	0	0	0	0
NITROGEN	LBMOL/HR	0	0	0	0	0	0
Mole Flow	LBMOL/HR	14.55051	14.55051	29.54194	2.95E+01	2.95E+01	2.95E+01
Mass Flow	LB/HR	456.9632	456.9632	532.2064	532.2064	532.2064	532.2064
Volume Flow	CUFT/HR	5.87E+02	1.03E+03	8.55E+00	8.55E+00	7.68E+02	1.75E+03
Temperature	F	77	440.33	76.73	76.84003	351.5895	351.5895
Pressure	PSIA	1.40E+02	1.37E+02	1.40E+02	1.55E+02	1.37E+02	1.37E+02
Vapor Fraction		1	1	0	0	0.435742	1
Liquid Fraction		0	0	1	1	0.564258	0
Solid Fraction		0	0	0	0	0	0
Molar Enthalpy	BTU/LBMOL	-1.10E+05	-1.07E+05	-1.23E+05	-1.23E+05	-1.11E+05	-1.02E+05
Mass Enthalpy	BTU/LB	-3496.594	-3393.68	-6820.894	-6820.743	-6164.282	-5673.855
Enthalpy Flow	BTU/HR	-1.60E+06	-1.55E+06	-3.63E+06	-3.63E+06	-3.28E+06	-3.02E+06
Molar Entropy	BTU/LBMOL-R	9.15E-01	5.54E+00	-3.90E+01	-3.90E+01	-2.30E+01	-1.21E+01
Mass Entropy	BTU/LB-R	0.0291437	0.1762911	-2.163532	-2.163336	-1.278971	-0.6742682
Molar Density	LBMOL/CUFT	2.48E-02	1.42E-02	3.46E+00	3.46E+00	3.85E-02	1.69E-02
Mass Density	LB/CUFT	0.778114	0.4453187	62.27774	62.27965	0.6931875	0.3041936
Average Molecular Weight		31.4053	31.4053	18.01528	18.01528	18.01528	18.01528

Stream ID:		2	8	6	10	11	12
From		M-100	E-103	C-100	SPLIT	E-101	R101
To		E-103	C-100	R-100	E-101	R101	E-104
Substream: MIXED							
Phase:		Vapor	Vapor	Vapor	Vapor	Vapor	Vapor
Component Mole Flow							
HYDROGEN	LBMOL/HR	3.527396	3.527396	3.527396	32.18308	32.18308	0.0715245
CARBO-01	LBMOL/HR	8.818491	8.818491	8.818491	0.8818491	0.8818491	0.4598979
CARBO-02	LBMOL/HR	2.204623	2.204623	2.204623	10.14126	10.14126	1.34E-05
WATER	LBMOL/HR	29.54194	29.54194	29.54194	0.8862583	0.8862583	11.87141
METHANE	LBMOL/HR	0	0	0	0	0	1.06E+01
OXYGEN	LBMOL/HR	0	0	0	0	0.00E+00	0
NITROGEN	LBMOL/HR	0	0	0	0	0	0
Mole Flow	LBMOL/HR	4.41E+01	4.41E+01	4.41E+01	4.41E+01	4.41E+01	2.30E+01
Mass Flow	LB/HR	989.1696	989.1696	989.1696	403.7143	403.7143	403.7143
Volume Flow	CUFT/HR	2.78E+03	7048.725	6614.166	5651.806	2656.369	1435.388
Temperature	F	377.9472	1805	1845.735	1292	200	4.00E+02
Pressure	PSIA	1.37E+02	1.37E+02	1.47E+02	1.47E+02	1.45E+02	1.44E+02
Vapor Fraction		1	1	1	1	1	1
Liquid Fraction		0	0	0	0	0	0
Solid Fraction		0	0.00E+00	0.00E+00	0.00E+00	0	0
Molar Enthalpy	BTU/LBMOL	-1.04E+05	-89479.66	-89038.29	-7617.826	-15541.47	-69224.14
Mass Enthalpy	BTU/LB	-4620.49	-3988.576	-3968.902	-831.9959	-1697.392	-3937.946
Enthalpy Flow	BTU/HR	-4.57E+06	-3.95E+06	-3.93E+06	-3.36E+05	-6.85E+05	-1.59E+06
Molar Entropy	BTU/LBMOL-R	-5.040384	4.729402	4.78314	10.06145	3.135608	-1.33E+01
Mass Entropy	BTU/LB-R	-0.2246762	0.2108142	0.2132096	1.098881	0.3424617	-0.757879
Molar Density	LBMOL/CUFT	1.59E-02	6.26E-03	6.67E-03	7.80E-03	1.66E-02	1.60E-02
Mass Density	LB/CUFT	0.3558399	0.1403331	0.1495532	0.071431	0.1519798	0.2812579
Average Molecular Weight		22.43399	22.43399	22.43399	9.156086	9.156086	17.57874

Stream ID:		13	14	15	16
From		E-104	E-104	SPLIT	E-100
То				E-100	
Substream: MIXED					
Phase:		Liquid	Vapor	Vapor	Vapor
Component Mole Flow					
HYDROGEN	LBMOL/HR	0	0.0715245	0	0.00E+00
CARBO-01	LBMOL/HR	0	0.4598979	0	0
CARBO-02	LBMOL/HR	0	1.34E-05	0	0
WATER	LBMOL/HR	11.79015	0.0812652	0	0
METHANE	LBMOL/HR	0	1.06E+01	0	0
OXYGEN	LBMOL/HR	0.00E+00	0	18.29616	18.29616
NITROGEN	LBMOL/HR	0	0	0	0
Mole Flow	LBMOL/HR	1.18E+01	1.12E+01	1.83E+01	1.83E+01
Mass Flow	LB/HR	212.4028	191.3115	585.4553	585.4553
Volume Flow	CUFT/HR	3.42E+00	970.5203	2346.535	2022.338
Temperature	F	1.00E+02	1.00E+02	1292	978.2161
Pressure	PSIA	1.44E+02	1.44E+02	1.47E+02	1.40E+02
Vapor Fraction		0	1	1	1
Liquid Fraction		1	0	0	0
Solid Fraction		0	0	0.00E+00	0.00E+00
Molar Enthalpy	BTU/LBMOL	-1.22E+05	-37869.41	9362.894	6792.514
Mass Enthalpy	BTU/LB	-6797.707	-2212.229	292.6014	212.274
Enthalpy Flow	BTU/HR	-1.44E+06	-4.23E+05	1.71E+05	1.24E+05
Molar Entropy	BTU/LBMOL-R	-38.21463	-21.92586	4.375205	2.855605
Mass Entropy	BTU/LB-R	-2.121235	-1.28085	0.1367303	0.089241
Molar Density	LBMOL/CUFT	3.44E+00	1.15E-02	7.80E-03	9.05E-03
Mass Density	LB/CUFT	62.02389	0.1971226	0.2494978	0.2894942
Average Molecular Weight		18.01528	17.11821	31.9988	31.9988

Process Description

In electrolysis mode, 12 MWh of electricity is used to convert water and carbon dioxide into syngas and ultimately methane.

The two feed streams, Stream 1 and Stream 3, are initially at room temperature, and both streams are preheated in a heat exchanger network. Stream 1, which is comprised of 3.537 lb-moles of hydrogen, 8.812 lb-moles of carbon dioxide, and 2.205 lb-moles of carbon monoxide is heated from room temperature to 440.3°F by the oxygen product of the fuel cell in the Feedstock Preheater, E-100. The water feed, Stream 3, is stored at a pressure of 140 psi, and it is pumped in block P-100 to 144 psi. This pump is necessary to account for the pressure drop of water across the heat exchangers in fuel cell mode. The resulting stream, Stream 4, is then heated to 364.4°F by the electrolysis gas product in Water Preheater 1, block E-101. The resulting stream, Stream 5, is then completely vaporized by Fired Heater 1, block E-102, which uses 12.222 lbs/hr of natural gas for fuel. After the water is completely vaporized, Streams 2 and 6 mix to produce the electrolysis feed stream, Stream 7.

Stream 7 is then heated to 1805.0°F by Fired Heater 2, Block E-103, which uses 29.262 lbs/hr of natural gas for fuel. This stream is heated above the fuel cell operating temperature to counteract the endothermic reactions in the cell. Stream 8 is then compressed by the Electrolysis Feed Compressor, block C-100, to a pressure of 147.0 psi. This compressor uses 5.70 kW of power, and it was placed before the fuel cell due to the two-phase system that exists prior to complete vaporization of the water feed stream.

After being compressed, the electrolysis feed, Stream 9, then enters the fuel cell, block R-100. In electrolysis mode, the fuel cell operates at 147 psi and 1291.7°F, and a temperature gradient of 482°F is allowed across the cell. This temperature gradient is based on an example of an SOFC system presented in the DOE *Fuel Cell Handbook*. The two electrolysis reactions occur, and two product streams are produced at 1292°F and 147 psi. The oxygen product stream, Stream 15, is used in E-100 to heat the electrolysis feedstock as previously mentioned and leaves the heat exchanger at 978.2°F. The gas product stream, Stream 10, exchanges heat with the water feed in E-101, and it is cooled to 200°F. The gas product is then reacted in the Methanator, R-101, at 400°F and 143.5 psi to produce a methane-rich storage gas stream, Stream 12. This water in Stream 12 is then condensed out of the storage gas in Condenser 1, E-104. E-104 operates at 147 psi and 100°F. While this process does not completely eliminate all of the water from the storage gas stream, it removes all but 0.08 lb of water per hour. The water storage stream, Stream 13, is then stored at 143.5 psi and 100°F in the Water Storage Vessel 2, V-103. The dehydrated storage gas, Stream 14, is stored in the Methane Storage Vessel, V-102, at 143.5 psi and 100°F. It is assumed that the two storage vessels cool to 77°F over the 12 hour electrolysis period.

Process Flow Diagrams and Material Balances – Fuel Cell Mode

Figure 13: Process Flow Diagram for Fuel Cell Mode of the Methane Case

Stream ID:		17	18	19	20	21	22	23	24
From			E-105		P-101	E-106	M-101	E-107	C-101
To		E-105	M-101	P-101	E-106	M-101	E-107	C-101	REFORMER
Substream: MIXED									
Phase:		Mixed	Vapor	Liquid	Liquid	Vapor	Vapor	Vapor	Vapor
Component Mass Flow									
HYDROGEN	LBMOL/HR	0.0794972	0.079497	0	0	0	0.079497	0.079497	0.0794972
CARBO-01	LBMOL/HR	0.2634785	0.263479	0	0	0	0.263479	0.263479	0.2634785
CARBO-02	LBMOL/HR	8.82E-06	8.82E-06	0.00E+00	0	0	8.82E-06	8.82E-06	8.82E-06
WATER	LBMOL/HR	7.95E-02	7.95E-02	11.02311	11.02311	11.02311	1.11E+01	1.11E+01	1.11E+01
METHANE	LBMOL/HR	1.08E+01	1.08E+01	0	0	0	1.08E+01	1.08E+01	1.08E+01
OXYGEN	LBMOL/HR	0	0	0	0	0	0	0	0
NITROGEN	LBMOL/HR	0	0	0	0	0	0	0	0
Mole Flow	LBMOL/HR	1.12E+01	11.18214	11.02311	1.10E+01	11.02311	22.20526	22.20526	22.20526
Mass Flow	LB/HR	185.8031	185.8031	1.99E+02	1.99E+02	198.5845	384.3875	384.3875	384.3875
Volume Flow	CUFT/HR	8.06E+02	9.88E+02	3.19E+00	3.19E+00	1.12E+03	2.07E+03	3.29E+03	3.15E+03
Temperature	F	76.73	716.4141	77	77.00726	903.7819	791.8847	1472	1490.824
Pressure	PSIA	143.5	143.2	146.9595	147.9595	143.2	143.2	139.9	146.9595
Vapor Fraction		0.9954974	1	0	0	1	1	1.00E+00	1.00E+00
Liquid Fraction		4.50E-03	0	1	1	0	0	0.00E+00	0.00E+00
Solid Fraction		0	0	0	0	0	0	0.00E+00	0.00E+00
Molar Enthalpy	BTU/LBMOL	-35711.83	-28690.4	-1.23E+05	-1.23E+05	-97021.4	-62611.2	-53920.7	-53657.39
Mass Enthalpy	BTU/LB	-2149.237	-1726.67	-6820.61	-6820.6	-5385.51	-3616.92	-3114.89	-3099.674
Enthalpy Flow	BTU/HR	-3.99E+05	-3.21E+05	-1.35E+06	-1.35E+06	-1.07E+06	-1.39E+06	-1.20E+06	-1.19E+06
Molar Entropy	BTU/LBMOL-R	-22.94787	-14.5371	-38.9677	-38.9674	-7.31966	-9.58996	-4.03821	-4.000351
Mass Entropy	BTU/LB-R	-1.381067	-0.87488	-2.16303	-2.16302	-0.4063	-0.55399	-0.23328	-0.2310919
Molar Density	LBMOL/CUFT	0.0138659	0.011315	3.45688	3.456887	9.87E-03	0.010709	6.75E-03	7.05E-03
Mass Density	LB/CUFT	0.2303972	0.18801	62.27667	62.2768	0.177836	0.185374	0.116766	0.1220599
Average Molecular Weight		16.61605	16.61605	18.01528	18.01528	18.01528	17.31065	17.31065	17.31065

 					-																							
32	E-108			Liquid		0	0	0	28.89239	0	0	0	2.89E+01	5.21E+02	8.39E+00	1.00E+02	1.40E+02	0	1	0	-1.22E+05	-6797.716	-3.54E+06	-38.21459	-2.121232	3.442813	62.02323	18.01528
31	E-108			Vapor		3.698293	10.03878	0.984342	0.110715	0	0	0	1.48E+01	4.79E+02	1.32E+03	1.00E+02	1.40E+02	1	0	0	-1.18E+05	-3665.22	-1.76E+06	-0.71666	-0.0222	0.011249	0.363153	32.28305
30	E-105	E-108		Vapor		3.698293	10.03878	0.984342	29.00311	0	0	0	4.37E+01	9.99E+02	3.97E+03	7.34E+02	1.40E+02	1	0	0	-1.03E+05	-4516.69	-4.51E+06	-2.22284	-0.09726	0.011017	0.251795	22.85516
29	E-106	E-105		Vapor		3.698293	10.03878	0.984342	29.00311	0	0	0	4.37E+01	9.99E+02	4.51E+03	9.22E+02	1.43E+02	1	0.00E+00	0.00E+00	-1.01E+05	-4438.13	-4.44E+06	-0.86825	-0.03799	9.69E-03	0.221445	22.85516
28	SEP	E-106		Vapor		3.698293	10.03878	0.984342	29.00311	0	0	0	43.72452	999.3307	6.26E+03	1.56E+03	1.47E+02	1.00E+00	0.00E+00	0.00E+00	-94916.3	-4152.95	-4.15E+06	2.943068	0.12877	6.98E-03	0.159588	22.85516
27	E-109	R-100		Vapor		0	0	0	0	0	32.40795	121.9156	154.3236	4452.297	1.70E+04	1.05E+03	1.47E+02	1.00E+00	0.00E+00	0.00E+00	7043.198	244.1283	1.09E+06	3.874103	0.134283	9.07E-03	0.261676	28.8504
26	C-102	E-109		Vapor		0	0	0	0	0	32.40795	121.9156	154.3236	4452.297	1.35E+04	7.58E+02	1.50E+02	1	0	0	4868.771	168.7592	7.51E+05	2.231081	0.077333	0.011435	0.329892	28.8504
25		C-102		Vapor		0	0	0	0	0	32.40795	121.9156	154.3236	4452.297	60468.83	77	14.69595	1.00E+00	0.00E+00	0.00E+00	-2.891061	-0.1002087	-446.1589	1.01556	0.0352008	2.55E-03	0.0736296	28.8504
						LBMOL/HR	LB/HR	CUFT/HR	F	PSIA				BTU/LBMOL	BTU/LB	BTU/HR	BTU/LBMOL-R	BTU/LB-R	LBMOL/CUFT	LB/CUFT								
Stream ID:	From	To	Substream: MIXED	Phase:	Component Mole Flow	HYDROGEN	CARBO-01	CARBO-02	WATER	METHANE	OXYGEN	NITROGEN	Mole Flow	Mass Flow	Volume Flow	Temperature	Pressure	Vapor Fraction	Liquid Fraction	Solid Fraction	Molar Enthalpy	Mass Enthalpy	Enthalpy Flow	Molar Entropy	Mass Entropy	Molar Density	Mass Density	Average Molecular Weight

28.40256	28.40256	28.40256	28.40256		Average Molecular Weight
0.037914	0.243341	0.205533	0.1918465	LB/CUFT	Mass Density
1.33E-03	8.57E-03	7.24E-03	6.75E-03	LBMOL/CUFT	Molar Density
0.182723	0.127818	0.178441	0.202816	BTU/LB-R	Mass Entropy
5.189795	3.630363	5.068185	5.760495	BTU/LBMOL-R	Molar Entropy
4.65E+05	9.64E+05	1.30E+06	1.49E+06	BTU/HR	Enthalpy Flow
121.2809	251.3404	338.7875	389.0759	BTU/LB	Mass Enthalpy
3444.689	7138.713	9622.434	11050.75	BTU/LBMOL	Molar Enthalpy
0.00E+00	0.00E+00	0.00E+00	0.00E+00		Solid Fraction
0.00E+00	0.00E+00	0.00E+00	0.00E+00		Liquid Fraction
1.00E+00	1.00E+00	1.00E+00	1.00E+00		Vapor Fraction
1.47E+01	1.41E+02	1.44E+02	1.47E+02	PSIA	Pressure
5.66E+02	1.06E+03	1.38E+03	1.56E+03	F	Temperature
1.01E+05	1.58E+04	1.87E+04	2.00E+04	CUFT/HR	Volume Flow
3837.354	3837.354	3837.354	3837.354	LB/HR	Mass Flow
135.1059	135.1059	135.1059	135.1059	LBMOL/HR	Mole Flow
121.9156	121.9156	121.9156	121.9156	LBMOL/HR	NITROGEN
13.19026	13.19026	13.19026	13.19026	LBMOL/HR	OXYGEN
0	0	0	0	LBMOL/HR	METHANE
)	0	0	0	LBMOL/HR	WATER
)	0	0	0	LBMOL/HR	CARBO-02
)	0	0	0	LBMOL/HR	CARBO-01
)	0	0	0	LBMOL/HR	HYDROGEN
					Component Mole Flow
Vapor	Vapor	Vapor	Vapor		Phase:
					Substream: MIXED
	T-100	E-109	E-107		To
T-100	E-109	E-107	SEP		From
36	35	34	33		Stream ID:

.

Process Description

In fuel cell mode, the storage gas is used as a feedstock for the fuel cell operating at a power output of 880 kW.

The two feed streams, Stream 17 and Stream 19, are initially at room temperature, and both streams are preheated in a heat exchanger network. Stream 17, is heated from room temperature to 716.4°F by the oxygen product of the fuel cell in the Methane Preheater, E-105. The water feed, Stream 19, is stored at a pressure of 143.5 psi, and it is pumped in block P-101 to 148 psi. This pump is necessary to account for the pressure drop of water across the heat exchangers in fuel cell mode. The resulting stream, Stream 20, is then heated to 903.8°F by the fuel cell gas product, Stream 26, in Water Preheater 2, block E-106. After the water is completely vaporized, Streams 21 and 18 mix to produce the fuel cell feed stream, Stream 22.

Stream 22 is then heated to 1472.0°F by the Fuel Cell Feed Preheater, Block E-107, which uses the hot air stream from the fuel cell, Stream 33, to heat the feed. Stream 23 is then compressed by the Fuel Cell Feed Compressor, block C-101, to a pressure of 147.0 psi. This compressor uses 1.71 kW of power, and it was placed before the fuel cell due to the two-phase system that exists prior to complete vaporization of the water feed stream.

The second feed stream for fuel cell mode is air. Ambient air, Stream 25, at 77°F and 14.7 is compressed to 147 psi in the Air Compressor, C-102. This compression also heats the air stream to 758°F. The heated stream, Stream 26, is then heated further through exchange with the hot air product stream, Stream 34, in the Air Preheater, E-109. The resulting stream, Stream 27 exits the Air Preheater at 1045.1°F. This stream is not heated any further so that it can accept excess heat from the fuel cell and provide cooling.

After being compressed, the fuel cell feed, Stream 24, then enters the fuel cell, block R-100. In fuel cell mode, the fuel cell operates at 147 psi and 1560°F. The methane is internally reformed within the fuel cell as previously discussed. The two reactions occur, and two product streams are produced at 1560°F and 147 psi. The hot air product stream, Stream 33, is used in E-107 to heat the fuel cell feedstock as previously mentioned and leaves the heat exchanger at 1382.6°F, and then it is further cooled by exchanging heat with the incoming air stream in the Air Preheater, block E-109. Then, the air product stream is expanded in the Power Recovery Turbine, T-100, and 146 kW of power is recovered. The gas product stream, Stream 28, exchanges heat with the water feed in E-106, and it is cooled to 921.8°F. This water in Stream 30 is then condensed out of the storage gas in Condenser 2, E-108. E-108 operates at 147 psi and 100°F. The water condensed out of the gas product stream is stored for future use in electrolysis mode. The water storage stream, Stream 32, is then stored at 143.5 psi and 100°F in the Water Storage Vessel 2, V-103. The dehydrated storage gas, Stream 31, is stored in the Methane Storage Vessel, V-100, at 143.5 psi and 100°F. It is assumed that the two storage vessels cool to 77°F over the 11 hour fuel cell period.
Equipment Summary

Unit No.	Unit Type	Function	Size	Material	Oper. T (°F)	Oper. P (psi)
R-100	Electrolyzer	Convert water and carbon dioxide to hydrogen and carbon monoxide	V=1.06 V I=0.5 A/cm ² A=1.86E6 cm ²	YSZ, LaMnO3	1291.7	147
R-100	Fuel Cell	Convert hydrogen and carbon monoxide to carbon dioxide and water	V=0.933 V I=0.55 A/cm ² A=1.86E6 cm ²	YSZ, LaMnO3	1291.7	147
R-101	Methanation Reactor	React hydrogen and carbon monoxide to methane	1065 kg catalyst	Steel, Ni- Al catalyst	400	147
E-100	Feedstock preheater	Heat feedstock	Q=47023 A=2.524	Carbon Steel	440.3	147
E-101	Water preheater	Heat water	Q=349373 A=15.01	Stainless Steel	364.4	147
E-102	Fired heater	Vaporize water	Q=265142.3	Stainless Steel	351.6	147
E-103	Fired heater	Preheat electrolysis feed	Q=625071	Stainless Steel	1805.0	147
E-104	Condenser	Condense water for storage	Q=624773.2	Stainless Steel	100.0	147
E-105	Methane preheater	Preheat methane	Q=78514.9 A=8.26	Stainless Steel	716.4	147
E-106	Water preheater	Preheat water	Q=78514.9 A=9.43	Stainless Steel	903.8	147
E-107	Fuel Cell Feed preheater	Preheat combined feedstock	Q=192974.4, A=34.06	Stainless Steel	1472.0	147
E-108	Air preheater	Heat airstream to fuel cell	Q=335565.29	Stainless Steel	1045	147
E-109	Condenser	Condense water for storage	Q=335565.29	Stainless Steel	100	147
C-100	Electrolysis Feed Compressor	Compress feed to overcome pressure drop	Net work=5.70 kW	Stainless Steel	1845.7	147
C-101	Fuel Cell Feed Compressor	Compress feed to overcome pressure drop	Net work=1.71	Stainless Steel	1490.8	147
C-102	Air Compressor	Compress air for fuel cell mode	Net work=220.33	Stainless Steel	757.5	147
T-100	Power Recovery Turbine	Recuperate energy used in compression	Net work=-146.27	Stainless Steel	565.7	147

Table 18 - Methane Sytem Equipment List

V-100	CO2 Storage Vessel	Stores pressurized CO2 for electrolysis mode	V=9700 gallons	Stainless Steel	100	143.5
V-101	Water Storage Vessel	Stores water for electrolysis mode	V=50 gallons	Stainless Steel	100	143
V-102	Water Storage Vessel	Stores water for fuel cell mode	V=13200 gallons	Stainless Steel	100	140
V-103	Methane Storage Vessel	Stores compressed methane for fuel cell mode	V=85	Stainless Steel	100	140
P-100	Electrolysis Water Pump	Pumps water to overcome pressure losses	Pressure head=9.25 ft	Stainless Steel	76.8	144
P-101	Fuel Cell Water Pump	Pumps water to overcome pressure losses	Pressure head=2.31 ft	Stainless Steel	77.0	148

Feedstock Preheater, E-100

The double-pipe heat exchanger uses the oxygen product stream from the fuel cell to preheat the electrolysis feed (Stream 1). A double-pipe design was chosen due to the heat transfer area of the heat exchanger. The bare-module cost of E-100 is \$7,947.15. Please refer to specification sheet on page 105 as well as the sample calculation on page 178 for further details.

Water Preheater, E-101

The double-pipe heat exchanger uses the electrolysis product stream from the fuel cell (Stream 10) to preheat the water feed for electrolysis (Stream 4). A double-pipe design was chosen due to the heat transfer area of the heat exchanger, and stainless steel was chosen for the material since water is involved. The bare module cost is \$10,585.96. Please refer to specification sheet on page 106 as well as the sample calculation on page 178 for further details.

Water Vaporizer, E-102

This fired heater uses the heat from the combustion of natural gas to completely vaporize the water feed (Stream 5) before it mixes with the carbon dioxide stream for electrolysis. The bare module cost is \$56,300.98. Please refer to specification sheet on page 107 as well as the sample calculation on page 179 for further details.

Final Preheater, E-103

This fired heater uses the heat from the combustion of natural gas to preheat the electrolysis feed (Stream 7) to 1805°F before the electrolysis reaction. This was done so that the fuel cell would have sufficient heat during electrolysis mode. The bare module cost is \$109,891.80. Please refer to specification sheet on page 108 as well as the sample calculation on page 179 for further details.

Electrolysis Storage Condenser, E-104

E-104 is a condenser that removes water from the electrolysis product (Stream 12) so that it can be stored separately from the gas product. A cooling water utility is used to condense the water out of the product stream. The bare module cost of E-104 is \$109,811.32. Please refer to specification sheet on page 109 as well as the sample calculation on page 177 for further details.

Fuel Cell Feed Preheater, E-105

The double-pipe heat exchanger uses the gas product stream from the fuel cell to preheat the fuel cell feed (Stream 17). A double-pipe design was chosen due to the small heat transfer area of the heat exchanger. The bare module cost is \$9,606.67. Please refer to specification sheet on page 110 as well as the sample calculation on page 178 for further details.

Fuel Cell Water Preheater, E-106

The double-pipe heat exchanger uses the gas product stream from the fuel cell to preheat the water feed from storage (Stream 20). A double-pipe design was chosen due to the small heat transfer area of the heat exchanger. The bare module cost is \$7,984.12. Please refer to specification sheet on page 111 as well as the sample calculation on page 178 for further details.

Fuel Preheater, E-107

The double-pipe heat exchanger uses the air stream from the fuel cell to preheat the fuel cell feed (Stream 22). A double-pipe design was chosen due to the small heat transfer area of the heat exchanger. The bare module cost is \$12,050.98. Please refer to specification sheet on page 112 as well as the sample calculation on page 178 for further details.

Fuel Cell Storage Condenser, E-108

E-109 is a condenser that removes water from the fuel cell product (Stream 12) so that it can be stored separately from the gas product. A cooling water utility is used to condense the water out of the product stream. A cooling water flowrate of 26074 lb/hr is needed for this block, and the bare module cost is \$12,130.46. Please refer to specification sheet on page 113 as well as the sample calculation on page 177 for further details.

Air Preheater, E-109

The double-pipe heat exchanger uses the air stream from the fuel cell to preheat the air feed (Stream 26). A double-pipe design was chosen due to the small heat transfer area of the heat exchanger. The bare module cost is \$12,130.46. Please refer to specification sheet on page 114 as well as the sample calculation on page 178 for further details.

Electrolysis Feed Compressor, C-100

C-100 is a stainless steel compressor that increases the pressure of the electrolysis feed stream by 10 psi in order to account for the pressure drops across the system during electrolysis mode. ASPEN was used to calculate the net work used by this compressor, and that value is 5.70 kW. The bare module cost is \$79,098.03. Please refer to specification sheet on page 115 as well as the sample calculation on page 179 for further details.

Fuel Cell Feed Compressor, C-101

C-101 is a stainless steel compressor that increases the pressure of the fuel cell feed stream by 7 psi in order to account for the pressure drops across the system during fuel cell mode. ASPEN was used to calculate the net work used by this compressor, and that value is 1.71 kW. The bare module cost of C-101 is \$33,067.66. Please refer to specification sheet on page 116 as well as the sample calculation on page 179 for further details.

Air Compressor, C-102

C-102 is a stainless steel compressor that increases the pressure of the fuel cell air feed stream up to the operating pressure. The output pressure of this compressor is 150 psi, which is slightly about the operating pressure of the fuel cell to account for the pressure drop across the heat exchanger before the fuel cell. ASPEN was used to calculate the net work used by this compressor, and that value is 220.33 kW. A power recovery turbine recoups 66% of this work later in the process. The bare module cost of C-101 is \$1,116,259.20. Please refer to specification sheet on page 117 as well as the sample calculation on page 179 for further details.

Recovery Turbine, T-100

T-100 is a turbine that recovers power from the compressed air stream in fuel cell mode. This turbine recovers 146.27 of the 220.33 kW used to compress the air in C-102. The bare module cost is also \$38,130.11. Please refer to specification sheet on page 118.

Electrolysis Water Pump, P-100

The pump increases the pressure of the water feed stream in electrolysis mode by 4 psi to account for the pressure drops across the heat exchanges in electrolysis mode. The head of this pump is 9.25 ft, and the volumetric flow rate is 1.07 gallons/minute. The bare module cost is \$37,791.19. Please refer to specification sheet on page 122.

Fuel Cell Feed Pump, P-101

The pump increases the pressure of the water feed stream in fuel cell mode by 1 psi to account for the pressure drops across the heat exchanges in electrolysis mode. The head of this pump is 2.31 ft, and the volumetric flow rate is 0.40 gallons/minute. The bare module cost is \$45,539.31. Please refer to specification sheet on page 122.

Electrolysis Gas Storage, V-100

V-100 is the storage vessel for the gas product stream in electrolysis mode. It is a 9,700 gallon tank that is 5481 ft long and 0.55 ft in diameter. The gas is stored at 143.5 psi. The purchase cost of V-100 is \$399,532.70, and the bare-module cost is \$1,218,574.72. Please refer to specification sheet on page 123 as well as the sample calculation on page 180 for further details.

Electrolysis Water Storage, V-101

V-101 is the storage vessel for the liquid product stream in electrolysis mode. It is a 50 gallon pressurized tank, and it is to be purchased through mywaterneeds.com¹⁵. The bare module cost of this tank is \$953.85. Please refer to specification sheet on page 124.

Electrolysis Gas Storage, V-102

V-102 is the storage vessel for the gas product stream in fuel cell mode. It is a 13200 gallon tank that is 6100 ft long and 0.61 ft in diameter. The gas is stored at 140 psi. The purchase cost of V-100 is \$444,117.11 and the bare-module cost is \$1,354,557.20. Please refer to specification sheet on page 125 as well as the sample calculation on page 180 for further details.

Electrolysis Water Storage, V-103

V-103 is the storage vessel for the liquid product stream in fuel cell mode. It is an 85 gallon pressurized tank, and it is to be purchased through mywaterneeds.com. The bare module cost of this tank is \$1,455.00. Please refer to specification sheet on page 126.

Fuel Cell, R-100

R-100 is the reversible fuel cell on which this project is based. It has a power rating of 1 MW. During electrolysis mode, water and carbon dioxide are reduced to form hydrogen and carbon monoxide. During fuel cell mode, the hydrogen and carbon monoxide are oxidized to form water and carbon dioxide. This fuel cell was priced based on DOE cost targets for 2020. A bare module factor of 1 was assumed due to the unknown cost of installation and "plug-and-play" features of fuel cells. The bare module cost of R-100 is \$450,000. Please refer to specification sheet on page 120 for further details.

Methanator, R-101

R-101 is a packed bed methanation reactor that features a Ni-Al catalyst. Hydrogen and carbon monoxide react to form methane in this reactor, and equilibrium is assumed. The catalyst was sized according to methods previously discussed, and the reactor was sized based on a double-pipe heat exchanger design. The bare module cost of R-101 is \$71,700. Please refer to specification sheet on page 121 as well as the sample calculations on pages 177 and 186 for further details.

Specification Sheets

The following lists the page number of the specification sheets detailing the different units within electrolysis operation, followed by the specification sheets.

Page	Unit No.	<u>Unit Name</u>
105	E-100	Feedstock Preheater
106	E-101	Water Preheater
107	E-102	Fired Heater
108	E-103	Fired Heater
109	E-104	Condenser
110	E-105	Methane Preheater
111	E-106	Water Preheater
112	E-107	Fuel Cell Feed Preheater
113	E-108	Condenser
114	E-109	Air Preheater
115	C-100	Electrolysis Feed Compressor
116	C-101	Fuel Cell Feed Compressor
117	C-102	Air Compressor
118	T-100	Power Recovery Turbine
119	R-100	Electrolyzer
120	R-100	Fuel Cell
121	R-101	Methanator
122	P-100	Electrolysis Water Pump
122	P-101	Fuel Cell Water Pump
123	V-100	CO2 Storage Vessel
124	V-101	Water Storage Vessel
125	V-102	Water Storage Vessel
126	V-103	Methane Storage Vessel

E-100						
Identification	Item Item No. No. Required	Heat Exe E-100 1	changer	Date By	4/5/2011 EH/MP/D	DS
Function:		Prehe	eat fuel ce	ll feed		
Operation:	12 hours, da	uly				
Materials Han	dled		Ho	t Side	Cold	Side
			Inlet	Outlet	Inlet	Outlet
Stream ID	Quantity (1h/hr)		10	1/ 508/15	1 457.00	2 457.00
	Quality (10/11)		398.13	398.13	437.00	437.00
	Hyroe	ven	0.00	0.00	7 1 1	1 1 1
	C	02	0.00	0.00	388.10	388.1
		CO	0.00	0.00	61.75	61.75
	Wa	ater	0.00	0.00	0.00	0.00
	С	H4	0.00	0.00	0.00	0.00
	Oxyg	gen	585.46	598.15	0.00	0.00
	Nitrog	gen	0.00	0.00	0.00	0.00
	Temperature (°F)		1292.0	978.2	77.0	440.3
	Pressure (psi)		147.0	140	140.0	137.00
	Vapor Fraction		1.0	1.0	1.0	1.0
	Liquid Fraction		0.0	0.0	0.0	0.0
Design Data						
g	Type Material Heat Transfer (Btu/hr) Heat Transfer Coeffici Heat Transfer Area (ft	ent (Btu/hr*ft2 2)	2*F)	Double Pipe Carbon Steel 47028.099 21.26 2.524		
	C _P \$ 4,45	1.08				
	С _{вм} \$ 7,947	7.15				

	E-101						
Identification	Item Item No. No. Required	Heat Exchange E-101 1	er	Date By	4/5/2011 EH/MP/D	DS	
Function:							
Operation:	12 hours, dai	ly					
Materials Han	dled		Hot	Side	Cold	Side	
		Inle	et	Outlet	Inlet	Outlet	
Stream ID		10		11	4	5	
	Quantity (lb/hr)	403.	71	403.71	532.21	532.21	
	Composition:						
	Hyrogen	64.8	88	64.88	0.00	0	
	CO2	38.8	31	38.81	0.00	0	
	CO	284.	06	284.06	0.00	0.00	
	Water	15.9	97	15.97	532.21	532.21	
	CH4	0.0	0	0.00	0.00	0.00	
	Oxygen	0.0	0	0.00	0.00	0.00	
	Nitrogen	0.0	0	0.00	0.00	0.00	
	Temperature (°F)	1292	2.0	200.0	76.9	364.4	
	Pressure (psi)	147.	.0	143	144.0	137.00	
	Vapor Fraction	1.0)	1.0	0.0	0.424	
	Liquid Fraction	0.0)	0.0	1.0	0.576	
Design Data							
	Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficien Heat Transfer Area (ft2)	t (Btu/hr*ft2*F))	Double Pipe Stainless Steel 349372.92 57.89 15.008421			
	С _Р \$ 5,881.0 С _{ВМ} \$ 10,585.9)9 96					

	E-102					
Identification	Item H Item No. E No. Required	Heater E-102 1		Date By	4/5/2011 EH/MP/DS	
Function:			Fired he	ater		
Operation:	12 hours, dail	У				
Materials Hand	dled					
Ctara ID			Inlet	Outlet		
Stream ID	Quantity (lb/hr) Composition:		532.21	532.21		
	Hydroge	en	0.00	0.00		
	CO	02	0.00	0.00		
	C	0	0.00	0.00		
	Wate	er	532.21	532.21		
	CH	14	0.00	0.00		
	Nitroge	n n	0.00	0.00		
	Miloge	.11	0.00	0.00		
	Temperature (°F)		351.6	351.6		
	Pressure (psi)		137.0	137		
	Vapor Fraction		0.4	1.0		
	Liquid Fraction		0.6	0.0		
Design Data						
Design Dutu						
	Туре			Fired Heater		
	Material			Stainless Steel		
	Heat Transfer (Btu/hr)			265142.3		
	С _Р \$ 19,481.31 С _{вм} \$ 56,300.98					

E-103						
Identification						
	Item	Heater		Date	4/5/2011	
	Item No.	E-103		By	EH/MP/DS	
	No. Required	1				
Function:						
		Vaporize	water in the	e feed stream		
Operation:	12 hours,	daily				
Materials Han	dled		.			
			Inlet	Outlet		
Stream ID			/	8		
	Quantity (lb/hr)		989.17	989.17		
	Composition:		7 1 1	7 1 1		
		Hyrogen	/.11	/.11		
		CO2	388.10	388.10		
		СО	61.75	61.75		
		Water	532.21	532.21		
		CH4	0.00	0.00		
		Oxygen	0.00	0.00		
		Nitrogen	0.00	0.00		
	Temperature (°F)		377.9	1805.0		
	Pressure (psi)		137.0	137		
	Vapor Fraction		1.0	1.0		
	Liquid Fraction		0.0	0.0		
Design Data						
	Type			Fired Heater		
	Material			Stainless Steel		
	Heat Transfer (Rtu/hr	·)		625070 76		
	from fransier (Dtu/III	/		02010.10		
	C. \$ 38	024.84				
	$C \qquad \phi J0$	001 00				
	C _{BM} \$ 109,	,891.80				

		E-10)4			
Identification	Item	Conden	ser	Date		4/5/2011
	Item No.	E-104	501	By		EH/MP/DS
	No. Required	1 1		29		
	Ĩ					
Function:						
	Conden	ses water out of	f storage st	ream during o	electrolysis	mode
Operation:	12 hours, da	uily				
Materials Han	dled					
			Inlet	Water	Outlet	
Stream ID	Quantity (1b/br)		12	13 080 17	14	
	Composition:		909.17	909.17		
	Composition.	Hyrogen	0.08	0.00	0.08	
		CO2	0.26	0.00	0.26	
		CO	0.00	0.00	0.00	
		Water	11.47	11.39	0.08	
		CH4	10.76	0.00	10.76	
		Oxygen	0.00	0.00	0.00	
		Nitrogen	0.00	0.00	0.00	
	Temperature (°F)		400.0	100.0	100	
	Pressure (psi)		147.0	146.95949	146.9595	
	Vapor Fraction		1.0	0.0	1	
	Liquid Fraction		0.0	1.0	0	
Design Data						
	Type			Condenser		
	Material			Stainless St	eel	
	Heat Transfer (Btu/hr)			624473.18		
	С _Р \$180	67.00				
	C _{BM} \$ 841	92.05				

E-105						
Identification	Item Item No. No. Required	Heat Exchanger E-105 1	Date By	4/5/ EH/MP/DS	2011	
Function:		Preheat f	uel cell feed			
Operation:	11 hours, da	iily				
Materials Hand	lled	Hot Si Inlet	ide Outlet	Cold Inlet	Side Outlet	
Stream ID	Quantity (lb/hr) Composition:	29 999.33	30 999.33	17 185.8031	18 185.80	
	Hyrogen CO2	7.46 441.80 27.57	7.46 441.80	0.160257 11.59564 2.47E 04	0.16 11.60	
	Water CH4	522.50 0.00	522.50 0.00	1.432755 172.6142	1.43 172.61	
	Oxygen Nitrogen	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0 0	0.00 0.00	
	Temperature (°F) Pressure (psi) Vapor Fraction Liquid Fraction	921.8 143.0 1.0 0.0	734.4 140 1.0 0.0	76.7 143.5 1.0 0.0	716.4 143.20 1.0 0.0	
Design Data	Type Material Heat Transfer (Btu/hr) Heat Transfer Coefficie Heat Transfer Area (ft2)	nt (Btu/hr*ft2*F))	Double Pipe Stainless St 78514.87 24.46 8.26	e eel		
	С _Р \$ 5,337. С _{ВМ} \$ 9,606.	.04 .67				

E-106								
Identific	ation							
	Item		Heat Ex	changer	Date	4/5/2011		
	Item No.		E-106		By	EH/MP/D	os	
	No. Requ	ired	1					
Function:			_					
			Pre	neat fuel cel	l teed			
Operation:		11 hours, d	aily					
Materials Ha	ndled			Hot	Side	Cold	Side	
				Inlet	Outlet	Inlet	Outlet	
Stream ID				28	29	20	21	
	Quantity	(lb/hr)		999.33	999.33	198.5845	198.58	
	Composi	tion:						
		Hyrog	gen	7.46	7.46	0	0.00	
		C	02	441.80	441.80	0	0.00	
		(20	27.57	27.57	0.00E+00	0.00	
		Wa	iter	522.50	522.50	198.5845	198.58	
		C	H4	0.00	0.00	0	0.00	
		Oxyg	gen	0.00	0.00	0	0.00	
		Nitrog	gen	0.00	0.00	0	0.00	
	Temperat	ure (°F)		1562.0	921.8	77.0	903.8	
	Pressure	(psi)		143.0	140	143.5	143.20	
	Vapor Fr	action		1.0	1.0	1.0	1.0	
	Liquid Fr	action		0.0	0.0	0.0	0.0	
Design Data								
8	Type				Double Pip	e		
	Material				Stainless S	teel		
	Heat Transfer (Btu/hr)				78514.87			
	Heat Trai	nsfer Coeffic	ient (Btu/hr*	ft2*F)	40.41			
	Heat Trai	nsfer Area (f	t2)		9.43			
	C _P	\$ 4	,435.62					
	Свм	\$7	,984.12					
	- 17141		,					

E-107						
Identification	Item Item No. No. Required	Heat Exchanger E-107 1	Date By	4/5/201 EH/MP/	1 ⁄DS	
Function:		Preheat fuel of	cell feed			
Operation:	11 hours, daily					
Materials Han	dled	Hot	Side	Cold	Side	
		Inlet	Outlet	Inlet	Outlet	
Stream ID		33	34	22	23	
	Quantity (lb/hr) Composition:	3837.35	3837.35	384.3875	384.39	
	Hyrogen	0	0	0.160257	0.16	
	CO2	0	0	11.59564	11.60	
	СО	0	0	2.47E-04	0.00	
	Water	0	0	200.0172	200.02	
	CH4	0	0	172.6142	172.61	
	Oxygen	422.0724	422.0724	0	0.00	
	Nitrogen	3415.281	3415.281	0	0.00	
	Temperature (°F)	1562.0	1382.6	791.9	1472.0	
	Pressure (psi)	143.2	139.9	147.0	143.50	
	Vapor Fraction	1.0	1.0	1.0	1.0	
	Liquid Fraction	0.0	0.0	0.0	0.0	
Design Data						
	Туре		Double Pip	be		
	Material		Stainless S	teel		
	Heat Transfer (Btu/hr) 192974.41					
	Heat Transfer Coefficient (B	8tu/hr*ft2*F)	21.29			
	Heat Transfer Area (ft2)		34.06			
	C _P \$ 6,694.99					
	С _{вм} \$ 12,050.98					

	E-108								
Identificat ion	Item	Heat Exchanger	Date	4/5/2	011				
	Item No. No. Required	E-108 1	Ву	EH/N	/IP/DS				
Function:									
1 unction.		Conden	ser						
Operation:	11 hours, daily								
Materials H	landled	Hot	Side	Cold	Side				
		Inlet	Outlet	Inlet	Outlet				
Stream ID		34	35	26	27				
	Quantity (lb/hr) Composition:	3837.35	3837.35	4452.297	4452.30				
	Hydrog	gen 0	0	0	0.00				
	С	O2 0	0	0	0.00				
	(CO 0	0	0.00E+00	0.00				
	Wa	ater 0	0	0	0.00				
	C	H4 0	0	0	0.00				
	Oxyg	gen 422.0724	422.0724	1037.016	1037.02				
	Nitrog	gen 3415.281	3415.281	3415.281	3415.28				
	Temperature (°F)	1382.6	1063.1	757.5	1045.1				
	Pressure (psi)	143.5	140.5	150.0	147.00				
	Vapor Fraction	1.0	1.0	1.0	1.0				
	Liquid Fraction	0.0	0.0	0.0	0.0				
Design Data	a								
	Type		Shell and Tube						
	ial		Stainless Steel						
	Heat Transfer (Btu/hr)		335565.29						
	Heat Transfer Coefficient	(Btu/hr*ft2*F)	29.43						
	Heat Transfer Area (ft2)		35.49						
	Ср \$18,091.97	7							
	С _{вм} \$83.719.	11							
	- Diti + //								

E-109						
Identific	ation					
	Item	Heat Exchanger	Date	4/5/2011		
	Item No.	E-109	By	EH/MP/DS	5	
	No. Required	1				
Function:						
		Preheat fuel ce	ell feed			
Operation:	11 hours, daily					
Materials Ha	ndled	Hot	t Side	Cold	Side	
		Inlet	Outlet	Inlet	Outlet	
Stream ID		34	35	26	27	
	Quantity (lb/hr)	3837.35	3837.35	4452.297	4452.30	
	Composition:					
	Hyrogen	0	0	0	0.00	
	CO2	0	0	0	0.00	
	СО	0	0	0.00E+00	0.00	
	Water	0	0	0	0.00	
	CH4	0	0	0	0.00	
	Oxygen	422.0724	422.0724	1037.016	1037.02	
	Nitrogen	3415.281	3415.281	3415.281	3415.28	
	Temperature (°F)	1382.6	1063.1	757.5	1045.1	
	Pressure (psi)	143.5	140.5	150.0	147.00	
	Vapor Fraction	1.0	1.0	1.0	1.0	
	Liquid Fraction	0.0	0.0	0.0	0.0	
Design Data						
	Туре		Double Pipe			
	Material		Stainless Steel			
	Heat Transfer (Btu/hr)		335565.29			
	Heat Transfer Coefficient (Btu/hr*ft2*F)	29.43			
	Heat Transfer Area (ft2)		35.49			
	Ср \$ 6,738.14					
	Cmr \$ 12 130 46					
	∨BM ♀ 12,130.40					

C-100								
Identification	Item Item No. No. Required	Compressor C-100 1	Date By	4/5/2011 EH/MP/DS				
Function:	Function: Compress feed to overcome pressure drop							
Operation:	12 hours, daily							
Materials Han	dled	Inlet		Outlet				
Stream ID		8		9				
	Quantity (lb/hr)	989.17		989.17				
	Composition:							
	Hydrogen	7.11		7.11				
	CO2	388.10		388.10				
	CO	61.75		61.75				
	Water	532.21		532.21				
	Methane	0		0				
	Oxygen	0	0					
	Nitrogen	0		0				
	Temperature (°F)	1805.0		1845.7				
	Pressure (psi)	137.0		146.9595				
	Vapor Fraction	1.0		1.0				
	Liquid Fraction	0.0		0.0				
Design Data								
	Type Material New Work (kW) Efficiency	Stainless 5 5.70 0.72	Steel					
	C _P \$ 36,789.78 C _{BM} \$ 79,098.03							

	C-101						
Identification	Item Item No. No. Required	Compressor C-101 1	Date By	4/5/2011 EH/MP/DS			
Function:							
Operation:	11 hours, daily						
Materials Han Stream ID	dled	Inlet 23	Outlet 24				
	Quantity (lb/hr) Composition:	384.39	384.39				
	Hydrogen CO2 CO	0.16 11.60 0.00	0.16 11.60 0.00				
	Water Methane	200.02 172.6142	200.02 172.6142				
	Oxygen Nitrogen	0 0	0 0 1400 8				
	Pressure (psi) Vapor Fraction	1472.0 139.9 1.0	1490.8 146.9595 1.0				
	Liquid Fraction	0.0	0.0				
Design Data							
	Type Material Net Work (kW) Efficiency	Stainless S 1.71 0.72	Steel				
	С _Р \$ 15,380.31 С _{вм} \$ 33,067.66						

C-102						
Identification	Item Item No. No. Required	Comp C-102	ressor	Date By	4/5/2011 EH/MP/DS	
Function:						
Operation:	11 hours	, daily				
Materials Han Stream ID	dled Quantity (lb/hr) Composition: Methane Oxygen Nitroger Temperature (°F) Pressure (psi) Vapor Fraction Liquid Fraction	Hydrogen CO2 CO Water	Inlet 25 4452.30 0.00 0.00 0.00 0 1037.016 3415.281 77.0 14.7 1.0 0.0	Outlet 26 4452.30 0.00 0.00 0.00 0 1037.016 3415.281 757.5 150 1.0 0.0		
Design Data	Type Material Net Work (kW) Efficiency	519,190,33	Stainless S 220.33 0.72	Steel		
	С _Р , С _{ВМ} , 1,1	16,259.20				

T-100					
Identification	Item Power Recover Item No. No. Required	ry Turbine T-100 1	Date By	4/5/2011 EH/MP/DS	
Function:					
Operation:	11 hours, daily	7			
Materials Han Stream ID	dled Quantity (lb/hr) Composition: Hydrog Cu Wa Methane Oxygen Nitrogen Temperature (°F) Pressure (psi) Vapor Fraction Liquid Fraction	Inlet 35.00 3837.35 3837.35 gen 0.00 O2 0.00 CO 0.00 CO 0.00 dter 0.00 422.07 3415.28 1063.1 140.5 1.0 0.0	Outlet 36.00 3837.35 0.00 0.00 0.00 0.00 0.00 422.07 3415.28 565.7 14.70 1.0 0.0		
Design Data	Type Material Net Work (kW) Efficiency C _P \$ 38,130.1 C _{BM} \$ 38,130.1	Stainless -146.27 0.72	Steel		

R-100 (Electrolysis)						
Identification	Item Fuel Cell Item No. R-10 No. Required	0 1	Date By	4/5/2011 EH/MP/DS		
Function: Convert steam and carbon dioxide to hydrogen gas and carbon monoxide with the application of electrical current						
Operation:	12 hours, daily					
Materials Handle	d	Inlet(s)	(Dutlet		
Stream ID		9	10	16		
	Quantity (lb/hr)	391.00	391.00	598.15		
	Composition:					
	Hydrogen	7.11	64.88	0		
	CO2	388.10	3.88	0		
	СО	61.75	306.30	0.00		
	Water	532.20	15.97	0.00		
	Methane	0.00	0.00	0.00		
	Oxygen	0.00	0.00	598.15		
	Nitrogen	0.00	0.00	0.00		
	Temperature (°F)	1833.0	1292.0	1292.0		
	Pressure (psi)	154.3	147.0	147.00		
	Vapor Fraction	1.0	1.0	1.0		
	Liquid Fraction	0.0	0.0	0.0		
Design Data						
	Туре	Reversible Fuel (Cell			
	Material	YSZ, porous Ni,	LaMNO3			
	Electricity Produced (kW)		952.67			
	Heat Duty (Btu/hr)					
	Operating Temperature (F)	1291.7				
	Operating Pressure (psia)	15				
	Voltage (V)		0.662			
	Current Density (A/cm2)		-0.5			
	Electrode Area (cm2)		1834862			

	R-100 (Fuel Cell)						
Identification							
	Item	Fuel Cell		Date	4/5/2011		
	Item No.	R-100		By	EH/MP/D	S	
	No. Required	1					
Function:	Reforms	s methane	feedstock an	d converts hydro	gen and		
	cardon mo	onoxide int	o steam and electrici	tv	generating		
Operation:	11 hours, da	aily	electrici				
Materials Hand	dled	2	Inle	t(s)	Ou	tlet	
Stream ID			24	27	28	33	
	Quantity (lb/hr)		397.20	4452.30	1013.00	3836.44	
	Composition:						
	Hydrogen		3.29	0.00	6.10	0.00	
	CO2		27.67	0.00	411.89	0	
	CO		0.22	0.00	46.61	0.00	
	Water		199.40	0.00	548.44	0.00	
	Methane		166.60	0.00	0.00	0.00	
	Oxygen		0.00	1037.00	0.00	421.16	
	Nitrogen		0.00	3415.30	0.00	3415.30	
	Temperature (°F)		1491.0	1020.0	1562.0	1562.0	
	Pressure (psi)		154.3	134	14.7	16.20	
	Vapor Fraction		1.0	1.0	0.0	1.0	
	Liquid Fraction		0.0	0.0	1.0	0.0	
Design Data	_						
	Туре		Reversible	Fuel Cell			
	Material		YSZ, porou	is Ni, LaMNO3			
	Electricity Produced (k	W)	1202				
	Operating Temperature	(F)	1292				
	Operating Pressure (psi	a)	14/				
	Voltage (V))	0.9238				
	Electrode Area (cm ²)	2)	1.835E+06				
	Electiode Alea (clii2)		1.05512+00				
	C _P \$ 4	450,000.00)				
	C _{BM} \$ 4	450,000.00)				

R-101 (Methanator)						
lentification						
Item	Reactor	Date	4/5/2011			
Item No.	R-101	By	EH/MP/DS			
No. Required	1					
Function:						
Operation: 12 hours, daily						
Materials Handled	Inlet(s)	Outlet			
Stream ID	11	L	12			
Quantity (lb/hr)	391.	.00	391.00			
Composition:						
Hydroge	n 64.8	88	0.16			
CO	2 3.8	38	11.60			
C	O 306.	.30	2.47E-04			
Wate	er 15.9	97	206.65			
Methane	0		172.6			
Oxygen	0		0.00			
Nitrogen	0		0			
Temperature (°F)	200	0.0	400.0			
Pressure (psi)	143	5.5	143.5			
Vapor Fraction	1.0	0	1.0			
Liquid Fraction	0.0	0	0.0			
Design Data						
Туре	Metha	nator				
Material	NI-Al o	catalyst packed b	ed reactor			
Heat Duty (Btu/hr)	902	03				
Operating Temperature (F)	40	0				
Operating Pressure (psia)	143	3.5				
C _P \$ 38,949.16	5					
C _{BM} \$ 134,368.84						

P-101						
Identification						
	Item	Pump		Date	4/5/2011	
	Item No.	P-101		By	EH/MP/DS	
	No. Required	2				
Function:						
	Gas sto	orage betw	een electi	olysis and	fuel cell modes	
Operation:	11 hours, c	laily				
Materials Han	dled		Inlet	Outlet		
Stream ID			19	20		
	Quantity (lb/hr)		198.58	198.58		
	Composition:					
	Hydrog	en	0.00	0.00		
	C	02	0.00	0.00		
	(20	0.00	0.00		
	Wa	ter	198.58	198.58		
	Methane		0	0		
	Oxygen		0	0		
	Nitrogen		0	0		
	Temperature (°F)		77.0	77.0		
	Pressure (psi)		147.0	147.96		
	Vapor Fraction		0.0	0.0		
	Liquid Fraction		1.0	1.0		
Design Data						
	Туре					
	Material		Stainless	s Steel		
	Flow Rate (gal/min)		0.40			
	Head (ft)		2.31			
	С _Р \$ 22,769.	65				
	C _{BM} \$ 45,539.	31				

V-100							
Identification	Item Item No. No. Required	Storage Vessel V-100 1		Date By	4/5/2011 EH/MP/DS		
Function:	Stores gas in between electrolysis mode and fuel cell mode						
Operation:	12 hours, da	12 hours, daily					
Materials Hand Stream ID	dled Quantity (lb/hr) Composition: Methane Oxygen Nitrogen Temperature (°F) Pressure (psi) Vapor Fraction Liquid Fraction	Hydrogen CO2 CO Water	$ \begin{array}{c} 14\\ 191.31\\ 0.14\\ 20.24\\ 0.00\\ 1.46\\ 169.4629\\ 0\\ 100.0\\ 143.5\\ 1.0\\ 0.0\\ \end{array} $				
Design Data	Type Material(gal)Storage Volume (gal)Length (ft)Diameter (ft)CP $$ 399,53$ CBM $$ 1,218,57$	32.70 4.72	Gas Storag Stainless S 9700.00 5481.23 0.55	șe steel			

	V-101						
Identification	Item Item No. No. Required	Storage Vessel V-101 1	Date By	4/5/2011 EH/MP/DS			
Function:	Function: Pressurized Water Storage for Electrolysis Mode						
Operation:	12 hours, d	aily					
Materials Hand	dled						
Stream ID		13					
	Quantity (lb/hr)	212.40					
	Composition:						
	Hydrogen	0.00					
	CO2	0.00					
	CO	0.00					
	Water	212.40					
	Methane	0					
	Oxygen	0					
	Nitrogen	0					
	Temperature (°F)	100.0					
	Pressure (psi)	143.5					
	Vapor Fraction	0.0					
	Liquid Fraction	1.0					
Design Data							
	Туре	Liquid S	torage				
	Material	Stainless	s Steel				
	Storage Volume (gal)	50.00	from Lowe	es			
	C _P \$ 317.95						
	С _{вм} \$ 953.85						

V-102						
Identification	Item Item No. No. Required	Storage V-101	Vessel 1	Date By	4/5/2011 EH/MP/DS	
Function:	Stor	re water pro	duct from fu	el cell ope	ration	•
Operation:	11 hours, dai	ly				
Materials Han Stream ID	dled Quantity (lb/hr) Composition: H Methane Oxygen Nitrogen Temperature (°F) Pressure (psi) Vapor Fraction Liquid Fraction	Iydrogen CO2 CO Water	$\begin{array}{c} 31\\ 478.83\\ 7.46\\ 441.80\\ 27.57\\ 1.99\\ 0\\ 0\\ 0\\ 0\\ 100.0\\ 140.0\\ 1.0\\ 0.0\\ \end{array}$			-
Design Data	Type Material Storage Volume (gal) Length (ft) Diameter (ft) C _P \$ 444,11	7.11	Gas Storag Stainless S 13200.00 26.00 0.61	ge Steel		
	С _{вм} \$ 1,354,55	7.20				

V-103						
Identific	ation Item Item No.	Storage V-103	Vessel	Date By	4/5/2011 EH/MP/DS	
	No. Required	1				
Function:	Pressu	rized Water	Storage for	r Electrolysis Mode	;	
Operation:	11 hours, da	uly				
Materials Har	ndled					
Stream ID			32			
	Quantity (lb/hr)		520.50			
	Composition:		0.00			
	Hyd	lrogen	0.00			
		CO2	0.00			
		UU Watar	0.00			
	Mathana	water	520.50 0			
	Ovvgen		0			
	Nitrogen		0			
	Tutogen		0			
	Temperature (°F)		100.0			
	Pressure (psi)		140.0			
	Vapor Fraction		0.0			
	Liquid Fraction		1.0			
Design Data						
	Type Material Storage Volume (gal)		Liquid Steel, po 85.00	torage lymer bladder from Lowes		
	C _P \$ 48 C _{BM} \$ 1,45	35.00 5.00				

Energy Balance and Utility Requirements

The energy balance and utility requirements can be subdivided into three categories: electricity, natural gas, and cooling water. Additionally, the fuel cell generates heat in both modes due to the difference between the operating voltage and the open cell voltage. The heat duty calculated by ASPEN includes the electrical work on the system as well as any additional heating or cooling, depending on the mode.

The energy balance for the fuel cell is summarized in Table 19. The additional 72.0 kW of heating required for electrolysis mode could be provided by either increasing the temperature of the feed stream or increasing either the current density or operating voltage of the cell. This amount of heat could also be provided with a mixture of these two methods. A voltage increase of 0.08 V, which would result in the thermoneutral voltage of 1.16 V, could provide sufficient heating for the fuel cell in electrolysis mode, but as this change in operating voltage would significantly impact the material balances, this option was not pursued. For future work with reversible fuel cell systems, the operating voltage should be optimized to reduce the heating load during electrolysis mode without sacrificing efficiency.

	ASPEN Heat Duty (kW)	Electrical Energy (kW)	Overpotential Heating (kW)	Total (kW)
Electrolysis Mode	1178.0	1000.0	64.2	113.8
Fuel Cell Mode	-1040.9	-867.0	58.8	-232.7

Table 19 – Summary of Fuel Cell/Electrolyzer Energy Balances

The energy balance is more complicated in fuel cell mode due to the endothermic, internal reformation of the methane. The amount of cooling from the endothermic reaction in this case is 295 kW. Furthermore, the electricity output is dependent on the cell efficiency, hours of operation in fuel cell mode, and the current density. In order to recover the maximum amount of energy in fuel cell mode, the current density must be increased due to the operating time ratio of 11:12 between fuel cell mode and electrolysis mode. An operating current density of 0.55 A is needed to recover the maximum amount of energy from the system in the 11 hours of fuel cell mode operation.

Electrical utilities are also needed for running the compressor in fuel cell mode, but some of this energy is recuperated in the turbine block, T-100. The electrical energy utility needs of fuel cell mode are summarized in Table 20.

Block	Power (kW)
C-100	5.70
C-101	1.70
C-102	220.00
T-100	-146.60
P-100	0.01
P-101	5E-4
Total	74.0

Table 20 – Electrical Utilities in Fuel Cell Mode

Cooling water is needed in electrolysis mode and fuel cell mode. In electrolysis mode, cooling water is needed for the methanation reactor, and for each of the outlet streams. The heat duties, flow rates of cooling water needed, and cost of cooling water utilities are shown in Table 21.

 Table 21 – Cooling Water Flowrates

	Heat Duty (kW)	Flowrate of Cooling Water (kg/hr)	Cost (\$/hr)	Annual Cost (\$)
E-104	-33.92	1756.03	0.04	139.08
E-105	-9.21	476.79	0.01	34.62
R-101	-291.63	15096.33	0.30	1195.63
Total	-334.76	17329.14		1369.32

Additionally, the two fired heaters in electrolysis mode require natural gas as a fuel source. The natural gas utilities are summarized below in Table 22.

Table 22 –	Natural	Gas	Utilities
-------------------	---------	-----	-----------

Equipment	Unit	Heat Duty	Flowrate (lb/hr)	Annual Consumption	Price	(\$/lb)	Annual Cost(\$)
Fired	E-102	265142.30	12.22	48397.25	\$	0.08	\$ 3,629.79
Heater 1							
Fired	E-103	625070.76	29.26	115876.85	\$	0.08	\$ 8,690.76
Heater 2							
Total		890213.05	41.48	164274.10			\$ 12,320.56

Equipment Cost Economic Analysis

Gas Storage

The efficacy of this system depends on successful storage of electrolysis product gas. Since the system is converting electrical energy into stored chemical energy, it was expected that the storage vessel costs would be a major component of the total cost of the process. For the methane base case, these costs were minimized by operating and storing at an elevated pressure.

A sensitivity analysis on the gas vessel cost as a function of the aspect ratio was performed for the electrolysis storage gas with the expectation that the cost of the fuel cell product gas storage vessel would follow a similar trend. The purchase cost of the storage vessel decreased as the aspect ratio increased, and a clear plateau in price reduction was evident at aspect ratios about 50. Increasing the aspect ratio results in longer, more slender pipes, and this decreases the price for horizontal storage vessels because the wall thickness decreases. At low aspect ratios, the walls of the vessel must be thick enough to support the weight of the upper portion of the vessel. At higher aspect ratios, the weight that must be supported decreases and results in thinner walls and lower cost. Even though the price continues to decrease as the aspect ratio of the vessel increases, the minimum wall thickness for any storage vessel in this situation must be at least 0.325 inches because of the need for a corrosion allowance of 1/8 inch. Therefore, increasing the aspect ratio above 1000 resulted in no further reductions in cost due to the minimum wall thickness requirements, and this aspect ratio was selected.

Despite these efforts to minimize storage costs, the purchase costs of the two gas storage vessels still comprised a large percentage of the total fixed costs. If the selling price of electricity were to increase enough to make this process more economically feasible, then further investigations into reducing these storage costs should be made. The two storage tanks could be combined with the proper control mechanism, and this would reduce the storage costs by nearly 50%. Another design option could be to discard the fuel cell exhaust gas in fuel cell mode and replenish the carbon dioxide gas at the anode of the fuel cell during electrolysis mode. This option was not pursued for this project since the process would not have been completely reversible if the feedstock needed to be continually replenished.

Compression Costs

Due to the high cost of C-102, the air stream compressor in fuel cell mode, this block was investigated in an attempt to determine if the price could be reduced. The compressor is expensive because of the flowrate of air that it must process and the large difference between the inlet and outlet pressures, and these two factors were examined in sensitivity analyses. The outlet pressure could be decreased to reduce the cost of the compressor. The *Fuel Cell Handbook* uses a pressure gradient of 1.4 atm in an example of an SOFC

system, so the outlet pressure could be reduced to 8.6 atm in the methane base case. At an outlet pressure of 8.6 atm, the purchase cost of the compressor fell to \$480,000, 8% lower than the original purchase cost.

The second option for reducing the cost of C-102 would be to lower the amount of excess air fed to the fuel cell. The original air stream was being fed at a 75% molar excess for cooling purposes, but the excess could be reduced. At 50% molar excess, the air flowrate would be 60 kmol/hr rather than 70 kmol/hr, and this reduction would result in a compressor purchase cost of \$454,000, a 9.2% decrease in purchase price, if the original outlet pressure were maintained. If both factors were altered, then the purchase cost of C-102 would be \$427,700, which is 14.6% lower than the original purchase cost. However, this change would greatly affect the cooling load on the fuel cell.

While these factors ought to be investigated in further detail, the changes that they would incur on the heat exchanger network and the fuel cell performance were too significant to be included in the scope of this project. The reduction in the compressor outlet pressure would affect the equilibrium in the fuel cell and change the composition of the product stream as a result. Furthermore, the reduction in the excess air molar ratio would change the amount of usable heat for the heat exchanger network.

Fixed-Capital Investment Summary

Unit No.	Unit Name	Purchase Cost	Bare Module Factor	Bare Module Cost
Name				
R-100	Fuel Cell	\$450,000	1.00	\$450,000
R-101	Methanator	\$50,000	3.25	\$123,468.84
E-100	Feedstock Preheater	\$3,107	1.80	\$5,592
E-101	Water Preheater 1	\$3,262	1.80	\$5,872
E-102	Fired Heater 1	\$18,767	3.00	\$56,301
E-103	Fired Heater 2	\$50,179	2.19	\$109,892
E-104	Condenser 1	\$50,142	2.19	\$109,811
E-105	Methane Preheater	\$2,965	1.80	\$5,337
E-106	Water Preheater 2	\$3,029	1.80	\$5,452
E-107	Fuel Cell Feed Preheater	\$3,719	1.80	\$6,695
E-108	Condenser 2	\$3,744	1.80	\$6,739
E-109	Air Preheater	\$3,744	1.80	\$6,739
C-100	Electrolysis Feed Compressor	\$25,000	2.15	\$53,751
C-101	Fuel Cell Feed Compressor	\$6,470	2.15	\$13,911
C-102	Air Compressor	\$241,557	2.15	\$519,347
T-100	Power Recovery Turbine	\$38,130	1.00	\$38,130
V-100	CO ₂ Storage Vessel	\$399,533	3.05	\$1,218,575
V-101	Water Storage Vessel 1	\$313	3.05	\$954
V-102	Methane Storage Vessel	\$444,117	3.05	\$1,354,557
V-103	Water Storage Vessel 2	\$477	3.05	\$1,455
P-100	Electrolysis Water Pump	\$37,791	1.00	\$37,791
P-101	Fuel Cell Water Pump	\$45,539	1.00	\$45,539
Total				\$4,277,378

Table 23 - Methane	System F	Cauipment	Cost Summary
1 abic 25 - Michanc	System L	quipment	Cost Summary

Additional Considerations

Environmental and Safety Concerns

While there are no toxic chemicals in this process, the operating conditions could lead to potential risks. The storage gas streams are stored at 147 psi, and care must be taken to keep flames and sparks away from these vessels due to the flammability of hydrogen and methane. Furthermore, the high operating temperature of the fuel cell could lead to injury in the event of a burst pipe or cell malfunction. Care must be exercised when operating the fuel cell and the methanator to ensure that these two reactors stay below critical temperatures. The methanator temperature must also be carefully monitored to prevent catalyst sintering.

Operating Costs

This process requires an initial purchase of carbon dioxide, hydrogen, carbon monoxide, and water, but these materials are conserved and regenerated since the process is reversible. Therefore, raw material costs were omitted from the operating costs.

Variable Costs		Annua	al Cost	
General Expenses				
Sell	ing / Transfer Expenses	:	\$	18,513
Dire	ect Research:		\$	12,342
Allocated Research:			\$	3,086
Administrative Expense:			\$	12,342
Mar	agement Incentive com	pensation:	\$	7,714
Total General Expens	ses		\$	53,996
Utilities	\$0.059203	per kWh of Electricity	\$	182,669
Total Variable Costs			\$	236,666

Table 24 - Variable Cost Summary for Methan System

Overall Economic Analysis

The profitability of this energy storage system was analyzed using the Profitability Analysis Spreadsheet (see page 200 of the Appendix), but the current low cost of electricity prevents this system from being profitable. The economic driving force of this process is the difference in cost between electricity during times of low demand and peak demand. At current electricity pricing, this difference is only \$0.12/kWh, so the system makes \$1,161.00 per day. Annual electricity sales are \$575,000, and the equipment costs far outweigh the sales. However, this is not a typical chemical process; the goal is to even out peak demand loads in an efficient manner. This technology is still in the development phase, and additional advancements are needed before the systems are market-ready. Additionally, the price of electricity is likely to increase in the future as fossil fuel sources are depleted and carbon dioxide emissions become regulated. The Return on Investment (ROI) of this process is -19.42%, as demonstrated in Table 25.

Table 25 –	ROI	Analysis	for	Methane	System
		•			

ROI Analysis (Third Production Year)				
Annual Sales	574,992			
Annual Costs	(1,348,470)			
Depreciation	(524,829)			
Income Tax	-			
Net Earnings	(1,298,307)			
Total Capital Investment	6,685,105			
ROI	-19.42%			

System Efficiency

The overall system efficiency for the methane case was calculated to be 58.8%, and the electrical efficiency of the system was found to be 64.6%. Efficiency loses occur in this system in three main ways: cell efficiency, compression loses, and heat requirements for electrolysis mode.

System Efficiency Losses

Cell Efficiency

The operating conditions of this system were selected to maximize the electrical efficiency of the cell, but some of the losses were unavoidable. The difference in voltage significantly impacts the cell efficiency and thus the overall efficiency of the system. The equation used to calculate the cell efficiency is Equation 5. As previously discussed, the cell efficiency for the methane case is 88%.

$$\eta_{cell} = \frac{V_{fuel cell mode} Q_{fuel cell}}{V_{electrolsis} Q_{electrolysis}}$$

Equation 5

Compression Losses

Although the cell efficiency is higher at elevated pressures, this design parameter led to significant efficiency loses for compression. However, these energy penalties are mitigated by the power recovery turbine, which recuperates 66% of the electricity supplied to the compressor. The compression of the air stream in fuel cell mode is by far the largest consumer of electricity in the system.

Electrolysis Heat Requirements

Additional heat must be supplied to the feed stream during electrolysis since the operating voltage is lower than the thermoneutral voltage. The efficiency losses associated with this need for additional energy input are inevitable. Raising the voltage to

V_{TN} in order to avoid the need for heat input would also decrease efficiency since the difference between $V_{electrolysis}$ and $V_{fuel cell}$ would increase. The energy balance on the fuel cell in electrolysis mode reveals a Δ H value of 4.51×10^6 kJ, which converts to a required energy input of 253 kW. The heat generated by the voltage difference in electrolysis mode provides 64 kW of heating, so 189 kW of additional energy must be provided to the system in order for the fuel cell to maintain operation temperature. A temperature gradient of 250°C was allowed for the fuel cell to mitigate the heating requirement. This value was selected based on data from a sample SOFC system highlighted in the Fuel Cell HandbookError! Bookmark not defined.. The electrolysis feed was overheated to 000°C, and it was allowed to cool to 750°C during electrolysis. This temperature gradient resulted in a reduction in the heating duty of the fuel cell to 113 kW, 75 kW lower than if the fuel cell were isothermal, but it also introduced a heating duty of 183 kW to the fired heater that preheats the electrolysis feed. This design choice was kept even though it produced efficiency losses because the alternative was to run at V_{TN}, which would have resulted in an efficiency loss of 4.5%. This efficiency loss is relatively small when compared to efficiency losses at V_{TN} for fuel cells operating at lower pressures. Optimization of operating conditions to reduce efficiency losses by running at V_{TN} should be performed if reversible fuel cells for energy storage are pursued in the future.
Antimony Case

Concept Stage

Operating Conditions Choices

For the antimony-based energy storage system, the current density for electrolysis operation was chosen to be 0.20 A/cm². The low current density allows for high overall efficiencies for the charge/discharge cycle. The corresponding operating voltage was determined using the the V-i curve from *Gorte and Gross*, shown in Figure 14. The open cell voltage for the antimony/antimony trioxide fuel cell is 0.75 V. The curve has a slope of 0.4 $\Omega \cdot \text{cm}^2$. For the selected electrical operating conditions, the maximum theoretical round-trip efficiency is 79.8%.

In fuel cell mode, the system oxidizes pure antimony. In electrolysis operation, however, the system cannot run on pure molten antimony oxide. There needs to be a significant portion of antimony in the feed stream because the molten metal acts as both the feed stream and the electrode. If the concentration of antimony is too low in electrolysis mode, the electrical conductivity of the mixture decreases. For the purpose of this report, it was assumed that converting between pure antimony and an equimolar mixture of antimony and its oxide would maintain a high enough conductivity for effective operation while not appreciably affecting the V-i curve for the system.

Electrolysis Heating

During electrolysis, the antimony trioxide in the feed is reduced to form molten antimony. This reaction is carried out under isothermal conditions at 1292°F. The reaction is highly endothermic. In order to maintain constant temperature, a significant amount out of heat must be supplied to the electrolyzer. The heat supplied to the electrolyzer has a detrimental effect on the overall processes efficiency. Minimizing the necessary heat load is critical to designing a system with high efficiency.

Compression

During fuel cell mode, the oxidation reaction is highly exothermic. In order to maintain the fuel cell at 1292°F, excess air is used to cool the cell. Air is fed to the cell at a temperature 200°C below the operating temperature of the cell⁵. Air enters the fuel cell at 932°F. The amount of excess air needed was determined thorough energy balance calculations. Increasing the air flow through the cell increases the necessary heat removal from the cell. The air flow rate was manipulated such that the excess heat not removed by the air stream in one fuel cell operating period is equal to the heat lost from the antimony storage vessel in one day. Under this operating constraint, the small amount of heat produced in the stack that is not removed via the air helps to overcome the heat losses through the tank.

Antimony Storage

The melting point of antimony is 1167°F and the melting point of antimony trioxide is 1213°F. Both substances must be kept above their melting point at all times throughout the system. Molten antimony is a very difficult substance to handle. If it is in the presence of oxygen, it will oxidize very easily. It is critical that the molten antimony does not come into contact with oxygen. Furthermore, molten antimony will also dissolve most metals. For that reason, metals were not considered for construction of the storage vessel and process piping. Ceramic material, specifically alumina, is used for the piping needed to transfer the molten metal to the fuel cell. The storage vessel was constructed out of concrete.

The volume required for storing the molten metal is 240 ft³. To determine the optimal dimensions for the storage vessel, a sensitivity analysis was conducted. The purchase cost of the vessel was computed for a range of aspect ratios. Equation 22.52 from <u>Product and</u> <u>Process Design Principles</u> was used to calculate the purchase cost of the vessel. For all calculations, a material factor of 0.50 was used. The material factor was calculated by comparing the cost of high pressure (10 ksi) concrete with that of carbon steel, the benchmark material for costs in <u>Product and Process Design Principles</u>. The aspect ratio for these calculations was defined as the height of the vessel divided by the diameter. In addition to the purchase cost of the vessel, the additional cost of sufficient mineral wool insulation was also added into the purchase costs. Table 26 shows the total purchase cost of the vessel for several different aspect ratios. For these calculations, the thickness of

insulation required was calculated to maintain a temperature of 122°F at the outside of the insulation layer. Please refer to the sample calculations on page 188 for the calculation of the necessary insulation thickness. The minimum purchase cost is minimized at an aspect ratio of 1.0, which results in a vessel with a length/height of 6.74 ft.

Aspect Ratio (L/D)	Purchase Cost
0.25	\$31,410
0.50	\$29,820
0.75	\$29,060
1.00	\$28,900
2.00	\$29,110

 Table 26 – Aspect Ratio Sensitivity Analysis

Process Flow Diagram and Material Balances - Electrolysis

Figure 15 – Process Flow Diagram for Antimony Electrolysis

Stream ID:		1	2	3	4
From		V-100	P-100	R-100	R-100
То		P-100	R-100	V-100	
Substream: MIXED					
Phase:		Liquid	Liquid	Liquid	Vapor
Component Ma	ss Flow				
Sb	Lb/hr	2006.969059	2006.969059	6020.907176	0
Sb2O3	Lb/hr	4805.121715	4805.121715	0	0
02	Lb/hr	0	0	0	791.1835974
N2	Lb/hr	0	0	0	0
Mole Flow	Lbmol/hr	33.03542369	33.03542369	49.55313553	24.77656776
Mass Flow	lb/hr	6812.090774	6812.090774	6020.907176	791.1835974
Volume Flow	ft3/hr				3.16E+04
Temperature	F	1291.73	1291.73	1291.73	1291.73
Pressure	psia	14.7	14.7	14.7	14.7
Vapor Fraction		0	0	0	1
Liquid Fraction		1	1	1	0
Molar Enthalpy	Btu/lbmol	-126558.5905	-126558.5905	8060.310549	9354.5302
Mass Enthalpy	Btu/lb	-613.7494048	-613.7494048	66.33778753	292.34
Enthalpy Flow	Btu/hr	-4180916.658	-4180916.658	399413.661	2.31E+05
Avg. Molecular Weight		206.64	206.64	121.76	31.9988

Table 27-Antimony Electrolysis Stream Summary

Process Description

An equimolar mixture of molten antimony and antimony trioxide is stored in a concrete storage vessel (V-100) at 1292°F and 14.7 psia. A transfer pump (P-100) is used to transport the molten mixture from the storage vessel to the electrolyzer at a flow rate of 6812 lb/hr (Stream 2). In the electrolyzer, the mixture is reduced to pure antimony. The reduction is facilitated by an electric current, which is delivered at 0.83 V and 0.20 A/cm². To accept 1.0 MW of electric power, the electrolyzer has a total area of 6.024×10^6 cm². The electrolyzer operates isothermally at a temperature of 1292° F. There are two effluent streams from the electrolyzer. The molten antimony stream flows from the electrolyzer to the concrete storage vessel (V-100) at a total flow rate of 6021 lb/hr (Stream 3). The oxygen produced is released to the atmosphere at a rate of 791.2 lb/hr at a pressure of 14.7 psia (Stream 4).

To maintain isothermal conditions within the electrolyzer 1402464.45 Btu/hr of heat must be supplied. This heat must be provided at 1292°F. Heating at such a high temperature is very challenging because traditional heat sources such as high pressure steam cannot be used. The best source of heat for the electrolyzer is direct electric heating. Assuming a 100% conversion of electrical energy to heat, the required heat can be supplied via electricity at 411 kW. This electrical heat requirement has a significant effect on the overall efficiency of the system. One way to mitigate the heat requirement needed during electrolysis operation is to allow the molten feed to enter the electrolyzer at a temperature above 1292°F. The principal source of heat to allow for this high inlet temperature would be the excess heat in fuel cell mode. Allowing this temperature rise, however, does not have a significant effect on the amount of heat input required. A 50 kW decrease in heating load requires a 245°F rise in inlet temperature.

Both the molten antimony and antimony trioxide used in this process are stored in a cylindrical concrete storage vessel (V-100). The vessel maintains the molten metal at 1292°F. It is insulated with mineral wool to reduce heat losses to the surroundings. The heat losses from the vessel were calculated to be 11049 Btu/hr. The heat loss was calculated from the temperature profile of the insulation layer, which was derived from first principles. Please refer to the sample calculations on page 188, for the derivation of the temperature profile.

Table 28 – Utilities Summary

Equipment	Unit No.	Power (kW)	Annual Consumption (kWh)	Price	Annual Cost	
Transfer Pump	P-100	1.119	4431.24	\$.06/kWh	\$265.87	
Electrolyzer Power	R-100	1000	3,960,000	\$.06/kWh	\$237,600.00	
Electrolyzer Heat	R-100	411	1,627,560	\$.06/kWh	\$97,653.60	
Total Electricity Cost: \$						

Energy Balance and Utilities

annually.

HeatR-1004111,627,560\$.06/kWh\$97,653.60Total Electricity Cost:\$335,519.47Electricity is the only utility used in electrolysis. The transfer pump (P-100) requires a net power
of 1.119 kW. The electrolyzer (R-100) is the biggest consumer of electric power in the system.
The 1000 kW of electric energy which drives the reaction is the biggest utility requirement for
electrolysis mode. The 411 kW of electric of heat consumed by the electrolyzer is the second
largest energy input to the system. The electricity used in electrolysis mode costs \$335,519.47

Process Flow Diagram and Material Balances – Fuel Cell Mode

Figure 16 – Flow Diagram for Fuel Cell Mode

Table 29 - Antimony Fuel Cell Stream Summary

Stream ID:		5	6	7	8	9
From		V-100	P-100	R-100		C-100
То		P-100	R-100	V-100	C-100	E-100
Substream: MIXED						
Phase:		Liquid	Liquid	Liquid	Vapor	Vapor
Component Ma	ss Flow	Liquid	Liquid	Liquid	Tapor	Tapor
sh	Lb/br	6622 997894	6622 997894	2207 665965	0	0
sh203	Lb/hr	0022.557054	0022.557054	5285 633887	0	0
02	Lb/hr	0	0	0	6618 34	6618 34
N2	Lb/hr	0	0	0	21796.7	21796.7
Mole Flow	Ibmol/hr	54 50844908	54 50844908	36 33896606	984 9094	984 9094
Mass Flow	lb/hr	6622 997894	6622 9979	7493 209851	28/15	2 845+04
Volumo Elow	ft2/hr	0022.557054	0022.5575	7455.255051	385020	3 455+05
Tomporature	E	1201 72	1201 72	1201 72	565520	117 5
Deserves	F	1291.73	1291.73	1291.73	14.7	17.050
Pressure	psia	14.7	14.7	14.7	14.7	17.0959
Vapor Fraction		0	0	0	1	1
Liquid Fraction		1	1	1	0	0
Molar Enthalpy	Btu/Ibmol	8060.310549	8060.310549	-126558.5905	-2.8911	279.4625
Mass Enthalpy	Btu/lb	66.33778753	66.33778753	-613.7494048	-0.1002	9.6866
Enthalpy Flow	Btu/hr	439355.0271	439355.0271	-4599008.324	-2847.4332	2.75E+05
Avg. Molecular Weight		121.76	121.76	206.64	2.89E+01	2.89E+01
Stream ID:		1	0	11	12	
Stream D.		E 10	0 01	11 00 E 1	12	
To		L-10 D 10	0 51	00 [-]	100	
Substream MIXED		K-10	0 5-10	00		
Phase		Vapor	Vapor	Vapor		
Component Ma	acc Flow	vapor	vapor	vapor		
component wa	Ib/br		0	0	0	
shada	LD/nr		0	0	0	
30203	LD/III	6610 2	4 57	40 57	749	
N2	Lb/hr	21796	7 21796	40 J/	6.7	
Mole Flow	Lbmal/br	084.000	4 057.71	07 057.71	07	
Mass Flow	LDINOI/III	384.505	4 937.710	07 937.73	04	
Walson Flow	id/nr	2.64E+0	4 27544	A.7 2.75E1	F04	
Volume Flow	ft5/nr	8.66E+U	5 1.11E+0	00 0.5961	105	
Temperature	F	931.7	5 12	92 557.75	574	
Pressure	psia	10.965	9 10.19	14.70		
Vapor Fraction			1	1	1	
Liquid Fraction	Di //I I	64 70 007	0 0046.3	0	0	
Molar Enthalpy	Btu/Ibmol	6170.807	1 8946.3	28 1826.19	951	
	Btu/Ib	213.889	8 311.06	06 63.45	961	
Enthalpy Flow	Btu/nr	6.08E+0	o 7.29E+0	06 1.49E4	106	
Man Entropy	Btu/Ibmol-K	7.563	9.36	51 3./2	204	
Mass Entropy	Btu/Ib-R	0.262	2 0.32	5/ 0.12	.94	
Wolar Density	ibmoi/ft3	1.14E-0	3 8.61E-0	04 1./2E	-03	
Mass Density	lb/ft3	3.28E-0	2 2.48E-0	02 4.96E	-02	
Avg. Molecular Weight		2.89E+0	1 2.88E+0	01 2.88E+	+01	

Process Description

The pure molten antimony produced during electrolysis is held in the storage vessel (V-100) for use during fuel cell mode. The antimony is pumped from the vessel by the antimony transfer pump (P-100) at a flow rate of 6623 lb/hr (Stream 6).

The operating conditions for fuel cell mode are different than for electrolysis. The fuel cell produces an electric current at 0.622 V and 0.22 A/cm^2 . Under these operating conditions, the fuel cell produces 877.35 kW of useful electric power. The current density for fuel cell mode was selected to provide a total downtime of 1.1 hour in a 24 hour period, or 0.55 hour (33 minutes) for switching between operating modes. The total operating time for fuel cell mode is 10.9 hours.

In addition to the antimony feed stream (Stream 6), the fuel cell also has an inlet stream of air (Stream 10), which enters the fuel cell at a flow rate of 28,415 lb/hr. For all calculations, the inlet air molar composition was assumed to be 79% nitrogen and 21% oxygen. The pressure of the air stream is first increased from 14.7 psia to 17.7 psia by the air blower (C-100) to overcome the pressure drop through the system and maintain a steady flow. The pressure drops through the air heater were calculated using ASPEN's Heat Exchange Design program. For the fuel cell, the pressure drop was calculated by hand and found to be negligible. For this calculation, please refer to the sample calculations on page 181. After passing though the blower, the air stream is preheated in a shell and tube heat exchanger (E-100). The heat source for the temperature increase is the effluent air stream from the fuel cell (Stream 11). The cold air enters the exchanger at 117.5°F and exits at 932°F before entering the fuel cell.

The air stream exits the fuel cell with a flow rate of 27545 lb/hr (Stream 11) with an oxygen mole fraction of 0.188. The air outlet then enters the air preheater before being released to the environment. The fuel stream exits the fuel cell as an equimolar mixture of antimony and antimony trioxide at a flow rate of 7493.3 lb/hr (Stream 7). The molten outlet stream is returned to the antimony storage vessel (V-100).

Energy Balance and Utilities

Equipment	Unit No.	Power (kW)	Annual Consumption (kWh)	Price	Annual Cost	
Transfer Pump	P-100	1.119	4028.4	\$.06/kWh	\$241.70	
Air Blower	C-100	81.5	293,400	\$.06/kWh	\$17,604.00	
Total Electricity Cost:\$1						

Table 30 – Utilities Summary

Electricity is the only utility used during fuel cell operation. The transfer pump (P-100) requires 1.119 kW or electric power. The air blower (C-100) requires 81.5 kW of electric power, which costs \$17,604.00 annually. The blower consumes the vast majority of the overall electricity input for fuel cell mode. Annual fuel cell mode electricity costs total \$17,845.70,

Equipment List and Unit Descriptions

Unit No.	Unit Type	Function	Size	Material	Oper. T (°F)	Oper. P (psia)
P-100	Pump	Maintain flow of molten metal through the system.	P=1.11 hp	Ceramic	1292	14.7
R-100	Fuel Cell	Reduce antimony trioxide via an electric current.	V=0.83 V I=0.2 A/cm ² A=6.024x10 ⁶ cm ²	Sb, YSZ	1292	14.7
V-100	Storage Vessel	Store a mixture of molten antimony and antimony trioxide.	L= 6.8 ft D= 6.8 ft	Concrete	1292	14.7

Table 31 – Electrolysis Process Units

Antimony Transfer Pump

The antimony transfer pump is used to facilitate flow of the molten mixture of antimony and antimony trioxide from the storage vessel to the electrolyzer. The pump is made of alumina, with some graphite. The pump requires a power of 1.11 hp to produce a flow rate of 6812 lb/hr. Please refer to the specification sheet on page 154.

Electrolyzer

The electrolyzer reduces antimony trioxide to antimony at the anode. The molten antimony in the feed stream acts as the anode. The electrolyzer operates under isothermally at 1292°F and a pressure of 14.7 psia. To maintain isothermal conditions a heat duty of 1402464 Btu/hr is needed. A direct electric current is supplied to the electrolyzer at a voltage of 0.83 V and a current density of 0.2 A/cm². The total electrode area for the electrolyzer totals 6.024×10^6 cm². The purchase cost of the electrolyzer is \$450,000, which is based on USDOE price estimates for residential SOFC systems for 2020. Please refer to the specification sheet on page 156 and the sample calculation on page 187.

During electrolysis mode, the storage vessel holds the mixture of molten antimony and antimony trioxide which is fed to the electrolyzer. The mixture is kept at 1292°F. After the mixture passes through the electrolyzer and converted to pure antimony, it is returned to the vessel. The storage vessel is built of concrete. It is insulated with a 2.2 ft thick layer of mineral wool insulation. The total bare module cost for the storage vessel, including the mineral wool insulation, is \$89,400. Please refer to the specification sheet on page 159 and the sample calculation on page 181.

Unit No.	Unit Type	Function	Size	Material	Oper. T (°F)	Oper. P (psia)
C-100	Blower	Increase the pressure of the air inlet stream.	P=109.3 hp	Cast Iron	117.5	17.7
E-100	Shell and Tube Heat Exchanger	Preheat the air inlet to the fuel cell.	Q=5802441 Btu/hr A=2164 ft ²	Carbon Steel	932	14.7
P-100	Pump	Maintain flow of molten metal through the system.	P=1.11 hp	Ceramic	1292	14.7
R-100	Fuel Cell	Produce an electric current via the oxidation of antimony.	V=0.662 V I=0.22 A/cm ² A=6.024x10 ⁶ cm ²	Sb,YSZ	1292	14.7
V-100	Storage Vessel	Store molten antimony and molten antimony trioxide.	L=6.8 ft D=6.8 ft	Concrete	1292	14.7

Table 32 – Fuel Cell Process Units

Air Blower

The blower is used to increase the pressure of the air inlet from 14.7 psia to 17.7 psia. This unit is a cast iron rotary s straight lobe blower with cast aluminum blades. It produces a net work of 109.3 hp, which is supplied via an electric motor. The total bare module cost for the blower is \$112,000. Please refer to the Specification sheet on page 152 and the sample calculations on page 179.

Air Preheater

The air preheater increases the temperature of the inlet air stream from $117.5^{\circ}F$ to $12952^{\circ}F$. The hot stream is the air outlet form the fuel cell, which enters the exchanger at a temperature of $1272^{\circ}F$ and exits at $338^{\circ}F$. The cold air stream (9) flows through the tube side of the exchanger at a flow rate of 28415 lb/hr, while the hot stream (10) flows through the shell side with an overall flow rate of 27545 lb/hr. The unit is made of carbon steel with 2164 ft² of heat transfer area and an overall heat transfer coefficient of 7.35 Btu/hr·ft²·°F. The total bare module cost of the heat exchanger is \$118,380. Please refer to the specification sheet on page 153 and the sample calculation on page 177.

Fuel Cell

The fuel cell oxidizes the molten antimony fuel stored in the storage vessel to antimony trioxide. Pure molten antimony is fed at the anode at a flow rate of 6623 lb/hr. Air is fed to the cathode at a flow rate of 28415 lb/hr. The fuel cell produces an electric power at 0.662 V and a current density of 0.22 A/cm². The cell has a total area of 6.024×10^6 cm². The total power output for the fuel cell is 877.35 kW. The purchase cost of the fuel cell is \$450,000, which is based on USDOE price estimates for residential SOFC systems for 2020. Please refer to the specification sheet on page 157 and the sample calculation on page 187.

Storage Vessel

The storage vessel holds the molten antimony which acts as the fuel for fuel cell operation. The metal is kept at 1292°F. After the metal is oxidized in the fuel cell, the mixture of antimony and antimony trioxe is returned to the storage vessel. The vessel is built out of concrete and insulated with mineral wool. The total bare module cost for the storage vessel is \$89,400. Please refer to the specification sheet on page 159 and the sample calculation on page 180.

Specification Sheets

The following lists the page number of the specification sheets detailing the different units within the antimony system, followed by the specification sheets.

Page	Unit No.	Unit Name
152	C-100	Air Blower
153	E-100	Air Preheater
154-155	P-100	Transfer Pump
156-157	R-100	Reversible Fuel Cell
158-159	V-100	Storage Vessel

Air Blower(C-100)							
Identificati	on Item Item No. No. Required		Blower C-100 1		Date By	4/5/2011 EH/MP/DS	
Function:	Increas	se the air inle	et pressure fro	om 14.7 psia	to 17.7 psia.		
Operation:	Operation: 10.9 hours, daily						
Materials I Strear	Handled n ID Quantity (lb/hr) Composition: Temperature (°F) Pressure (psia) Vapor Fraction	Antimony Antimony Trioxide Oxygen Nitrogen		Inlet 8 28415.00 0.00 0.00 6618.00 21797.00 77.0 14.7 1.0	Outlet 9 28415.00 0.00 0.00 6618.00 21797.00 117.5 17.7 1.0		
Design Dat	a Type Material Net Work (HP) Efficiency		Rotary Strat Cast Iron 109.2915 0.72	ight Lobe Blo	ower, Cast Alumin	um Blades	
	C _P C _{BM}	\$ \$	37,049 79,655				

Air Preheater (E-100)							
Identification Item Item No. No. Required		Heat Exchanger E-101 1		Date By	4/5/2011 EH/MP/DS		
Function:	Preheat air inlet fror	n 117.5°F to 1	292°F.				
Operation:	10.9 hours, daily						
Materials Handled Hot Cold							
Stream ID		Inlet	Outlet	Inlet	Outlet		
Stream ID	Quantity (lb/hr) Composition:	27545	12 27545.00	9 28415.00	10 28415.00		
	Antimony	0	0.00	0.00	0		
	Antimony Trioxide	0	0.00	0.00	0		
	Oxygen	5748	5748.00	6618.00	6618.00		
	Nitrogen	21797	21797.00	21797.00	21797.00		
	Temperature (°F)	1292	338.0	117.5	932.0		
	Pressure (psi)	16.2	14.8	17.7	16.99		
	Vapor Fraction	1.0	1.0	1.0	1.0		
	Liquid Fraction	0.0	0.0	0.0	0.0		
Design Dat	a						
	Туре		Shell and T	Fube, Floating	Head		
	Material		Carbon Ste	eel			
	Heat Transfer Area		2164 ft2				
	Heat Transfer Coefficient		7.35 Btu/(1	nr*ft2*F)			
	Heat Duty		5802440.8	2 Btu/hr			
	C _P \$	37,340.00					
	C _{BM} \$	118,380.00					

Transfer Pump (Electrolysis)							
Identificatio	n Item Item No. No. Requir	ed	Compressor P-100 1	Date By	4/5/2011 EH/MP/DS		
Function:	Increase the velocity of the molten metal stream.						
Operation:		12 hours, daily					
Materials Handled			Inlet	Outlet			
	Quantity (lb/hr) Composition:		6812.00	6812.00			
	1	Antimony	2007.00	2007.00			
		Antimony Trioxide	4805.00	4805.00			
		Oxygen					
		Nitrogen					
	Temperatu	re (°F)	1292.0	1292.0			
	Pressure (p	osi)					
	Vapor Frac	ction	0.0	0.0			
	Liquid Fra	ction	1.0	1.0			
Design Data	l						
	Type		Transfer Pump				
	Material		Ceramic, Graphite				
	Net Work		1.11 HP				
	C _P	\$	N/A				
	C_{BM}	\$	N/A				

Transfer Pump (Fuel Cell)						
Identification Item Item No. No. Required		Compressor P-100 1		Date By		4/5/2011 EH/MP/DS
Function:	Increase the v	velocity of the	molten met	al stream.		
Operation:	10.9 hrs, dail	y				
Materials Handle Stream ID Quantity (lb/hr	ed :)		Inlet 5 6623.00		Outlet 6 6623.00	
Composition:	Antimony Antimony Tri Oxygen Nitrogen	ioxide	6623.00 0.00 0.00 0.00		6623.00 0.00 0.00 0.00	
Temperature (^o Pressure (psi) Vapor Fraction	°F) 1		1292 14.7 0.0		1292 14.7 0.0	
Design Data						
Type Material Net Work		Transfer Pun Ceramic, Gra 1.11 HP	np aphite			
C _P C _{BM}	\$ \$	N/A N/A				

Fuel Cell/Electrolyzer (Electrolyzer)						
Identification						
	Item	Electrolyzer	ſ	Date	4/5/201	1
	Item No.	R-100		By	EH/MF	/DS
	No. Required	1		•		
Function:				•		
	Reduce antimony	trioxide to an	itimony via el	lectric (current.	
Operation:	12 hrs, daily					
Materials Ha	ndled		Inlet(s)		Outl	et
Stream ID			2		3	4
	Quantity (lb/hr)		6812.10	6	5020.90	791.20
	Composition:					
	Antimony		2007.00	6	5020.90	0
	Antimony Trioxide		4805.00		0.00	0
	Oxygen		+005.00		0.00	791 20
	Nitrogen		0.00		0.00	0.00
	6					
	Temperature (°F)		1291.7		1291.7	1291.7
	Pressure (psi)		14.7		14.7	14.70
	Vapor Fraction		0.0		0.0	1.0
	Liquid Fraction		1.0		1.0	0.0
Design Data	-		D 111 D	1.0		
	Type Motorial		Reversible F	uel Ce	11	
	Flastricity Symplical (I-W)		Sb, YSZ			
	Electricity Supplied (KW)		1402464 45			
	Operating Temperature (F)		1291 70			
	Operating Pressure (psia)		12)1.70			
	Voltage (V)		0.83			
	Current Density (A/cm2)		0.2			
	Electrode Area (cm2)		6.024E+06			
	C _P \$	450,000.00				
	C _{BM} \$	450,000.00				

Fuel Cell/Electrolyzer (Fuel Cell)					
Identification					
	Item	Fuel Cell		Date	4/5/2011
	Item No.	R-100		By	EH/MP/DS
	No. Required	1			
Function:	Oxidize antimony to	o produce a	n electric cu	irrent.	
Operation:	10.9 hrs, daily				
Materials Han	dled	Inl	et(s)	Ou	tlet
Stream ID		6	10	7	11
	Quantity (lb/hr) Composition:	6623.00	28415.00	7493.30	27545.00
	Antimony	6623.00	0.00	2207.70	
	Antimony Trioxide	0.00	0.00	5285.60	0
	Oxygen	0.00	6618.00	0.00	5748.00
	Nitrogen	0.00	21797.00	0.00	21797.00
	Temperature (°F)	1291.7	932.0	1291.7	1292.0
	Pressure (psi)	14.7	16.99	14.7	16.20
	Vapor Fraction	0.0	1.0	0.0	1.0
	Liquid Fraction	1.0	0.0	1.0	0.0
Design Data					
	Туре		Reversib	le Fuel Cell	
	Material		Sb, YSZ		
	Electricity Produced (kW)		877.35		
	Operating Temperature (F)		1291.7		
	Operating Pressure (psia)		14.7		
	Voltage (V)		0.662		
	Current Density (A/cm2)		0.22		
	Electrode Area (cm2)		6.024E+06	5	
	C _P \$	450,000.0	00		
	C _{BM} \$	450,000.0	00		

Storage Vessel (Electrolysis)						
Identificati	Identification					
	Item	Vessel	Date	4/5/2011		
	Item No.	V-100	By	EH/MP/DS		
	No. Required	1				
Function:	Store molten mixtur	e of antimon	y and antimony trie	oxide.		
Operation:	Continuous					
Materials H	Iandled		Inlet	Outlet		
Stream ID			3	1		
	Quantity (lb/hr)		6021.00	6812.00		
	Composition:					
	Antimony		6021.00	2007.00		
	Antimony Trioxide		0.00	4805.00		
	Oxygen		0.00	0.00		
	Nitrogen		0.00	0.00		
	Temperature (°F)		1291.7	1291.7		
	Pressure (psi)		14.7	14.7		
	Vapor Fraction		0.0	0.0		
	Liquid Fraction		1.0	1.0		
Design Data	a					
	Туре					
	Material		Concrete			
	Storage Volume		247 ft3			
	Diameter		6 8 ft			
	Length		6 & ft			
	Weight		9/150 lbs			
Insulation Minoral W.		Mineral Wool				
Insulation Thickness			2.2 ft			
	Operating Temperature (F)		1291 7			
	Operating Pressure (psia)		14.7			
	C	20.207.00				
	Cp \$	29,307.00				
	C _{BM} \$	89,400.00				

Storage Vessel (Fuel Cell)					
Identification					
	Item	Vessel	Date		4/5/2011
	Item No.	V-100	By		EH/MP/DS
	No. Required	1			
Function:	Store molten an	timony.			
Operation:	Continuous				
Materials Han	dled		Inlet	Outlet	
Stream ID			5	6	
	Quantity (lb/hr)		7493.30	6623.00	
	Composition:				
	Antimony		2207.70	6623.00	
	Antimony Trioxide		5285.60	0.00	
	Oxygen		0.00	0.00	
	Nitrogen		0.00	0.00	
	Temperature (°F)		1291.7	1291.7	
	Pressure (psi)		14.7	14.7	
	Vapor Fraction		0.0	0.0	
	Liquid Fraction		1.0	1.0	
Design Data					
	Туре				
	Material		Concrete		
	Storage Volume		247 ft3		
	Dimensions				
	Diameter		6.8 ft		
	Length		6.8 ft		
	Weight		9450 lbs		
	Insulation		Mineral Wool		
	Insulation Thickness		2.2 ft		
	Operating Temperature (F)		1291.7		
	Operating Pressure (psia)		14.7		
	Co. *	20 307 00			
		29,307.00			
	C _{BM} \$	89,400.00)		

Unit No.	Equipment	Purchase Cost	Bare Module Factor	Bare Module Cost
	Antimony	\$170,512	1.00	\$170,512
C-100	Air Blower	\$37,049	2.15	\$79,654
E-100	Air Preheater	\$29,427	3.17	\$93,284
P-100	Transfer Pump	N/A	3.30	N/A
R-100	Reversible Fuel Cell	\$450,000	1.00	\$450,000
V-100	Storage Vessel	\$29,307	3.05	\$89,386
Total:		\$716,295		\$882,838

Fixed Capital Investment Summary

Table 33 shows the equipment cost summary for the antimony system. The purchase cost is the cost of the physical equipment. The bare module cost is the total cost of the equipment as well as the cost of installation. The bare module factor varies for different types of process equipment. The bare module factors used in this report were taken from Table 22.11 of *Product and Process Design Principles*. The purchase cost for the antimony transfer pump was not included in this calculation. *Seider et al.* does not provide correlations for molten metal transfer pumps. The pump used in the design is based off of the model T(B)502 pump sold by High Temperature Systems, Inc¹⁶. The pump is designed to transfer molten aluminum for smelting applications. An aluminum pump was used because molten aluminum transfer pumps are rated to operate in the temperature range of this design. Unfortunately, at the time of this report, the vendor has yet to return a price quote for the pump model used in this design.

a		
C _{TBM}	Total Bare Module Cost	
C _{PM}	Equipment Bare Module Cost	\$ 622,938
C _{Sb}	Initial Charge for Antimony	\$ 170,512
Cstorage	Storage	\$
	C _{TBM}	\$ 882,838
C _{DPI}	Direct Permanent Investment	
C _{TBM}	Equipment Bare Module Cost	\$ 882,838
C _{site}	Site Preparation	\$ 44,142
C _{serv}	Service Facilities	\$ 44,142
Calloc	Allocated Costs for Utility Plants	\$
	C _{DPI}	\$ 971,121
C _{TDC}	Total Depreciable Capital	
C _{DPI}	Direct Permanent Investment	\$ 971,121
C _{cont}	Contingencies and Contractor's Fees	\$ 174,802
	C _{TDC}	\$ 1,145,923
C _{TPI}	Total Permanent Investment	
C _{TDC}	Total Depreciable Capital	\$ 1,145,923
Cland	Land	\$
Croyalty	Royalty	\$
C _{startup}	Plant Startup	\$ 114,592
	C _{TPI} (undadjusted)	\$ 1,260,515
	Site Factor	1.10
	C _{TPI} (adjusted)	\$ 1,386,567
C _{TCI}	Total Capital Investment	
C _{TPI}	Total Permanent Investment	\$ 1,386,567
C _{WC}	Working Capital	\$ 116,743
	Стсі	\$ 1,503,310

Table 34-Capital	l Investment	Summary
------------------	--------------	---------

Table 34 lists the capital investment estimates for the antimony fuel cell system. The direct permanent investment, C_{DPI} , includes the total bare module cost of the equipment, the cost of site preparations, the cost of service facilities and the allocated costs for utility plants, which is zero for this system. The total bare-module cost for the equipment is \$882,838. The cost of site preparations and the cost of service facilities are both \$44,121. They are estimated as 5.0% of the total bare-module costs. Since the fuel cell system is located at a pre-existing power plant, with utility sources, an allocated cost for utility plants is not added. The total depreciable capital,

 C_{TDC} , is calculated by adding the cost of contingencies and contractor's fees to the C_{DPI} . For these estimates, the contingencies and contractor fees were estimated to be 18.0% of C_{TDC} .

The total permanent investment, C_{TPI} , is calculated based on the total depreciable capital and other non-depreciable investments such as land and plant startup. The cost of land is not included in the calculation of C_{TPI} because the fuel cell system is located at a pre-existing power plant, land purchase is not necessary. There is no royalty cost for the fuel system, because the design does not include any proprietary technologies.

Working capital is the funds required to maintain operations until payments are received. As suggested in Section 23.3 of <u>Product and Process Design.</u>, the working capital includes 30 days of cash reserves and 30 days of accounts receivable. There are no raw material inputs for this process, so there is no cost associated with storing the necessary inputs for production. Additionally, the electric power produced cannot be stored; it is delivered directly to the grid during fuel cell operation, so there is no inventory of product. After adding the working capital, C_{WC} , to the total permanent investment, C_{TPI} , the total capital investment, C_{TCI} , is \$1,503,310.

Operating Costs

	An	nual Cost		
General Expenses				
Selling/Transfer Expenses	\$	18,951		
Administrative Expenses	\$	12,634		
Management Incentive	\$	7 806		
Compensation		7,890		
	\$	39,480		
Utilities				
Electricity	\$	353,366		
	\$	353,366		
Total Variable Costs	\$	392,846		

Table 35 – Variable Cost Summary

The variable costs for the antimony fuel cell process include utility requirements, and other general expenses. Table 35 summarizes the variable costs for the antimony system. General expenses include selling/transfer expenses, administrative expenses and management incentive compensation. *Seider et al.* explain how to calculate these costs in Chapter 23 of *Product and Design Principles*. The total variable costs for the system total \$392,846 annually. General expenses account for \$39,480 of the total variable costs. The annual cost of utilities for running

the process total \$353,366. This cost is based on the assumption that electricity can be purchased for \$0.06/kWh.

	A	nnual Cost
Operations		
Direct Wages and Benefits	\$	327,600
Direct Salaries and Benefits	\$	49,140
Operating Supplies and Services	\$	19,656
	\$	396,396
Maintenance		
Wages and Benefits	\$	51,567
Salaries and Benefits	\$	12,892
Materials and Services	\$	51,567
Maintenance Overhead	\$	2,578
	\$	118,603
Operating Overhead		
General Plant Overhead	\$	31,325
Mechanical Department Services	\$	10,589
Employee Relations Department	\$	26,301
Business Services	\$	32,649
	\$	100,593
Property Taxes and Insurance		
Property Taxes and Insurance	\$	22,918
	\$	22,918
Total Fixed Costs	\$	638,511

Fixed costs are incurred annually, regardless of overall power production. Table 36 summarizes the fixed costs for the antimony system. Fixed costs include operating costs, maintenance costs, operating overhead, property taxes and insurance. The values in Table 36 have been estimated as a percentage of total depreciable capital (C_{TDC}) as suggested in *Seider et al.* The operating costs are calculated on the assumption that the antimony system requires 1.5 operators per shift. One operator is required for the system, while the other half operator splits time between the fuel cell system and the power plant at which the system is located. Maintenance costs include costs of keeping equipment in working order, engineering and supervisory personnel salaries, materials and services, and maintenance overhead. Operating overhead includes the cost of providing services not directly related to system operation. These costs include safety and medical services, and purchasing and receiving. The total annual fixed costs total \$638,511.

Overall Economic Analysis

The profitability of an energy storage system utilizing a molten antimony fuel cell was evaluated using the Profitability Analysis Spreadsheet (see page 208 of the Appendix). The profitability of the system is not promising. At a selling price of \$0.20/kWh of energy produced, the, net present value (NPV) of the project is -\$3,442,700. Additionally, the return on investment (ROI) for the system in its third production year is -35.51%. Table 37 shows the ROI summary for the third production year. For all of the profitability calculations, the income tax rate for the system was set to zero. Since the annual operating costs of the system are greater than annual sales, the net income for the system is negative, so there is no income to be taxed.

ROI Analysis	
Annual Sales	\$ 568,517
Annual Costs	\$ (991,374)
Annual Variable Costs	\$ (392,846)
Annual Fixed Costs	\$ (638,511)
Depreciation	\$ (110,925)
Income Tax	\$
Net Earnings	\$ (533,782)
Total Capital Investment	\$ 1,503,310
ROI	-35.51%

Table 37 – ROI Summary

When evaluating the overall economic performance of the system, it is important to note that the annual variable costs are dominated by the electrical utilities required to operate the system. Additionally annual sales income is very low because of the low price of electricity. The profit margin between peak and off-peak electricity prices is simply too small to produce a significant income stream for the system. If peak electricity prices were higher, the system would be more economically favorable. To obtain an ROI of 0.0%, the price of electricity needs to be \$0.40/kWh. Another way of assessing the economic viability of the system is to evaluate the cost of the system per kilowatt of output capacity. The cost per kilowatt was calculated by dividing the total capital investment by the electrical power output. The antimony system costs \$1,713.14 per kW of power.

Overall Efficiency

There are several sources of inefficiencies in the system. These include waste heat produced in the fuel cell and electrolyzer during both operating modes, the heat provided to the electrolyzer and energy required for pumping and compression. Figure 17 shows a comparison of the energy losses in the system. The largest energy loss for the system is the heat duty required to maintain isothermal conditions during electrolysis. The heat duty totals almost 60% of the total energy losses in the system. The waste heat produced as a result of cell inefficiencies in electrolysis and fuel cell modes represent 14% and 15% of the energy losses, respectively. The work done by the blower to move the air stream through the system during fuel cell operation makes up the remainder of the energy losses in the system.

Figure 17 – Efficiency Losses

Table	38 -	Summary	of Energy	Inputs	and	Outputs
-------	------	---------	-----------	--------	-----	---------

Energy Output (kWh)					
Electricity Out (kWh)	9,571				
Total:	9,571				
Energy Inputs (kWh)					
Electrolyzer, electricity input	12,000				
Electrolyzer, heating	4931.3				
Compression	889.1				
Total:	17,820				

Improving efficiency will improve the economic viability of the system. The maximum theoretical round-trip efficiency for this system is 79.8%, which is based on thermodynamic limitations of the reversible fuel cell. The overall efficiency of the design presented here is 53.71%. Table 38 summarizes the overall energy inputs and outputs to the system. The most significant loss of energy in the system is the heat needed in electrolyzer mode. Compared to the other energy sinks in the system, the transfer pump, which operates at approximately 1.0 kW, is insignificant, which is why it is not included in Table 38. The required heat is almost half of what is added to the system to be stored. Lowering the electrical heat load could greatly improve the efficiency of the system while making it more economically favorable as well. As described above, this could be accomplished by relaxing the isothermal constraint on the system, by allowing for a temperature rise in the molten metal during fuel cell mode. The molten metal could then be fed to the electrolyzer at a higher temperature, reducing the heat load required to maintain the electrolysis reaction. Changing the operating conditions of the electrolyzer and/or fuel cell could also improve the overall efficiency of the system. Operating nearer to the open cell potential will reduce the energy lost to waste heat via ohmic losses.

Conclusions and Recommendations

These three process designs reveal some of the major benefits and challenges of fuel cells for reversible energy storage. The cost of the designs is high, but they will become more feasible as energy prices rise. Furthermore, energy storage systems are likely to receive government funding as energy efficiency agendas are pursued.

Efficiency

The overall efficiency of a system, as defined earlier in this report, is the useful energy generated divided by the total energy put into the system. For the three systems examined, the calculated efficiencies are very comparable.

System	Overall Efficiency
Hydrogen	52.4%
Methane	55.7%
Antimony	53.7%

Table 39: Comparison of System Efficiencies

In each system, the most significant efficiency loss occurred in the electrolyzer. In order to maintain operating temperature, a substantial amount of heat had to be added to the system in addition to the 1.0 MW of energy already being used to run the reaction. This heat, therefore, did not go towards generating useful energy, but rather was immediately wasted and lost. Additionally, since all of the systems are run at high temperatures, the streams exiting the fuel cell and electrolyzer are very hot. In order to prevent losses, all of this heat would need to be returned to the system through heat exchange with the inlet streams. However, because of the high temperatures, the amount of heat in these outlet streams was more than the inlet streams could absorb. This meant that a lot of heat was lost to cooling water and other non-recoverable sources, causing large efficiency losses.

Another loss for all three systems was compression. While the molten antimony system only needed one compressor, for air, the other two systems based on gases needed compressors on each gas stream. A lot of this energy was lost to pressure drops across heat exchangers and other units throughout the system that are unavoidable with moving streams.

Profitability

As shown throughout the report, none of the three systems designed generated a positive cash flow. This can be attributed to the small profit margin on the cost of electricity, the difference between peak and off peak energy prices. This margin becomes even smaller when the operating times and amount of electricity required by each mode are factored in. Since the operating time and electricity required for electrolysis are greater, the effective profit margin is even smaller than the already tiny normal profit margin.

To measure the profitability of each system, the ROI for the third year of operation was calculated. Additionally, the cost per kilowatt-hour was determined. This value takes both the efficiency and overall cost of the

System	ROI	Cost/kWh
Hydrogen	-26.10%	\$4,130
Methane	-19.21%	\$7,597
Antimony	-35.51%	\$1,714

Table 40: Return on Investment and Cost of Storage Capacity for the Three Systems

As shown in Table 40, none of the systems were profitable; they all have a negative ROI. Based on these numbers, the antimony is the most viable option since the magnitude of its ROI is the greatest. Even though the ROI of the antimony case is the most negative value, the earnings from the system are the largest relative to the initial investment.

Comparing the methane system to the hydrogen system, the biggest difference in capital investment is in the storage of the products and feeds. The pressure vessels had the highest bare module costs of any units throughout the two systems. While the hydrogen case only needs one gas storage vessel to store hydrogen product from electrolysis operation, the methane system requires two vessels, one in each mode for storing the product gases. Other than the additional storage vessel, the capital investments of the two gas-based systems are very similar.

Overall Analysis and Recommendation

While none of the designs presented in this report are profitable, positive results can be deduced. Currently, there is a lot of research in the area of reversible SOFC's and SOFC's in general. Although the costs for fuel cells being used in this report are the 2020 Department of Energy targets, it can be assumed that the costs will eventually become even lower over time as technology improves. For this reason, the antinomy system is the most promising of the three developed systems.

As previously mentioned, the most expensive pieces of equipment in the methane and hydrogen systems are the storage vessels. Because the fuels are gases, a large volume is needed for storage, leading to the high prices of storage vessels. Even the minimum costs used in this report were too expensive to make the processes profitable. Since the cost of vessels is not going to decrease but rather stay constant over time, at the scale of this design, the systems will not become profitable. Even with decreasing costs and increasing efficiencies of fuel cells, these processed would need other help in becoming profitable.

In the antimony case, where the cost of the fuel cell is approximately 50% of the total capital investment of the process, a price decrease or efficiency increase will significantly help the process. Not only would the capital investment become less expensive, but also the efficiency

losses would be less and therefore there would be more electricity to sell. This would bring the net income up and eventually lead to positive cash flows.
Acknowledgments

We would like to thank our professors at the University of Pennsylvania and industrial consultants for all of the help they provided us throughout the semester with our project.

Dr. Raymond J. Gorte, for providing the problem statement and helping us make integral decisions regarding our design over the course of the semester.

Professor Fabiano, for helping us with all things ASPEN and also for providing important guidance in making key decisions about heat integration and process modeling.

References

1: Bierschenk, David M., James R. Wilson and Scott A. Barnett. "High efficiency electrical energy storage using a methane-oxygen solid oxide cell." <u>Energy & Environmental Science</u> (2011): 944-951.

- 2: U.S. Department of Energy. "The Smart Grid: An Introduction." 2008. Office of Electricity & Energy Reliability. 18 October 2010 http://www.oe.energy.gov/DocumentsandMedia/DOE_SG_Book_Single_Pages(1).pdf>
- 3: Energy, U.S. Department of. "Office of Electrical Delivery & Energy Reliability." February 2011. <u>Energy Storage Program Planning Document.</u> 2 April 2011 <http://www.oe.energy.gov/DocumentsandMedia/OE_Energy_Storage_Program_Plan_F eburary_2011v3.pdf>.

4: Gross, M. D., and R. J. Gorte. "Solid Oxide Fuel Cells and Electrolyzers for Renewable Energy." *Renewable Resources and Renewable Energy: A Global Challenge*. 3rd ed. Boca Raton: CRC, 2007.

5: U.S. Department of Energy. Office of Fossil Energy. *Fuel Cell Handbook*. By EG&G Technical Services. 7th ed. 2004.

6: Energy, U.S. Department of Energy Office of Energy Efficiency & Renewable. <u>Distributed/Stationary Fuel Cell Systems</u>. 8 3 2011. 27 3 2011 <http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/systems.html>.

7: Seider, Warren D., et al. <u>Product and Process Design Principles.</u> Danvers: John Wiley & Sons, Inc., 2009.

8: Administration, U.S. Energy Information. <u>Average Retail Price of Electricity to Ultimate</u> <u>Customers By End-Use, Sector</u>. 11 March 2011. 1 April 2011 <<u>http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html></u>.

9: AspenONE v.7.3 Exchanger Design and Rating User Interface.

10: "Wel-Bilt Cast Iron Clear Water Pump 720 GPH, 1/2 HP, 1in." *Northern Tool & Equipment*. Wed. 11 Apr. 2011. http://www.northerntool.com/shop/tools/product_7738_7738.

11: EVAL Europe. EVAL for Hydrogen Fuel Cell Systems. Belgium: Eval Europe, 2007.

12: NYSERDA. <u>Monthly Average Retail Price Per Kilowatt-Hour of Electricity to Residential</u> <u>Consumers</u>. 5 April 2011. 6 April 2011 <http://www.nyserda.org/energy_information/nyepo.asp>. 13: Xu, Jianguo and Gilbert F. Froment. "Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics." <u>AIChE Journal</u> (1989): 88-96.

14: Aguiar, P., D. Chadwick and L. Kershenbaum. "Modelling of an indirect reforming solid oxide fuel cell." <u>Chemical Engineering Science</u> (2002): 1665-1677.

15: Yourwaterneeds.com. <u>Steel Pressurized Water System Tanks</u>. 2011. 29 3 2011 http://yourwaterneeds.com/WT_PressureTank.asp.

16: "T-Series Transfer & Circulation Pumps." High Temperature Systems, Inc. Web. 28 Mar. 2011. http://www.hitemp.com/images/hts/T-Series_Table.pdf>

General References

Attributes of Power System Based on FFC's Stack Technology. Cambridge, MA: TIAX LLC, 2003. Print.

Felder, Richard M. and Ronald W. Rousseau. <u>Elementary Principles of Chemical Processes</u>. 3. Hoboken: Wiley, 2005.

Green, Don W. and Robert W. Perry. <u>Perry's Chemical Engineers' Handbook.</u> 8. McGraw-Hill, 2008.

Guan, Jie, et al. <u>High Performance Flexible Reversible Solid Oxide Fuel Cell.</u> Technical Report. Golden, CO: U.S. Department of Energy, 2006.

Incropera, Frank P., et al. Fundamentals of Heat and Mass Transfer. 6. Hoboken: Wiley, 2007.

Rawlings, James B. and John G. Ekerdt. <u>Chemical Reactor Analysis and Design Fundamentals.</u> Madison: Nob Hill, 2002.

Wilkes, James O. Fluid Mechanics for Chemical Engineers. Westford: Pearson Education, Inc., 2006.

FELDER & ROUSSEAU

Appendix

Problem Statement

. Electrical Energy Storage Using Fuel-Cell Technology (recommended by Raymond J. Gorte, U. Penn)

Reversible fuel cells are potentially useful to store electrical energy due to good storagescalability. There have been concerns over *round-trip* efficiency. This project will consider two types of fuel cells that utilize two different feeds. The two concepts will be compared for economic viability. Your team is to design the two systems and detail the pros and cons of each.

Electrical energy storage has a number of well-known applications for improving the ability of the electrical-grid to respond to demand fluctuations. The need for storage has become more acute as increasing amounts of intermittent renewable electrical sources become available. Examples are solar and wind turbines that produce electrical energy for only parts of the day – and not always during the same time periods. Consequently, it is difficult to match fluctuations in supply and demand. Ability to store electrical power becomes key to maintaining continuously-available energy as needed. The challenge is to store energy over extended periods and on a large scale. Consider that a utility company generates power from conventional and renewable sources. Also, let all of its power generated from green sources be utilized during the peak period from 7 AM through 7 PM. Green power generated during the other 12 hours can be stored for use during the peak period, with conventional (expensive) power reduced or shutdown during the peak period.

The first type of reversible fuel cell will have cells comprised of dense zirconium tubes or other configurations coated with doped LaMnO₃ for the air electrode (cathode) and using a porous Ni electrode (anode) on the fuel side. During electrolysis, a mixture of H_2O and CO_2 will be fed to the anode which carries out the half-cell reactions:

$$CO_2 + 2e = CO + 2O^{-1}$$

 $H_2O + 2e = H_2 + 2O^{-1}$

Electrons will be supplied to the anode at a potential sufficient to drive the oxygen ions into the electrolyte. After the ions pass through the electrolyte, O_2 will be produced on the cathode via the other half-cell reaction:

$$2O^{-} = \frac{1}{2}O_{2} + 2e$$
-

Note that during electrolysis, the overall heats of reaction are:

$$H_2O = H_2 + \frac{1}{2}O_2$$
 $\Delta H(800^{\circ}C) = 248.3 \text{ KJ/mole}$
 $CO_2 = CO + \frac{1}{2}O_2$ $\Delta H(800^{\circ}C) = 282.4 \text{ kJ/mole}$

However, the overall Gibbs energies of reaction, ΔG , which are equivalent to the standard potentials, are more relevant than ΔH . This process produces O₂, H₂, and CO, and requires electrical energy. The H₂ and CO and unreacted H₂O and CO₂ are stored to be available for the reverse reaction – when power is required during the peak period.

Either stored O_2 , or alternatively air, can be used to produce electrical energy and convert the CO, and H₂ back to H₂O and CO₂. Your team is to decide whether to store O₂ or utilize air – at some loss in efficiency.

Consider a typical periodic source of 1 MW electrical energy availability (from 7 PM - 7 AM). Design a system to convert and store the energy.

The second type of reversible fuel cell is comprised of similar materials, but involves liquid Sb and Sb₂O₃, with outside storage likely required. It operates at \sim 700°C – to be adjusted as a design variable.

The anode reactions are replaced by:

 $Sb_2O_3 + 6e_- = Sb + 3O_2-$

No electrode material is required, since Sb is conductive.

The Sb₂O₃ floats above Sb. The vessel containing the mixture holds the total system, possibly comprised of multiple vessels. For the reverse reaction and production of electricity, Sb₂O₃ passes through the zirconium system and converts Sb to give up electrons.

References

Fuel Cell Handbook, DOE/METC-94/ 1006

Bierschenk, D., Wilson, J., and S. Barnett, "High Efficiency Electrical Energy Storage Using a Methane-Oxygen Solid Oxide Cell," submitted to the J. Sci. Environ. Sci.

Jayakumar, A., Vohs, J.M., and R.J. Gorte, "Molten-Metal Electrodes for Solid Oxide Fuel Cells," *Ind. Eng. Chem. Res.*, in press.

Gross, M.D., and R.J. Gorte, "Renewable Resources and Renewable Energy: A Global Challenge – Solid Oxide Fuel Cells and Electrolyzers for Renewable Energy," submitted as a book chapter.

Sample Calculations

 $\frac{\text{Hest Exchanger (Shell & Tube, Floating Head)}}{Q = UA\Delta T_{lon}} \xrightarrow{\longrightarrow} A = \frac{Q}{U\Delta T_{lon}}$ $\Delta T_{lon} = \frac{\Delta T_2 - \Delta T_2}{\ln \left(\frac{\Delta T_2}{\Delta T_1}\right)}$ $\Delta T_1 = T_{R,in} - T_{C,out}$ $\Delta T_2 = T_{R,out} - T_{C,in}$

Antimony Process - Block E-100

Variable	Value
Jam (°F)	1292
Timor (°F)	486.9
Jax (°F)	1175
Jane (°F)	932
U (Btu/hr-fr-F)	735
Q (Btu/hr)	5802441

 $\Delta T_1 = 1292 - 932 = 360^{\circ}F$ $\Delta T_2 = 486.9 - 117.5 = 369.4^{\circ}F$ $\Delta T_{lm} = \frac{264.82 - 360}{\ln\left(\frac{253.82}{450}\right)} = 364.82^{\circ}F$ $A = \frac{5502443^{\circ}}{(7.25)(264.82)} = 2163.9 ft^2$

Floating Head Base Cost Equation: $C_{g} = exp\{11.667 - 0.8709[ln(A)] + 0.09005[ln(A)]^{2}\}(22.39)$ $C_{g} = exp\{11.667 - 0.8709[ln(2164)] + 0.09005[ln(2164)]^{2}\} = $29,516.551$

 $C_p = F_p F_M F_L C_g$ (22.43) $F_M=1.00$ (Carbon Steel/Carbon Steel) $F_p=1.00$ (pressures below 100 psig) $F_L=1.12$ (Tube length = 12 ft) $C_p = (1.00)(1.00)(1.12)(\$29,428.13) = \$32,959.50$

 $C_{g_M} = F_{g_M}C_p$ $F_{BM}=3.17$ $C_{g_M} = (3.17)($32,959.60) = $104,482$

Double Pipe Heat Exchangers

$$Q = UA\Delta T_{lm} \xrightarrow{\rightarrow} A = \frac{Q}{U\Delta T_{lm}}$$
$$\Delta T_{lm} = \frac{\Delta \tau_2 - \Delta \tau_1}{\ln \left(\frac{\Delta T_2}{\Delta \tau_1}\right)}$$
$$\Delta T_1 = T_{H,in} - T_{C,out}$$
$$\Delta T_2 = T_{H,out} - T_{C,in}$$

Hydrogen Process - E-100

Variable	Value
Jam (°F)	672
Jakour (°F)	131
Jas (°F)	76.21
JC.out (°F)	263.33
U (Btu/hr-ft+F)	52.16
Q (Btu/hr)	167,094

$$\Delta T_1 = 672 - 263.33 = 408.67 \,^\circ F$$

$$\Delta T_2 = 131 - 76.21 = 54.79 \,^\circ F$$

$$\Delta T_{lm} = \frac{54.79 - 405.67}{\ln\left(\frac{24.79}{302257}\right)} = 176.112 \,^\circ F$$

$$A = \frac{167094}{(52.16)(176.112)} = 18.19 \, ft^2$$

Double Pipe Base Cost Equation: $C_g = exp\{7.1460 + 0.16[ln(A)]\}$ (22.46) $C_g = exp\{7.1460 + 0.16[ln(118.19)]\} = $2,018.56$ (22.47) $C_p = F_p F_M C_g$ $F_M=3.0$ (stainless steel) $F_p = 1.00$ (Pressure below 600 psig) $C_p = (1.00)(3.0)($2012.66) = $6,037.97$

Fired Heater

 $\frac{E-103 (\text{Hydrogen Process})}{Q=153,569 \text{ Btu/hr}}$ $\frac{Fired \text{ Heater Bare Cost Equation: } C_g = exp\{0.32325 + 0.766[ln(Q)]\}}{C_g = exp\{0.32325 + 0.766[ln(153,569)]\} = $12,974.61}$ $C_g = F_p F_M C_g$ $F_p=1.00 \text{ (pressure below 500 psig)}$ $F_M=1.7 \text{ (stainless steel)}$ $C_{g,M} = (1.00)(1.7)($12,974.61) = $22,056.83$

 $\frac{Screw Compressor}{For Storage compressor 1 (C-100) [Hydrogen Process]} \\ P_{C} = 13.79 hp \\ \underline{Screw Compressor Bare Cost Equation: } C_{g} = exp\{8.1238 + 0.7243[ln(P_{c})]\} (22.38) \\ C_{g} = exp\{8.1238 + 0.7243[ln(13.79)]\} = $22,568.80 \\ C_{p} = F_{D}F_{M}C_{g} \\ F_{D}=1.0 \text{ (electric driver)} \\ F_{M}=1.0 \text{ (carbon steel)} \\ C_{g,M} = (1.0)(1.0)($22,568.80) = $22,568.80 \\ \end{bmatrix}$

Blower (Rotary Straight Lobe)

Air Blower (C-100) Antimony Process: Rotary Straight Lobe Blower Bare Cost Equation $C_g = exp\{7.59176 + .79320[ln(P_c)] - 0.0129[ln(P_c)]^2\}$ $C_g = exp\{7.59176 + .79320[ln(109.29)] - 0.0129[ln(109.29)]^2\} = $61,747.60$ $C_{p} = F_M C_g$ $F_M=0.6$ (Cast Aluminum blades) $C_{p} \equiv (60)($61,747.60) = $37,048.60$ $C_{BM} = F_{BM}C_p$ $F_{BM}=2.15$ $C_{BM} = (2.15)($37,048.60) = $79,654.40$

Horizontal Pressure Vessel (FEM = 3.05)

Based on vessel for Hydrogen Storage

$$\begin{split} &C_{P} = F_{M}C_{V} + C_{PL} \\ &C_{V} = \exp(8.09552 - 0.2330^{\circ} \ln(W) + .04333^{\circ} \ln(W)^{2}) \\ &C_{PL} = 2005(D_{v})^{0.20294} \\ &W = \pi(D_{i} + t_{E})(L + 0.8D_{i})t_{EQ} \\ &t_{E} (\text{shell thickness}) = t_{E} + t_{C} \\ &t_{C} = 0.125 \text{ in (corrosion allowance)} \\ &t_{E} (\text{wall thickness}) - \frac{P_{d}D_{i}}{2SE - 1.2P_{d}} \end{split}$$

P_d (design pressure, psig) = exp{0.60608 + 0.91615*ln(P_e) + 0.0015655*ln(P_e)} - 14.7 where P_e is the operating pressure, psi S = Maximum Allowable Stress = 15,000 psi (for low alloy steel) E = weld efficiency = 0.85

For the hydrogen storage tank, with an amplitude ratio of 20:1, $P_e = 100 \text{ psi}$ D = 11.8 ft, L = 236 ft $P_d = \exp\{0.60608 + 0.91615 + \ln(100) + 0.0015655 + \ln(100)\} - 14.7 = 114.11 \text{ psi}$ $t_R = (11.8 \text{ ft})(114.11 \text{ psi}) / (2 + 15000 + .85 - 1.2 + 114.11) = 0.053 \text{ ft}$ $t_R = 0.053 \text{ ft} + .125/12 = 0.064 \text{ ft}$ $W = (3.14)(11.8 + 0.064)(236 + .8 + 11.8)(.064)(490 \text{ lb/ft}^3) = 284,164 \text{ lb}$ $C_V = \exp[(8.09552 - 0.2330 + \ln(284164) + .04333 + \ln(284164)^2) = $385,861$ $C_{PL} = 2005(11.8)^{0.2024} = $3,309$ $F_M = 1 \text{ (carbon steel)}$ $C_{RA} \equiv (1)(385861) + (3309) = $389,169$ $C_{BM} = 3.05 + 389169 = $1,186,986$

Pressure drop through the cell

The pressure drop through the cell was calculated to check the validity of the assumption that the pressure drop through the fuel cell is negligible. The calculations below are based on the assumption that each unit cell is 10cm x 10 cm, with a 1.0 mm opening for gases to flow through. The calculation was based on the Equation 3.53 in *Fluid Mechanics for Chemical Engineers*. For the purpose of these calculations, flow though the cell was assumed to be laminar and the volumetric flow rate of gases was calculated using the ideal gas law.

$$-\Delta p = 2f_{p}\rho u_{m}^{2}\frac{L}{D_{e}}$$
$$f_{p} = \frac{16}{Re} = \frac{16\mu}{\rho u_{m}D_{e}}$$

For the antimony fuel cell:

$$\dot{V}_{air} = \frac{\dot{n}_{air}RT}{P} = \frac{\left(124.02\frac{mol}{s}\right)\left(8.206 \times 10^{-s}\frac{m^{2}atm}{mol\ K}\right)(973\ K)}{1\ atm} = 9.902\frac{m^{2}}{s}$$

Unit cell dimensions: L=10 cm, W=10 cm, H=1 mm

$$A_{cell} = (10 \text{ cm})(10 \text{ cm}) = 100 \text{ cm}^2$$

$$n_{cells} = \frac{A_{total}}{A_{cell}} = \frac{6.024 \times 10^8 \text{ cm}^2}{100 \text{ cm}^2} = 60241 \text{ cells}$$

$$\dot{V}_{air,cell} = \frac{\dot{V}_{air}}{n_{cells}} = \frac{9.902 \frac{\text{m}^3}{\text{s}}}{60241} = 1.64 \times 10^{-4} \text{m}^3$$

$$u_m = \frac{\dot{V}_{air,cell}}{A_c} = \frac{1.64 \times 10^{-4} \text{m}^3}{(.1 \text{ m})(.001 \text{ m})} = 1.64 \frac{\text{m}}{\text{s}}$$

$$D_c = \frac{4A_c}{P_w} = \frac{4(.1m)(.001m)}{(.1 \text{ m} + .1 \text{ m} + .001m + .001m)} = .00198 \text{ m}$$

For the pressure drop calculation, the density of air was assumed to be 0.37 kg/m^2 , and the viscosity was assumed to be $3.63 \times 10^{-5} \text{ kg/(m;s)}$.

$$\begin{split} -\Delta p &= 2 f_{p} \rho u_{m}^{2} \frac{L}{D_{z}} = 2 \Biggl[\frac{16 \left(3.63 \times 10^{-5} \frac{kg}{m \cdot s} \right)}{\left(0.37 \frac{kg}{m^{2}} \right) \left(1.64 \frac{m}{s} \right)^{2} \left(.1 m \right)} \Biggr] \Biggl[\frac{\left(0.37 \frac{kg}{m^{2}} \right) \left(1.64 \frac{m}{s} \right)^{2} \left(.1 m \right)}{\left(.00198 m \right)} \Biggr] \\ -\Delta p &= 47.72 \, Pa \times \frac{1 \, psi}{6894.76 \, Pa} = 6.921 \times 10^{-5} psia \approx 0 \, psia \end{split}$$

Hydrogen System - Operating Conditions Calculations

Electrolysis

The following values are production rates during electrolysis mode, assuming an electrical input of 1.0 MW in electrolysis for 12 hours, at a current density of 0.5 A/cm² and a voltage of 1.07 V.

Cell area:

$$P = V \cdot i \cdot A$$

$$A = \frac{P}{V \cdot i} = \frac{10^{8}W}{1.07V \cdot 0.5 \frac{A}{cm^{2}}} = 1.896 \times 10^{8} cm^{2}$$

Hydrogen Production Rate:

$$H_{z} \text{ production } rate = \frac{1 \text{ mol } H_{z}}{2 \text{ mol } e^{-}} \cdot 0.5 \frac{A}{cm} \cdot \frac{1 \text{ mol } e^{-}}{96,500 \text{ C}} \cdot 1.869 \times 10^{6} \text{ cm} = 4.842 \frac{\text{mol}}{s}$$
$$H_{z} \text{ produecd} = 4.842 \frac{\text{mol } H_{z}}{s} \cdot 43200 \text{ s} = 2.092 \times 10^{5} \text{ mol } H_{z}$$

Fuel Cell

The following values are based on the assumption that all of the hydrogen produced during electrolysis is consumed in fuel cell mode and the cell operates at 0.86 V with a current density of 0.55 A/cm².

Hydrogen Consumption Rate:

$$H_z \ consumption \ rate = 0.55 \frac{A}{cm^2} \cdot 1.869 \times 10^6 cm \cdot \frac{1 \ mol \ e^-}{98500 \ c} \cdot \frac{1 \ mol \ M_2}{z \ mol \ e^-} = 5.327 \ \frac{mol}{z}$$

Operating time:

$$Operating \ time = \frac{2.092 \times 10^3 mol \ H_2}{5.454 \frac{mol \ H_2}{s}} \cdot \frac{1 \ hr}{3600 \ s} = 10.9 \ hr$$

Methane Case - Operating Conditions Calculations

Electrolysis

The following values are production rates during electrolysis mode, assuming an electrical input of 1.0 MW in electrolysis for 12 hours, at a current density of 0.5 A/cm² and a voltage of 1.06 V.

Cell area:

 $P = V \cdot i \cdot A$

 $A = \frac{P}{V \cdot i} = \frac{10^{\circ}W}{1.07 V \cdot 0.5 \frac{A}{cm^2}} = 1.896 \times 10^{\circ} cm^2$

Oxygen Production Rate:

$$O_{z} \ production \ rate = \frac{1 \ mol \ O_{z}}{4 \ mol \ e^{-}} \cdot 0.5 \ \frac{A}{cm} \cdot \frac{1 \ mol \ e^{-}}{96,500 \ C} \cdot 1.869 \times 10^{\circ} cm = 2.444 \ \frac{mol}{s}$$

Daily Total Amount of Oxygen Produced:

$$O_z \ produced = 2.444 \frac{mol \ H_z}{s} \cdot 43200 \ s = 1.056 \times 10^5 \ mol \ O_z$$

Composition Calculations:

Reaction 1:
$$H_2 O + 2e^- \leftrightarrow H_2 + \frac{1}{2}O_2$$

Reaction 2: $CO_2 + 2e^- \leftrightarrow CO + \frac{1}{2}O_2$

Overall Reaction: $aH_2O + bCO_2 \leftrightarrow aH_2 + bCO + \frac{(a+b)}{2}O_2$

Where a and b represent the stoichiometric ratio of moles of H₂O and CO₂ consumed, respectively, to moles of O₂ produced. The Bierschenck paper showed that the concentration of methane formed at these operating conditions would be quite low, so the methane-forming reaction was omitted from these calculations due to the complex coupling of the reactions. A final methane concentration of 0.5 mol% was assumed based on Figure 6a in the Bierschenck paper.

$$\Delta G = -RT ln K_{eq}$$

Ideal gas behavior was chosen to model the partial pressures of the gases due to the complexity of the iterations.

Therefore, the equation becomes:

$$\Delta G = -RTin\left(\frac{p_{H_2}^a p_{co}^b p_{o_2}^{\frac{(a+b)}{2}}}{p_{H_2}^a o p_{co_1}^b}\right)$$

Where the partial pressure of each species can be related:

$$p_x = y_x P + \xi_{ran}$$

Ideal gas behavior was chosen to model the partial pressures of the gases due to the complexity of the iterations.

Therefore, the equation becomes:

$$\Delta G = -RT ln \left(\frac{(y_{H_2}P + \xi_{rxn z})^a (y_{co}P + \xi_{rxn z})^b p_{\sigma_1}^{\frac{(a+b)}{2}}}{p_{H_2\sigma}^a p_{c\sigma_2}^b} \right)$$

The change in Gibbs free energy can then be set equal to the electricity input for electrolysis, where E is the operating voltage.

$$\Delta G = -nFE$$

The results of these calculations are summarized below in Table ##

Species	Initial Composition (mole fraction)	Final Composition (mole fraction)
H2	0.080	0.737
H20	0.670	0.010
CO	0.050	0.239
CO2	0.200	0.010
CH4	0.000	0.005

5	Moles/hr
ξi.	13100
\$2	3900

Fuel Cell Mode

The following values are based on the assumption that the amount of oxygen consumed in fuel cell mode is equivalent to the amount of oxygen produced in electrolysis mode. The fuel cell operates at 0.925 V with a current density of 0.55 A/cm².

Oxygen Consumption Rate:

 $O_{2} \text{ consumption rate} = 0.55 \frac{A}{cm^{2}} \cdot 1.869 \times 10^{6} cm \cdot \frac{1 \text{ mol } c}{98500 \text{ c}} \cdot \frac{1 \text{ mol } O_{2}}{4 \text{ mol } c^{-}} = 2.615 \frac{mol}{a}$

Operating time:

$$Operating \ time = \frac{1.056 \times 10^{5} mol \ O_{z}}{2.615 \frac{mol \ O_{z}}{s}} \cdot \frac{1 \ hr}{3600 \ s} = 10.9 \ hr$$

Catalyst Amount/Methanation Kinetics

$$W/F_{co}^{p} = 0.04339 \frac{g_{catalyst}hour}{mol_{co}}$$

 $0.04339 \frac{g_{catalyst} hour}{mol_{co}} * 4800 \frac{mol_{co}}{hour} \div 1000 \frac{g}{kg} = 1095.65 kg \ catalyst$

$$1095.65kg \div 5.19 \frac{kg}{L} \div 0.55 * 0.0353 \frac{L}{ft^2} * \frac{800}{ft^2} = \frac{10968.67}{10968.67}$$

Antimony Case - Operating Conditions Calculations

Electrolysis:

The following production rates during electrolysis mode are based on an electrical input of 1.0 MW for 12 hrs, at an electric voltage of 0.83 V and a current density of 0.20 A/cm².

Cell Area:

 $P = V \cdot i \cdot A$

$$A = \frac{P}{V \cdot i} = \frac{10^{\circ}W}{0.83V \cdot 0.2\frac{A}{cm^2}} = 6.024 \times 10^{\circ} cm^2$$

Antimony Production Rate:

Sb production rate =
$$0.20 \frac{A}{cm^2} \cdot 6.024 \times 10^{\circ} cm \cdot \frac{1 \text{ mol } e^-}{96500 \text{ C}} \cdot \frac{2 \text{ mol } Sb}{6 \text{ mol } e^-} = 4.162 \frac{\text{mol}}{s}$$

Sb₂ produecd = $4.162 \frac{\text{mol } Sb}{s} \cdot 43200 \text{ s} = 1.80 \times 10^{\circ} \text{ mol } Sb$

Fuel Cell

The following values are based on the electrical operating conditions for fuel cell mode, 0.662 V and 0.22 A/cm².

Antimony Consumption Rate:

Sb Consumption rate =
$$0.22 \frac{A}{cm^2} \cdot 6.024 \times 10^6 cm \cdot \frac{1 \text{ mol s}^-}{96500 \text{ C}} \cdot \frac{2 \text{ mol Sb}}{6 \text{ mol s}^-} = 4.578 \frac{\text{mol}}{s}$$

Operating time:

$$Operating time = \frac{1.80 \times 10^{5} mol Sb}{4.578 \frac{mol Sb}{s}} \cdot \frac{1 hr}{3600 s} = 10.9 hr$$

Derivation of Temperature Profile in Insulation Layer of the Antimony Storage Vessel

1. Heat Equation in Cylindrical Coordinates

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \Phi}\left(k\frac{\partial T}{\partial \Phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho C_p \frac{\partial T}{\partial t}$$

- 2. Simpifications/Assumptions
 - a. Temperature varies in the radial direction only.
 - b. Steady State
 - c. Heat generation is zero
 - d. Thermal conductivity is independent of temperature.

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$$
$$kr\frac{dT}{dr} = c_1$$
$$\int kr\frac{dT}{dr}dr = \int c_1dr$$
$$T(r) = C_1\ln(r) + C_2$$

- 3. Boundary Conditions
 - a. Let R_1 be the radius of the concrete tank

$$T(R_1) = 700^{\circ}C$$

b. Let R_2 be the outside radius of the insulation

$$T(R_2) = 50^{\circ}C$$

c. Let T_{∞} be the ambient air temperature

$$-k\frac{dT}{dr_{r=R_2}} = h_{air}[T_{\infty} - T(R_2)]$$

Boundary Conditions (a) & (b)

$$T(R_1) - T(R_2) = 700 - 50$$

$$650 = C_1 \ln \frac{R_1}{R_2}$$

Boundary Conditions (b) & (c)

$$-k\frac{dT}{dr_{r=R_{2}}} = h_{air}[T_{\infty} - T(R_{2})]$$
$$-k\frac{dT}{dr_{r=R_{2}}} = \frac{C_{1}}{R_{2}}$$
$$\frac{-kC_{1}}{R_{2}} = h_{air}[T_{\infty} - T(R_{2})] = h_{air}[T_{\infty} - C_{1}\ln R_{2} - C_{2}]$$
$$C_{2} = T(R_{1}) - C_{1}\ln R_{1}$$
$$\frac{-kC_{1}}{R_{2}} = h_{air}[T_{\infty} - C_{1}\ln R_{2} - T(R_{1}) + C_{1}\ln R_{1}]$$
$$\frac{-kC_{1}}{h_{air}R_{2}} = T_{\infty} - T(R_{1}) + C_{1}\ln \frac{R_{1}}{R_{2}}$$
$$C_{1}\left(\frac{-k}{h_{air}R_{2}} - \ln \frac{R_{1}}{R_{2}}\right) = T_{\infty} - T(R_{1})$$
$$C_{1} = \frac{T_{\infty} - T(R_{1})}{\left[\frac{k}{h_{air}R_{2}} + \ln \frac{R_{2}}{R_{1}}\right]}$$

 C_1 and R_2 must be solved for simultaneously and iteratively with the two equations below:

$$C_{1} = \frac{T_{\infty} - T(R_{1})}{\left[\frac{k}{h_{air}R_{2}} + \ln\frac{R_{2}}{R_{1}}\right]}$$

650 = $C_{1}\ln\frac{R_{1}}{R_{2}}$

After solving for R_2 and C_1 , C_2 can be solved for using the equation below.

$$50 = C_1 \ln R_2 + C_2$$

Results

Variable	Value	Units
k	0.029452	W ft ⁻² K ⁻¹
h _{air}	0.2787	W ft ⁻¹ K ⁻¹
R ₁	3.617	ft
R ₂	5.847	ft
C ₁	-1354.854	°C
C ₂	2442.012	°C
T_{∞}	50	°C

Temperature Profile:

$$T(r) = -1354.854 \ln r + 2442.012$$

Heat lost from the vessel:

$$q = -kA \frac{dT}{dr_{r=R_2}} = -k(2\pi R_2 L) \left(\frac{C_1}{R_2}\right)$$
$$q = 3155 W = 3.155 kW = 10766 \frac{Btu}{hr}$$

Profitability Analysis Spreadsheets

Hydrogen System

```
General Information
```

Process Title: Hydrogen Reversible SOFC System Product: Electricity Plant Site Location: North East Site Factor: 1.10 Operating Hours per Year: 330 Operating Days Per Year: 330 Operating Factor: 0.9041

Product Information This Process will Yield

389 kWh of Electricity per hour 9,338 kWh of Electricity per day 3,081,540 kWh of Electricity per year

Price

```
$0.20 /kWh
```

Chronology

ronology					
		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	5 year MACRS	
2012 De	esign		0.0%		
2013 Co	onstruction	100%	0.0%		
2014 Pr	oduction	0%	81.0%	20.00%	\$0.20
2015 Pr	oduction	0%	90.0%	32.00%	\$0.20
2016 Pr	oduction	0%	90.0%	19.20%	\$0.20
2017 Pr	oduction		90.0%	11.52%	\$0.20
2018 Pr	oduction		90.0%	11.52%	\$0.20
2019 Pr	oduction		90.0%	5.76%	\$0.20
2020 Pr	oduction		90.0%		\$0.20
2021 Pr	oduction		90.0%		\$0.20
2022 Pr	oduction		90.0%		\$0.20
2023 Pr	oduction		90.0%		\$0.20
2024 Pr	oduction		90.0%		\$0.20
2025 Pr	oduction		90.0%		\$0.20
2026 Pr	oduction		90.0%		\$0.20
2027 Pr	oduction		90.0%		\$0.20
2028 Pr	oduction		90.0%		\$0.20

	Equipment	Costs
--	-----------	-------

Equipment Description		Bare Module Cost
Storage Compressor 1	Process Machinery	\$48,523
Storage Compressor 2	Process Machinery	\$51,122
Storage Compressor 3	Process Machinery	\$53,032
Water Preheater 1	Fabricated Equipment	\$10,900
Water Preheater 2	Fabricated Equipment	\$11,489
Water Preheater 3	Fabricated Equipment	\$15,865
Fired Heater	Fabricated Equipment	\$48,304
Product Partial Condenser	Fabricated Equipment	\$16,010
Intercooler for C-100	Fabricated Equipment	\$13,229
Intercooler for C-101	Fabricated Equipment	\$13,225
Intercooler for C-102	Fabricated Equipment	\$13,231
Flash Vessel	Fabricated Equipment	\$13,022
Water Feed Pump	Process Machinery	\$396
Fuel Cell/Electrolyzer	Process Machinery	\$450,000
Large Water Storage Tank	Storage	\$10,265
Hydrogen Storage Tank	Storage	\$1,383,041
Small Water Storage Tank	Storage	\$3,172
Inlet Air Blower	Process Machinery	\$46,840
Recycle Blower	Process Machinery	\$1,198
Hydrogen Preheater	Fabricated Equipment	\$9,821
Water Vaporizer & Preheater	Fabricated Equipment	\$9,104
Product Stream Partial Condenser	Fabricated Equipment	\$11,525
Recycle Heater	Fabricated Equipment	\$7,433
Air Preheater	Fabricated Equipment	\$12,846
FC-Water Feed Pump	Process Machinery	\$396

<u>Total</u>

\$2,253,990

Raw Materia	le						
Naw materia	Raw Material:	Unit:	Required Ratio		(Cost of Raw Material:	
	Total Weighted Average:					\$0.000E+00 per kWh of	Electri
Byproducts							
	Byproduct:	<u>Unit:</u>	Ratio to Produc	<u>t</u>	Ī	Byproduct Selling Price	
	Total Weighted Average:					\$0.000E+00 per kWh of	Electri
Utilities							
	Utility:	Unit:	Required Ratio		<u> </u>	Utility Cost	
1	INatural Gas Low Dressure Steam	SCF	1.122 SC 1.0647 lb r	F per kwn of Electricity	У	\$3.200E-03 per SCF \$3.000E-03 per lb	
-	3 Process Water	gal	0 gal	per kWh of Electricity		\$0.000E+00 per gal	
4	4 Cooling Water	gal	7.82 gal	per kWh of Electricity		\$7.500E-05 per gal	
5	5 Electricity	kWh	1.73 kW	h per kWh of Electricit	у	\$0.060 per kWh	
	Total Weighted Average:					\$0.111 per kWh of	Electri
Variable Cos	ats						
	General Expenses:						
		Selling / Trans	ster Expenses:	3.00% of Sal	es		
		Alloca	ited Research	0.00% of Sal	es		
		Administra	ative Expense:	2.00% of Sal	es		
	Manage	ement Incentive (Compensation:	1.25% of Sal	es		
Working Cap	pital						
	Accounts Receivable		⇒	30	Davs		
	Cash Reserves (excluding	Raw Materials)	=>	30	Days		
			~	30	Dave		
	Accounts Payable			50	Duyo		
	Accounts Payable Electricity Inventory		r r	0	Days		

Total Perma	nent Investment	
	Cost of Site Droppystices:	5 00% of Total Pare Medule Costs
	Cost of Service Excitities:	5.00% of Total Bare Module Costs
	Allocated Costs for utility plants and related facilities:	to
	Cost of Contingencies and Contractor Fees	30 18 00% of Direct Permanent Investment
	Cost of Contingencies and Contractor Fees.	0.00% of Total Depreciable Capital
	Cost of Royalties:	to
	Cost of Plant Start-Up:	10.00% of Total Depreciable Capital
Fixed Costs	Operations	
	Operations Operators per Shift	1.5 (assuming 3 shifts)
	Direct Wages and Benefits:	\$35 /operator bour
	Direct Wages and Benefits.	15% of Direct Wages and Benefite
	Operating Supplies and Services:	6% of Direct Wages and Benefits
	Technical Assistance to Manufacturing	\$0.00 per year, for each Operator per Shift
	Control Laboratory	\$0.00 per year, for each Operator per Shift
	control Educatory.	ation per year, for each operator per sinit
	Maintenance	
	Wages and Benefits:	4.50% of Total Depreciable Capital
	Salaries and Benefits:	25% of Maintenance Wages and Benefits
	Materials and Services:	100% of Maintenance Wages and Benefits
	Maintenance Overhead:	5% of Maintenance Wages and Benefits
	Operating Overhead	
	General Plant Overhead:	7 10% of Maintenance and Operations Wages and Benefi
	Mechanical Department Services:	2.40% of Maintenance and Operations Wages and Benefi
	Employee Relations Department:	5.90% of Maintenance and Operations Wages and Benefi
	Business Services:	7.40% of Maintenance and Operations Wages and Benefi
	Property Taxes and Insurance Property Taxes and Insurance:	2% of Total Depreciable Capital
	Straight Line Depreciation	
	Direct Plant: 8.00% of Total Dep	reciable Capital, less 1.18 times the Allocated Costs
		for Utility Plants and Related Facilities
	Allocated Plant: 6.00% of 1.18 times	the Allocated Costs for Utility Plants and Related Facilities
	Other Annual Expenses	
	Rental Fees (Office and Laboratory Space):	\$0
	Licensing Fees	\$0
	Miscellaneous:	\$0
	Depletion Allowance	**
	Annual Depletion Allowance:	90 0

riable Cost Summary <u>Variable Costs at 100% Cap</u>	acit <u>y:</u>			
General Expenses				
Selling / Transf Direct Researd Allocated Rese Administrative I Management I	er Expenses: h: arch: Expense: icentive Compensation:	\$ \$ \$ \$	18,489 - 12,326 7,704	
Total General Expenses		s	38,519	
Raw Materials	\$0.000000 per kWh of Electricity		\$0	
Byproducts	\$0.000000 per kWh of Electricity		\$0	
Utilitiea	\$0.111171 per kWh of Electricity		\$342,578	
Total Variable Costs		\$	381,097	
d Cost Summary				

```
Operations
```

Direct Wages and Benefits	\$ 327,600
Direct Salaries and Benefits	\$ 49,140
Operating Supplies and Services	\$ 19,656
Technical Assistance to Manufacturing	\$ -
Control Laboratory	\$
Total Operations	\$ 396,396
Maintenance	
Wages and Benefits	\$ 82,698
Salaries and Benefits	\$ 20,674
Materials and Services	\$ 82,698
Maintenance Overhead	\$ 4,135
Total Maintenance	\$ 190,204
Operating Overhead	
General Plant Overhead:	\$ 34,088
Mechanical Department Services:	\$ 11,523
Employee Relations Department:	\$ 28,327
Business Services:	\$ 35,528
Total Operating Overhead	\$ 109,466
Property Taxes and Insurance	
Property Taxes and Insurance:	\$ 36,754
Other Annual Expenses	
Rental Fees (Office and Laboratory Space):	\$
Licensing Fees:	\$ -
Miscellaneous:	\$
Total Other Annual Expenses	\$
Total Fixed Costs	\$ 732,820

Investment Summary				
Bare Module Costs				
Fabricated Equipment	\$	206,006		
Process Machinery	Ś	651,506		
Spares	\$	-		
Storage	\$	558,300		
Other Equipment	\$	-		
Catalysts	\$	-		
Computers, Software, Etc.	\$			
Total Bare Module Costs:			<u>\$ 1,415,812</u>	
Direct Permanent Investment				
Cost of Site Preparations:	\$	70,791		
Cost of Service Facilities:	\$	70,791		
Allocated Costs for utility plants and related	facilities: \$	-		
Direct Permanent Investment			\$ 1,557,394	
Total Depreciable Capital				
Cost of Contingencies & Contractor Fees	\$	280,331		
Total Depreciable Capital			\$ 1,837,724	
Total Permanent Investment				
Cost of Land:	\$			
Cost of Royalties:	ŝ			
Cost of Plant Start-Up:	ŝ	183.772		
	•			
Total Permanent Investment - Unadjusted			\$ 2,021,497	
Site Factor			1.10	
Total Permanent Investment			\$ 2,223,646	
Working Capital				
		2013	2014	2015
Accounts Receiva	ble \$	41,031	\$ 4,559	\$ -
Cash Reserves	\$	71,595	\$ 7,955	\$-
Accounts Payable	\$	(22,807)	\$ (2,534)	\$-
Electricity Inventor	y \$	-	s -	\$-
Raw Materials	\$	-	<u>s</u> -	\$ -
Total	\$	89,819	\$ 9,980	\$ -
Present Value at 1	5% \$	78,103	\$ 7,546	\$-
Total Capital Investment			\$ 2,309,296	

100			020	000	2000	000	000	(300)	000	000	1,700)	(000)	(000)	(000)	(002)	(300)	1300)	(400)
umiteños Nel Pos	Value at 19%		201	242	277	(305)	200	80	19.00	0380	(4,051	(S) T)	(1.30	(4 -1)	(9-1) ()	(4.66)	(402)	(467)
0	Cash Row		(2313,500)	(662,300)	(621,100)	(001,100)	(021,100)	(521, 100)	(821, 100)	(821,100)	(621,100)	(001,100)	(521,100)	(521,100)	(821, 100)	(821,100)	(821,100)	(421,300)
	Not Earnings			(0.08/906)	(1,109,200)	(874,000)	(732,800)	(732,800)	(627,000)	(821,100)	(001-100)	(001,100)	(521,100)	(001,100)	(521,100)	(821,100)	(821,100)	(001-100)
	Taxes								,						,			
	Taxible Income			(008/606)	(1,109,200)	(374,000)	(732,800)	(732,800)	(827,000)	(621,100)	(521,100)	(621,100)	(521,100)	(521,100)	(521,100)	(621,100)	(521,100)	(621,100)
Dankellon	Allowance						•						•	•	,			•
	Depreciation			(367,500)	(588,100)	(362,800)	(211,700)	(211,700)	(105,900)									
	Hyad Costs			(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)	(732,800)
190	Var Costs			(000',200)	(343,000)	(343,000)	(343,000)	(36,000)	(36,000)	(343,000)	(343,000)	(343,000)	(348,000)	(348,000)	(36,000)	(343,000)	(340,000)	(343,000)
	Working Capital	,	(008/88)	(10,000)											,			008,950
	Capital Costs	,	(223,000)															
	Sains	,		489,200	664,700	664,700	554/700	554,700	554,700	664,700	664,700	664,700	664,700	554,700	654,700	664,700	664,700	664,700
Devinefiling	Price			\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20	\$0.20
Dercentace of	Design Capacity	\$	8	31.12	\$108	\$106	\$08	\$06	\$66	\$108	\$108	\$106	\$08	\$08	\$06	\$108	\$108	\$108
	Year	2002	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

Profitability Measures

Negative IRR The Internal Rate of Return (IRR) for this project is

The Net Present Value (NPV) of this project in 2012 is

\$ (4,674,400)

ROI Analysis (Third Production Year)

554,677	(1,075,808)	(177,892)	•	(699,022)	nent 2,323,445	30.00%
Annual Sales	Annual Costs	Depreciation	Income Tax	Net Earn ings	Total Capital Investi	DOI

Sensitivity Analyses Note: The Sensitivity Analyses section below takes quite a bit of memory to update each time a cell is changed; therefore, automatic calculations are turned off. After making your axis selections, press "F9" to recalculate the IRR values: (These two times may be deteed before printing.)

Product Price

Methane System

General Information

Process Title: Carbon Dioxide and Water Base Case for Energy Storage Using Reversible Fuel Cells Product: Electricity Plant Site Location: Northeast Site Factor: 1.10 Operating Hours per Year: 3630 Operating Days Per Year: 151 Operating Factor: 0.4144

Product Information This Process will Yield

880 kWh of Electricity per hour 21,120 kWh of Electricity per day 3,194,400 kWh of Electricity per year

Price \$0.20 /kWh

		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	5 year MACRS	
2012 De	esign		0.0%	1.1.1.1. - 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
2013 Co	onstruction	100%	0.0%		
2014 Pr	oduction	0%	81.0%	20.00%	\$0.20
2015 Pr	oduction	0%	90.0%	32.00%	\$0.20
2016 Pr	oduction	0%	90.0%	19.20%	\$0.20
2017 Pr	oduction		90.0%	11.52%	\$0.20
2018 Pr	oduction		90.0%	11.52%	\$0.20
2019 Pr	oduction		90.0%	5.76%	\$0.20
2020 Pr	oduction		90.0%		\$0.20

Equipment Description		Para Madula Cost
Equipment Description		Bare Module Cost
R-100	Fabricated Equipment	\$450,000
R-101	Fabricated Equipment	\$134,369
E-100	Fabricated Equipment	\$5,592
E-101	Fabricated Equipment	\$5,872
E-102	Fabricated Equipment	\$56,301
E-103	Fabricated Equipment	\$109,892
E-104	Fabricated Equipment	\$123,399
E-105	Fabricated Equipment	\$5,337
E-106	Fabricated Equipment	\$5,452
E-107	Fabricated Equipment	\$6,695
E-108	Fabricated Equipment	\$83,719
E-109	Fabricated Equipment	\$6,739
C-100	Process Machinery	\$53,751
C-101	Process Machinery	\$13,911
C-102	Process Machinery	\$519,347
T-100	Process Machinery	\$38,130
V-100	Storage	\$1,218,575
V-101	Storage	\$954
V-102	Storage	\$1,354,557
V-103	Storage	\$1,455
P-100	Process Machinery	\$37,791
P-101	Process Machinery	\$45,539

Total

Raw Materia	ls	to Million 1					
	Raw Material:	Unit:	Required Ra	atio:			Cost of Raw Material:
	1 Hydrogen Gas	(0 0				\$0.000E+00
	2 Carbon Dioxide	(0 0				\$0.00
	3 Purified Water	() 0				\$0.00
	4 Methane	(0 0				\$0.00
	5 Carbon Monoxide	(0 0				\$0.00
	Total Weighted Average:						\$0.000E+00 per kWh of Electricity
Byproducts	3						
	Byproduct:	<u>Unit:</u>	Ratio to Pro	duct			Byproduct Selling Price
	Total Weighted Average:						\$0.000E+00 per kWh of Electricity
Utilities							
	Utility:	Unit:	Required Ra	tio		1	Utility Cost
	1 High Pressure Steam	lb	0	Ib per kWh of Elec	tricity		\$0.000E+00 per lb
	2 Low Pressure Steam	lb	0	Ib per kWh of Elec	tricity		\$0.000E+00 per lb
	3 Process Water	gal	0	gal per kWh of Ele	ctricity		\$0.000E+00 per gal
	4 Cooling Water	lb	0	Ib per kWh of Elec	tricity		\$0.000E+00 per lb
	5 Electricity	kWh	1.4	kWh per kWh of E	lectricity		\$0.060 per kWh
	6 Methane	lb	0.04575	lb per kWh of Elec	tricity		\$0.070 per lb
							\$0.007 UNE 2 51 111
	Total Weighted Average:						\$0.087 per kvvn of Electricity
Variable Cos	sts						
	General Expenses:	Selling / Trans	fer Exnenses	3 00%	of Sales		
		Dennig / Hana	ect Research:	0.00%	of Sales		
		Alloca	ted Research:	0.00%	of Sales		
		Administra	tivo Exponso:	2.00%	of Sales		
	Manage	ement Incentive C	compensation:	1.25%	of Sales		
Working Car	pital						
	Accounts Receivable		⇔	30		Days	
	Cash Reserves (excluding	Raw Materials)	⇔	30		Days	
	Accounts Payable		⇔	30		Days	
	Electricity Inventory		⇔	0		Days	
	Raw Materials		⇔	0		Days	

Total Permanent Investment	
Cost of Site Proportions:	5 00% of Total Para Modula Costa
Cost of Site Preparations.	5.00% of Total Bare Module Costs
Allocated Costs for utility plants and related facilities:	\$0.00% Of Total Bare would costs
Cost of Contingencies and Contractor Fees:	18 00% of Direct Permanent Investment
Cost of Contingencies and Contractor Less.	2 00% of Total Depreciable Capital
Cost of Povalties:	2.00% of rotal Depreciable Capital
Cost of Plant Start-Lin:	10 00% of Total Depreciable Canital
Cost of Flant Stateop.	
Fixed Costs	
<u>Operations</u>	2- 2-2
Operators per Shift:	1 (assuming 3 shifts)
Direct Wages and Benefits:	\$35 /operator hour
Direct Salaries and Benefits:	15% of Direct Wages and Benefits
Operating Supplies and Services:	6% of Direct Wages and Benefits
Technical Assistance to Manufacturing:	\$0.00 per year, for each Operator per Shift
Control Laboratory:	\$0.00 per year, for each Operator per Shift
Maintenance	
Wages and Benefits:	4.50% of Total Depreciable Capital
Salaries and Benefits:	25% of Maintenance Wages and Benefits
Materials and Services:	100% of Maintenance Wages and Benefits
Maintenance Overhead:	5% of Maintenance Wages and Benefits
Operating Overhead	
General Plant Overhead:	7.10% of Maintenance and Operations Wages and Benefits
Mechanical Department Services:	2.40% of Maintenance and Operations Wages and Benefits
Employee Relations Department:	5.90% of Maintenance and Operations Wages and Benefits
Business Services:	7.40% of Maintenance and Operations Wages and Benefits
Descents Trans and Incomes	
Property Taxes and Insurance Property Taxes and Insurance	2% of Total Depresiable Capital
Property taxes and insurance.	2% of Total Depreciable Capital
Straight Line Depreciation	
Direct Plant: 8.00% of Total Deprecia	able Capital, less 1.18 times the Allocated Costs for Utility Plants and Related Facilities
Allocated Plant: 6.00% of 1.18 times the	Allocated Costs for Utility Plants and Related Facilities
Other Annual Expenses	
Rental Fees (Office and Laboratory Space):	\$0
Licensing Fees:	\$0
Miscellaneous:	\$0
Depletion Allowance	
Annual Depletion Allowance:	\$0

variable Costs at 100	% Capacity:			
General Expenses				
Selling /	Transfer Expenses:	\$	19,166	
Direct Re	esearch:	\$	37	
Allocated	Research:	\$	17	
Administ	rative Expense:	\$	12,778	
Management Incentive Compensation:			7,986	
Total General Expens	es	S	39,930	
Raw Materials	\$0.000000 per kWh of Electricity		\$0	
Byproducts	\$0.000000 per kWh of Electricity		\$0	
Utilities	\$0.087203 per kWh of Electricity		\$278,560	
Total Variable Costs		\$	318,490	

Operations

Each Control 993.367 Process Machinery \$ 708.470 Spares \$ 2,575,541 Other Equipment \$ 2,575,541 Computers, Software, Etc. \$ - Total Bare Module Costs: \$ - Cost of Step Preparations: \$ 213.869 Attocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705.116 Total Depreciable Capital \$ 5,552.037 Total Depreciable Capital \$ 5,552.04 Total Depreciable Capital \$ 5,552.04 Total Depreciable Capital \$ 6,218.281 Total Depreciable Capital \$ 6,218.281 Moriting Capital \$ 111,041 Cost of Royaltes: \$ 0,341 \$ 10,08 \$ - Cost of	Bare Module Coete						
Process Machinery \$ 708,470 Spares \$ 709,470 Spares \$ 2,575,541 Other Equipment \$ 2,575,541 Other Equipment \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ - Direct Permanent Investment \$ 213,869 Cost of Sile Preparations: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 6,218,281 Cost of Rand Start-Up: \$ 5,552,04 Total Permanent Investment \$ 6,248,0109 Working Capital \$ \$ 6,218,281 \$ Monthsides S \$ \$	Fabricated Equin	ment	s	993 367			
Spars \$ 100,40 Spars \$ 2,575,541 Other Equipment \$ - Catalysts \$ - Computers, Software, Etc. \$ - Total Bare Module Costs: \$ - Other Equipment \$ - Cost of Site Preparations: \$ 213,869 Cost of Site Preparations: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Land: \$ 111,041 Cost of Royatiles: \$ - Cost of Programent Investment \$ 6,218,281 Site Factor \$ 1,70 Total Permanent Investment \$ 6,240,109 Working Capital \$ 1,70 \$	Process Machine	ny .	e e	708 470			
Sporage 3 2 2575,541 Other Equipment \$ - - Catalysis \$ - - Computers, Software, Etc. \$ - - Total Bare Module Costs: \$ - - Vincel Permanent Investment \$ 213,069 - Cost of Site Preparations: \$ 213,069 - Allocated Costs for utility plants and related facilities: \$ - - Direct Permanent Investment \$ 4,705,116 - Otal Depreciable Capital \$ 5,552,037 - Total Depreciable Capital \$ 5,552,004 - Cost of Contingencies & Contractor Fees \$ 846,921 - Total Depreciable Capital \$ 5,552,004 - Cost of Contingencies & Contractor Fees \$ 6,218,281 1,10 Cost of Land: \$ \$ 6,218,281 1,10 Total Permanent Investment \$ 5,552,04 \$ 6,218,281 <	Charge	'y	9 6	700,470			
Storage S 2/0/5/41 Other Equipment S - Catalysts S - Computers, Software, Etc. S - Total Bare Module Costs: S - Direct Permanent Investment S 213,869 Cost of Steice Facilities: S 213,869 Allocated Costs for utility plants and related facilities: S - Direct Permanent Investment S 4,705,116 Cost of Steice Facilities: S - Direct Permanent Investment S 5,552,037 Cost of Contingencies & Contractor Fees S 846,921 Total Depreciable Capital S 5,552,037 Cost of Cantid: S 111,041 Cost of Cantid: S 111,041 Cost of Royatiles: S - Cost of Royatiles: S - Cost of Paranent Investment S 6,218,281 Total Permanent Investment S 6,240,109 Working Capital S - <th>Spares</th> <th></th> <th>9</th> <th>0.575.544</th> <th></th> <th></th> <th></th>	Spares		9	0.575.544			
Catalysts S - Catalysts S - Computers, Software, Etc. S - Total Bare Module Costs: S 4,277,378 Direct Permanent Investment Cost of Site Preparations: S 213,869 Cost of Site Preparations: S 213,869 Cost of Service Facilities: S - Direct Permanent Investment S 4,705,116 Cost of Contingencies & Contractor Fees S 846,921 Total Depreciable Capital S 5,552,037 Cost of Contingencies & Contractor Fees S 111,041 Cost of Contingencies & Contractor Fees S 111,041 Cost of Royatties: S - Cost of Plant Start-Up: S 555,204 Total Permanent Investment S 6,218,281 Total Permanent Investment S 6,218,281 Total Permanent Investment S 6,240,109 Vorking Capital S 6,240,109 Vorking Capital Present Value at 15% Present Value at 15% S 9,447 </th <th>Storage</th> <th></th> <th>9 6</th> <th>2,575,541</th> <th></th> <th></th> <th></th>	Storage		9 6	2,575,541			
Catalysts S - Computers, Software, Etc. S - Total Bare Module Costs: S 4,277,378 Direct Permanent Investment S 213,869 Cost of Site Preparations: S 213,869 Allocated Costs for utility plants and related facilities: S - Direct Permanent Investment S 4,705,116 Cost of Contingencies & Contractor Fees S 846,921 Total Depreciable Capital S 5,552,037 Cost of Contingencies & Contractor Fees S 846,921 Total Depreciable Capital S 5,552,037 Cost of Land: S 111,041 Cost of Plant Start-Up: S 555,204 Total Permanent Investment S 6,218,221 Total Permanent Investment S 6,240,109 Norking Capital Norking Capital S 90,341 S 10,033 Norking Capital Accounts Receivable S 116,845 2014 2015 Norking Capital Accounts Receivable S 90,341 S 10,033 Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital Norking Capital S 114,329	Other Equipment		\$	H			
Computers, Software, Etc. S - Total Bare Module Costs: \$ 4.277,378 Direct Permanent Investment Cost of Site Preparations: \$ 213,869 Cost of Service Facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4.705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Land: \$ 111,041 Cost of Iand: \$ 111,041 Cost of Parmanent Investment \$ 6,218,281 Total Permanent Investment \$ 555,204 Vorking Capital \$ 6,218,281 More Factor \$ 6,218,281 Total Permanent Investment \$ 6,840,109	Catalysts		\$	1 2			
Total Bare Module Costs: \$ 4,277,378 Direct Permanent Investment S 213,869 Cost of Stervice Facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Total Depreciable Capital Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & S 111,041 - Cost of Contingencies & S 111,041 - Cost of Royatties: \$ - Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment Unadjusted \$ 6,218,281 Site Factor \$ 0,038 \$ - Total Permanent Investment \$ 6,244,109 - Norking Capital \$ (16,545) \$ (2001) \$ -	Computers, Softw	vare, Etc.	\$				
Wrect Permanent Investment \$ 213,869 Cost of Site Preparations: \$ 213,869 Cost of Service Facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 111,041 Cost of Contingencies & S \$ 111,041 Cost of Contingencies \$ 555,204 Total Permanent Investment \$ 6,218,281 Site Factor \$ 6,240,109 Vorking Capital \$ 6,240,109 Working Capital \$ 2014 \$ 2014 Accounts Receivable \$ 90,341 \$ 10,038 - Accounts Receivable \$ (18,545) \$ (2,001) - Raw Materials \$ - \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - \$ - <	Total Bare Modul	e Costs:			\$	4,277,378	
Cost of Site Preparations: \$ 213,869 Cost of Service Facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Candi: \$ 111,041 \$ Cost of Royalties: \$ 1 1 Cost of Plant Start-Up: \$ 555,204 \$ 6,218,281 Total Permanent Investment \$ 6,240,109 \$ - Working Capital \$ 2013 \$ 2014 7,26 \$ - Materials \$ 9,341 \$ 10,038 - - - Present Value at 15% \$ 9,417 \$ 9,605	Direct Permanent Investment						
Cost of Service Facilities: \$ 213,869 Allocated Costs for utility plants and related facilities: \$ - Direct Permanent Investment \$ 4,705,116 Intel Depreciable Capital \$ 4,705,116 Cost of Contingencies & Contractor Fees \$ 846,921 Intel Depreciable Capital \$ 5,552,037 Cost of Land: \$ 111,041 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment \$ 6,218,281 Cost of Plant Start-Up: \$ 6,240,109 Vorking Capital \$ 6,240,109 Morking Capital \$ 6,240,109 Morking Capital \$ 110,041 Accounts Receivable \$ 0,213,281 Accounts Receivable \$ 0,213,281 Cash Reserves \$ 90,341 \$ 10,038 Accounts Receivable \$ 12,253 \$ 2014 Accounts Receivable \$ 12,253 \$ 2014 Cash Reserves \$ 90,341 \$ 10,038 - Accounts Receivable \$ 12,2703 \$ - - Raw Materials \$ - \$ - \$ - - Raw Materials <td>Cost of Site Prep</td> <td>arations:</td> <td>\$</td> <td>213,869</td> <td></td> <td></td> <td></td>	Cost of Site Prep	arations:	\$	213,869			
Allocated Costs for utility plants and related facilities: \$. Direct Permanent Investment \$ 4,705,116 Odal Depreciable Capital \$ 846,921 Total Depreciable Capital \$ 5,552,037 Otal Permanent Investment \$ 5,552,037 Cost of Cantingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cost of Land: \$ 111,041 Cost of Plant Start-Up: \$ 6,210,281 Total Permanent Investment - Unadjusted \$ 6,240,109 Working Capital \$ 90,341 \$ 0,201 More Factor \$ 90,341 \$ 0,2015 \$ More Capital \$ \$ 90,341 \$ 0,2015 \$ More Capital \$ \$ 90,341 \$ 0,003 \$ - More Capital \$ \$ \$ \$ \$ \$ \$ \$ More Capital \$ \$ \$ \$ \$ \$ \$ \$ \$ <	Cost of Service F	acilities:	\$	213,869			
Direct Permanent Investment \$ 4,705,116 Cotal Depreciable Capital Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Cotal Permanent Investment \$ 5,552,037 Cotal Permanent Investment \$ 5,552,037 Cotal Opereciable Capital \$ 6,218,281 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 5,552,041 Total Permanent Investment - Unadjusted \$ 6,218,281 Site Factor \$ 1,10 Total Permanent Investment \$ 6,840,109 Working Capital \$ 10,038 - Accounts Receivable \$ 90,341 10,038 - Accounts Receivable \$ 90,341 10,038 - Accounts Receivable \$ 9,341	Allocated Costs f	or utility plants and related facilities:	\$				
Solution Solution	Direct Permanent	t Investment			<u>\$</u>	4,705,116	
Cost of Contingencies & Contractor Fees \$ 846,921 Total Depreciable Capital \$ 5,552,037 Total Permanent Investment \$ 111,041 Cost of Land: \$ 111,041 Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment - Unadjusted \$ 6,218,281 Site Factor \$ 1.10 Total Permanent Investment \$ 5,552,04 Working Capital \$ 2013 2014 2015 Accounts Receivable \$ 90,341 \$ 10,038 \$ - Accounts Receivable \$ 0,341 \$ 10,038 \$ - Accounts Receivable \$ 0,341 \$ 10,038 \$ - Raw Materials \$ - \$ - \$ - Present Value at 15% \$ 99,417 \$ 99,605 \$ -	Fotal Depreciable Capital						
Total Depreciable Capital \$ 5,552,037 Cotal Permanent Investment \$ 111,041 Cost of Land: \$ 111,041 Cost of Royalties: \$ -555,204 Total Permanent Investment - Unadjusted \$ 6,218,281 Site Factor 1.10 Total Permanent Investment \$ 6,840,109 Working Capital 2013 2014 2015 Accounts Receivable \$ 90,341 \$ 10,038 \$ - Accounts Receivable \$ 90,341 \$ 10,038 \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Receivable \$ (18,545) \$ (2,061) \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Receivable \$ (18,545) \$ (2,061) \$ - Raw Materials \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - Total \$ 114,329 \$ 12,703 \$ -	Cost of Continge	ncies & Contractor Fees	\$	846,921			
Total Permanent Investment Cost of Land: \$ 111,041 Cost of for Nantstart-Up: \$ 555,204 Total Permanent Investment - Unadjusted \$ 6,218,281 Site Factor 1.10 Total Permanent Investment \$ 6,840,109 Working Capital \$ 2013 Accounts Receivable \$ 90,341 Cash Reserves \$ 90,341 Accounts Receivable \$ (18,545) Electricity Inventory \$ - \$ - \$ Raw Materials \$ - \$ - \$ Total \$ 114,329 \$ 12,703	Total Depreciable	Total Depreciable Capital			<u>s</u>	5,552,037	
Cost of Land: \$ 111,041 Cost of Royalties: \$ - Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment - Unadjusted \$ 6,218,281 Site Factor 1.10 Total Permanent Investment \$ 6,840,109 Working Capital \$ 142,534 \$ 4,726 \$ - Accounts Receivable \$ 10,038 \$ - - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Raw Materials \$ - \$ - \$ - \$ - \$ - Total \$ 114,329 \$ 12,703 \$ -	otal Permanent Investment						
Cost of Royalties: \$ 5 Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment - Unadjusted Site Factor \$ 6,218,281 Total Permanent Investment \$ 6,840,109 Working Capital 2013 2014 2015 Accounts Receivable Cash Reserves \$ 90,341 \$ 10,038 \$ Accounts Payable \$ (18,545) \$ (2,061) \$ - Raw Materials \$ - \$ - \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -	Cost of Land:		\$	111.041			
Cost of Plant Start-Up: \$ 555,204 Total Permanent Investment - Unadjusted Site Factor Total Permanent Investment \$ 6,218,281 1.10 Norking Capital \$ 6,840,109 Norking Capital Accounts Receivable Cash Reserves \$ 90,341 \$ 10,038 - Accounts Receivable Cash Reserves \$ 90,341 \$ 10,038 - Accounts Receivable Cash Reserves \$ 90,341 \$ 10,038 - Accounts Receivable Cash Reserves \$ 9,341 \$ 10,038 - Raw Materials \$ - \$ - \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -	Cost of Royalties		\$	-			
Total Permanent Investment - Unadjusted Site Factor Total Permanent Investment \$ 6,218,281 1.10 \$ 6,840,109 Vorking Capital 2013 42,534 Cash Reserves Accounts Receivable Cash Reserves Accounts Payable Electricity Inventory Raw Materials Total 2014 90,341 \$ 10,038 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	Cost of Plant Sta	rt-Up:	\$	555,204			
Zentral eminantent investment S 5 6,840,109 Site Factor 1.10 Total Permanent Investment \$ 6,840,109 Working Capital Accounts Receivable \$ 2013 2014 2015 Cash Reserves \$ 90,341 \$ 10.038 \$ Accounts Payable \$ (18,545) \$ (2,061) \$ Electricity Inventory \$ - \$ - Raw Materials \$ - \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$	Total Dermonant	Investment Unedivoted			e	6 040 004	
1.10 Total Permanent Investment \$ 6,840,109 Norking Capital 2013 2014 2015 Accounts Receivable \$ 42,534 \$ 4,726 \$ Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,001) \$ - Electricity Investory \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -	Total Permanent	Investment - Unadjusted			2	0,218,281	
Accounts Receivable \$ 12,534 \$ 4,726 \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Receivable \$ (18,545) \$ (2,061) \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - Total \$ 114,329 \$ 12,703 \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -	Site Factor Total Permanent	Investment			s	6.840.109	
Accounts Receivable \$ 42,534 \$ 4,726 \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - Total \$ 114,329 \$ 12,703 \$ -					<u>×</u>		
2013 2014 2015 Accounts Receivable \$ 42,534 \$ 4,726 \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - \$ Present Value at 15% \$ 99,417 \$ 9,605 \$ -	Vorking Capital						
Accounts Receivable \$ 42,534 \$ 4,726 \$ - Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - \$ - Raw Materials \$ - \$ - \$ - Total \$ 114,329 \$ 12,703 \$ -				2013		2014	2015
Cash Reserves \$ 90,341 \$ 10,038 \$ - Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - \$ - \$ Raw Materials \$ - \$ - \$ - \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -		Accounts Receivable	S	42,534	S	4.726 \$	
Accounts Payable \$ (18,545) \$ (2,061) \$ - Electricity Inventory \$ - \$ - Raw Materials \$ - \$ - Total \$ 114,329 \$ 12,703 \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -		Cash Reserves	s	90.341	S	10.038 \$	÷.
Electricity Inventory \$ - \$ - Raw Materials \$ - \$ - \$ Total \$ 114,329 \$ 12,703 \$		Accounts Pavable	s	(18 545)	S	(2.061) \$	
S S		Electricity Inventory	ŝ	(10,040)	s	(2,001) 0	100
Total \$ 114,329 \$ 12,703 \$ - Present Value at 15% \$ 99,417 \$ 9,605 \$ -		Raw Materials	¢ Q	7 .5	0	- 3	
Present Value at 15% \$ 99,417 \$ 9,605 \$ -		Total	\$	114,329	\$	12,703 \$	
		Present Value at 15%	\$	99,417	\$	9,605 \$	1.
		- -					

Profitability	Meas	sures										
The Internal R.	ate of F	Return (IRR) fo	or this project is			Negative IRR						
The Net Prese	nt Valu	e (NPV) of this	s project in 201	2 is		\$ (8,895,500)						
ROI Analysis ((Third F	Production Yes	ar)									
Annual Sa Annual Cc Depreciati Income Ta	ales osts ion		574,992 (1,365,051) (547,209)									
Net Earnir Total Capi ROI	ital Inve	stment	(1,337,267) 6,967,142 -19.19%									
Sensitivity /	Analy:	Ses section below	r takes quite a bit o	memory to update	each time a cell is	s changed; therefor	e, automatic calcul	ations are turned c	off. After making yo	our axis selections,	press "F9" to recal	culate
the IRR values. (1	These tw	o lines may be del Varv Initial V	leted before printing Value bv +/-	(1								
	x-axis y-axis	50	%									
		\$159.245	\$191.094	\$222 943	\$254.792	\$286.641	Variable Costs \$318.490	\$350.339	\$382.188	\$414.037	\$45,886	\$477.734
	\$0.10	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
	\$0.14 \$0.14	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
rice	\$0.16	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
d tot	\$0.20	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
,Lodi	\$0.22	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
d	\$0.24 \$0.26	Negative IRR Negative IRR	Negative IRK Negative IRR	Negative IRR Negative IRR	Negative IRR	Negative IKK Nenative IRR	Negative IRR Nenative IRR	Negative IRR Negative IRR	Negative IRR Negative IRR	Negative IRK Negative IRR	Negative IRK Negative IRR	Negative IRK Negative IRR
	\$0.28	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
	\$0.30	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR

Antimony System

General Information

Process Title: Antimony Fuel Cell System for Energy Storage Product: Electricity Plant Site Location: Northeast Site Factor: 1.10 Operating Hours per Year: 7920 Operating Days Per Year: 330 Operating Factor: 0.9041

\$0.20 /kWh

Product Information This Process will Yield

Price

399 kWh of Electricity per hour 9,571 kWh of Electricity per day 3,158,430 kWh of Electricity per year

Chronology

and the second s		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	5 year MACRS	26 - S
2008	B Design		0.0%		
2009	Construction	100%	0.0%		
2010	Production	0%	81.0%	20.00%	\$0.20
2011	Production	0%	90.0%	32.00%	\$0.20
2012	Production	0%	90.0%	19.20%	\$0.20
2013	Production		90.0%	11.52%	\$0.20
2014	Production		90.0%	11.52%	\$0.20
2015	Production		90.0%	5.76%	\$0.20
2016	Production		90.0%		\$0.20
2017	Production		90.0%		\$0.20
2018	Production		90.0%		\$0.20
2019	Production		90.0%		\$0.20
2020	Production		90.0%		\$0.20
2021	Production		90.0%		\$0.20
2022	Production		90.0%		\$0.20
2023	Production		90.0%		\$0.20
2024	Production		90.0%		\$0.20

Equipment Costs		
- daily in a second		

Equipment Description		Bare Module Cost
Antimony	Other Equipment	\$170,512
C-100	Process Machinery	\$79,655
E-100	Fabricated Equipment	\$93,284
P-100	Process Machinery	
R-100	Other Equipment	\$450,000
V-100	Fabricated Equipment	\$89,386

\$882,837

	rials						
	Raw Material:	Unit:	Required Ratio:		<u>(</u>	Cost of Raw Material:	
	Total Weighted Av	erage:				\$0.000E+00 per kWh (of Electrici
Byproduc	te						
	Byproduct:	Unit:	Ratio to Product		I	Byproduct Selling Prid	<u>ce</u>
	Total Weighted Av	erage:				\$0.000E+00 per kWh o	of Electrici
Utilities							
	Utility:	Unit:	Required Ratio		<u>1</u>	Jtility Cost	
	1 Electrolyzer	KWN	1.25 KWN	per kwn of Electri	city	\$0.060 per kWh	
	2 Electrolyzer field	KW/h	0.0000 1000	per kwn of Electri	city	\$0.060 per kWh	
	4 Pumping Elec.	kWh	0.002677 kWh	per kWh of Electri	city	\$0.060 per kWh	
	Total Weighted Av	erage:				\$0.112 per kWh o	of Electrici
Variable (Total Weighted Av	erage:				\$0.112 per kWh o	of Electrici
Variable (Total Weighted Av Costs General Expense	erage:	as Evenence -	2 000 -50		\$0.112 per kWh o	of Electrici
Variable (Total Weighted Av Costs <u>General Expense</u> S	erage: <u>s:</u> Selling / Transf	er Expenses:	3.00% of S	ales	\$0.112 per kWh o	- f Electrici
Variable (Total Weighted Av Costs <u>General Expense</u> S	erage: <u>s:</u> Selling / Transf Dire Allocat	er Expenses: ect Research: ed Research	3.00% of S 0.00% of S 0.00% of S	ales ales ales	\$0.112 per kWh o	of Electrici
Variable (Total Weighted Av Costs General Expense: S	erage: <u>s:</u> Selling / Transf Dire Allocat Administrat	er Expenses: ect Research: ed Research: tive Expense:	3.00% of S 0.00% of S 0.00% of S 2.00% of S	ales ales ales ales	\$0.112 per kWh o	F Electrici
Variable (Total Weighted Av Costs <u>General Expense</u> S Manageme	erage: <u>8:</u> Selling / Transf Dire Allocat Administral nt Incentive C	er Expenses: ect Research: ed Research: tive Expense: ompensation:	3.00% of S 0.00% of S 0.00% of S 2.00% of S 1.25% of S	ales ales ales ales ales ales	\$0.112 per kWh o	of Electricit
Variable (Working (Total Weighted Av Costs <u>General Expense</u> S Manageme Capital	erage: Selling / Transf Dire Allocat Administrat nt Incentive Co	er Expenses: ect Research: ed Research: tive Expense: ompensation:	3.00% of S 0.00% of S 0.00% of S 2.00% of S 1.25% of S	ales ales ales ales ales ales	\$0.112 per kWh o	of Electrici
Variable (Working (Total Weighted Av Costs General Expense & Manageme Capital	erage: <u>s:</u> Selling / Transf Dire Allocat Administrat Incentive C	er Expenses: ect Research: ed Research: tive Expense: ompensation:	3.00% of S 0.00% of S 0.00% of S 2.00% of S 1.25% of S	ales ales ales ales ales	\$0.112 per kWh o	F Electrici
Variable (Working (Total Weighted Av Costs General Expense S Manageme Capital Capital	erage: Selling / Transf Dire Allocat Administrat Int Incentive Co Sele	er Expenses: ect Research: ed Research: tive Expense: ompensation:	3.00% of S 0.00% of S 0.00% of S 2.00% of S 1.25% of S	ales ales ales ales ales Days	\$0.112 per kWh o	of Electrici
Variable (Working (Total Weighted Av Costs General Expense: S Manageme Capital Accounts Receivat Cash Reserves (e) Accounts Pavable	erage: Selling / Transf Dire Allocat Administrat ent Incentive Co ple (cluding Raw M	er Expenses: ect Research: ed Research: tive Expense: ompensation: ⇔ ⇔	3.00% of S 0.00% of S 2.00% of S 1.25% of S 30 30	ales ales ales ales Days Days Days	\$0.112 per kWh o	of Electrici
Variable (Working (Total Weighted Av Costs General Expense: 8 Manageme Capital Accounts Receival Cash Reserves (e) Accounts Payable Electricity Inventor	erage: Selling / Transf Dire Allocat Administrat Int Incentive Co ple (cluding Raw M	er Expenses: ect Research: ed Research: tive Expense: ompensation: ⇔ ⇔	3.00% of S 0.00% of S 2.00% of S 1.25% of S 30 30 30 0	ales ales ales ales ales Days Days Days Days	\$0.112 per kWh o	of Electrici

Total Permanent Investment

	9	Cost of Site Preparations:	5.00%	of Total Bare Module Costs
		Cost of Service Facilities:	5.00%	of Total Bare Module Costs
Allocat	ted Costs for utility pl	ants and related facilities:	\$0	
	Cost of Contingen	cies and Contractor Fees:	18.00%	of Direct Permanent Investment
		Cost of Land:	0.00%	of Total Depreciable Capital
		Cost of Royalties:	\$0	
		Cost of Plant Start-Up:	10.00%	of Total Depreciable Capital
Fixed Costs				
10 C	Operations			1
		Operators per Shift:	1.5	(assuming 3 shifts)
	Di	rect Wages and Benefits:	\$35	loperator hour
	Dir	ect Salaries and Benefits:	15%	of Direct Wages and Benefits
	Operatir	ng Supplies and Services:	6%	of Direct Wages and Benefits
	Technical Ass	istance to Manufacturing:	\$0.00	per year, for each Operator per Shift
		Control Laboratory:	\$0.00	per year, for each Operator per Shift
	Maintenance			
		Wages and Benefits:	4.50%	of Total Depreciable Capital
		Salaries and Benefits:	25%	of Maintenance Wages and Benefits
		Materials and Services:	100%	of Maintenance Wages and Benefits
		Maintenance Overhead:	5%	of Maintenance Wages and Benefits
	Operating Overhea	d		
		General Plant Overhead:	7.10%	of Maintenance & Operations Wages and Benefits
	Mechani	ical Department Services:	2.40%	of Maintenance & Operations Wages and Benefits
	Employ	ee Relations Department	5.90%	of Maintenance & Operations Wages and Benefits
		Business Services:	7.40%	of Maintenance & Operations Wages and Benefit
	Property Taxes and Prope	erty Taxes and Insurance:	2%	of Total Depreciable Capital
	Straight Line Depre	ciation		
	Direct Plant:	8.00% of Total Deprecia	able Capital, I	less 1.18 times the Allocated Costs
				for Utility Plants and Related Facilities
	Allocated Plant:	6.00% of 1.18 times the	Allocated Co	osts for Utility Plants and Related Facilities
	Other Annual Expe	nses		
	Rental Fees (Offic	e and Laboratory Space):	\$0	
	The second second second second	Licensing Fees:	\$0	
		Miscellaneous:	\$0	
	Depletion Allowand	<u>e</u>		
	An	nual Depletion Allowance:	\$0	

Variable Costs at 100	% Capacity:			
General Expenses				
Selling /	Transfer Expenses:	\$	18,951	
Direct Re	esearch:	\$	50	
Allocated	Research:	S	Contract of Contra	
Administ	rative Expense:	\$	12,634	
Manager	ment Incentive Compensation:	S	7,896	
Total General Expens	e3	\$	39,480	
Raw Materials	\$0.000000 per kWh of Electricity		S 0	
Byproducts	\$0.000000 per kWh of Electricity		\$0	
Utilities	\$0.111635 per kWh of Electricity		\$352,590	
Total Variable Costs		\$	392,071	

Fixed Cost Summary Operations Direct Wages and Benefits Direct Salaries and Benefits Operating Supplies and Services Technical Assistance to Manufacturing \$ 327,600 \$ 49,140 19,656 \$ \$ -Control Laboratory \$ 5 Total Operations 396,396 Maintenance \$ 51,567 Wages and Benefits Salaries and Benefits \$ 12,892 Materials and Services \$ 51,567 Maintenance Overhead \$ 2,578 \$ **Total Maintenance** 118,603 Operating Overhead General Plant Overhead: \$ 31,325 Mechanical Department Services: 10,589 \$ Employee Relations Department: 26,031 \$ Business Services: \$ 32,649 Total Operating Overhead \$ 100,593 Property Taxes and Insurance Property Taxes and Insurance: \$ 22,918 Other Annual Expenses Rental Fees (Office and Laboratory Space): 2 \$ Licensing Fees: \$. Miscellaneous: \$ Total Other Annual Expenses 1 \$ Total Fixed Costs 638,511 \$

Investment Summary			
Bare Module Costs			
Fabricated Equipment	\$ 182,670		
Process Machinery	\$ 79,655		
Spares	\$ -		
Storage			
Other Equipment	\$ 620,512		
Catalysts	\$ 2		
Computers, Software, Etc.	\$		
Total Bare Module Costa:		5	882,837
Direct Permanent Investment			
Cost of Site Preparations:	\$ 44,142		
Cost of Service Facilities:	\$ 44,142		
Allocated Costs for utility plants and related facilities:	\$ 2		
Direct Permanent Investment		5	971,121
Total Depreciable Capital			
Cost of Contingencies & Contractor Fees	\$ 174,802		
Total Depreciable Capital		\$	1,145,923
Total Permanent Investment			
Cost of Land:	\$ 		
Cost of Royalties:	\$ -		
Cost of Plant Start-Up:	\$ 114,592		
Total Permanent Investment - Unadjusted		s	1,260,515
Site Factor			1.10
Total Permanent Investment		5	1,386,567
Total Permanent Investment		<u>s</u>	1,386,567

		2009		2010	2011
	Accounts Receivable	\$ 42,055	\$	4,673	\$ X
	Cash Reserves	\$ 65,983	S	7,331	\$ 1
	Accounts Payable	\$ (23,474)	S	(2,608)	\$ 8
	Electricity Inventory	\$ 100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	S	19 ja - 19	\$ -
	Raw Materials	\$ 1	S		\$
	Total	\$ 84,564	\$	9,396	\$ 2
	Present Value at 15%	\$ 73,534	\$	7,105	\$ 5
Total Capital Investment			\$	1,467,205	

	Curruled ve Not Present Value at 165	A 38.900	0.622400	0.000000	C, M2,200)	0.32,400	0.96,000	(C. GH 200)	0,000,000	000/28/0	000,000,000)	0.446,100	0.27,100)	0.36,000	(000/9E'S	0.407,000	A MOTOR A
	Cath Row	AUTHOR	953,200	022500	822,500)	022.900)	822,900)	822,900)	822500)	A22,900)	822,900)	A22,500)	0022000	022500)	#22,900	005256	POSt DOWN
	Net Earlier	2	(03,60)	(B6.00)	(005, 900)	(BA,000)	(194,910)	(40,80)	(422, 400)	(62,80)	(42,900)	(62, 800)	(42,00)	(\$2,80)	(42,00)	(\$2,80)	100 000
	Tage	10	1	1	1	1			1	•		è	1		1		
	Ted ble income		00200	0769.000	092500	009 900	00014000	(400'000)	(422,500)	(422,500)	(422,500)	(402,500)	(422,600)	1422,500	(422,600	(422,800)	0000000
	Deptetion.	10	1	1	1	1		1	1	•		è	1	1	1		-
View	Dependation.	2. 	0252000	0002000	020000	032,000	032,000	00000	No.		•	•	•	-	1	+	1
th Flow Sumi	Fixed Costs	-	636360	000700	0001000	636,500	626,500)	6002000	638,500	0002000	626,500)	0002003	00000	0002000	606,500)	0002000	ALCONO.
Cas	Mar Conta	1	000,000	(30, 90)	(30, 20)	(30,00)	(350, 920)	(105, 500)	(352, 950)	(352, 320)	(352, 900)	(352, 550)	(32, 20)	(102,000)	(IR) (IO)	(302,300)	1980 080
	Working Capital	Cite GUTA	0.400	-	3	3			1			*		+		.+	00.000
	Carla Cost	A 36 000	August 10	1	1							ð					
	Baken	*	91200	E8.500	105'25	186,500	22,500	100200	22,500	005/020	928,500	00200	E6,500	0007032	B0,500	000000	10000
	Product Link		\$020	1020	1020	1020	1020	\$020	\$020	1020	\$020	\$020	1020	\$020	1020	1020	40.00
	Percentage of	ÉÉ	\$12	1008	80%	80%	80%	80%	50M	808	80%	80%	10%	808	80%	808	COM
	Yest	2000	0102	2011	2012	2013	2014	2015	2016	2017	2018	2018	20200	1202	2002	2023	- POUR

Profitability Measures			
The Internal Rate of Return (I	tR) for this project is	Negative IRR	
The Net Present Value (NPV)	of this project in 2008 is	\$ (3,442,700)	
ROI Analysis (Third Production	in Year)		
Annual Sales	568,517		
Annual Costs	(991,374)		
De preciation	(110,925)		
In come Tax			
Net Earnings	(533,782)		
Total Capital Investment	1,480,526		
ROI	-36.05%		

100

Sensitivity Analyses Note: The Sensitivity Analyses section behavious takes quite a bit of memory to update each time a cell is changed; therefore, automatic calculations are turned off. After making your axis selections, press "F9" to receipt the IRR values. (These fore, finese two finese may be defeed before printing.)

x-acts 50% y-acts 50% 50.10 Negative IRR Nega 50.11 Negative IRR Nega 50.14 Negative IRR Nega 50.14 Negative IRR Nega 50.14 Negative IRR Nega 50.15 Negative IRR Nega 50.13 Negative IRR Nega 50.24 Negative IRR Nega 50.28 Negative IRR Nega 50.28 Negative IRR Nega 50.28 Negative IRR Nega	- IN A.									
9-4016 50% \$100.05 50% \$100.0525 52 \$100.0526 52 \$100.	2									
\$196,035 \$2 \$196,035 \$2 \$0,10 Negative IRR Neg \$0,12 Negative IRR Neg \$0,14 Negative IRR Neg \$0,14 Negative IRR Neg \$0,15 Negative IRR Neg \$0,16 Negative IRR Neg \$0,18 Negative IRR Neg \$0,19 Negative IRR Neg \$0,18 Negative IRR Neg \$0,18 Negative IRR Neg \$0,18 Negative IRR Neg \$0,19 Negative IRR Neg \$0,18 Negative IRR Neg \$0,12 Negative IRR Neg \$0,13 Negative IRR Neg \$0,14 Negative IRR Neg \$0,12 Negative IRR Neg \$0,28 Negative IRR Neg \$0,28 Negative IRR Neg \$0,28 Negative IRR Neg										
50.10 Negative RR Negative RR 50.12 Negative RR Negative RR 50.14 Negative RR Negative RR 50.15 Negative RR Negative RR 50.16 Negative RR Negative RR 50.18 Negative RR Negative RR 50.12 Negative RR Negative RR 50.12 Negative RR Negative RR 50.12 Negative RR Negative RR 50.22 Negative RR Negative RR 50.23 Negative RR Negative RR 50.24 Negative RR Negative RR 50.25 Negative RR Negative RR 50.26 Negative RR Negative RR 50.28 Negative RR Negative RR 50.28 Negative RR Negative RR 50.28 Negative RR Negative RR	\$236,242	\$274,449	\$313,666	\$352,863	Variable Costs \$392,071	\$431,278	\$470,485	\$509,682	\$548,899	\$588,106
\$1.12 Negative IRR	Neg stive IRR	Negative RR	Negative IRR	Neg stive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
50.14 Negative IRR	Neg affine IRR	Negative IRR	Negative IR.R.	Neg ative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
S0.15 Negative FR?	Neg afive IRR	Ne gative IRR	Negative IRR	Neg affive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
\$0.18 Negative IRR Negative IRR \$0.20 Negative IRR Negative IRR \$1.20 Negative IRR Negative IRR \$1.21 Negative IRR Negative IRR \$1.22 Negative IRR Negative IRR \$1.23 Negative IRR Negative IRR \$1.28 Negative IRR Negative IRR \$2.28 Negative IRR Negative IRR \$2.28 Negative IRR Negative IRR \$2.28 Negative IRR Negative IRR	Neg afive IRR	Negative IRR	Negative IRR	Neg afive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
20.20 Negative FPT Nega 50.20 Negative FPT Nega 50.24 Negative FPT Nega 50.26 Negative FPT Nega 50.28 Negative FPT Nega	Neg after IRR	Negative IRR	Negative IRR	Neg aftre IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
50.22 Negative IPR Nega 50.24 Negative IPR Nega 50.26 Negative IPR Nega 50.28 Negative IPR Nega 50.28 Negative IPR Nega	Neg after IRR	Negative IRR	Negative IRR	Neg also IPR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
50.24 Negative IRR Nega 50.25 Negative IRR Nega 50.28 Negative IRR Nega 50.28 Negative IRR Nega	Neg after FR	Negative IRR	Negative IRR	Neg after IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
S0.26 Negative FR Nega S0.28 Negative FR Nega	Neg afive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
\$0.26 Negative IRR Nega	Neg afive IRR	Negative IRR	Negative IRR	Neg afive IRR	Negarive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
en to Names DO Name	Negative IRR	Negative IRR	Negative IRR	Neg after IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR
PERMI UNI ANDREN INCOME	Neg affive IRR	Negative IRR	Negative IRR	Neg affive IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR	Negative IRR

Product Price

University of Pennsylvania

ASPEN Results

Hydrogen System

Stream Results – Hydrogen Electrolysis

STREAM	ID	1	L 1	0 1	1 12	13
FROM	:		FC-SPLIT	S-100	S-100	E-101
то	:	P-100	S-100	E-101	M-100	E-100
SUBSTREAM:	MIXED					
PHASE:	LIQUID	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS:	LBMOL/HR					
WATER		42.7071	4.812	5 4.277	8 0.5347	4.2778
HYDROGEN		() 43.232	3 38.429	4.8031	38.4292
OXYGEN		()	0	0 C	0
COMPONENTS:	LB/HR					
WATER		769.3798	86.698	9 77.066	9.6322	77.0667
HYDROGEN		() 87.151	2 77.468	9.6825	77.4687
OXYGEN		()	0	0 C	0
TOTAL	FLOW:					
LBMOL/HR		42.7071	48.044	9 42.707	1 5.3378	42.7071
LB/HR		769.3798	3 173.850	1 154.535	4 19.3147	154.5354
CUFT/HR		12.3859	95.1884+04	4.6120+04	5764.3015	2.7165+04
STATE	VARIABLES:					
TEMP	F	75	5 147	2 147	2 1472	672
PRES	PSIA	14.7	7 19	2 19.	2 19.2	19.1
VFRAC		()	1	1 1	1
LFRAC		1	L	0	0 C	0
SFRAC		()	0	0 C	0
ENTHALPY:						
BTU/LBMOL		3.7569	-305.749	3 -305.749	3 -305.7493	-6179.4343
BTU/LB		-6900.1154	-84.496	2 -84.496	2 -84.4962	-1707.7356
BTU/HR		0.6912	2 2.53	1 2.694	2 -1632.0232	2.3609
ENTROPY:						
BTU/LBMOL-R		-40.9705	8.270	7 8.270	7 8.2707	4.3644
BTU/LB-R		-2.2742	2.285	7 2.285	7 2.2857	1.2061
DENSITY:						
LBMOL/CUFT		3.448	39.2601-04	9.2601-04	9.2601-04	1.5721-03
LB/CUFT		62.1176	53.3508-03	3.3508-03	3.3508-03	5.6887-03
AVG	MW	18.0153	3.618	5 3.618	5 3.6185	3.6185

STREAM	ID	14	15	5 16	17	18
FROM	:	E-100	E-104	E-104	C-100	E-105
то	:	E-104	C-100		E-105	C-101
SUBSTREAM:	MIXED					
PHASE:	MIXED	VAPOR	LIQUID	VAPOR	VAPOR	
COMPONENTS:	LBMOL/HR					
WATER		4.2778	2.9966-02	4.2479	2.9966-02	2.9966-02
HYDROGEN		38.4292	38.4292	2 0	38.4292	38.4292
OXYGEN		0	C) (0	0
COMPONENTS:	LB/HR					
WATER		77.0667	0.5398	76.5268	0.5398	0.5398
HYDROGEN		77.4687	77.4687	, C	77.4687	77.4687
OXYGEN		0	C) (0	0
TOTAL	FLOW:					
LBMOL/HR		42.7071	38.4592	4.2479	38.4592	38.4592
LB/HR		154.5354	78.0085	76.5268	78.0085	78.0085
CUFT/HR		1.4327+04	1.2461+04	1.2343	8922.7671	7295.8853
STATE	VARIABLES:					
TEMP	F	131	100	100	231.4175	100
PRES	PSIA	18.85	18.55	18.55	32	31.7
VFRAC		0.9971	1	. 0	1	1
LFRAC		2.8890-03	C) 1	0	0
SFRAC		0	0) (0	0
ENTHALPY:						
BTU/LBMOL		2.9908	77.9663	3.7753	989.9785	78.4296
BTU/LB		-2789.0028	38.4384	-6798.0364	488.0718	38.6668
BTU/HR		0.69	2998.5208	-0.2023	3.8074+04	3016.3399
ENTROPY:						
BTU/LBMOL-R		-0.3346	-0.1696	-38.2124	0.2101	-1.2339
BTU/LB-R		-11.2476	-10.3609	-2.1211	0.1036	-0.6083
DENSITY:						
LBMOL/CUFT		2.9809-03	3.0863-03	3.4415	4.3102-03	5.2714-03
LB/CUFT		1.0786-02	6.2600-03	62.0003	8.7426-03	1.0692-02
AVG	MW	3.6185	2.0283	18.0153	2.0283	2.0283

STREAM	ID	19	2	20	21	22
FROM	:	C-101	P-100	E-106	C-102	E-107
ТО	:	E-106	E-100	C-102	E-107	
SUBSTREAM:	MIXED					
PHASE:	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	
COMPONENTS:	LBMOL/HR					
WATER		2.9966-02	42.7071	2.9966-02	2.9966-02	2.9966-02
HYDROGEN		38.4292	0	38.4292	38.4292	38.4292
OXYGEN		0	0	0 0	0	0
COMPONENTS:	LB/HR					
WATER		0.5398	769.3798	0.5398	0.5398	0.5398
HYDROGEN		77.4687	0	77.4687	77.4687	77.4687
OXYGEN		0	0	0 0	0	0
TOTAL	FLOW:					
LBMOL/HR		38.4592	42.7071	38.4592	38.4592	38.4592
LB/HR		78.0085	769.3798	78.0085	78.0085	78.0085
CUFT/HR		5176.7225	12.3939	4193.0106	2908.8729	2319.0877
STATE	VARIABLES:					
TEMP	F	235.3166	76.2077	100	244.9518	100
PRES	PSIA	55.51	214.6959	55.21	100.3	100
VFRAC		1	0) 1	. 1	1
LFRAC		0	1	. 0	0	0
SFRAC		0	0	0 0	0	0
ENTHALPY:						
BTU/LBMOL		1018.1791	3.7573	79.2586	1087.3368	80.8399
BTU/LB		501.975	-6898.1003	39.0755	536.0707	39.8551
BTU/HR		3.9158+04	0.6927	3048.2201	4.1818+04	3109.0373
ENTROPY:						
BTU/LBMOL-R		-0.8446	-40.929	-2.3361	-1.9235	-3.5165
BTU/LB-R		-0.4164	-2.2719	-1.1517	-0.9483	-1.7337
DENSITY:						
LBMOL/CUFT		7.4293-03	3.4458	9.1722-03	1.3221-02	1.6584-02
LB/CUFT		1.5069-02	62.0772	1.8604-02	2.6817-02	3.3638-02
AVG	MW	2.0283	18.0153	2.0283	2.0283	2.0283

Electrical Energy Storage Using Reversible Fuel Cells

STREAM	ID	23	3	24	3	8 4	5
FROM	:	FC-SPLIT	E-102	E	-100	F-100	F-100
то	:	E-102		F	-100	E-101	
SUBSTREAM:	MIXED						
PHASE:	VAPOR	VAPOR	LIQUID	٧	/APOR	MISSING	
COMPONENTS:	LBMOL/HR						
WATER		()	0	42.7071	42.7071	0
HYDROGEN		()	0	C) 0	0
OXYGEN		19.214	5 19.2	146	C) 0	0
COMPONENTS:	LB/HR						
WATER		()	0	769.3798	3 769.3798	0
HYDROGEN		()	0	() 0	0
OXYGEN		614.8444	4 614.8	444	() 0	0
TOTAL	FLOW:						
LBMOL/HR		19.214	5 19.2	146	42.7071	42.7071	0
LB/HR		614.8444	4 614.8	444	769.3798	3 769.3798	0
CUFT/HR		2.0752+04	1.5077+04	4	13.8878	31.3238+04	0
STATE	VARIABLES:						
TEMP	F	1472	2	929	263.3308	3 242.1922	MISSING
PRES	PSIA	19.2	2	19	214.6959) 24	24
VFRAC		:	L	1	C) 1	MISSING
LFRAC		()	0	1	L 0	MISSING
SFRAC		()	0	() 0	MISSING
ENTHALPY:							
BTU/LBMOL		1.0860+04	6393.9	113	3.7964	3.9733	MISSING
BTU/LB		339.400	5 199.8	172	-6680.9201	-5699.2659	MISSING
BTU/HR		2.0868+05	1.2286+0	5	0.8598	3 1.6151	MISSING
ENTROPY:							
BTU/LBMOL-R		9.23	5 6.5	446	-34.6704	-9.4433	MISSING
BTU/LB-R		0.288	5 0.2	045	-1.9245	-0.5242	MISSING
DENSITY:							
LBMOL/CUFT		9.2592-04	1.2745-03	3	3.0752	23.2261-03	MISSING
LB/CUFT		2.9628-02	4.0781-02	2	55.3997	5.8119-02	MISSING
AVG	MW	31.998	3 31.9	988	18.0153	8 18.0153	MISSING

220

STREAM	ID	e	5	7 8	3 9	H20FEED
FROM	:	E-101	E-102	E-103	M-100	
то	:	E-102	E-103	M-100	R-100	
SUBSTREAM:	MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	
COMPONENTS:	LBMOL/HR					
WATER		42.7071	42.7072	42.7072	43.2417	42.7071
HYDROGEN		() () (4.8031	0
OXYGEN		() () () 0	0
COMPONENTS:	LB/HR					
WATER		769.3798	3 769.3798	3 769.3798	3 779.012	769.3798
HYDROGEN		C) () (9.6825	0
OXYGEN		() () () 0	0
TOTAL	FLOW:					
LBMOL/HR		42.7071	42.7072	42.7072	48.0449	42.7071
LB/HR		769.3798	3 769.3798	3 769.3798	788.6945	769.3798
CUFT/HR		3.0783+04	3.6136+04	4.6771+04	5.2556+04	12.3859
STATE	VARIABLES:					
TEMP	F	918.8573	1133.9903	3 1500) 1497.5395	75
PRES	PSIA	20.5	5 20.2	2 19.2	2 19.2	14.7
VFRAC		1	L í	1 1	L 1	0
LFRAC		() () () 0	1
SFRAC		() () () 0	0
ENTHALPY:						
BTU/LBMOL		-5.68	-5.4792	-5.1195	-4.1097	3.7569
BTU/LB		-5373.2268	-5261.6797	7 -5062.0779	-4940.1794	-6900.1154
BTU/HR		1.8659	1.9518	3 2.1053	3 2.1037	0.6912
ENTROPY:						
BTU/LBMOL-R		-3.3063	-1.923	3 0.2067	1.6762	-40.9705
BTU/LB-R		-0.1835	-0.1067	7 1.1476-02	0.1021	-2.2742
DENSITY:						
LBMOL/CUFT		1.3873-03	1.1818-03	9.1311-04	9.1416-04	3.448
LB/CUFT		2.4993-02	2.1291-02	1.6450-02	1.5007-02	62.1176
AVG	MW	18.0153	18.0153	3 18.0153	3 16.4158	18.0153

STREAM	ID	NOTREAL
FROM	:	R-100
ТО	:	FC-SPLIT
SUBSTREAM:	MIXED	
PHASE:	VAPOR	
COMPONENTS:	LBMOL/HR	
WATER		4.8125
HYDROGEN		43.2323
OXYGEN		19.2146
COMPONENTS:	LB/HR	
WATER		86.6989
HYDROGEN		87.1512
OXYGEN		614.8444
TOTAL	FLOW:	
LBMOL/HR		67.2595
LB/HR		788.6945
CUFT/HR		7.2636+04
STATE	VARIABLES:	
TEMP	F	1472
PRES	PSIA	19.2
VFRAC		1
LFRAC		0
SFRAC		0
ENTHALPY:		
BTU/LBMOL		2884.2506
BTU/LB		245.9674
BTU/HR		1.9399+05
ENTROPY:		
BTU/LBMOL-R		9.7342
BTU/LB-R		0.8301
DENSITY:		
LBMOL/CUFT		9.2598-04
LB/CUFT		1.0858-02
AVG	MW	11.7262

BLOCK: C-100 MODEL: COMPR

INLET STREAM: 15 OUTLET STREAM: 17 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE

MOLE(LBMOL/HR)38.459238.45920.00000MASS(LB/HR)78.008578.00850.00000ENTHALPY(BTU/HR)2998.5238073.8-0.921244

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOROUTLET PRESSURE PSIA32.0000ISENTROPIC EFFICIENCY0.72000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPOV	VER REQUIREME	NT HP	13.7851
BRAKE HORSEPOWE	ER REQUIREMENT	T HP	13.7851
NET WORK REQUIRED	HP	13.7851	
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEPOV	WER REQUIREME	NT HP	9.92526
CALCULATED OUTLET	TEMP F	231.41	8
ISENTROPIC TEMPERA	TURE F	194.733	3
EFFICIENCY (POLYTR/I	SENTR) USED	0.7	2000
OUTLET VAPOR FRACT	TION	1.00000)
HEAD DEVELOPED,	FT-LBF/LB	251,921.	
MECHANICAL EFFICIEN	NCY USED	1.00	0000
INLET HEAT CAPACITY	' RATIO	1.4053	34
INLET VOLUMETRIC FI	LOW RATE , CUFT	/HR 1	2,461.4
OUTLET VOLUMETRIC	FLOW RATE, CUP	T/HR	8,922.77
INLET COMPRESSIBILI	TY FACTOR	1.00	0074
OUTLET COMPRESSIBI	LITY FACTOR	1.	00106
AV. ISENT. VOL. EXPON	VENT	1.40346	
AV. ISENT. TEMP EXPO	NENT	1.40211	
AV. ACTUAL VOL. EXP	ONENT	1.6324	40
AV. ACTUAL TEMP EXE	PONENT	1.630	84

BLOCK: C-101 MODEL: COMPR

INLET STREAM: 18 OUTLET STREAM: 19 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR)38.459238.45920.00000MASS(LB/HR)78.008578.00850.00000ENTHALPY(BTU/HR)3016.3439158.3-0.922971

*** INPUT DATA ***

55.5100
0.72000
1.00000

*** RESULTS ***

INDICATED HORSEPO	WER REQUIREM	ENT HP	14.2043
BRAKE HORSEPOW	ER REQUIREMEN	T HP	14.2043
NET WORK REQUIRED	HP	14.2043	5
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEPC	WER REQUIREM	ENT HP	10.2271
CALCULATED OUTLE	Г ТЕМР F	235.3	317
ISENTROPIC TEMPERA	TURE F	197.5	30
EFFICIENCY (POLYTR/	ISENTR) USED	0	.72000
OUTLET VAPOR FRAC	TION	1.0000	00
HEAD DEVELOPED,	FT-LBF/LB	259,583	
MECHANICAL EFFICIE	ENCY USED	1.0	00000
INLET HEAT CAPACIT	Y RATIO	1.40	536
INLET VOLUMETRIC F	LOW RATE , CUF	T/HR	7,295.89
OUTLET VOLUMETRIC	C FLOW RATE, CU	JFT/HR	5,176.72
INLET COMPRESSIBIL	JTY FACTOR	1.	00126
OUTLET COMPRESSIB	ILITY FACTOR		1.00183
AV. ISENT. VOL. EXPO	NENT	1.4043	3
AV. ISENT. TEMP EXPO	ONENT	1.4020	00
AV. ACTUAL VOL. EXH	PONENT	1.63	271
AV. ACTUAL TEMP EX	PONENT	1.63	3004

BLOCK: C-102 MODEL: COMPR

INLET STREAM: 20 OUTLET STREAM: 21 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 38.4592 38.4592 0.00000 MASS(LB/HR) 78.0085 78.0085 0.00000 ENTHALPY(BTU/HR) 3048.22 41818.1 -0.927108

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOROUTLET PRESSURE PSIA100.300ISENTROPIC EFFICIENCY0.72000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HODSEDOWED DEOLIDEM	IENT 11D 15 2271
INDICATED HORSEPOWER REQUIREM	LENT HP 15.23/1 NT HD 15.2271
NET WORK REQUIREMEN	NI ПР 15.25/1 15.2371
POWER LOSSES HP	0.0
ISENTROPIC HORSEPOWER REQUIREM	IENT HP 10.9707
CALCULATED OUTLET TEMP F	244 952
ISENTROPIC TEMPERATURE E	204 448
EFFICIENCY (POI YTR/ISENTR) USED	0 72000
OUTLET VAPOR FRACTION	1 00000
HEAD DEVELOPED FT-LBF/LB	278 457
MECHANICAL EFFICIENCY USED	1,00000
INLET HEAT CAPACITY RATIO	1.40541
INLET VOLUMETRIC FLOW RATE . CUF	T/HR 4.193.01
OUTLET VOLUMETRIC FLOW RATE. CU	UFT/HR 2.908.87
INLET COMPRESSIBILITY FACTOR	1.00220
OUTLET COMPRESSIBILITY FACTOR	1.00326
AV. ISENT. VOL. EXPONENT	1.40586
AV. ISENT. TEMP EXPONENT	1.40176
AV. ACTUAL VOL. EXPONENT	1.63275
AV. ACTUAL TEMP EXPONENT	1.62806
BLOCK: E-100 MODEL: HEATX	
HOT SIDE:	
INLEI SIKEAM: 15 OUTLET STREAM: 14	
DUILEI SIKEAMI, 14 DEODEDTV ODTION SET: DV SOAVE S'	ΤΑΝΓΙΑΡΟ ΡΥς ΕΩΠΑΤΙΩΝ ΩΕ ΩΤΑΤΕ
COLD SIDE:	TANDARD KKS EQUATION OF STATE
COLD SIDE.	
INI ET STREAM: 2	
OUTLET STREAM: 3	
PROPERTY OPTION SET: RK-SOAVE S	TANDARD RKS EOUATION OF STATE
*** MASS AND ENERGY BAL	LANCE ***
IN OUT REI	LATIVE DIFF.
TOTAL BALANCE	
MOLE(LBMOL/HR) 85.4141	85.4141 0.166376E-15
MASS(LB/HR) 923.915 923.9	915 0.00000
ENTHALPY(BTU/HR) -0.557116E+0	07 -0.557116E+07 -0.167168E-15
*** INPUT DATA ***	
FLASH SPECS FOR HOT SIDE:	
TWO PHASE FLASH	20
MAXIMUM NO. ITERATIONS	30
CUNVERGENCE I ULERANCE	0.000100000

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP

SPECIFIED VALUE F LMTD CORRECTION FACTOR	131.0000
PRESSURE SPECIFICATION:	
HOT SIDE PRESSURE DROP COLD SIDE PRESSURE DROP	PSI 0.2500 PSI 0.0000
HEAT TRANSFER COEFFICIENT OVERALL COEFFICIENT	SPECIFICATION: BTU/HR-SQFT-R 52.1600
*** OVERALL RESU	JLTS ***
STREAMS:	
13> HOT	> 14 > 12
T = 6.7200D+02 P= 1.9100D+01	T = 1.3100D+02 P = 1.8850D+01
V = 1.0000D+00	V = 9.9711D-01
3 < COLD T- 2 6333D+02	< 2 T- 7 6208D+01
P = 2.1470D + 02	P = 2.1470D + 02
V= 0.0000D+00	V= 0.0000D+00
DUTY AND AREA:	
CALCULATED HEAT DUTY	BTU/HR 167094.0100
ACTUAL EXCHANGER AREA	CEA SQFT 18.1898 SOFT 18.1898
PER CENT OVER-DESIGN	0.0000
	,
AVERAGE COEFFICIENT (DIR	ГҮ) BTU/HR-SOFT-R 52.1600
UA (DIRTY) BTU/HI	R-R 948.7802
Ι Ος ΜΕΛΝ ΤΕΜΡΕΡΛΤΙΡΕ ΝΙ	EEEDENCE.
LMTD CORRECTION FACTOR	1.0000
LMTD (CORRECTED) F	176.1146
NUMBER OF SHELLS IN SERIE	S 1
PRESSURE DROP:	
HOTSIDE, TOTAL PSI	0.2500
COLDSIDE, TOTAL PS	I 0.0000
PRESSURE DROP PARAMETER:	
HOT SIDE:	0.54248E+06
COLD SIDE:	0.0000
BLOCK: E-101 MODEL: HEATX	
HOT SIDE:	
INLET STREAM: 11 OUTLET STREAM: 13	
PROPERTY OPTION SET: RK-S	OAVE STANDARD RKS EQUATION OF STATE

COLD SIDE:

INLET STREAM: 4 OUTLET STREAM: 6 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 85.4141 85.4141 0.00000 MASS(LB/HR) 923.915 923.915 0.00000 ENTHALPY(BTU/HR) -0.439796E+07 -0.439796E+07 0.211763E-15 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT TEMP CHANGE SPECIFIED VALUE F 800.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP PSI 0.1000 COLD SIDE PRESSURE DROP PSI 3.5000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 20.3000 *** OVERALL RESULTS *** STREAMS: HOT 11 ---->| |----> 13 T= 1.4720D+03 T = 6.7200D + 02P= 1.9200D+01 P= 1.9100D+01 V= 1.0000D+00 V = 1.0000D+00COLD |<---- 4 6 <-----| T = 2.4219D + 02T= 9.1886D+02 P= 2.0500D+01 P= 2.4000D+01 V= 1.0000D+00 V= 1.0000D+00 DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 250847.8640

CALCULATED (REQUIRED) AREASQFT25.2760ACTUAL EXCHANGER AREASQFT25.2760PER CENT OVER-DESIGN0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 20.3000 UA (DIRTY) BTU/HR-R 513.1019
LOG-MEAN TEMPERATURE DIFFERENCE:LMTD CORRECTION FACTOR1.0000LMTD (CORRECTED)F488.8851NUMBER OF SHELLS IN SERIES1
PRESSURE DROP: HOTSIDE, TOTAL PSI 0.1000 COLDSIDE, TOTAL PSI 3.5000
PRESSURE DROP PARAMETER:HOT SIDE:0.12286E+06COLD SIDE:0.14378E+07
BLOCK: E-102 MODEL: HEATX
HOT SIDE:
INLET STREAM: 23 OUTLET STREAM: 24 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE COLD SIDE: INLET STREAM: 6 OUTLET STREAM: 7 PROPERTY OPTION SET. DK SOAVE STANDARD RKS EQUATION OF STATE
PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
TOTAL BALANCE MOLE(LBMOL/HR) 61.9217 61.9217 0.00000 MASS(LB/HR) 1384.22 1384.22 0.00000 ENTHALPY(BTU/HR) -0.392537E+07 -0.392537E+07 -0.237257E-15
*** INPUT DATA ***
FLASH SPECS FOR HOT SIDE:TWO PHASE FLASHMAXIMUM NO. ITERATIONSCONVERGENCE TOLERANCE0.000100000
FLASH SPECS FOR COLD SIDE:TWO PHASE FLASHMAXIMUM NO. ITERATIONSCONVERGENCE TOLERANCE0.000100000
FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP

SPECIFIED VALUEF929.0000LMTD CORRECTION FACTOR1.00000
PRESSURE SPECIFICATION:HOT SIDE PRESSURE DROPPSI0.2000COLD SIDE PRESSURE DROPPSI0.3000
HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 4.8400
*** OVERALL RESULTS ***
STREAMS:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 85822.0672 CALCULATED (REQUIRED) AREA SQFT 189.6301 ACTUAL EXCHANGER AREA SQFT 189.6301 PER CENT OVER-DESIGN 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 4.8400 UA (DIRTY) BTU/HR-R 917.8099
LOG-MEAN TEMPERATURE DIFFERENCE:LMTD CORRECTION FACTOR1.0000LMTD (CORRECTED)F93.5075NUMBER OF SHELLS IN SERIES1
PRESSURE DROP:HOTSIDE, TOTALPSI0.2000COLDSIDE, TOTALPSI0.3000
PRESSURE DROP PARAMETER:HOT SIDE:0.12632E+06COLD SIDE:81072.
BLOCK: E-103 MODEL: HEATER
INLET STREAM: 7 OUTLET STREAM: 8 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE
*** MASS AND ENERGY BALANCE ***

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREF1,500.00PRESSURE DROPPSI1.00000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***OUTLET TEMPERATUREF1500.0OUTLET PRESSUREPSIA19.200HEAT DUTYBTU/HR0.15357E+06OUTLET VAPOR FRACTION1.0000PRESSURE-DROP CORRELATION PARAMETER0.21813E+06

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)
WATER	1.0000	1.0000	1.000	0 MISSING

BLOCK: E-104 MODEL: HEATER

INLET STREAM: 14 OUTLET STREAM: 15 OUTLET WATER STREAM: 16 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (RK-SOAVE).

*** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 42.7071 42.7071 -0.166376E-15 MASS(LB/HR) 154.535 154.535 -0.183917E-15 ENTHALPY(BTU/HR) -431000. -517234. 0.166722

*** INPUT DATA ***TWOPHASE TP FLASHFREE WATER CONSIDEREDSPECIFIED TEMPERATUREF100,000PRESSURE DROPPSI0.30000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS ***

OUTLET TEMPERATURE F	100.00
OUTLET PRESSURE PSIA	18.550
HEAT DUTY BTU/HR	-86234.
OUTLET VAPOR FRACTION	0.90053
OUTLET: 1ST LIQUID/TOTAL I	LIQUID 0.0000
PRESSURE-DROP CORRELATION	ON PARAMETER 0.10082E+07

V-L1-L2 PHASE EQUILIBRIUM :

 COMP
 F(I)
 X1(I)
 X2(I)
 Y(I)
 K1(I)
 K2(I)

 WATER
 0.100
 1.00
 1.00
 0.779E-03
 0.388E-01
 0.779E-03

 HYDROGEN
 0.900
 0.943E-05
 0.00
 0.999
 0.528E+07

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-1RATE OF CONSUMPTION2884.2003COST2.5975-02\$/HR

BLOCK: E-105 MODEL: HEATER

INLET STREAM:17OUTLET STREAM:18PROPERTY OPTION SET:RK-SOAVESTANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** OUT IN RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 38.4592 38.4592 0.00000 78.0085 0.00000 MASS(LB/HR) 78.0085 ENTHALPY(BTU/HR) 38073.8 3016.34 0.920776

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREF100.000PRESSURE DROPPSI0.30000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE F 100.00 OUTLET PRESSURE PSIA 31.700 HEAT DUTY BTU/HR -35057. OUTLET VAPOR FRACTION 1.0000 PRESSURE-DROP CORRELATION PARAMETER 0.32992E+07

V-L PHASE EQUILIBRIUM :

 COMP
 F(I)
 X(I)
 Y(I)
 K(I)

 WATER
 0.77916E-03
 0.99999
 0.77916E-03
 0.22720E-01

 HYDROGEN
 0.99922
 0.94337E-05
 0.99922
 0.30886E+07

 ASSOCIATED
 UTILITIES

 UTILITY ID FOR WATER
 U-1

 RATE OF CONSUMPTION
 1172.5371
 LB/HR

 COST
 1.0560-02
 \$/HR

BLOCK: E-106 MODEL: HEATER

INLET STREAM: 19 OUTLET STREAM: 20 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 38.4592
 38.4592
 0.00000

 MASS(LB/HR)
 78.0085
 78.0085
 0.00000

 ENTHALPY(BTU/HR)
 39158.3
 3048.22
 0.922157

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREF100.000PRESSURE DROPPSI0.30000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE F 100.00 OUTLET PRESSURE PSIA 55.210 HEAT DUTY BTU/HR -36110. OUTLET VAPOR FRACTION 1.0000 PRESSURE-DROP CORRELATION PARAMETER 0.57108E+07

V-L PHASE EQUILIBRIUM :

COMP	F(I) X	(I) Y(I) K(I)	
WATER	0.77916E-0	3 0.99999	0.77916E-03	0.13067E-01
HYDROGEN	0.99922	0.94445	E-05 0.99922	0.17743E+07

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATER U-1 RATE OF CONSUMPTION 1207.7456 LB/HR COST 1.0877-02 \$/HR

BLOCK: E-107 MODEL: HEATER

INLET STREAM:21OUTLET STREAM:22PROPERTY OPTION SET:RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 38.4592
 38.4592
 0.00000

 MASS(LB/HR)
 78.0085
 78.0085
 0.00000

 ENTHALPY(BTU/HR)
 41818.1
 3109.04
 0.925653

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREF100.000PRESSURE DROPPSI0.30000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE F 100.00 OUTLET PRESSURE PSIA 100.00 HEAT DUTY BTU/HR -38709. OUTLET VAPOR FRACTION 1.0000 PRESSURE-DROP CORRELATION PARAMETER 0.10235E+08

V-L PHASE EQUILIBRIUM :

 COMP
 F(I)
 X(I)
 Y(I)
 K(I)

 WATER
 0.77916E-03
 0.99999
 0.77916E-03
 0.72373E-02

 HYDROGEN
 0.99922
 0.94651E-05
 0.99922
 0.98060E+06

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATER U-1 RATE OF CONSUMPTION 1294.6700 LB/HR COST 1.1660-02 \$/HR

BLOCK: F-100 MODEL: FLASH2

INLET STREAM: 3 OUTLET VAPOR STREAM: 4 OUTLET LIQUID STREAM: 5 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 42.7071
 42.7071
 0.00000

 MASS(LB/HR)
 769.380
 769.380
 0.00000

 ENTHALPY(BTU/HR)
 -0.514016E+07
 -0.438490E+07
 -0.146934

*** INPUT DATA *** TWO PHASE PV FLASH SPECIFIED PRESSURE PSIA 24.0000 VAPOR FRACTION 1.00000 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 30 0.000100000

*** RESULTS ***	
OUTLET TEMPERATURE F	242.19
OUTLET PRESSURE PSIA	24.000
HEAT DUTY BTU/HR	0.75526E+06
VAPOR FRACTION	1.0000

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) WATER 1.0000 1.0000 1.0000 1.0000

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR STEAMU-2RATE OF CONSUMPTION828.5128 LB/HRCOST2.4855 \$/HR

BLOCK: FC-SPLIT MODEL: SEP

INLET STREAM: NOTREAL OUTLET STREAMS: 23 10 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE 67.2595 MOLE(LBMOL/HR) 67.2595 0.00000 788.695 MASS(LB/HR) 788.695 0.00000 ENTHALPY(BTU/HR) 193993. 193989. 0.218613E-04

*** INPUT DATA ***

FLASH SPECS FOR STREAM 23 TWO PHASE TP FLASH PRESSURE DROP PSI 0.0 MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR STREAM 10 TWO PHASE TP FLASH PRESSURE DROP PSI 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FRACTION OF FEED SUBSTREAM= MIXED STREAM = 23CPT= WATER FRACTION= 0.0 HYDROGEN 0.0 1.00000 OXYGEN

*** RESULTS *** HEAT DUTY BTU/HR -4.2409COMPONENT = WATERSTREAM SUBSTREAM SPLIT FRACTION 10 MIXED 1.00000 COMPONENT = HYDROGEN STREAM SUBSTREAM SPLIT FRACTION 10 MIXED 1.00000 COMPONENT = OXYGENSTREAM SUBSTREAM SPLIT FRACTION 23 MIXED 1.00000 BLOCK: M-100 MODEL: MIXER _____ INLET STREAMS: 12 8 OUTLET STREAM: 9 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 48.0449 48.0449 0.00000 MASS(LB/HR) 788.695 788.695 0.00000 ENTHALPY(BTU/HR) -0.389629E+07 -0.389629E+07 0.00000 *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: P-100 MODEL: PUMP _____ INLET STREAM: 1 OUTLET STREAM: 2 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE 42.7071 0.00000 MOLE(LBMOL/HR) 42.7071 MASS(LB/HR) 769.380 769.380 0.00000 ENTHALPY(BTU/HR) -0.530881E+07 -0.530726E+07 -0.292045E-03 *** INPUT DATA *** EQUIPMENT TYPE: PUMP OUTLET PRESSURE PSIA 214.696 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION

30

NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS TOLERANCE 0.000100000

*** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 12.3859 199.996 PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB 33.3642 FLUID POWER HP 0.18015 BRAKE POWER HP 0.60933 ELECTRICITY KW 0.45438 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.60933 HEAD DEVELOPED FT-LBF/LB 463.627

BLOCK: R-100 MODEL: RSTOIC

INLET STREAM: 9 OUTLET STREAM: NOTREAL PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 48.0449 67.2595 19.2146 0.211284E-15 MASS(LB/HR) 788.695 788.695 0.00000 ENTHALPY(BTU/HR) -0.389629E+07 193993. -1.04979

*** INPUT DATA *** STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : WATER -1.00 HYDROGEN 1.00 OXYGEN 0.500

REACTION EXTENT SPECS: NUMBER= 1 REACTION # 1: EXTENT= 38.43 LBMOL/HR

TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,472.00PRESSURE DROPPSI0.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

:	* RESULTS *	
OUTLET TEMPI	ERATURE F	1472.0
OUTLET PRESS	URE PSIA	19.200
HEAT DUTY	BTU/HR	0.40903E+07
VAPOR FRACTI	ON	1.0000

V-L PHASE EQUILIBRIUM :

COMP X(I) Y(I) K(I) F(I)WATER 0.71552E-01 0.71552E-01 0.71552E-01 MISSING 0.64277 0.64277 0.64277 MISSING HYDROGEN 0.28568 OXYGEN 0.28568 0.28568 MISSING BLOCK: S-100 MODEL: FSPLIT _____ INLET STREAM: 10 OUTLET STREAMS: 11 12 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 48.0449 48.0449 -0.147892E-15 MASS(LB/HR) 173.850 173.850 -0.163484E-15 ENTHALPY(BTU/HR) -14689.7 -14689.7 0.247655E-15 *** INPUT DATA *** FRACTION OF FLOW STRM=12 FRAC= 0.11110 *** RESULTS ***

 STREAM=11
 SPLIT=
 0.88890
 KEY=
 0
 STREAM-ORDER=
 2

 12
 0.11110
 0
 1

ASPEN Results for Hydrogen System - Fuel Cell

STREAM	ID	25	5 20	5 27	28	29
FROM	:		P-101	E-108		P-102
то	:	P-101	E-108	M-101	P-102	E-109
SUBSTREAM:	MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	LIQUID	LIQUID	
COMPONENTS:	LBMOL/HR					
WATER		C) () (4.6985	4.6985
HYDROGEN		42.2785	42.278	5 42.2785	5 0	0
NITROGEN		C) () () 0	0
OXYGEN		C) () () 0	0
COMPONENTS:	LB/HR					
WATER		C) () (84.6446	84.6446
HYDROGEN		85.2284	85.228	4 85.2284	ч о	0
NITROGEN		C) () () 0	0
OXYGEN		C) () () 0	0
TOTAL	FLOW:					
LBMOL/HR		42.2785	42.278	5 42.2785	4.6985	4.6985
LB/HR		85.2284	85.228	4 85.2284	84.6446	84.6446
CUFT/HR		2435.8733	81.4547+04	2.2140+04	1.3627	1.3627
STATE	VARIABLES:					
TEMP	F	75	5 75.403	5 350) 75	75.018
PRES	PSIA	100) 16.	7 16.6	5 14.6959	17.6959
VFRAC		1	1 :	1 1	L 0	0
LFRAC		C) (0 0) 1	1
SFRAC		C) () () 0	0
ENTHALPY:						
BTU/LBMOL		-10.4163	-10.4163	3 1898.2321	3.7569	3.7569
BTU/LB		-5.1671	-5.167	1 941.6394	-6900.1154	-6900.0852
BTU/HR		-440.3871	-440.387	18.0254+04	-0.8406	-0.8406
ENTROPY:						
BTU/LBMOL-R		-3.8357	-0.274	7 2.6147	-40.9705	-40.9699
BTU/LB-R		-1.9027	-0.1363	3 1.297	-2.2742	-2.2742
DENSITY:						
LBMOL/CUFT		1.7357-02	2.9063-03	1.9096-03	3.448	3.448
LB/CUFT		3.4989-02	5.8588-03	3.8495-03	62.1176	62.117
AVG	MW	2.0159	2.015	9 2.0159	9 18.0153	18.0153

Electrical Energy Storage Using Reversible Fuel Cells

STREAM	ID	30) 31	. 32	33	34
FROM	:	E-109	M-101	M-102	FCSPLIT	E-110
то	:	M-101	M-102	R-100	E-110	
SUBSTREAM:	MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	
COMPONENTS:	LBMOL/HR					
WATER		4.6985	4.6985	5.2858	47.5643	46.9784
HYDROGEN		C	42.2785	47.5643	5.2858	0
NITROGEN		C) C	0	0	0
OXYGEN		C) C	0	0	0
COMPONENTS:	LB/HR					
WATER		84.6446	84.6446	95.2252	856.884	846.3299
HYDROGEN		C	85.2284	95.8839	10.6555	0
NITROGEN		C) (0	0	0
OXYGEN		C) (0	0	0
TOTAL	FLOW:					
LBMOL/HR		4.6985	46.977	52.8501	52.8501	46.9784
LB/HR		84.6446	169.873	191.1091	867.5396	846.3299
CUFT/HR		2431.3504	2.4590+04	2.7894+04	6.5599+04	13.975
STATE	VARIABLES:					
TEMP	F	350	349.6808	356.3894	1472	180.5008
PRES	PSIA	16.6959	16.6	16.6	16.7	15.2
VFRAC		1	. 1	. 1	1	0
LFRAC		C	0 0	0	0	1
SFRAC		C	0 0	0	0	0
ENTHALPY:						
BTU/LBMOL		3.9823	-8469.9639	-8421.963	-4.1343	3.7898
BTU/LB		-5648.8833	-2342.2988	-2329.0439	-4955.3696	-6717.6923
BTU/HR		0.2185	1.0211	0.549	1.701	0.3146
ENTROPY:						
BTU/LBMOL-R		-7.5258	2.2461	2.3049	1.8251	-35.7959
BTU/LB-R		-0.4177	0.6211	0.6374	0.1112	-1.987
DENSITY:						
LBMOL/CUFT		1.9325-03	1.9104-03	1.8947-03	8.0565-04	3.3616
LB/CUFT		3.4814-02	6.9082-03	6.8513-03	1.3225-02	60.5602
AVG	MW	18.0153	3.6161	3.6161	16.4151	18.0153

240

STREAM	ID	35	36	37	38	39
FROM	:		C-104	E-111	MULTIPLY	C-103
то	:	C-104	E-111	M-102	C-103	E-112
	MIXED					
COMPONENTS:		VALON	VALOR			
WATER	EDWICE/TIK	0 5873	0 5873	0 5873	0	0
HYDROGEN		5,2858	5,2858	5.2858	0	0
NITROGEN		0	0	0	147.8309	147.8309
OXYGEN		0	0	0	39.2968	39.2968
COMPONENTS:	LB/HR					
WATER	·	10.5806	10.5806	10.5806	0	0
HYDROGEN		10.6555	10.6555	10.6555	0	0
NITROGEN		0	0	0	4141.2581	4141.2581
OXYGEN		0	0	0	1257.4512	1257.4512
TOTAL	FLOW:					
LBMOL/HR		5.8731	5.8731	5.8731	187.1277	187.1277
LB/HR		21.2361	21.2361	21.2361	5398.7093	5398.7093
CUFT/HR		2655.5828	2507.1521	3283.5819	7.3049+04	5.5975+04
STATE	VARIABLES:					
TEMP	F	180.5	204.3335	410	75	172.7647
PRES	PSIA	15.2	16.7	16.7	14.6959	22.6959
VFRAC		1	. 1	1	1	1
LFRAC		0	0	0	0	0
SFRAC		0	0	0	0	0
ENTHALPY:						
BTU/LBMOL		-9669.0716	-9500.6122	-8038.0209	-16.8436	665.4697
BTU/LB		-2674.102	-2627.5125	-2223.0147	-0.5838	23.0662
BTU/HR		-1.6788	-1.5798	-0.7208	-3151.9107	1.2453+05
ENTROPY:						
BTU/LBMOL-R		0.757	0.8284	2.7469	0.9895	1.2983
BTU/LB-R		0.2094	0.2291	0.7597	3.4297-02	4.5000-02
DENSITY:						
LBMOL/CUFT		2.2116-03	2.3425-03	1.7886-03	2.5617-03	3.3431-03
LB/CUFT		7.9968-03	8.4702-03	6.4674-03	7.3905-02	9.6449-02
AVG	MW	3.6158	3.6158	3.6158	28.8504	28.8504

STREAM	ID	40	4	1 42	2 43	44
FROM	:	E-112	NOTREAL	E-112	E-108	E-109
то	:	R-100	E-112	E-108	E-109	E-111
SUBSTREAM:	MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS:	LBMOL/HR					
WATER		0)	0 (0 0	0
HYDROGEN		0)	0 (0 0	0
NITROGEN		147.8309	147.830	9 147.8309	9 147.8309	147.8309
OXYGEN		39.2968	18.157	6 18.1576	5 18.1576	18.1576
COMPONENTS:	LB/HR					
WATER		0)	0 (0 0	0
HYDROGEN		0)	0 (0 C	0
NITROGEN		4141.2581	4141.258	1 4141.2583	1 4141.2581	4141.2581
OXYGEN		1257.4512	581.020	7 581.020	7 581.0207	581.0207
TOTAL	FLOW:					
LBMOL/HR		187.1277	165.988	5 165.988	5 165.9885	165.9885
LB/HR		5398.7093	4722.278	8 4722.2788	3 4722.2788	4722.2788
CUFT/HR		8.5834+04	1.6161+05	1.5400+05	1.5211+05	1.5677+05
STATE	VARIABLES:					
TEMP	F	450	147	2 1190.8829	9 1127.9424	1044.6739
PRES	PSIA	21.2959	21.	3 19.3	1 18.6	17.1
VFRAC		1		1 :	1 1	1
LFRAC		0)	0 (0 C	0
SFRAC		0)	0 (0 C	0
ENTHALPY:						
BTU/LBMOL		2625.2681	1.0329+04	8119.384	7 7633.2379	6995.1964
BTU/LB		90.9959	363.057	1 285.397	7 268.3089	245.8817
BTU/HR		4.9126+05	1.7145+06	1.3477+06	1.2670+06	1.1611+06
ENTROPY:						
BTU/LBMOL-R		3.9928	9.288	2 8.2692	2 8.0216	7.7758
BTU/LB-R		0.1384	0.326	5 0.290	7 0.282	0.2733
DENSITY:						
LBMOL/CUFT		2.1801-03	1.0271-03	1.0778-03	1.0912-03	1.0588-03
LB/CUFT		6.2897-02	2.9220-02	3.0664-02	3.1045-02	3.0121-02
AVG	MW	28.8504	28.449	4 28.4494	4 28.4494	28.4494

242
STREAM	ID	45	5 AIRBASIS	FAKERECY	FCFAKE	NOTREAL
FROM	:	E-111		E-110	R-100	FCSPLIT
то	:		MULTIPLY		FCSPLIT	NOTREAL
SUBSTREAM:	MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS:	LBMOL/HR					
WATER		() (0.5858	47.5643	0
HYDROGEN		() (5.2858	5.2858	0
NITROGEN		147.8309	9 79.5217	, O	147.8309	147.8309
OXYGEN		18.1576	5 21.1387	0	18.1576	18.1576
COMPONENTS:	LB/HR					
WATER		() (10.5541	856.884	0
HYDROGEN		() (10.6555	10.6555	0
NITROGEN		4141.2581	2227.6805	5 O	4141.2581	4141.2581
OXYGEN		581.0207	676.4127	, O	581.0207	581.0207
TOTAL	FLOW:					
LBMOL/HR		165.9885	5 100.6604	5.8716	218.8386	165.9885
LB/HR		4722.2788	3 2904.0932	21.2097	5589.8184	4722.2788
CUFT/HR		1.6077+05	3.9295+04	2654.9234	2.7173+05	2.0611+05
STATE	VARIABLES:					
TEMP	F	1037.8885	5 75	180.5008	1472	1472
PRES	PSIA	16.6	5 14.6959) 15.2	16.7	16.7
VFRAC		1	L 1	. 1	. 1	1
LFRAC		() () 0	0	0
SFRAC		() () 0	0	0
ENTHALPY:						
BTU/LBMOL		6943.446	-16.8436	-9645.6802	2.819	1.0328+04
BTU/LB		244.0627	-0.5838	-2670.2935	-462.3493	363.0441
BTU/HR		1.1525+06	-1695.4872	-1.6636	3.4156	1.7144+06
ENTROPY:						
BTU/LBMOL-R		7.8003	0.9895	0.7584	8.9503	9.7714
BTU/LB-R		0.2742	23.4297-02	0.21	0.3504	0.3435
DENSITY:						
LBMOL/CUFT		1.0325-03	2.5617-03	2.2116-03	8.0537-04	8.0534-04
LB/CUFT		2.9374-02	7.3905-02	7.9888-03	2.0572-02	2.2912-02
AVG	MW	28.4494	28.8504	3.6122	25.5431	28.4494

Block Results - Hydrogen Fuel Cell

BLOCK: C-103 MODEL: COMPR

INLET STREAM: 38 OUTLET STREAM: 39 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 187.128
 187.128
 0.00000

 MASS(LB/HR)
 5398.71
 5398.71
 0.00000

 ENTHALPY(BTU/HR)
 -3151.91
 124528.
 -1.02531

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR	
PRESSURE CHANGE PSI	8.00000
ISENTROPIC EFFICIENCY	0.72000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEP	OWER REQUIREN	MENT HP	50.1800
BRAKE HORSEPOW	VER REQUIREME	NT HP	50.1800
NET WORK REQUIRE	D HP	50.1800)
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEP	OWER REQUIREN	MENT HP	36.1296
CALCULATED OUTLE	ET PRES PSIA	22	.6959
CALCULATED OUTLE	ET TEMP F	172.2	765
ISENTROPIC TEMPER	ATURE F	145.4	82
EFFICIENCY (POLYTH	R/ISENTR) USED	0	.72000
OUTLET VAPOR FRAG	CTION	1.000	00
HEAD DEVELOPED,	FT-LBF/LB	13,250.	7
MECHANICAL EFFICI	ENCY USED	1.	00000
INLET HEAT CAPACIT	ΓY RATIO	1.40	103
INLET VOLUMETRIC	FLOW RATE, CU	FT/HR	73,049.4
OUTLET VOLUMETRI	C FLOW RATE, C	CUFT/HR	55,974.7
INLET COMPRESSIBI	LITY FACTOR	0.	99985
OUTLET COMPRESSI	BILITY FACTOR		1.00030
AV. ISENT. VOL. EXP	ONENT	1.3999	8
AV. ISENT. TEMP EXP	PONENT	1.3984	14
AV. ACTUAL VOL. EX	PONENT	1.63	244
AV. ACTUAL TEMP E	XPONENT	1.62	2968

BLOCK: C-104 MODEL: COMPR

INLET STREAM:35OUTLET STREAM:36PROPERTY OPTION SET:RK-SOAVE STANDARD RKS EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR)5.873115.873110.00000MASS(LB/HR)21.236121.23610.00000ENTHALPY(BTU/HR)-56787.6-55798.2-0.174225E-01

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR	
PRESSURE CHANGE PSI	1.50000
ISENTROPIC EFFICIENCY	0.72000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPOWER R	EQUIREMEN	IT HP	0.38884
BRAKE HORSEPOWER REQ	UIREMENT	HP	0.38884
NET WORK REQUIRED	HP	0.38884	
POWER LOSSES H	Р	0.0	
ISENTROPIC HORSEPOWER R	EQUIREMEN	NT HP	0.27997
CALCULATED OUTLET PRES	PSIA	16.7	7000
CALCULATED OUTLET TEMP	F	204.3	33
ISENTROPIC TEMPERATURE	F	197.66	5
EFFICIENCY (POLYTR/ISENTE	R) USED	0.	72000
OUTLET VAPOR FRACTION		1.0000	0
HEAD DEVELOPED, FT-LB	F/LB	26,103.3	
MECHANICAL EFFICIENCY US	SED	1.0	0000
INLET HEAT CAPACITY RATION	0	1.392	29
INLET VOLUMETRIC FLOW R.	ATE, CUFT/	HR	2,655.58
OUTLET VOLUMETRIC FLOW	RATE, CUF	Γ/HR	2,507.15
INLET COMPRESSIBILITY FA	CTOR	1.0	0042
OUTLET COMPRESSIBILITY F	ACTOR	1	.00046
AV. ISENT. VOL. EXPONENT		1.39198	
AV. ISENT. TEMP EXPONENT		1.3911	0
AV. ACTUAL VOL. EXPONENT	Г	1.636	28
AV. ACTUAL TEMP EXPONEN	Т	1.63	505
BLOCK: E-108 MODEL: HEAT	X		
HOT SIDE:			

_____ 42 INLET STREAM: OUTLET STREAM: 43 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE COLD SIDE: -----INLET STREAM: 26 OUTLET STREAM: 27 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE

 MOLE(LBMOL/HR)
 208.267
 208.267
 0.00000

 MASS(LB/HR)
 4807.51
 4807.51
 0.00000

 ENTHALPY(BTU/HR)
 0.134728E+07
 0.134728E+07
 0.00000

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	30 0.000100000
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	30 0.000100000
FLOW DIRECTION AND SPECIFICAT COUNTERCURRENT HEAT EXCH. SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE F LMTD CORRECTION FACTOR	ΓΙΟΝ: ANGER 350.0000 1.00000
PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP PS COLD SIDE PRESSURE DROP P	SI 0.5000 SI 0.1000
HEAT TRANSFER COEFFICIENT SPE OVERALL COEFFICIENT BT	BCIFICATION: J/HR-SQFT-R 9.0300
*** OVERALL RESULTS	***
STREAMS: 42> HOT	> 43
P= 1.9100D+01 V= 1.0000D+00	$ P = 1.8600D+01 \\ V = 1.0000D+00$
27 < COLD T= 3.5000D+02 P= 1.6600D+01 V= 1.0000D+00	< 26 T= 7.5403D+01 P= 1.6700D+01 V= 1.0000D+00
DUTY AND AREA: CALCULATED HEAT DUTY B CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	TU/HR 80694.7709 SQFT 9.4789 SQFT 9.4789 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY) BTU/HR-R	BTU/HR-SQFT-R 9.0300 85.5947
LOG-MEAN TEMPERATURE DIFFER LMTD CORRECTION FACTOR LMTD (CORRECTED) F NUMBER OF SHELLS IN SERIES	ENCE: 1.0000 942.7543 1
PRESSURE DROP:	

HOTSIDE, TOTAL COLDSIDE, TOTAL	PSI PSI	0.500 0.10	0 00
PRESSURE DROP PARAM	ETER:		
HOT SIDE:		4812.6	
COLD SIDE:		0.44499E+06	5
BLOCK: E-109 MODEL: H	IEATX		
HOT SIDE:			
INLET STREAM: 43 OUTLET STREAM: 44 PROPERTY OPTION SET: COLD SIDE:	RK-SOAV	/E STANDAF	RD RKS EQUATION OF STATE
INLET STREAM: 29 OUTLET STREAM: 30 PROPERTY OPTION SET:) RK-SOAV	/E STANDAF	RD RKS EQUATION OF STATE
*** MASS ANI) ENERGY	BALANCE *	***
IN	OUT	RELATIVE	DIFF.
TOTAL BALANCE			0.00000
MOLE(LBMOL/HR)	170.687	170.687	0.00000
$\frac{MASS(LB/HK)}{FNTHALPV(BTU/HP)}$	682074	4800.92	0.00000 0.511360E 15
ENTIALF I (BIO/IIK)	082974	. 082974.	-0.511500E-15
*** INPUT D	ATA ***		
FLASH SPECS FOR HOT S	SIDE:		
TWO PHASE FLASH			
MAXIMUM NO. ITERATIO	ONS		30
CONVERGENCE TOLERA	NCE		0.000100000
FLASH SPECS FOR COLD	SIDE:		
MAXIMUM NO ITERATI	ONS		30
CONVERGENCE TOLERA	NCE		0.000100000
FLOW DIRECTION AND S	PECIFICA	TION:	
COUNTERCURRENT H	EAT EXCH	ANGER	
SPECIFIED COLD OUTLI	E E E E E	350.000	20
LMTD CORRECTION FA	CTOR	550.000	1 00000
	eron		1.00000
PRESSURE SPECIFICATIO	DN:		
HOT SIDE PRESSURE D	ROP PS	SI	1.5000
COLD SIDE PRESSURE I	DROP F	PSI	1.0000
HEAT TRANSFER COEFF OVERALL COEFFICIENT	ICIENT SPI	ECIFICATION U/HR-SQFT-R	N: 20.6200
*** OVERAL	L RESULTS	5 ***	
STREAMS:		_	

43 ---->| HOT |----> 44 T= 1.1279D+03 | T= 1.0447D+03 P= 1.8600D+01 | P= 1.7100D+01 V = 1.0000D + 00V = 1.0000D + 0030 <-----| COLD |<---- 29 T= 3.5000D+02 | T= 7.5018D+01 P= 1.6696D+01 | P= 1.7696D+01 V= 1.0000D+00 | V = 0.0000D + 00DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 105907.5437 CALCULATED (REQUIRED) AREA SQFT 5.9017 ACTUAL EXCHANGER AREA SQFT 5.9017 PER CENT OVER-DESIGN 0.0000 HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 20.6200 UA (DIRTY) BTU/HR-R 121.6933 LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) 870.2826 F NUMBER OF SHELLS IN SERIES 1 PRESSURE DROP: HOTSIDE, TOTAL PSI 1.5000 COLDSIDE, TOTAL PSI 1.0000 PRESSURE DROP PARAMETER: HOT SIDE: 14308. COLD SIDE: 0.67570E+08 BLOCK: E-110 MODEL: HEATER -----INLET STREAM: 33 **OUTLET STREAM:** FAKERECY **OUTLET WATER STREAM: 34** PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (RK-SOAVE). *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 52.8501 52.8501 0.00000 MASS(LB/HR) 867.540 867.540 0.00000 ENTHALPY(BTU/HR) -0.429898E+07 -0.574202E+07 0.251312 *** INPUT DATA *** TWO PHASE PV FLASH FREE WATER CONSIDERED PSI PRESSURE DROP 1.50000 VAPOR FRACTION 0.11110

MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 30 0.000100000

*** RESULTS ***OUTLET TEMPERATUREF180.50OUTLET PRESSUREPSIA15.200HEAT DUTYBTU/HR-0.14430E+07OUTLET VAPOR FRACTION0.11110OUTLET:1ST LIQUID/TOTAL LIQUID0.0000PRESSURE-DROP CORRELATION PARAMETER0.35239E+06

V-L1-L2 PHASE EQUILIBRIUM :

 COMP
 F(I)
 X1(I)
 X2(I)
 Y(I)
 K1(I)
 K2(I)

 WATER
 0.900
 1.00
 1.00
 0.998E-01
 0.431
 0.998E-01

 HYDROGEN
 0.100
 0.252E-05
 0.00
 0.900
 0.154E+07

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-1RATE OF CONSUMPTION4.8264+04COST0.4346\$/HR

BLOCK: E-111 MODEL: HEATX

HOT SIDE:

INLET STREAM: 44 OUTLET STREAM: 45 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE COLD SIDE:

INLET STREAM:36OUTLET STREAM:37PROPERTY OPTION SET:RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 171.862
 171.862
 0.00000

 MASS(LB/HR)
 4743.51
 4743.51
 0.00000

 ENTHALPY(BTU/HR)
 0.110532E+07
 0.110532E+07
 0.210645E-15

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH

MAXIMUM NO. ITERATIONS	30
CONVERGENCE TOLERANCE	0.000100000
FLOW DIRECTION AND SPECIFIC COUNTERCURRENT HEAT EX SPECIFIED COLD OUTLET TEM SPECIFIED VALUE F	CATION: ICHANGER IP 410.0000
LMTD CORRECTION FACTOR	1.00000
PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP COLD SIDE PRESSURE DROP	PSI 0.5000 PSI 0.0000
HEAT TRANSFER COEFFICIENT OVERALL COEFFICIENT	SPECIFICATION: BTU/HR-SQFT-R 7.0800
*** OVERALL RESU	LTS ***
STREAMS:	
 44> HOT T= 1.0447D+03 P= 1.7100D+01 V= 1.0000D+00	> 45 T= 1.0379D+03 P= 1.6600D+01 V= 1.0000D+00
37 < COLD T= 4.1000D+02 P= 1.6700D+01 V= 1.0000D+00	< 36 T= 2.0433D+02 P= 1.6700D+01 V= 1.0000D+00
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AR ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	BTU/HR 8589.9667 EA SQFT 1.6629 SQFT 1.6629 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRT UA (DIRTY) BTU/HR	: 'Y) BTU/HR-SQFT-R 7.0800 -R 11.7735
LOG-MEAN TEMPERATURE DIF LMTD CORRECTION FACTOR LMTD (CORRECTED) F NUMBER OF SHELLS IN SERIES	FERENCE: 1.0000 729.6023 S 1
PRESSURE DROP: HOTSIDE, TOTAL PSI COLDSIDE, TOTAL PSI	0.5000 0.0000
PRESSURE DROP PARAMETER: HOT SIDE: COLD SIDE:	4639.4 0.0000
BLOCK: E-112 MODEL: HEATX	

-----HOT SIDE: _____ INLET STREAM: 41 OUTLET STREAM: 42 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 39 **OUTLET STREAM:** 40 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 353.116 353.116 0.00000 MASS(LB/HR) 10121.0 10121.0 0.00000 ENTHALPY(BTU/HR) 0.183898E+07 0.183898E+07 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE F 450.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP PSI 2.2000 COLD SIDE PRESSURE DROP PSI 1.4000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 14.4300 *** OVERALL RESULTS *** STREAMS: --------->| |----> 42 41 HOT T= 1.4720D+03 | | T= 1.1909D+03 P= 2.1300D+01 | P= 1.9100D+01 | V= 1.0000D+00 V= 1.0000D+00 | COLD 40 |<---- 39 <-----| T= 4.5000D+02 | | T= 1.7276D+02

P= 2.1296D+01 V= 1.0000D+00	P= 2.2696D+01 V= 1.0000D+00
· · · · · · · · · · · · · · · · · · ·	-
DUTY AND AREA: CALCULATED HEAT DUTY E CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	BTU/HR 366732.6066 SQFT 24.9149 SQFT 24.9149 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY) BTU/HR-R	BTU/HR-SQFT-R 14.4300 359.5214
LOG-MEAN TEMPERATURE DIFFER LMTD CORRECTION FACTOR LMTD (CORRECTED) F NUMBER OF SHELLS IN SERIES	RENCE: 1.0000 1020.0579 1
PRESSURE DROP: HOTSIDE, TOTAL PSI COLDSIDE, TOTAL PSI	2.2000 1.4000
PRESSURE DROP PARAMETER: HOT SIDE: COLD SIDE:	20538. 25444.
INLET STREAM: FCFAKE OUTLET STREAMS: 33 NOT PROPERTY OPTION SET: RK-SOAV	FREAL /E STANDARD RKS EQUATION OF STATE
*** MASS AND ENERGY IN OUT TOTAL BALANCE MOLE(LBMOL/HR) 218.839 MASS(LB/HR) 5589.82 ENTHALPY(BTU/HR) -0.25844	BALANCE *** RELATIVE DIFF. 218.839 0.00000 5589.82 -0.162706E-15 5E+07 -0.258458E+07 0.523891E-04
*** INPUT DATA ***	
FLASH SPECS FOR STREAM 33 TWO PHASE TP FLASH PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE FLASH SPECS FOR STREAM NOTRE	0.0 30 0.000100000 EAL
TWO PHASE TP FLASH PRESSURE DROP PSI MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	0.0 30 0.000100000

FRACTION OF FEED

SUBSTREAM= MIXED STREAM= 33 CPT= WATER FRACTION= 1.00000 HYDROGEN 1.00000 NITROGEN 0.0 0.0 OXYGEN *** RESULTS *** HEAT DUTY -135.40 BTU/HR COMPONENT = WATERSTREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000 COMPONENT = HYDROGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000 COMPONENT = NITROGEN STREAM SUBSTREAM SPLIT FRACTION NOTREAL MIXED 1.00000 COMPONENT = OXYGEN STREAM SUBSTREAM SPLIT FRACTION NOTREAL MIXED 1.00000 BLOCK: M-101 MODEL: MIXER _____ INLET STREAMS: 30 27 OUTLET STREAM: 31 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE 46.9770 46.9770 MOLE(LBMOL/HR) 0.00000 169.873 169.873 -0.167312E-15 MASS(LB/HR) ENTHALPY(BTU/HR) -397893. -397893. 0.146290E-15 *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: M-102 MODEL: MIXER _____ INLET STREAMS: 31 37 OUTLET STREAM: 32 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 52.8501 52.8501 0.00000

MASS(LB/HR) 191.109 191.109 0.148720E-15 ENTHALPY(BTU/HR) -445102. -445102. -0.261548E-15

*** INPUT DATA ***TWOPHASEFLASHMAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000OUTLET PRESSURE:MINIMUM OF INLET STREAM PRESSURES

BLOCK: MULTIPLY MODEL: MULT

INLET STREAM: AIRBASIS OUTLET STREAM: 38

*** INPUT DATA *** MULTIPLICATION FACTOR: 1.8590

BLOCK: NOTREAL MODEL: MCOMPR

INLET STREAMS: NOTREAL TO STAGE 1 OUTLET STREAMS: 41 FROM STAGE 1

PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 165.988
 165.988
 0.00000

 MASS(LB/HR)
 4722.28
 4722.28
 0.00000

 ENTHALPY(BTU/HR)
 0.171440E+07
 0.171446E+07
 -0.358408E-04

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR NUMBER OF STAGES 1 FINAL PRESSURE, PSIA 21.3000

COMPRESSOR SPECIFICATIONS PER STAGE

STAGE	MECHANICAL	ISENTROPIC
NUMBER	EFFICIENCY	EFFICIENCY

1 1.000 0.7200

COOLER SPECIFICATIONS PER STAGE

STAGE PRESSURE DROP TEMPERATURE NUMBER PSI F

1 0.000 1472.

*** RESULTS ***

FINAL PRESSURE, PSIA	21.3000
TOTAL WORK REQUIRED, HP	87.2031
TOTAL COOLING DUTY , BTU/HR	-221,821.

*** PROFILE ***

COMPRESSOR PROFILE

STAGE OUTLET PRESSURE OUTLET NUMBER PRESSURE RATIO TEMPERATURE PSIA F

1 21.30 1.275 1639.

STAGE INDICATED BRAKE NUMBER HORSEPOWER HORSEPOWER HP HP 1 87.20 87.20

STAGE HEAD VOLUMETRIC NUMBER DEVELOPED FLOW FT-LBF/LB CUFT/HR 1 0.2633E+05 0.2061E+06

COOLER PROFILE

STAGE OUTLET OUTLET COOLING VAPOR NUMBER TEMPERATURE PRESSURE LOAD FRACTION F PSIA BTU/HR

1 1472. 21.30 -.2218E+06 1.000

BLOCK: P-101 MODEL: VALVE

INLET STREAM: 25 OUTLET STREAM: 26 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 42.2785
 42.2785
 0.00000

 MASS(LB/HR)
 85.2284
 85.2284
 0.00000

 ENTHALPY(BTU/HR)
 -440.387
 -440.387
 0.00000

*** INPUT DATA ***

VALVE OUTLET PRESSURE	PSIA	16.7000
VALVE FLOW COEF CALC.		NO

FLASH SPECIFICATIONS: NPHASE 2 MAX NUMBER OF ITERATIONS CONVERGENCE TOLERANCE

30 0.000100000

*** RESULTS ***

VALVE PRESSURE DROP PSI 83.3000

BLOCK: P-102 MODEL: PUMP _____ INLET STREAM: 28 OUTLET STREAM: 29 PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE 4.69849 4.69849 0.00000 MOLE(LBMOL/HR) MASS(LB/HR) 84.6446 84.6446 0.00000 ENTHALPY(BTU/HR) -584058. -584055. -0.438076E-05 *** INPUT DATA *** PRESSURE CHANGE PSI 3.00000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 0.000100000 TOLERANCE *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 1.36265 PRESSURE CHANGE PSI 3.00000 NPSH AVAILABLE FT-LBF/LB 33.3548 FLUID POWER HP 0.00029731 0.0010056 BRAKE POWER HP ELECTRICITY KW 0.00074986 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.0010056 HEAD DEVELOPED FT-LBF/LB 6.95455 BLOCK: R-100 MODEL: RSTOIC _____ INLET STREAMS: 32 40 OUTLET STREAM: FCFAKE PROPERTY OPTION SET: RK-SOAVE STANDARD RKS EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 239.978 -21.1392 -0.118435E-15 218.839 5589.82 5589.82 MASS(LB/HR) 0.00000 ENTHALPY(BTU/HR) 46158.9 -0.258445E+07 1.01786 *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : WATER 1.00 HYDROGEN -1.00 OXYGEN -0.500

REACTION EXTENT SPECS: NUMBER= 1

REACTION # 1: EXTENT= 42.28 LBMOL/HR

TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,472.00SPECIFIED PRESSUREPSIA16.7000MAXIMUM NO. ITERATIONSMAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS ***OUTLET TEMPERATUREF1472.0OUTLET PRESSUREPSIA16.700HEAT DUTYBTU/HR-0.26306E+07VAPOR FRACTION1.0000

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)		
WATER	0.21735	0.2173	5 0.217	'35	MISSING	ŕ
HYDROGEN	0.2415	4E-01 0	.24154E-01	0.241	54E-01	MISSING
NITROGEN	0.67552	0.675	552 0.6	7552	MISSIN	IG
OXYGEN	0.829721	E-01 0.82	2972E-01	0.82972	E-01 M	IISSING

Methane System

Electrolysis

1 10 11 12 13

STREAM ID	1	10	11	12	13	
FROM :		SPLIT	E-101	R101	E-104	
TO :	E-100	E-101	R101	E-104		
SUBSTREAM:	MIXED					
PHASE:	VAPC	OR VA	POR	VAPOR	VAPOR	LIQUID
COMPONENT	S: LBMOI	L/HR				
HYDROGEN	3	.5274 3	2.1831	32.1831	7.1525-02	0.0
CARBO-01	8.8	185 0.8	8818 0.	8818 0	.4599 0.	0
CARBO-02	2.20	046 10.	1413 10	0.1413 1.	3373-05	0.0
WATER	0.0	0.886	3 0.886	53 11.87	714 11.79	901
METHANE	0.0	0.0	0.0	10.563	0.0	
OXYGEN	0.0	0.0	0.0	0.0	0.0	
NITROGEN	0.0	0.0	0.0	0.0	0.0	
COMPONENT	S: LB/HR					
HYDROGEN	7	.1108 6	4.8772	64.8772	0.1442	0.0
CARBO-01	388.	1000 38	3.8100	38.8100	20.2400	0.0
CARBO-02	61.7	524 284	.0609 2	84.0609	3.7457-04	0.0
WATER	0.0	15.966	52 15.96	562 213.	8668 212	.4028
METHANE	0.0	0.0	0.0	169.46	29 0.0	
OXYGEN	0.0	0.0	0.0	0.0	0.0	
NITROGEN	0.0	0.0	0.0	0.0	0.0	
TOTAL FLOW	:					
LBMOL/HR	14.	5505 44	4.0925	44.0925	22.9660	11.7901
LB/HR	456.963	32 403.7	143 403	8.7143 4	03.7143 2	212.4028
CUFT/HR	587.2	702 565	1.8064 2	656.3688	1435.388	1 3.4245
STATE VARIA	BLES:					
TEMP F	77.000	00 1292.0	0000 20	0.0000 4	00.000	100.0000
PRES PSIA	140.0	000 146	5.9595 1	45.0000	143.5000	143.5000
VFRAC	1.000	0 1.00	00 1.00	000 1.0	0.0 000	
LFRAC	0.0	0.0	0.0	0.0 1	.0000	
SFRAC	0.0	0.0	0.0	0.0 0	0.0	
ENTHALPY:						
BTU/LBMOL	-1.0	981+05 -	7617.825	8 -1.5541	+04 -6.922	24+04 -1.2246+05
BTU/LB	-3496.5	942 -831	.9959 -10	597.3923	-3937.945	8 -6797.7066
BTU/HR	-1.5978	+06 -3.3	589+05 -0	5.8526+0	5 -1.5898+	06 -1.4439+06
ENTROPY:						

BTU/LBMOL-R 0.9153 10.0614 3.1356 -13.3226 -38.2146 BTU/LB-R 2.9144-02 1.0989 0.3425 -0.7579 -2.1212 **DENSITY**: LBMOL/CUFT 2.4777-02 7.8015-03 1.6599-02 1.6000-02 3.4428 LB/CUFT 0.7781 7.1431-02 0.1520 0.2813 62.0239 AVG MW 31.4053 9.1561 9.1561 17.5787 18.0153 14 15 16 2 3 -----STREAM ID 14 15 16 2 3 FROM : E-104 SPLIT E-100 E-100 ----TO : ---- E-100 M-100 P-100 ----SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR LIQUID COMPONENTS: LBMOL/HR 7.1525-02 0.0 0.0 3.5274 0.0 HYDROGEN 8.8185 0.0 CARBO-01 0.4599 0.0 0.0 1.3373-05 0.0 CARBO-02 2.2046 0.0 0.0 WATER 8.1265-02 0.0 0.0 29.5419 0.0 METHANE 10.5632 0.0 0.0 0.0 0.0 18.2962 18.2962 0.0 OXYGEN 0.0 0.0 NITROGEN 0.0 0.0 0.0 0.0 0.0 COMPONENTS: LB/HR HYDROGEN 0.1442 0.0 0.0 7.1108 0.0 CARBO-01 20.2400 0.0 0.0 388.1000 0.0 CARBO-02 3.7457-04 0.0 0.0 61.7524 0.0 WATER 0.0 1.4640 0.0 0.0 532.2064 METHANE 169.4629 0.0 0.0 0.0 0.0 OXYGEN 0.0 585.4553 585.4553 0.0 0.0 NITROGEN 0.0 0.0 0.0 0.0 0.0 TOTAL FLOW: 11.1759 18.2962 18.2962 14.5505 29.5419 LBMOL/HR LB/HR 191.3115 585.4553 585.4553 456.9632 532.2064 CUFT/HR 970.5203 2346.5351 2022.3383 1026.1486 8.5457 STATE VARIABLES: TEMP F 100.0000 1292.0000 978.2161 440.3300 76.7300 143.5000 146.9595 140.0000 137.0000 140.0000 PRES PSIA VFRAC 1.0000 1.0000 1.0000 1.0000 0.0 LFRAC 0.0 0.0 0.0 0.0 1.0000

SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
BTU/LBMOL	-3.786	9+04 93	362.8943	6792.	5139 -1.0658+05 -1.2288+05
BTU/LB	-2212.229	1 292.0	5014 2	12.2740	-3393.6798 -6820.8941
BTU/HR	-4.2322+0	5 1.713	31+05 1	.2428+0	05 -1.5508+06 -3.6301+06
ENTROPY:					
BTU/LBMOL-	R -21.9	9259	4.3752	2.855	6 5.5365 -38.9766
BTU/LB-R	-1.2808	0.13	67 8.92	41-02	0.1763 -2.1635
DENSITY:					
LBMOL/CUFT	1.151	5-02 7	.7971-03	9.047	0-03 1.4180-02 3.4569
LB/CUFT	0.1971	0.249	95 0.2	895 ().4453 62.2777
AVG MW	17.118	2 31.9	988 3	1.9988	31.4053 18.0153
45678					
STREAM ID	4	5	6	7	8
FROM :	P-100	E-101	E-102	2 M-	100 E-103
TO :	E-101 E	-102	M-100	E-10	3 C-100
MAX CONV. EI	RROR:	0.0	0.0	0.0	8.3275-08 0.0
SUBSTREAM: I	MIXED				
PHASE:	LIQUID	MIX	ED V	APOR	VAPOR VAPOR
COMPONENTS	: LBMOL/H	IR			
HYDROGEN	0.0	0.0	0.0	3.5	274 3.5274
CARBO-01	0.0	0.0	0.0	8.818	85 8.8185
CARBO-02	0.0	0.0	0.0	2.204	6 2.2046
WATER	29.5419	29.54	419 29	.5419	29.5419 29.5419
METHANE	0.0	0.0	0.0	0.0	0.0
OXYGEN	0.0	0.0	0.0	0.0	0.0
NITROGEN	0.0	0.0	0.0	0.0	0.0
COMPONENTS	: LB/HR				
HYDROGEN	0.0	0.0	0.0	7.1	108 7.1108
CARBO-01	0.0	0.0	0.0	388.10	000 388.1000
CARBO-02	0.0	0.0	0.0	61.752	24 61.7524
WATER	532.2064	4 532.2	2064 53	32.2064	532.2064 532.2064
METHANE	0.0	0.0	0.0	0.0	0.0
OXYGEN	0.0	0.0	0.0	0.0	0.0
NITROGEN	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					

LBMOL/HR	29.5419 29.5419 29.5419 44.0925 44.0925
LB/HR	532.2064 532.2064 532.2064 989.1696 989.1696
CUFT/HR	8.5456 767.5455 1749.5683 2779.8194 7048.7253
STATE VARIAB	LES:
TEMP F	76.7593 351.5895 351.5907 377.9480 1805.0000
PRES PSIA	144.0000 137.0000 137.0000 137.0000 137.0000
VFRAC	0.0 0.4356 1.0000 1.0000 1.0000
LFRAC	1.0000 0.5644 0.0 0.0 0.0
SFRAC	0.0 0.0 0.0 0.0 0.0
ENTHALPY:	
BTU/LBMOL	-1.2288+05 -1.1105+05 -1.0222+05 -1.0366+05 -8.9480+04
BTU/LB	-6820.8539 -6164.3925 -5673.8540 -4620.4904 -3988.5757
BTU/HR	-3.6301+06 -3.2807+06 -3.0197+06 -4.5704+06 -3.9454+06
ENTROPY:	
BTU/LBMOL-R	-38.9757 -23.0435 -12.1471 -5.0404 4.7294
BTU/LB-R	-2.1635 -1.2791 -0.6743 -0.2247 0.2108
DENSITY:	
LBMOL/CUFT	3.4570 3.8489-02 1.6885-02 1.5862-02 6.2554-03
LB/CUFT	62.2783 0.6934 0.3042 0.3558 0.1403
AVG MW	18.0153 18.0153 18.0153 22.4340 22.4340

9 FAKE

STREAM ID	9	FAKE
FROM :	C-100	R-100
TO :	R-100	SPLIT

SUBSTREAM: MIXED

PHASE:	VAPOR	VAPOR			
COMPONENTS:	COMPONENTS: LBMOL/HR				
HYDROGEN	3.5274	4 32.1831			
CARBO-01	8.8185	0.8818			
CARBO-02	2.2046	10.1413			
WATER	29.5419	0.8863			
METHANE	0.0	0.0			
OXYGEN	0.0 1	8.2962			
NITROGEN	0.0	0.0			
COMPONENTS: LB/HR					
HYDROGEN	7.1108	64.8772			
CARBO-01	388.1000	38.8100			

30

30

0.000100000

0.000100000

CARBO-02	61.7524 284.0609			
WATER	532.2064 15.9662			
METHANE	0.0 0.0			
OXYGEN	0.0 585.4553			
NITROGEN	0.0 0.0			
TOTAL FLOW:				
LBMOL/HR	44.0925 62.3886			
LB/HR	989.1696 989.1696			
CUFT/HR	6614.1663 7998.4604			
STATE VARIAB	LES:			
TEMP F	1845.7350 1292.0000			
PRES PSIA	146.9595 146.9595			
VFRAC	1.0000 1.0000			
LFRAC	0.0 0.0			
SFRAC	0.0 0.0			
ENTHALPY:				
BTU/LBMOL	-8.9038+04 -2637.7030			
BTU/LB	-3968.9016 -166.3644			
BTU/HR	-3.9259+06 -1.6456+05			
ENTROPY:				
BTU/LBMOL-R	4.7831 9.5956			
BTU/LB-R	0.2132 0.6052			
DENSITY:				
LBMOL/CUFT	6.6664-03 7.8001-03			
LB/CUFT	0.1496 0.1237			
AVG MW	22.4340 15.8550			
**	** INPUT DATA ***			
FLASH SPECS	FOR HOT SIDE:			
TWO PHASE	FLASH			
MAXIMUM NO. ITERATIONS				
CONVERGENC	E TOLERANCE			
FLASH SPECS	FOR COLD SIDE:			
TWO PHASE FLASH				
MAXIMUM NO. ITERATIONS				
CONVERGENC	CE TOLERANCE			

FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER

SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE F 18.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 143.0000 COLD SIDE OUTLET PRESSURE PSIA 143.2000 HEAT TRANSFER COEFFICIENT SPECIFICATION:

OVERALL COEFFICIENT	BTU/HR-SQFT-R	40.4100

*** OVERALL RESULTS ***

STREAMS:

I		
28>	HOT	> 29
T= 1.5620D+03		T= 9.2178D+02
P= 1.4696D+02		P= 1.4300D+02
V= 1.0000D+00		V= 1.0000D+00
I		
21 <	COLD	< 20
T= 9.0378D+02		T= 7.7007D+01
P= 1.4320D+02		P= 1.4796D+02
V= 1.0000D+00		V= 0.0000D+00

DUTY AND AREA:

CALCULATED HEAT DUTYBTU/HR284986.1148CALCULATED (REQUIRED) AREASQFT9.4331ACTUAL EXCHANGER AREASQFT9.4331PER CENT OVER-DESIGN0.0000

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 40.4100 UA (DIRTY) BTU/HR-R 381.1911 LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) F 747.6200 NUMBER OF SHELLS IN SERIES 1 PRESSURE DROP: HOTSIDE, TOTAL PSI 3.9595 COLDSIDE, TOTAL PSI 4.7595 PRESSURE DROP PARAMETER: HOT SIDE: 0.51164E+07 COLD SIDE: 0.29778E+09 BLOCK: E-107 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 33 OUTLET STREAM: 34 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 22 OUTLET STREAM: 23 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 157.311 157.311 0.00000 MASS(LB/HR) 4221.74 4221.74 0.00000 ENTHALPY(BTU/HR) 102724. 102724. 0.198325E-14 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH

30

MAXIMUM NO. ITERATIONS

CONVERGENCE TOLERANCE		0.000100000
TWO PHASE FLASH		
MAXIMUM NO ITERATIONS	3	0
CONVERGENCE TOLERANCE		
		0.000100000
FLOW DIRECTION AND SPECIFIC.	ATION:	
COUNTERCURRENT HEAT EXC	HANGER	
SPECIFIED COLD OUTLET TEMP		
SPECIFIED VALUE F	1472.000	0
LMTD CORRECTION FACTOR		1.00000
PRESSURE SPECIFICATION:		
HOT SIDE OUTLET PRESSURE	PSIA	143.5000
COLD SIDE OUTLET PRESSURE	PSIA	139.9000
HEAT TRANSFER COEFFICIENT S	PECIFICATION:	
OVERALL COEFFICIENT B	TU/HR-SQFT-R	21.2900
*** OVERALL RESULT	TS ***	
STREAMS:		
1		
33> HOT	> 34	
T= 1.5620D+03	T= 1.3826	5D+03
P= 1.4696D+02	P= 1.4350	D+02
V= 1.0000D+00	V= 1.000	0D+00
23 < COLD	< 22	
T= 1.4720D+03	T= 7.9188	3D+02
P= 1.3990D+02	P= 1.4320	D+02
V= 1.0000D+00	V= 1.000	0D+00
DUTY AND AREA:		
CALCULATED HEAT DUTY	BTU/HR	192974.4104
CALCULATED (REQUIRED) ARE.	A SQFT	34.0610
ACTUAL EXCHANGER AREA	SQFT	34.0610
PER CENT OVER-DESIGN	0.00	000

HEAT TRANSFER C	OEFFICIENT:		
AVERAGE COEFFI	CIENT (DIRTY)	BTU/HR-SQFT-R	21.2900
UA (DIRTY)	BTU/HR-R	725.1580	
LOG-MEAN TEMPE	RATURE DIFFERI	ENCE:	
LMTD CORRECTIO	ON FACTOR	1.0000	
LMTD (CORRECTE	ED) F	266.1136	
NUMBER OF SHEL	LS IN SERIES	1	
PRESSURE DROP:			
HOTSIDE, TOTAL	PSI	3.4595	
COLDSIDE, TOTAI	- PSI	3.3000	
PRESSURE DROP PA	ARAMETER:		
HOT SIDE:	0	.32436E+06	
COLD SIDE:		0.22263E+08	
INLET STREAM: OUTLET STREAM: OUTLET WATER ST PROPERTY OPTION FREE WATER OPTIO SOLUBLE WATER O	30 31 TREAM: 32 SET: SRK SC ON SET: SYSOP12 OPTION: THE MA	DAVE-REDLICH-KV 2 ASME STEAM TA IN PROPERTY OPT	VONG EQUATION OF STATE BLE ION SET (SRK).
*** MAS	S AND ENERGY I	BALANCE ***	
I	N OUT	RELATIVE DIFF.	
TOTAL BALANCE			
MOLE(LBMOL/HI	R) 43.7245	43.7245 0.00	000
MASS(LB/HR)	999.331	999.331 0.113763	BE-15
ENTHALPY(BTU/	HR) -0.451367	E+07 -0.529325E+0	7 0.147278
*** IN	PUT DATA ***		
TWO PHASE TP I	FLASH		
FREE WATER CONS	SIDERED		
SPECIFIED TEMPER	ATURE I	F 100.00	0
SPECIFIED PRESSU	RE PSIA	A 140.000	
MAXIMUM NO. ITE	RATIONS	30	
CONVERGENCE TO	LERANCE	0.0	00100000

*** RESULTS ***

OUTLET TEMPERATURE F	100.00
OUTLET PRESSURE PSIA	140.00
HEAT DUTY BTU/HR	-0.77958E+06
OUTLET VAPOR FRACTION	0.33922
OUTLET: 1ST LIQUID/TOTAL LIQUID	0.0000
PRESSURE-DROP CORRELATION PAI	RAMETER 0.0000

V-L1-L2 PHASE EQUILIBRIUM :

 COMP
 F(I)
 X1(I)
 X2(I)
 Y(I)
 K1(I)
 K2(I)

 HYDROGEN
 0.846E-01
 0.205E-01
 0.00
 0.249
 75.5

 CARBO-01
 0.230
 0.853
 0.00
 0.677
 4.93

 CARBO-02
 0.225E-01
 0.131E-01
 0.00
 0.664E-01
 31.5

 WATER
 0.663
 0.113
 1.00
 0.746E-02
 0.410
 0.746E-02

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-1RATE OF CONSUMPTION2.6074+04LB/HRCOST0.2365\$/HR

BLOCK: E-109 MODEL: HEATX

HOT SIDE:

INLET STREAM: 34

OUTLET STREAM: 35

PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE:

INLET STREAM:26OUTLET STREAM:27PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 VINALE(LBMOL/HR)
 289.429
 289.429
 0.00000

 MASS(LB/HR)
 8289.65
 8289.65
 0.00000
 VINALPY(BTU/HR)
 0.205141E+07
 0.20505E-15

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE	E:			
TWO PHASE FLASH				
MAXIMUM NO. ITERATIONS			30	
CONVERGENCE TOLERANCI	E		(0.000100000
FLASH SPECS FOR COLD SID	DE:			
TWO PHASE FLASH				
MAXIMUM NO. ITERATIONS	•		30	
CONVERGENCE TOLERANCI	E		(0.000100000
FLOW DIRECTION AND SPEC	CIFICA	TION:		
COUNTERCURRENT HEAT	EXCH	IANGE	R	
SPECIFIED MIN OUTLET TE	EMP AF	PPR		
SPECIFIED VALUE	F		18.0000	
LMTD CORRECTION FACTO	OR		1	.00000
PRESSURE SPECIFICATION:				
HOT SIDE OUTLET PRESSU	JRE	PSIA		140.5000
COLD SIDE OUTLET PRESS	URE	PSIA		147.0000
HEAT TRANSFER COEFFICIE	ENT SP	PECIFIC	ATION:	
OVERALL COEFFICIENT	BT	U/HR-S	SQFT-R	29.4300
*** OVERALL RE	ESULT	S ***		
STREAMS:				
34> HOT		> 35	5	
T= 1.3826D+03		T:	= 1.0631I	D+03
P= 1.4350D+02		P=	= 1.4050E	D +02
V= 1.0000D+00		V	= 1.0000	D+00
	1			

27 < COLD	< 26
T= 1.0451D+03	T= 7.5751D+02
P= 1.4700D+02	P= 1.5000D+02
V= 1.0000D+00	V= 1.0000D+00
DUTY AND AREA:	
CALCULATED HEAT DUTY	BTU/HR 335565.2889
CALCULATED (REQUIRED) ARE	EA SQFT 35.4925
ACTUAL EXCHANGER AREA	SQFT 35.4925
PER CENT OVER-DESIGN	0.0000
HEAT TRANSFER COEFFICIENT:	
AVERAGE COEFFICIENT (DIRTY	() BTU/HR-SQFT-R 29.4300
UA (DIRTY) BTU/HR-	R 1044.5432
LOG-MEAN TEMPERATURE DIFF	ERENCE:
LMID CORRECTION FACTOR	221 2555
LMID (CORRECTED) F	321.2333
NUMBER OF SHELLS IN SERIES	1
PRESSURE DROP:	
HOTSIDE TOTAL PSI	3.0000
COLDSIDE, TOTAL PSI	3,0000
- · · · · · · · · · · ·	
PRESSURE DROP PARAMETER:	
HOT SIDE:	0.31584E+06
COLD SIDE:	0.30727E+06
BLOCK: M-101 MODEL: MIXER	
INLET STREAMS: 18 21	
OUTLET STREAM: 22	
PROPERTY OPTION SET: SRK	SOAVE-REDLICH-KWONG EQUATION OF STATE
*** MASS AND ENERC	BY BALANCE ***
IN OUT	RELATIVE DIFF.
TOTAL BALANCE	20 00 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MOLE(LBMOL/HR) 22.205	03 22.2053 0.00000
MASS(LB/HR) 384.388	384.388 0.00000
ENTHALPY(BTU/HR) -0.139	030E+07 -0.139030E+07 0.167468E-15

*** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: P-101 MODEL: PUMP -----19 INLET STREAM: OUTLET STREAM: 20 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 11.0231 11.0231 0.00000 MASS(LB/HR) 198.584 198.584 0.00000 ENTHALPY(BTU/HR) -0.135447E+07 -0.135446E+07 -0.147350E-05 *** INPUT DATA *** PRESSURE CHANGE PSI 1.00000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE 0.000100000 *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 3.18875 PRESSURE CHANGE PSI 1.00000 NPSH AVAILABLE FT-LBF/LB 339.175 FLUID POWER HP 0.00023191 BRAKE POWER HP 0.00078438 ELECTRICITY KW 0.00058491 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.00078438

2.31226

HEAD DEVELOPED FT-LBF/LB

INLET STREAMS: FAKE1 27 OUTLET STREAM: FAKE2 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT GENERATION RELATIVE DIFF. IN TOTAL BALANCE -19.2177 MOLE(LBMOL/HR) 198.048 178.830 0.00000 MASS(LB/HR) 4836.68 4836.68 0.00000 ENTHALPY(BTU/HR) 934314. -0.265712E+07 1.35163 *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : HYDROGEN -2.00 WATER 2.00 OXYGEN -1.00 REACTION # 2: SUBSTREAM MIXED : CARBO-01 2.00 CARBO-02 -2.00 OXYGEN -1.00 REACTION EXTENT SPECS: NUMBER= 2 REACTION # 1: EXTENT= 14.33 LBMOL/HR REACTION # 2: EXTENT= 4.888 LBMOL/HR TWO PHASE TP FLASH SPECIFIED TEMPERATURE F 1,562.00 SPECIFIED PRESSURE PSIA 146.959 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO

*** RESULTS ***

272

BLOCK: R-100 MODEL: RSTOIC

OUTLET TEMPERATUREF1562.0OUTLET PRESSUREPSIA146.96HEAT DUTYBTU/HR-0.35914E+07VAPOR FRACTION1.0000

V-L PHASE EQUILIBRIUM :

COMP	F(I) X	(I) Y	(I) K((I)	
HYDROGEN	0.206801	E-01 0.20	680E-01 ().20680E-01	MISSING
CARBO-01	0.56136E-	01 0.5613	6E-01 0.5	56136E-01	MISSING
CARBO-02	0.55043E-	02 0.5504	3E-02 0.5	55043E-02	MISSING
WATER	0.16218	0.16218	0.16218	MISSIN	G
OXYGEN	0.73758E-0	01 0.7375	8E-01 0.7	'3758E-01	MISSING
NITROGEN	0.68174	0.68174	0.6817	4 MISS	ING

BLOCK: REFORMER MODEL: RSTOIC

INLET STREAM:24OUTLET STREAM:FAKE1PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

IN OUT GENERATION RELATIVE DIFF.

TOTAL BALANCE

MOLE(LBMOL/HR)22.205343.724521.51930.00000MASS(LB/HR)384.388384.388-0.147880E-15ENTHALPY(BTU/HR)-0.119148E+07-152618.-0.871909

*** INPUT DATA *** STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : HYDROGEN 3.00 CARBO-02 1.00 WATER -1.00 METHANE -1.00

REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:METHANE CONV FRAC: 1.000 TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,472.00SPECIFIED PRESSUREPSIA146.959MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONS0.000100000GENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS ***

OUTLET TEMP	ERATURE F	1472.0
OUTLET PRESS	URE PSIA	146.96
HEAT DUTY	BTU/HR	0.10389E+07
VAPOR FRACT	ION	1.0000

REACTION EXTENTS:

REACTION REACTION NUMBER EXTENT LBMOL/HR 1 10.760

V-L PHASE EQUILIBRIUM :

COMP	F(I) X(I) Y(I)	K(I)		
HYDROGEN	0.74005	0.74005	0.74005	MI	SSING
CARBO-01	0.60259E-02	2 0.60259E-0	0.6025	9E-02	MISSING
CARBO-02	0.24608	0.24608	0.24608	MISS	ING
WATER	0.78449E-02	0.78449E-02	0.78449	PE-02	MISSING

BLOCK: SEP MODEL: SEP

INLET STREAM:FAKE2OUTLET STREAMS:3328

PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 178.830 178.830 0.00000 MASS(LB/HR) 4836.68 4836.68 0.00000 ENTHALPY(BTU/HR) -0.265712E+07 -0.265715E+07 0.981577E-05

*** INPUT DATA ***

FLASH SPECS FOR STREAM 33TWOPHASE TP FLASHPRESSURE DROPPSI0.00.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

FLASH SPECS FOR STREAM 28TWOPHASE TP FLASHPRESSURE DROPPSI0.00.0MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

FRACTION OF FEED SUBSTREAM= MIXED STREAM= 33 CPT= OXYGEN FRACTION= 1.00000 NITROGEN 1.00000

*** RESULTS ***

HEAT DUTY BTU/HR -26.082

COMPONENT = HYDROGEN

STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000

COMPONENT = CARBO-01

STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000

COMPONENT = CARBO-02

STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = WATER STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = OXYGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000 COMPONENT = NITROGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000 BLOCK: T-100 MODEL: COMPR _____ 35 INLET STREAM: OUTLET STREAM: 36 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 135.106 135.106 0.00000 MASS(LB/HR) 3837.35 3837.35 0.00000 ENTHALPY(BTU/HR) 964482. 0.517464 465398. *** INPUT DATA *** **ISENTROPIC TURBINE** OUTLET PRESSURE PSIA 14.6959 ISENTROPIC EFFICIENCY 0.72000 MECHANICAL EFFICIENCY 1.00000 *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP -196.148

BRAKEHORSEPOWER REQUIREMENTHP-196.148NET WORK REQUIREDHP-196.148POWER LOSSESHP0.0

ISENTROPIC HORSEPOWER REQUIREMENT	HP	-272.427
CALCULATED OUTLET TEMP F	565.743	
ISENTROPIC TEMPERATURE F	364.052	
EFFICIENCY (POLYTR/ISENTR) USED	0.720	000
OUTLET VAPOR FRACTION	1.00000	
HEAD DEVELOPED, FT-LBF/LB	-140,567.	
MECHANICAL EFFICIENCY USED	1.0000	00
INLET HEAT CAPACITY RATIO	1.35217	
INLET VOLUMETRIC FLOW RATE , CUFT/HR	15,	769.5
OUTLET VOLUMETRIC FLOW RATE, CUFT/H	IR 10	01,212.
INLET COMPRESSIBILITY FACTOR	1.003	56
OUTLET COMPRESSIBILITY FACTOR	1.00	046
AV. ISENT. VOL. EXPONENT	1.37652	
AV. ISENT. TEMP EXPONENT	1.37391	
AV. ACTUAL VOL. EXPONENT	1.21434	
AV. ACTUAL TEMP EXPONENT	1.21233	1

BLOCK: C-100 MODEL: COMPR

INLET STREAM:8OUTLET STREAM:9PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 44.0925 44.0925 0.00000 MASS(LB/HR) 989.170 989.170 0.00000 ENTHALPY(BTU/HR) -0.394538E+07 -0.392592E+07 -0.493260E-02

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR	
OUTLET PRESSURE PSIA	146.959
ISENTROPIC EFFICIENCY	0.72000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPOWE	R REQUIREME	NT HP	7.64845
BRAKE HORSEPOWER I	REQUIREMENT	Г НР	7.64845
NET WORK REQUIRED	HP	7.64845	
POWER LOSSES	HP	0.0	

ISENTROPIC HORSEPOWER REQUIREMENT HP 5.50688 CALCULATED OUTLET TEMP F 1,845.74 ISENTROPIC TEMPERATURE F 1.834.39 EFFICIENCY (POLYTR/ISENTR) USED 0.72000 **OUTLET VAPOR FRACTION** 1.00000 HEAD DEVELOPED, FT-LBF/LB 11,023.0 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.02254 INLET VOLUMETRIC FLOW RATE, CUFT/HR 7,048.73 OUTLET VOLUMETRIC FLOW RATE, CUFT/HR 6,614.17 INLET COMPRESSIBILITY FACTOR 0.90117 OUTLET COMPRESSIBILITY FACTOR 0.89106 AV. ISENT. VOL. EXPONENT 1.07207 AV. ISENT. TEMP EXPONENT 1.22507 AV. ACTUAL VOL. EXPONENT 1.10282 AV. ACTUAL TEMP EXPONENT 1.34055 BLOCK: E-100 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 15 OUTLET STREAM: 16 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ **INLET STREAM:** 1 **OUTLET STREAM:** 2 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 0.00000 32.8467 32.8467 MASS(LB/HR) 1042.42 1042.42 0.00000 ENTHALPY(BTU/HR) -0.142651E+07 -0.142651E+07 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR COLD SIDE:

TWO PHASE FLASH
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	30 0.000100000
FLOW DIRECTION AND SPECIFIC COUNTERCURRENT HEAT EXC SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE F LMTD CORRECTION FACTOR	ATION: CHANGER 440.3300 1.00000
PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE COLD SIDE OUTLET PRESSURE	PSIA 140.0000 PSIA 137.0000
HEAT TRANSFER COEFFICIENT S OVERALL COEFFICIENT B	PECIFICATION: TU/HR-SQFT-R 21.2600
*** OVERALL RESUL	TS ***
STREAMS:	
$ \\ 15 \\ T = 1.2920D + 03 \\ P = 1.4696D + 02 \\ V = 1.0000D + 00 \\ \\ 2 \\ T = 4.4033D + 02 \\ P = 1.3700D + 02 \\ V = 1.0000D + 00 \\$	> 16 T= 9.7822D+02 P= 1.4000D+02 V= 1.0000D+00 < 1 T= 7.7000D+01 P= 1.4000D+02 V= 1.0000D+00
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) ARE ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN HEAT TRANSFER COEFFICIENT:	BTU/HR 47028.0992 A SQFT 2.5246 SQFT 2.5246 0.0000
AVERAGE COEFFICIENT (DIRTY UA (DIRTY) BTU/HR-I	Y) BTU/HR-SQFT-R 21.2600 R 53.6722
LOG-MEAN TEMPERATURE DIFF	ERENCE: 1.0000

LMTD CORRECTION FACTOR1.00LMTD (CORRECTED)F876.2096NUMBER OF SHELLS IN SERIES1

PRESSURE DROP: HOTSIDE, TOTAL PSI 6.9595 COLDSIDE, TOTAL PSI 3.0000 PRESSURE DROP PARAMETER: HOT SIDE: 0.37858E+08 COLD SIDE: 0.56616E+08 BLOCK: E-101 MODEL: HEATX _____ HOT SIDE: _____ **INLET STREAM:** 10 OUTLET STREAM: 11 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ **INLET STREAM:** 4 OUTLET STREAM: 5 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 73.6344 73.6344 0.00000 MASS(LB/HR) 935.921 935.921 0.00000 ENTHALPY(BTU/HR) -0.396599E+07 -0.396599E+07 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP SPECIFIED VALUE F 200.0000 LMTD CORRECTION FACTOR 1.00000

PRESSURE SPECIFICATION:		
HOT SIDE OUTLET PRESSURE	PSIA	145.0000
COLD SIDE OUTLET PRESSURE	PSIA	137.0000

HEAT TRANSFER COEFFICIENT SPECIFICATION:
OVERALL COEFFICIENTBTU/HR-SQFT-R57.8900

*** OVERALL RESULTS ***

STREAMS:

 10>] T= 1.2920D+03 P= 1.4696D+02 V= 1.0000D+00	 HOT -	> 11 T= 2.0 P= 1.4 V= 1.0	000D+02 500D+02 0000D+00	
5 < 1 (- 1		
T = 3.5159D + 02		< 4 │ T= 7.6	759D+01	
P = 1.3700D + 02		P = 1.4	400D+02	
V= 4.3561D-01		V = 0.0	000D+00	
·				
DUTY AND AREA:				
CALCULATED HEA	Г DUTY I	BTU/HR	349372	.9194
CALCULATED (REQ	UIRED) AREA	SQFT	15.	0084
ACTUAL EXCHANG	ER AREA	SQFT	15.00)84
PER CENT OVER-DE	ESIGN		0.0000	
HEAT TRANSFER CO	FFFICIENT			
AVERAGE COEFFIC	IFNT (DIRTY)	BTU/HR-S	OFT-R	57 8900
IIA (DIRTY)	BTU/HR-R	868	8375	57.0700
UN (DIKTT)	DIO/IIK K	000.	0375	
LOG-MEAN TEMPER	ATURE DIFFE	RENCE:		
LMTD CORRECTION	V FACTOR		1.0000	
LMTD (CORRECTED)) F	402	2.1154	
NUMBER OF SHELL	S IN SERIES		1	
PRESSURE DROP:				
HOTSIDE, TOTAL	PSI	1.95	595	
COLDSIDE, TOTAL	PSI	7.0	0000	
LOT CIDE.	NAME I EK.	0.0100/E+0	7	
		0.01204E+0	7	
COLD SIDE:		U.23360E+	リプ	

BLOCK: E-102 MODEL: HEATER _____ INLET STREAM: 5 OUTLET STREAM: 6 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 29.5419 29.5419 0.00000 MASS(LB/HR) 532.206 532.206 0.00000 ENTHALPY(BTU/HR) -0.328073E+07 -0.301966E+07 -0.795761E-01 *** INPUT DATA *** TWO PHASE PV FLASH SPECIFIED PRESSURE PSIA 137.000 VAPOR FRACTION 1.00000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** RESULTS *** OUTLET TEMPERATURE F 351.59 OUTLET PRESSURE PSIA 137.00 HEAT DUTY 0.26107E+06 BTU/HR OUTLET VAPOR FRACTION 1.0000 PRESSURE-DROP CORRELATION PARAMETER 0.0000

V-L PHASE EQUILIBRIUM :

COMPF(I)X(I)Y(I)K(I)WATER1.00001.00001.00001.0000

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR GAS U-6 RATE OF CONSUMPTION 12.2215 LB/HR COST 0.9211 \$/HR

BLOCK: E-103 MODEL: HEATER

INLET STREAM: 7

OUTLET STREAM: 8 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 44.0925 44.0925 0.00000 MASS(LB/HR) 989.170 989.170 0.229863E-15 ENTHALPY(BTU/HR) -0.457045E+07 -0.394538E+07 -0.136764

*** INPUT DATA ***TWOPHASE TP FLASHSPECIFIED TEMPERATUREF1,805.00SPECIFIED PRESSUREPSIA137.000MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000

*** RESULTS *** OUTLET TEMPERATURE F 1805.0 OUTLET PRESSURE PSIA 137.00 HEAT DUTY BTU/HR 0.62507E+06 OUTLET VAPOR FRACTION 1.0000 PRESSURE-DROP CORRELATION PARAMETER -0.24164E-07

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I)K(I)HYDROGEN 0.80000E-01 0.80000E-01 0.80000E-01 MISSING 0.20000 CARBO-01 0.20000 0.20000 MISSING CARBO-02 0.50000E-01 0.50000E-01 0.50000E-01 MISSING WATER 0.67000 0.67000 0.67000 MISSING

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR GAS U-5 RATE OF CONSUMPTION 29.2618 LB/HR COST 2.2053 \$/HR

BLOCK: E-104 MODEL: HEATER

INLET STREAM: 12 OUTLET STREAM: 14 OUTLET WATER STREAM: 13 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK).

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 22.9660 22.9660 0.00000 MASS(LB/HR) 403.714 403.714 0.140801E-15 ENTHALPY(BTU/HR) -0.158980E+07 -0.186708E+07 0.148506

*** INPUT DATA	***	
TWO PHASE TP FLASH		
FREE WATER CONSIDERED		
SPECIFIED TEMPERATURE	F	100.000
SPECIFIED PRESSURE	PSIA	143.500
MAXIMUM NO. ITERATIONS		30
CONVERGENCE TOLERANCE		0.000100000

*** RESULTS ***OUTLET TEMPERATUREF100.00OUTLET PRESSUREPSIA143.50HEAT DUTYBTU/HR-0.27727E+06OUTLET VAPOR FRACTION0.48663OUTLET:1ST LIQUID/TOTAL LIQUID0.0000PRESSURE-DROP CORRELATION PARAMETER0.0000

V-L1-L2 PHASE EQUILIBRIUM :

X1(I) X2(I) Y(I) COMP F(I)K1(I) K2(I) 0.311E-02 0.854E-03 0.00 0.640E-02 87.4 HYDROGEN 0.200E-01 0.942E-01 0.00 0.412E-01 5.09 CARBO-01 CARBO-02 0.582E-06 0.426E-06 0.00 0.120E-05 32.8 0.517 0.173 1.00 0.727E-02 0.489 0.727E-02 WATER METHANE 0.460 0.731 0.00 0.945 15.1

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-1RATE OF CONSUMPTION9273.6797COST8.4129-02\$/HR

BLOCK: M-100 MODEL: MIXER _____ INLET STREAMS: 2 6 OUTLET STREAM: 7 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 44.0925 44.0925 0.00000 MASS(LB/HR) 989.170 989.170 -0.114932E-15 ENTHALPY(BTU/HR) -0.457045E+07 -0.457045E+07 0.832748E-07 *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE PSIA 137.000 BLOCK: P-100 MODEL: PUMP _____ INLET STREAM: 3 **OUTLET STREAM:** 4 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 29.5419 29.5419 0.00000 0.00000 MASS(LB/HR) 532.206 532.206 ENTHALPY(BTU/HR) -0.363012E+07 -0.363010E+07 -0.589366E-05 *** INPUT DATA *** PRESSURE CHANGE PSI 4.00000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE 0.000100000 *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 8.54569 PRESSURE CHANGE PSI

4.00000

NPSH AVAILABLE FT-LBF/LB 323.070 FLUID POWER HP 0.0024860 BRAKE POWER HP 0.0084084 ELECTRICITY KW 0.0062702 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.0084084 HEAD DEVELOPED FT-LBF/LB 9.24889 BLOCK: R-100 MODEL: RSTOIC 9 INLET STREAM: OUTLET STREAM: FAKE PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT GENERATION RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 44.0925 62.3886 18.2962 0.227780E-15 MASS(LB/HR) 989.170 989.170 0.114932E-15 ENTHALPY(BTU/HR) -0.392592E+07 -164563. -0.958083 *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : HYDROGEN 1.00 WATER -1.00 OXYGEN 0.500 REACTION # 2: SUBSTREAM MIXED : CARBO-01 -1.00 CARBO-02 1.00 OXYGEN 0.500 REACTION CONVERSION SPECS: NUMBER= 2 REACTION # 1: SUBSTREAM:MIXED KEY COMP:WATER CONV FRAC: 0.9700 REACTION # 2: SUBSTREAM:MIXED KEY COMP:CARBO-01 CONV FRAC: 0.9000

TWO PHASE TP FLASH	
SPECIFIED TEMPERATURE F	1,292.00
SPECIFIED PRESSURE PSIA	146.959
MAXIMUM NO. ITERATIONS	30

CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS ***	
OUTLET TEMPERATURE F	1292.0
OUTLET PRESSURE PSIA	146.96
HEAT DUTY BTU/HR	0.37614E+07
VAPOR FRACTION	1.0000

REACTION EXTENTS:

REACTION REACTION NUMBER EXTENT LBMOL/HR 1 28.656 2 7.9366

V-L PHASE EQUILIBRIUM :

COMP	F(I) X(I	I) Y(I)	K(I)		
HYDROGEN	0.51585	0.51585	0.51585	MI	SSING
CARBO-01	0.14135E-0	1 0.14135E-	-01 0.1413	5E-01	MISSING
CARBO-02	0.16255	0.16255	0.16255	MISS	ING
WATER	0.14205E-01	0.14205E-0	0.14205	E-01	MISSING
OXYGEN	0.29326	0.29326	0.29326	MISS	ING

BLOCK: R101 MODEL: RGIBBS

INLET STREAM:11OUTLET STREAM:12PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 GENERATION
 RELATIVE DIFF.

 TOTAL BALANCE

 MOLE(LBMOL/HR)
 44.0925
 22.9660
 -21.1264
 0.805742E-16

 MASS(LB/HR)
 403.714
 403.714
 0.112641E-14

 ENTHALPY(BTU/HR)
 -685262.
 -0.158980E+07
 0.568965

*** INPUT DATA ***

EQUILIBRIUM SPECIFICATIONS: ONLY CHEMICAL EQUILIBRIUM IS CONSIDERED, THE FLUID PHASE IS VAPOR SYSTEM TEMPERATUREF400.00TEMPERATURE FOR FREE ENERGY EVALUATIONF400.00SYSTEM PRESSUREPSIA143.50

FLUID PHASE SPECIES IN PRODUCT LIST: HYDROGEN CARBO-01 CARBO-02 WATER METHANE OXYGEN NITROGEN

ATOM MATRIX:

ELEMENT H C N O HYDROGEN 2.00 0.00 0.00 0.00 CARBO-01 0.00 1.00 0.00 2.00 CARBO-02 0.00 1.00 0.00 1.00 WATER 2.00 0.00 0.00 1.00 METHANE 4.00 1.00 0.00 0.00 OXYGEN 0.00 0.00 2.00 0.00 NITROGEN 0.00 0.00 2.00 0.00

*** RESULTS ***TEMPERATUREF400.00PRESSUREPSIA143.50HEAT DUTYBTU/HR-0.90454E+06VAPOR FRACTION1.0000NUMBER OF FLUID PHASES1

FLUID PHASE MOLE FRACTIONS:

DILACE	VADOD
PHASE	VAPOR
OF TYPE	VAPOR
PHASE FRACT	TION 1.000000
PLACED IN ST	TREAM 12
HYDROGEN	0.3114360E-02
CARBO-01	0.2002512E-01
CARBO-02	0.5822737E-06
METHANE	0.4599486
OXYGEN	0.000000
WATER	0.5169113

LBMOL/HR 22.96605

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-4RATE OF CONSUMPTION3.0254+04COST0.2745\$/HR

BLOCK: SPLIT MODEL: SEP

_____ INLET STREAM: FAKE OUTLET STREAMS: 10 15 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT **RELATIVE DIFF.** IN TOTAL BALANCE 62.3886 62.3886 MOLE(LBMOL/HR) 0.00000 MASS(LB/HR) 989.170 989.170 -0.114932E-15 ENTHALPY(BTU/HR) -164563. -164584. 0.127246E-03 *** INPUT DATA *** FLASH SPECS FOR STREAM 10 TWO PHASE TP FLASH PRESSURE DROP PSI 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR STREAM 15 TWO PHASE TP FLASH PRESSURE DROP 0.0 PSI MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FRACTION OF FEED SUBSTREAM= MIXED STREAM= 10 CPT= HYDROGEN FRACTION= 1.00000 CARBO-01 1.00000 CARBO-02 1.00000 WATER 1.00000 1.00000 METHANE *** **RESULTS** *** HEAT DUTY BTU/HR -20.943 COMPONENT = HYDROGEN STREAM SUBSTREAM SPLIT FRACTION 10 MIXED 1.00000 COMPONENT = CARBO-01

STREAM SUBSTREAM SPLIT FRACTION

10 MIXED 1.00000

COMPONENT = CARBO-02 STREAM SUBSTREAM SPLIT FRACTION 10 MIXED 1.00000

COMPONENT = WATER STREAM SUBSTREAM SPLIT FRACTION 10 MIXED 1.00000

COMPONENT = OXYGEN STREAM SUBSTREAM SPLIT FRACTION 15 MIXED 1.00000 Fuel Cell

		17	18	3 19	20	21
From			E-105		P-101	E-106
То		E-105	M-101	P-101	E-106	M-101
Substream: MIX	ED					
Phase:		Mixed	Vapor	Liquid	Liquid	Vapor
Component Mol	e Flow					
HYDROGEN	LBMOL/HR	0.0794972	0.0794972	2 0	0	0
CARBO-01	LBMOL/HR	0.2634785	0.2634785	5 0	0	0
CARBO-02	LBMOL/HR	8.82E-06	8.82E-06	5 0	0	0
WATER	LBMOL/HR	0.07953	0.07953	11.02311	11.02311	11.02311
METHANE	LBMOL/HR	10.75963	10.75963	3 0	0	0
OXYGEN	LBMOL/HR	0	C	0	0	0
NITROGEN	LBMOL/HR	0	C	0	0	0
Component Mas	s Flow					
HYDROGEN	LB/HR	0.1602568	0.1602568	3 0	0	0
CARBO-01	LB/HR	11.59564	11.59564	0	0	0
CARBO-02	LB/HR	2.47E-04	2.47E-04	0	0	0
WATER	LB/HR	1.432755	1.432755	198.5845	198.5845	198.5845
METHANE	LB/HR	172.6142	172.6142	2 0	0	0
OXYGEN	LB/HR	0	C	0 0	0	0
NITROGEN	LB/HR	0	C	0 0	0	0
Mole Flow	LBMOL/HR	11.18214	11.18214	11.02311	11.02311	11.02311
Mass Flow	LB/HR	185.8031	185.8031	198.5845	198.5845	198.5845
Volume Flow	CUFT/HR	806.4467	988.2593	3.188746	3.188739	1116.675
Temperature	F	76.73	716.4141	. 77	77.00726	903.7819
Pressure	PSIA	143.5	143.2	146.9595	147.9595	143.2
Vapor Fraction		0.9954974	1	0	0	1
Liquid Fraction		4.50E-03	C) 1	1	0
Solid Fraction		0	C) 0	0	0
Molar Enthalpy	BTU/LBMOL	-35711.83	-28690.38	-1.23E+05	-1.23E+05	-97021.44
Mass Enthalpy	BTU/LB	-2149.237	-1726.667	-6820.606	-6820.596	-5385.508
Enthalpy Flow	BTU/HR	-3.99E+05	-3.21E+05	-1.35E+06	-1.35E+06	-1.07E+06
Molar Entropy	BTU/LBMOL-R	-22.94787	-14.53711	-38.96767	-38.96743	-7.31966
Mass Entropy	BTU/LB-R	-1.381067	-0.8748835	-2.163034	-2.163021	-0.4063029
Molar Density	LBMOL/CUFT	0.0138659	0.0113149	3.45688	3.456887	9.87E-03
Mass Density	LB/CUFT	0.2303972	0.1880104	62.27667	62.2768	0.1778355
Average Molecu	lar Weight	16.61605	16.61605	18.01528	18.01528	18.01528

		22	2 23	8 24	25	26
From		M-101	E-107	C-101		C-102
То		E-107	C-101	REFORMER	C-102	E-109
Substream: MIXE	D					
Phase:		Vapor	Vapor	Vapor	Vapor	Vapor
Component Mole I	Flow					
HYDROGEN	LBMOL/HR	0.0794972	0.0794972	0.0794972	2 0	0
CARBO-01	LBMOL/HR	0.2634785	5 0.2634785	0.2634785	; 0	0
CARBO-02	LBMOL/HR	8.82E-06	5 8.82E-06	5 8.82E-06	i 0	0
WATER	LBMOL/HR	11.10264	11.10264	11.10264	0	0
METHANE	LBMOL/HR	10.75963	10.75963	10.75963	0	0
OXYGEN	LBMOL/HR	() () (32.40795	32.40795
NITROGEN	LBMOL/HR	() () (121.9156	121.9156
Component Mass I	Flow					
HYDROGEN	LB/HR	0.1602568	0.1602568	0.1602568	3 0	0
CARBO-01	LB/HR	11.59564	11.59564	11.59564	0	0
CARBO-02	LB/HR	2.47E-04	4 2.47E-04	2.47E-04	0	0
WATER	LB/HR	200.0172	2 200.0172	200.0172	2 0	0
METHANE	LB/HR	172.6142	2 172.6142	2 172.6142	2 0	0
OXYGEN	LB/HR	() () (1037.016	1037.016
NITROGEN	LB/HR	() () (3415.281	3415.281
Mole Flow	LBMOL/HR	22.20526	5 22.20526	5 22.20526	154.3236	154.3236
Mass Flow	LB/HR	384.3875	384.3875	384.3875	4452.297	4452.297
Volume Flow	CUFT/HR	2073.582	2 3291.94	3149.171	60468.83	13496.23
Temperature	F	791.8847	7 1472	2 1490.824	. 77	757.5131
Pressure	PSIA	143.2	2 139.9	146.9595	14.69595	150
Vapor Fraction		1	1	. 1	. 1	1
Liquid Fraction		() () () 0	0
Solid Fraction		() () () 0	0
Molar Enthalpy	BTU/LBMOL	-62611.22	-53920.74	-53657.39	-2.891061	4868.771
Mass Enthalpy	BTU/LB	-3616.918	-3114.887	-3099.674	-0.1002087	168.7592
Enthalpy Flow	BTU/HR	-1.39E+06	5 -1.20E+06	5 -1.19E+06	-446.1589	7.51E+05
Molar Entropy	BTU/LBMOL-R	-9.589959	-4.038206	-4.000351	1.01556	2.231081
Mass Entropy	BTU/LB-R	-0.5539917	-0.2332786	-0.2310919	0.0352008	0.0773327
Molar Density	LBMOL/CUFT	0.0107086	6.75E-03	7.05E-03	2.55E-03	0.0114345
Mass Density	LB/CUFT	0.1853736	6 0.1167662	0.1220599	0.0736296	0.3298919
Average Molecula	r Weight	17.31065	5 17.31065	5 17.31065	28.8504	28.8504

		2	7	28	29	30) 31
From		E-109	SEP		E-106	E-105	E-108
То		R-100	E-106		E-105	E-108	
Substream: MIX	ED						
Phase:		Vapor	Vapor		Vapor	Vapor	Vapor
Component Mol	e Flow						
HYDROGEN	LBMOL/HR		0	3.698293	3.698293	3.698293	3.698293
CARBO-01	LBMOL/HR		0	10.03878	10.03878	3 10.03878	3 10.03878
CARBO-02	LBMOL/HR		0	0.984342	0.984342	0.984342	0.984342
WATER	LBMOL/HR		0	29.00311	29.00311	29.00311	0.1107146
METHANE	LBMOL/HR		0	0	() () 0
OXYGEN	LBMOL/HR	32.4079	5	0	() () 0
NITROGEN	LBMOL/HR	121.915	6	0	() () 0
Component Mas	s Flow						
HYDROGEN	LB/HR		0	7.455314	7.455314	4 7.455314	7.455314
CARBO-01	LB/HR		0	441.8045	441.8045	5 441.8045	441.8045
CARBO-02	LB/HR		0	27.57181	27.57181	27.57181	27.57181
WATER	LB/HR		0	522.4991	522.4991	522.4991	1.994555
METHANE	LB/HR		0	0	() () 0
OXYGEN	LB/HR	1037.01	6	0	() () 0
NITROGEN	LB/HR	3415.28	1	0	() () 0
Mole Flow	LBMOL/HR	154.323	6	43.72452	43.72452	43.72452	2 14.83212
Mass Flow	LB/HR	4452.29	7	999.3307	999.3307	7 999.3307	478.8262
Volume Flow	CUFT/HR	17014.5	5	6261.941	4512.764	4 3968.827	1318.523
Temperature	F	1045.06	8	1562	921.7797	7 734.4267	100
Pressure	PSIA	14	7	146.9595	143	3 140) 140
Vapor Fraction			1	1	1	l 1	. 1
Liquid Fraction			0	0	() () 0
Solid Fraction			0	0	() () 0
Molar Enthalpy	BTU/LBMOL	7043.19	8	-94916.28	-1.01E+05	5 -1.03E+05	-1.18E+05
Mass Enthalpy	BTU/LB	244.128	3	-4152.948	-4438.125	5 -4516.693	-3665.223
Enthalpy Flow	BTU/HR	1.09E+0	6 -	4.15E+06	-4.44E+06	5 -4.51E+06	-1.76E+06
Molar Entropy	BTU/LBMOL-R	3.87410	3	2.943068	-0.8682465	5 -2.222841	-0.716656
Mass Entropy	BTU/LB-R	0.134282	5 (0.1287704	-0.037989	-0.0972577	-0.0221991
Molar Density	LBMOL/CUFT	9.07E-0	3	6.98E-03	9.69E-03	3 0.0110169	0.011249
Mass Density	LB/CUFT	0.261675	8	0.159588	0.2214454	0.251795	0.3631534
Average Molecu	lar Weight	28.850	4	22.85516	22.85516	5 22.85516	32.28305

From			32	33	34	35
То		E-108	SEI	þ	E-107	E-109
Substream: MIXED			E-1	07	E-109	T-100
Phase:						
Component Mole Flow		Liquid	Vap	oor	Vapor	Vapor
HYDROGEN	LBMOL/HR					
CARBO-01	LBMOL/HR		0	0	0	0
CARBO-02	LBMOL/HR		0	0	0	0
WATER	LBMOL/HR		0	0	0	0
METHANE	LBMOL/HR		28.89239	0	0	0
OXYGEN	LBMOL/HR		0	0	0	0
NITROGEN	LBMOL/HR		0	13.19026	13.19026	13.19026
Component Mass Flow			0	121.9156	121.9156	121.9156
HYDROGEN	LB/HR					
CARBO-01	LB/HR		0	0	0	0
CARBO-02	LB/HR		0	0	0	0
WATER	LB/HR		0	0	0	0
METHANE	LB/HR		520.5046	0	0	0
OXYGEN	LB/HR		0	0	0	0
NITROGEN	LB/HR		0	422.0724	422.0724	422.0724
Mole Flow	LBMOL/HR		0	3415.281	3415.281	3415.281
Mass Flow	LB/HR		28.89239	135.1059	135.1059	135.1059
Volume Flow	CUFT/HR		520.5046	3837.354	3837.354	3837.354
Temperature	F		8.39209	20002.21	18670.26	15769.47
Pressure	PSIA		100	1562	1382.571	1063.052
Vapor Fraction			140	146.9595	143.5	140.5
Liquid Fraction			0	1	1	1
Solid Fraction			1	0	0	0
Molar Enthalpy	BTU/LBMOL		0	0	0	0
Mass Enthalpy	BTU/LB	-]	1.22E+05	11050.75	9622.434	7138.713
Enthalpy Flow	BTU/HR	-	6797.716	389.0759	338.7875	251.3404
Molar Entropy	BTU/LBMOL-F	k -3	3.54E+06	1.49E+06	1.30E+06	9.64E+05
Mass Entropy	BTU/LB-R	-	38.21459	5.760495	5.068185	3.630363
Molar Density	LBMOL/CUFT	-	2.121232	0.202816	0.1784411	0.1278182
Mass Density	LB/CUFT		3.442813	6.75E-03	7.24E-03	8.57E-03
Average Molecular Weight			62.02323	0.1918465	0.2055329	0.2433406
			18.01528	28.40256	28.40256	28.40256

			36 FAKE1		FAKE2	
From		T-100	REFORMER		R-100	
То			R-	100	SEP	
Substream: MIXED						
Phase:		Vapor	Va	por	Vapor	
Component Mole Flow						
HYDROGEN	LBMOL/HR		0	32.35839	3.698293	
CARBO-01	LBMOL/HR		0	0.2634785	5 10.03878	
CARBO-02	LBMOL/HR		0	10.75964	0.984342	
WATER	LBMOL/HR		0	0.3430132	29.00311	
METHANE	LBMOL/HR		0	C) 0	
OXYGEN	LBMOL/HR	13.190	26	C	13.19026	
NITROGEN	LBMOL/HR	121.91	56	C) 121.9156	
Component Mass Flow						
HYDROGEN	LB/HR		0	65.23063	7.455314	
CARBO-01	LB/HR		0	11.59564	441.8045	
CARBO-02	LB/HR		0	301.3818	3 27.57181	
WATER	LB/HR		0	6.17948	522.4991	
METHANE	LB/HR		0	C) 0	
OXYGEN	LB/HR	422.07	24	C	422.0724	
NITROGEN	LB/HR	3415.2	81	C	3415.281	
Mole Flow	LBMOL/HR	135.10	59	43.72452	2 178.8304	
Mass Flow	LB/HR	3837.3	54	384.3875	4836.684	
Volume Flow	CUFT/HR	1.01E+	05	6179.753	3 26264.48	
Temperature	F	565.74	29	1472	2 1562	
Pressure	PSIA	14.695	95	146.9595	5 146.9595	
Vapor Fraction			1	1	. 1	
Liquid Fraction			0	C) 0	
Solid Fraction			0	C) 0	
Molar Enthalpy	BTU/LBMOL	3444.6	89	-3490.44	-14858.33	
Mass Enthalpy	BTU/LB	121.28	09	-397.0415	5 -549.3682	
Enthalpy Flow	BTU/HR	4.65E+	05	-1.53E+05	-2.66E+06	
Molar Entropy	BTU/LBMOL-R	5.1897	95	10.99768	6.17623	
Mass Entropy	BTU/LB-R	0.18272	28	1.250999	0.2283584	
Molar Density	LBMOL/CUFT	1.33E-	03	7.08E-03	6.81E-03	
Mass Density	LB/CUFT	0.03791	39	0.0622011	0.1841531	
Average Molecular Weight		28.402	56	8.791121	27.04621	

BLOCK: C-101 MODEL: COMPR

296

INLET STREAM:23OUTLET STREAM:24PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF.

TOTAL BALANCE

 MOLE(LBMOL/HR)
 22.2053
 22.2053
 0.00000

 MASS(LB/HR)
 384.388
 384.388
 0.00000

 ENTHALPY(BTU/HR)
 -0.119732E+07
 -0.119148E+07
 -0.488396E-02

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR	
OUTLET PRESSURE PSIA	146.959
ISENTROPIC EFFICIENCY	0.72000
MECHANICAL EFFICIENCY	1.00000

*** RESULTS ***

INDICATED HORSEPO	OWER REQUIREME	NT HP	2.29823
BRAKE HORSEPOW	ER REQUIREMENT	HP .	2.29823
NET WORK REQUIRED	D HP	2.29823	
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEPO	OWER REQUIREME	NT HP	1.65472
CALCULATED OUTLE	T TEMP F	1,490.8	2
ISENTROPIC TEMPERA	ATURE F	1,485.58	
EFFICIENCY (POLYTR	/ISENTR) USED	0.7	2000
OUTLET VAPOR FRAC	CTION	1.00000)
HEAD DEVELOPED,	FT-LBF/LB	8,523.57	
MECHANICAL EFFICI	ENCY USED	1.00	0000
INLET HEAT CAPACIT	Y RATIO	1.1663	36
INLET VOLUMETRIC I	FLOW RATE , CUFT	/HR	3,291.94
OUTLET VOLUMETRI	C FLOW RATE, CUF	T/HR	3,149.17
INLET COMPRESSIBIL	LITY FACTOR	1.00	0052
OUTLET COMPRESSIB	BILITY FACTOR	0.	99572
AV. ISENT. VOL. EXPO	DNENT	1.07742	
AV. ISENT. TEMP EXP	ONENT	1.16586	5
AV. ACTUAL VOL. EX	PONENT	1.1103	32
AV. ACTUAL TEMP EX	KPONENT	1.245	31

BLOCK: C-102 MODEL: COMPR INLET STREAM: 25 OUTLET STREAM: 26 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 154.324 154.324 0.00000 4452.30 MASS(LB/HR) 4452.30 0.00000 ENTHALPY(BTU/HR) -446.159 751366. -1.00059*** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA 150.000 ISENTROPIC EFFICIENCY 0.72000 MECHANICAL EFFICIENCY 1.00000 *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP 295.473 BRAKE HORSEPOWER REQUIREMENT HP 295.473 NET WORK REQUIRED HP 295.473 POWER LOSSES HP 0.0 ISENTROPIC HORSEPOWER REQUIREMENT HP 212.741 CALCULATED OUTLET TEMP F 757.513 ISENTROPIC TEMPERATURE F 571.995 EFFICIENCY (POLYTR/ISENTR) USED 0.72000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, FT-LBF/LB 94,608.9 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.40099 INLET VOLUMETRIC FLOW RATE . CUFT/HR 60.468.8 OUTLET VOLUMETRIC FLOW RATE, CUFT/HR 13,496.2 INLET COMPRESSIBILITY FACTOR 0.99985 OUTLET COMPRESSIBILITY FACTOR 1.00429 AV. ISENT. VOL. EXPONENT 1.39536 AV. ISENT. TEMP EXPONENT 1.39146 AV. ACTUAL VOL. EXPONENT 1.54900

AV. ACTUAL TEMP EXPONENT 1.54443 BLOCK: E-105 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 29 OUTLET STREAM: 30 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 17 OUTLET STREAM: 18 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 54.9067 54.9067 0.00000 MASS(LB/HR) 1185.13 1185.13 0.00000 ENTHALPY(BTU/HR) -0.483449E+07 -0.483449E+07 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE F 18.0000 LMTD CORRECTION FACTOR 1.00000

PRESSURE SPECIFICATION:

HOT SIDE OUTLET PRESSUREPSIA140.0000COLD SIDE OUTLET PRESSUREPSIA143.2000

HEAT TRANSFER COEFFICIENT SPECIFICATION:OVERALL COEFFICIENTBTU/HR-SQFT-R24.4600

*** OVERALL RESULTS ***

STREAMS:

29> He	TO	> 30		
T= 9.2178D+02		T= 7	.3443D+02	
P= 1.4300D+02		P= 1	.4000D+02	
V= 1.0000D+00		V= 1	1.0000D+00	
	[
18 < CO	OLD	< 17		
T= 7.1641D+02		T= 7	.6730D+01	
P= 1.4320D+02		P= 1	.4350D+02	
V= 1.0000D+00		V= 9	9.9550D-01	
DUTY AND AREA:				
CALCULATED HEAT	DUTY	BTU/HR	78514	.8737
CALCULATED (REQU	IRED) ARE	A SQFT	8.	2599
ACTUAL EXCHANGE	R AREA	SQFT	8.25	599
PER CENT OVER-DES	IGN		0.0000	
HEAT TRANSFER COE	FFICIENT:			
AVERAGE COEFFICIE	ENT (DIRTY) BTU/HR	-SQFT-R	24.4600
UA (DIRTY)	BTU/HR-I	R 20	02.0369	
LOG-MEAN TEMPERA	TURE DIFFI	ERENCE:		
LMTD CORRECTION	FACTOR		1.0000	
LMTD (CORRECTED)	F	3	88.6166	
NUMBER OF SHELLS	IN SERIES		1	
PRESSURE DROP:				
HOTSIDE, TOTAL	PSI	3.	0000	
COLDSIDE, TOTAL	PSI	().3000	

PRESSURE DROP PARAMETER: HOT SIDE: 0.49247E+07 COLD SIDE: 0.12518E+08 BLOCK: E-106 MODEL: HEATX -----HOT SIDE: _____ INLET STREAM: 28 OUTLET STREAM: 29 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ 20 INLET STREAM: OUTLET STREAM: 21 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 54.7476 54.7476 0.00000 MASS(LB/HR) 1197.92 1197.92 0.00000 ENTHALPY(BTU/HR) -0.550463E+07 -0.550463E+07 0.338378E-15 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE F 18.0000 LMTD CORRECTION FACTOR 1.00000

PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 143.0000 COLD SIDE OUTLET PRESSURE PSIA 143.2000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 40.4100 *** OVERALL RESULTS *** STREAMS: _____ HOT 28 ---->| |----> 29 T= 1.5620D+03 | T = 9.2178D + 02P= 1.4696D+02 | P= 1.4300D+02 V= 1.0000D+00 | V = 1.0000D+00COLD |<---- 20 21 <-----T= 9.0378D+02 | T= 7.7007D+01 P= 1.4320D+02 | P= 1.4796D+02 V= 1.0000D+00 | V = 0.0000D+00_____ DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 284986.1148 CALCULATED (REQUIRED) AREA SQFT 9.4331 ACTUAL EXCHANGER AREA SQFT 9.4331 PER CENT OVER-DESIGN 0.0000 HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 40.4100 UA (DIRTY) BTU/HR-R 381.1911 LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) F 747.6200 NUMBER OF SHELLS IN SERIES 1 PRESSURE DROP: PSI HOTSIDE, TOTAL 3.9595

COLDSIDE, TOTAL PSI 4.7595 PRESSURE DROP PARAMETER: HOT SIDE: 0.51164E+07 COLD SIDE: 0.29778E+09 BLOCK: E-107 MODEL: HEATX -----HOT SIDE: _____ **INLET STREAM:** 33 **OUTLET STREAM:** 34 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 22 OUTLET STREAM: 23 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 157.311 157.311 0.00000 4221.74 MASS(LB/HR) 4221.74 0.00000 ENTHALPY(BTU/HR) 102724. 102724. 0.198325E-14 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER

SPECIFIED COLD OUTLET TEMP

1472.0000

LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 143.5000 COLD SIDE OUTLET PRESSURE PSIA 139.9000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 21.2900 *** OVERALL RESULTS *** STREAMS: -----33 ---->| HOT |----> 34 T= 1.5620D+03 | T = 1.3826D + 03P= 1.4696D+02 P= 1.4350D+02 V= 1.0000D+00 | V = 1.0000D+00COLD |<---- 22 23 <-----| T= 1.4720D+03 | T= 7.9188D+02 P= 1.3990D+02 | P= 1.4320D+02 V= 1.0000D+00 | | V= 1.0000D+00 _____ DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 192974.4104 CALCULATED (REQUIRED) AREA SQFT 34.0610 ACTUAL EXCHANGER AREA SQFT 34.0610 PER CENT OVER-DESIGN 0.0000 HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 21.2900 725.1580 UA (DIRTY) BTU/HR-R LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) F 266.1136 NUMBER OF SHELLS IN SERIES 1

SPECIFIED VALUE

F

PRESSURE DROP:

HOTSIDE, TOTAL	PSI	3.4595
COLDSIDE, TOTAL	PSI	3.3000

PRESSURE DROP PARAMETER:

HOT SIDE:	0.32436E+06
COLD SIDE:	0.22263E+08

BLOCK: E-108 MODEL: HEATER

INLET STREAM: 30 OUTLET STREAM: 31 OUTLET WATER STREAM: 32 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK).

> *** MASS AND ENERGY BALANCE *** IN

OUT **RELATIVE DIFF.**

TOTAL BALANCE

MOLE(LBMOL/HR) 43.7245 43.7245 0.00000 MASS(LB/HR) 999.331 999.331 0.113763E-15 ENTHALPY(BTU/HR) -0.451367E+07 -0.529325E+07 0.147278

*** INPUT DATA ***

F	100.000
PSIA	140.000
	30
	0.000100000
	F PSIA

*** RESULTS *** OUTLET TEMPERATURE F 100.00 OUTLET PRESSURE PSIA 140.00 HEAT DUTY BTU/HR -0.77958E+06 OUTLET VAPOR FRACTION 0.33922 OUTLET: 1ST LIQUID/TOTAL LIQUID 0.0000 PRESSURE-DROP CORRELATION PARAMETER 0.0000

V-L1-L2 PHASE EQUILIBRIUM :

 COMP
 F(I)
 X1(I)
 X2(I)
 Y(I)
 K1(I)
 K2(I)

 HYDROGEN
 0.846E-01
 0.205E-01
 0.00
 0.249
 75.5

 CARBO-01
 0.230
 0.853
 0.00
 0.677
 4.93

 CARBO-02
 0.225E-01
 0.131E-01
 0.00
 0.664E-01
 31.5

 WATER
 0.663
 0.113
 1.00
 0.746E-02
 0.410
 0.746E-02

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR WATERU-1RATE OF CONSUMPTION2.6074+04LB/HRCOST0.2365\$/HR

BLOCK: E-109 MODEL: HEATX

HOT SIDE:

INLET STREAM: 34 OUTLET STREAM: 35 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE:

INLET STREAM:26OUTLET STREAM:27PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE

 MOLE(LBMOL/HR)
 289.429
 289.429
 0.00000

 MASS(LB/HR)
 8289.65
 8289.65
 0.00000

 ENTHALPY(BTU/HR)
 0.205141E+07
 0.205141E+07
 0.226995E-15

*** INPUT DATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH

MAXIMUM NO. ITERATIONS	30
CONVERGENCE TOLERANCE	0.000100000
FLASH SPECS FOR COLD SIDE:	
TWO PHASE FLASH	
MAXIMUM NO. ITERATIONS	30
CONVERGENCE TOLERANCE	0.000100000
FLOW DIRECTION AND SPECIF	ICATION:
COUNTERCURRENT HEAT EX	XCHANGER
SPECIFIED MIN OUTLET TEMI	P APPR
SPECIFIED VALUE F	18.0000
LMTD CORRECTION FACTOR	1.00000
PRESSURE SPECIFICATION:	
HOT SIDE OUTLET PRESSURE	E PSIA 140.5000
COLD SIDE OUTLET PRESSUR	E PSIA 147.0000
HEAT TRANSFER COEFFICIENT OVERALL COEFFICIENT	SPECIFICATION: BTU/HR-SQFT-R 29.4300
*** OVERALL RESU	JLTS ***
STREAMS:	
34> HOT	> 35
T= 1.3826D+03	T= 1.0631D+03
P= 1.4350D+02	P= 1.4050D+02
V= 1.0000D+00	V= 1.0000D+00
27 < COLD	< 26
T= 1.0451D+03	T= 7.5751D+02
P= 1.4700D+02	P= 1.5000D+02
V= 1.0000D+00	V= 1.0000D+00

DUTY AND AREA:

CALCULATED HEAT DUTY	BTU/HR	335565.2889
CALCULATED (REQUIRED) ARE	A SQFT	35.4925
ACTUAL EXCHANGER AREA	SQFT	35.4925

PER CENT OVER-DESIGN 0.0000 HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 29.4300 UA (DIRTY) BTU/HR-R 1044.5432 LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) F 321.2555 NUMBER OF SHELLS IN SERIES 1 PRESSURE DROP: PSI 3.0000 HOTSIDE, TOTAL COLDSIDE, TOTAL PSI 3.0000 PRESSURE DROP PARAMETER: HOT SIDE: 0.31584E+06 COLD SIDE: 0.30727E+06 BLOCK: M-101 MODEL: MIXER -----INLET STREAMS: 18 21 OUTLET STREAM: 22 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 22.2053 22.2053 0.00000 MASS(LB/HR) 384.388 384.388 0.00000 ENTHALPY(BTU/HR) -0.139030E+07 -0.139030E+07 0.167468E-15 *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: P-101 MODEL: PUMP _____

INLET STREAM: 19

OUTLET STREAM: 20 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT IN **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 11.0231 11.0231 0.00000 MASS(LB/HR) 198.584 198.584 0.00000 ENTHALPY(BTU/HR) -0.135447E+07 -0.135446E+07 -0.147350E-05 *** INPUT DATA *** PRESSURE CHANGE PSI 1.00000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE 0.000100000 *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 3.18875 PRESSURE CHANGE PSI 1.00000 NPSH AVAILABLE FT-LBF/LB 339.175 FLUID POWER HP 0.00023191 BRAKE POWER HP 0.00078438 ELECTRICITY KW 0.00058491 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.00078438 HEAD DEVELOPED FT-LBF/LB 2.31226 BLOCK: R-100 MODEL: RSTOIC -----INLET STREAMS: FAKE1 27 OUTLET STREAM: FAKE2 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE

MOLE(LBMOL/HR) 198.048 178.830 -19.2177 0.00000

MASS(LB/HR) 4836.68 4836.68 0.00000 ENTHALPY(BTU/HR) 934314. -0.265712E+07 1.35163

*** INPUT DATA *** STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : HYDROGEN -2.00 WATER 2.00 OXYGEN -1.00

REACTION # 2: SUBSTREAM MIXED : CARBO-01 2.00 CARBO-02 -2.00 OXYGEN -1.00

REACTION EXTENT SPECS: NUMBER= 2 REACTION # 1: EXTENT= 14.33 LBMOL/HR REACTION # 2: EXTENT= 4.888 LBMOL/HR

TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,562.00SPECIFIED PRESSUREPSIA146.959146.959MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONS0.000100000GENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS ***OUTLET TEMPERATUREF1562.0OUTLET PRESSUREPSIA146.96HEAT DUTYBTU/HR-0.35914E+07VAPOR FRACTION1.0000

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I)

HYDROGEN	0.20680E-01	0.20680E-01	0.20680E-01	MISSING
CARBO-01	0.56136E-01	0.56136E-01	0.56136E-01	MISSING
CARBO-02	0.55043E-02	0.55043E-02	0.55043E-02	MISSING
WATER	0.16218 0.1	0.162	MISSIN	١G
OXYGEN	0.73758E-01	0.73758E-01	0.73758E-01	MISSING
NITROGEN	0.68174 (0.68174 0.6	8174 MISS	ING

BLOCK: REFORMER MODEL: RSTOIC

INLET STREAM:24OUTLET STREAM:FAKE1PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 22.2053 43.7245 21.5193 0.00000 MASS(LB/HR) 384.388 384.388 -0.147880E-15 ENTHALPY(BTU/HR) -0.119148E+07 -152618. -0.871909

*** INPUT DATA *** STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : HYDROGEN 3.00 CARBO-02 1.00 WATER -1.00 METHANE -1.00

REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:METHANE CONV FRAC: 1.000

TWO PHASE TP FLASH SPECIFIED TEMPERATURE F SPECIFIED PRESSURE PSIA MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE SIMULTANEOUS REACTIONS

1,472.00 146.959 30 0.000100000 GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO

*** RESULTS ***	
OUTLET TEMPERATURE F	1472.0
OUTLET PRESSURE PSIA	146.96
HEAT DUTY BTU/HR	0.10389E+07
VAPOR FRACTION	1.0000

REACTION EXTENTS:

REACTION REACTION NUMBER EXTENT LBMOL/HR 1 10.760

V-L PHASE EQUILIBRIUM :

COMP	F(I) X(I	I) Y(I)	K(I)		
HYDROGEN	0.74005	0.74005	0.74005	MIS	SSING
CARBO-01	0.60259E-02	2 0.60259E-	-02 0.6025	59E-02	MISSING
CARBO-02	0.24608	0.24608	0.24608	MISS	ING
WATER	0.78449E-02	0.78449E-0	0.78449	9E-02	MISSING

BLOCK: SEP MODEL: SEP

-----INLET STREAM: FAKE2
OUTLET STREAMS: 33 28
PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE

MOLE(LBMOL/HR)178.830178.8300.00000MASS(LB/HR)4836.684836.680.00000ENTHALPY(BTU/HR)-0.265712E+07-0.265715E+070.981577E-05

*** INPUT DATA ***

FLASH SPECS FOR STREAM 33 TWO PHASE TP FLASH 0.0 PRESSURE DROP PSI MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR STREAM 28 TWO PHASE TP FLASH 0.0 PRESSURE DROP PSI MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FRACTION OF FEED SUBSTREAM= MIXED STREAM= 33 CPT= OXYGEN FRACTION= 1.00000 NITROGEN 1.00000 *** RESULTS *** HEAT DUTY BTU/HR -26.082 COMPONENT = HYDROGEN STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = CARBO-01 STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = CARBO-02 STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = WATERSTREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = OXYGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000

COMPONENT = NITROGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000

BLOCK: T-100 MODEL: COMPR

INLET STREAM:35OUTLET STREAM:36PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF.

TOTAL BALANCE

MOLE(LBMOL/HR)135.106135.1060.00000MASS(LB/HR)3837.353837.350.00000ENTHALPY(BTU/HR)964482.465398.0.517464

*** INPUT DATA ***

ISENTROPIC TURBINEOUTLET PRESSURE PSIA14.6959ISENTROPIC EFFICIENCY0.72000MECHANICAL EFFICIENCY1.00000

*** RESULTS ***

INDICATED HORSEPO	WER REQUIREMEN	T HP	-196.148
BRAKE HORSEPOW	ER REQUIREMENT	HP	-196.148
NET WORK REQUIRED	HP	-196.148	
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEPO	WER REQUIREMEN	IT HP	-272.427
CALCULATED OUTLET TEMP F		565.743	
ISENTROPIC TEMPERATURE F		364.052	
EFFICIENCY (POLYTR/ISENTR) USED		0.72000	
OUTLET VAPOR FRACTION		1.00000	
HEAD DEVELOPED,	FT-LBF/LB	-140,567.	
MECHANICAL EFFICIENCY USED		1.00000	
INLET HEAT CAPACITY RATIO		1.35217	
INLET VOLUMETRIC F	LOW RATE , CUFT/	HR	15,769.5
OUTLET VOLUMETRIC FLOW RATE, CUFT/HR 101,212.			
INLET COMPRESSIBILITY FACTOR	1.00356		
-------------------------------	---------		
OUTLET COMPRESSIBILITY FACTOR	1.00046		
AV. ISENT. VOL. EXPONENT	1.37652		
AV. ISENT. TEMP EXPONENT	1.37391		
AV. ACTUAL VOL. EXPONENT	1.21434		
AV. ACTUAL TEMP EXPONENT	1.21233		

BLOCK: C-101 MODEL: COMPR

_____ **INLET STREAM:** 23 OUTLET STREAM: 24 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 22.2053 22.2053 0.00000 MASS(LB/HR) 384.388 384.388 0.00000 ENTHALPY(BTU/HR) -0.119732E+07 -0.119148E+07 -0.488396E-02 *** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA 146.959 ISENTROPIC EFFICIENCY 0.72000 MECHANICAL EFFICIENCY 1.00000 *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP 2.29823 BRAKE HORSEPOWER REQUIREMENT HP 2.29823 NET WORK REQUIRED 2.29823 HP POWER LOSSES HP 0.0 ISENTROPIC HORSEPOWER REQUIREMENT HP 1.65472 CALCULATED OUTLET TEMP F 1,490.82 ISENTROPIC TEMPERATURE F 1,485.58 EFFICIENCY (POLYTR/ISENTR) USED 0.72000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, FT-LBF/LB 8,523.57 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.16636 INLET VOLUMETRIC FLOW RATE, CUFT/HR 3,291.94 OUTLET VOLUMETRIC FLOW RATE, CUFT/HR 3,149.17 INLET COMPRESSIBILITY FACTOR 1.00052 OUTLET COMPRESSIBILITY FACTOR 0.99572 AV. ISENT. VOL. EXPONENT 1.07742 AV. ISENT. TEMP EXPONENT 1.16586 AV. ACTUAL VOL. EXPONENT 1.11032 AV. ACTUAL TEMP EXPONENT 1.24531

BLOCK: C-102 MODEL: COMPR ------**INLET STREAM:** 25 **OUTLET STREAM:** 26 SOAVE-REDLICH-KWONG EQUATION OF STATE PROPERTY OPTION SET: SRK *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 154.324 154.324 0.00000 MASS(LB/HR) 4452.30 4452.30 0.00000 ENTHALPY(BTU/HR) -446.159 751366. -1.00059*** INPUT DATA *** ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE PSIA 150.000 ISENTROPIC EFFICIENCY 0.72000 MECHANICAL EFFICIENCY 1.00000 *** RESULTS *** INDICATED HORSEPOWER REQUIREMENT HP 295.473 BRAKE HORSEPOWER REOUIREMENT HP 295.473 NET WORK REQUIRED 295.473 HP HP 0.0 POWER LOSSES ISENTROPIC HORSEPOWER REQUIREMENT HP 212.741 CALCULATED OUTLET TEMP F 757.513 ISENTROPIC TEMPERATURE F 571.995 EFFICIENCY (POLYTR/ISENTR) USED 0.72000 OUTLET VAPOR FRACTION 1.00000 HEAD DEVELOPED, FT-LBF/LB 94,608.9 MECHANICAL EFFICIENCY USED 1.00000 INLET HEAT CAPACITY RATIO 1.40099 INLET VOLUMETRIC FLOW RATE, CUFT/HR 60,468.8 OUTLET VOLUMETRIC FLOW RATE, CUFT/HR 13.496.2 INLET COMPRESSIBILITY FACTOR 0.99985 OUTLET COMPRESSIBILITY FACTOR 1.00429 AV. ISENT. VOL. EXPONENT 1.39536 AV. ISENT. TEMP EXPONENT 1.39146 AV. ACTUAL VOL. EXPONENT 1.54900 AV. ACTUAL TEMP EXPONENT 1.54443 BLOCK: E-105 MODEL: HEATX _____ HOT SIDE: _____ 29 INLET STREAM: **OUTLET STREAM:** 30 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 17 OUTLET STREAM: 18 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 54.9067 54.9067 0.00000 MASS(LB/HR) 1185.13 1185.13 0.00000 ENTHALPY(BTU/HR) -0.483449E+07 -0.483449E+07 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE F 18.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 140.0000 COLD SIDE OUTLET PRESSURE PSIA 143.2000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 24.4600 *** OVERALL RESULTS *** STREAMS: -----| ----->| HOT 29 |----> 30

 T= 9.2178D+02 |
 I
 T= 7.3443D+02

 P= 1.4300D+02 |
 I
 P= 1.4000D+02

 V= 1.0000D+00 |
 I
 V= 1.0000D+00

 | V= 1.0000D+00 COLD |<---- 17 18 <-----| | T= 7.6730D+01 T= 7.1641D+02 | P= 1.4320D+02 P= 1.4350D+02 V = 1.0000D + 00V= 9.9550D-01 -----DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 78514.8737 CALCULATED (REQUIRED) AREA SQFT 8.2599 ACTUAL EXCHANGER AREA SOFT 8.2599 0.0000 PER CENT OVER-DESIGN

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 24.4600 UA (DIRTY) BTU/HR-R 202.0369 LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR 1.0000 LMTD (CORRECTED) 388.6166 F NUMBER OF SHELLS IN SERIES 1 PRESSURE DROP: HOTSIDE, TOTAL PSI 3.0000 COLDSIDE, TOTAL PSI 0.3000 PRESSURE DROP PARAMETER: HOT SIDE: 0.49247E+07 COLD SIDE: 0.12518E+08 BLOCK: E-106 MODEL: HEATX _____ HOT SIDE: _____ **INLET STREAM:** 28 **OUTLET STREAM:** 29 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 20 OUTLET STREAM: 21 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT **RELATIVE DIFF.** IN TOTAL BALANCE MOLE(LBMOL/HR) 54.7476 54.7476 0.00000 1197.92 MASS(LB/HR) 1197.92 0.00000 ENTHALPY(BTU/HR) -0.550463E+07 -0.550463E+07 0.338378E-15 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE F 18.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 143.0000

COLD SIDE OUTLET PRESSURE PSIA 143.2000

HEAT TRANSFER COEFFICIENT SPECIFICATION:
OVERALL COEFFICIENTBTU/HR-SQFT-R40.4100

*** OVERALL RESULTS ***

STREAMS:

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 284986.1148 CALCULATED (REQUIRED) AREA SQFT 9.4331 ACTUAL EXCHANGER AREA SQFT 9.4331 PER CENT OVER-DESIGN 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 40.4100 UA (DIRTY) BTU/HR-R 381.1911
LOG-MEAN TEMPERATURE DIFFERENCE:LMTD CORRECTION FACTOR1.0000LMTD (CORRECTED)F747.6200NUMBER OF SHELLS IN SERIES1
PRESSURE DROP: HOTSIDE, TOTAL PSI 3.9595 COLDSIDE, TOTAL PSI 4.7595
PRESSURE DROP PARAMETER: HOT SIDE: 0.51164E+07 COLD SIDE: 0.29778E+09 BLOCK: E-107 MODEL: HEATX
HOT SIDE:
INLET STREAM: 33 OUTLET STREAM: 34 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE:
INLET STREAM: 22 OUTLET STREAM: 23 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(LBMOL/HR) 157.311 157.311 0.00000 MASS(LB/HR) 4221.74 4221.74 0.00000 ENTHALPY(BTU/HR) 102724. 0.198325E-14 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE F 1472.0000 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 143.5000 COLD SIDE OUTLET PRESSURE PSIA 139.9000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 21.2900 *** OVERALL RESULTS *** STREAMS: ---------->| HOT |----> 34 33 T= 1.5620D+03 | P= 1.4696D+02 | V= 1.0000D+00 | T= 1.3826D+03 | P= 1.4350D+02 | V= 1.0000D+00 COLD |<---- 22 23 <-----| | T= 7.9188D+02 T= 1.4720D+03 | P= 1.3990D+02 | P= 1.4320D+02 V= 1.0000D+00 | V = 1.0000D + 00-----DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 192974.4104 CALCULATED (REQUIRED) AREA SQFT 34.0610 ACTUAL EXCHANGER AREA SOFT 34.0610 0.0000 PER CENT OVER-DESIGN

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT UA (DIRTY)	Γ (DIRTY) BTU/HR-R	BTU/HR-SQFT-R 725.1580	21.2900	
LOG-MEAN TEMPERATU LMTD CORRECTION FA LMTD (CORRECTED)	RE DIFFER CTOR F	RENCE: 1.000 266.1136	00	
NUMBER OF SHELLS IN	SERIES	1		
PRESSURE DROP:	DOL	2 4 50 5		
COLDSIDE, TOTAL	PSI PSI	3.4595 3.3000		
PRESSURE DROP PARAM	IETER:			
HOT SIDE:		0.32436E+06		
COLD SIDE:		0.22263E+08		
BLOCK: E-108 MODEL: H	HEATER			
INLET STREAM: 30				
OUTLET STREAM: 31				
OUTLET WATER STREAM	A: 32 SRK S	OAVE-REDI ICH-K	WONG FOLIATIO	Ν ΟΕ STATE
FREE WATER OPTION SET	T· SYSOP1	2 ASME STEAM 1	TABLE	OF STATE
SOLUBLE WATER OPTIO	N: THE M	AIN PROPERTY OF	TION SET (SRK).
*** MASS ANI) ENERGY	BALANCE ***		
IN	OUT	RELATIVE DIFF.		
TOTAL BALANCE				
MOLE(LBMOL/HR)	43.7245	43.7245 0.0	00000	
MASS(LB/HR) 9	99.331	999.331 0.1137	63E-15	
ENTHALPY(BIU/HR)	-0.45136	/E+0/ -0.529325E-	F07 0.147278	
*** INPUT D	DATA ***			
TWO PHASE TP FLASH	ł			
FREE WATER CONSIDER	ED	-		
SPECIFIED TEMPERATUR	RE	F 100.	000	
SPECIFIED PRESSURE	PSI	A 140.00	00	
MAXIMUM NO. ITERATIO	JINS NCE	30	000100000	
CONVERGENCE TOLERA	INCE	0	.000100000	
*** RESULI	5 ***	100.00		
OUTLET DESSURE	F STA	100.00		
HEAT DITY PTUN	SIA UD	140.00 0.77059E	06	
$\begin{array}{c} \Pi \Box A \Pi D U \Pi \\ \Pi \Box A \Pi D U \Pi \\ \end{array} \qquad \qquad D \Pi U \Pi \\ D \Pi T \Pi F T V \Delta P \cap P F P \Delta C T \Pi \\ \end{array}$	ON	+-0.77930E 0 3300	90 97	
OUTLET $1ST I IOUID/TO'$		D 0.3392	0000	
PRESSURE-DROP CORRE	LATION P	ARAMETER	0.0000	

V-L1-L2 PHASE EQUILIBRIUM :

 COMP
 F(I)
 X1(I)
 X2(I)
 Y(I)
 K1(I)
 K2(I)

 HYDROGEN
 0.846E-01
 0.205E-01
 0.00
 0.249
 75.5

CARBO-01 0.230 0.853 0.00 0.677 4.93 CARBO-02 0.225E-01 0.131E-01 0.00 0.664E-01 31.5 WATER 0.663 0.113 1.00 0.746E-02 0.410 0.746E-02 *** ASSOCIATED UTILITIES *** UTILITY ID FOR WATER U-1 **RATE OF CONSUMPTION** 2.6074+04 LB/HR COST 0.2365 \$/HR BLOCK: E-109 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 34 OUTLET STREAM: 35 SOAVE-REDLICH-KWONG EQUATION OF STATE PROPERTY OPTION SET: SRK COLD SIDE: -----**INLET STREAM:** 26 **OUTLET STREAM:** 27 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE 289.429 289.429 MOLE(LBMOL/HR) 0.00000 MASS(LB/HR) 8289.65 8289.65 0.00000 ENTHALPY(BTU/HR) 0.205141E+07 0.205141E+07 0.226995E-15 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED MIN OUTLET TEMP APPR SPECIFIED VALUE 18.0000 F LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE PSIA 140.5000 COLD SIDE OUTLET PRESSURE PSIA 147.0000 HEAT TRANSFER COEFFICIENT SPECIFICATION: OVERALL COEFFICIENT BTU/HR-SQFT-R 29.4300

*** OVERALL RESULTS ***

STREAMS:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DUTY AND AREA: CALCULATED HEAT DUTY BTU/HR 335565.2889 CALCULATED (REQUIRED) AREA SQFT 35.4925 ACTUAL EXCHANGER AREA SQFT 35.4925 PER CENT OVER-DESIGN 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) BTU/HR-SQFT-R 29.4300 UA (DIRTY) BTU/HR-R 1044.5432
LOG-MEAN TEMPERATURE DIFFERENCE:LMTD CORRECTION FACTOR1.0000LMTD (CORRECTED)F321.2555NUMBER OF SHELLS IN SERIES1
PRESSURE DROP:HOTSIDE, TOTALPSI3.0000COLDSIDE, TOTALPSI3.0000
PRESSURE DROP PARAMETER:HOT SIDE:0.31584E+06COLD SIDE:0.30727E+06
BLOCK: M-101 MODEL: MIXER
INLET STREAMS: 18 21 OUTLET STREAM: 22 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE
*** MASS AND ENERGY BALANCE ***
TOTAL BALANCE MOLE(LBMOL/HR) 22.2053 22.2053 0.00000 MASS(LB/HR) 384.388 384.388 0.00000 ENTHALPY(BTU/HR) -0.139030E+07 -0.139030E+07 0.167468E-15
*** INPUT DATA ***
TWO PHASE FLASH MAXIMUM NO ITERATIONS 30
CONVERGENCE TOLERANCE 0.000100000
UUILEI PRESSURE: MINIMUM OF INLET STREAM PRESSURES

BLOCK: P-101 MODEL: PUMP ------**INLET STREAM:** 19 **OUTLET STREAM:** 20 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT **RELATIVE DIFF.** TOTAL BALANCE MOLE(LBMOL/HR) 11.0231 11.0231 0.00000 MASS(LB/HR) 198.584 198.584 0.00000 ENTHALPY(BTU/HR) -0.135447E+07 -0.135446E+07 -0.147350E-05 *** INPUT DATA *** PRESSURE CHANGE PSI 1.00000 DRIVER EFFICIENCY 1.00000 FLASH SPECIFICATIONS: LIQUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE 0.000100000 *** RESULTS *** VOLUMETRIC FLOW RATE CUFT/HR 3.18875 1.00000 PRESSURE CHANGE PSI NPSH AVAILABLE FT-LBF/LB 339.175 FLUID POWER HP 0.00023191 BRAKE POWER HP 0.00078438 ELECTRICITY KW 0.00058491 PUMP EFFICIENCY USED 0.29566 NET WORK REQUIRED HP 0.00078438 HEAD DEVELOPED FT-LBF/LB 2.31226 BLOCK: R-100 MODEL: RSTOIC -----INLET STREAMS: 27 FAKE1 OUTLET STREAM: FAKE2 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT GENERATION RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 198.048 178.830 -19.2177 0.00000 MASS(LB/HR) 4836.68 4836.68 0.00000 ENTHALPY(BTU/HR) 934314. -0.265712E+07 1.35163 *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : HYDROGEN -2.00 WATER 2.00 OXYGEN -1.00 REACTION # 2:

SUBSTREAM MIXED : CARBO-01 2.00 CARBO-02 -2.00 OXYGEN -1.00

REACTION EXTENT SPECS: NUMBER= 2 REACTION # 1: EXTENT= 14.33 LBMOL/HR REACTION # 2: EXTENT= 4.888 LBMOL/HR

TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,562.00SPECIFIED PRESSUREPSIA146.959MAXIMUM NO. ITERATIONS3030CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSSPECIESGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** R	ESULTS ***	
OUTLET TEMPERA	TURE F	1562.0
OUTLET PRESSURI	E PSIA	146.96
HEAT DUTY	BTU/HR	-0.35914E+07
VAPOR FRACTION		1.0000

V-L PHASE EQUILIBRIUM :

COMP F(I)X(I)Y(I)**K**(**I**) HYDROGEN 0.20680E-01 0.20680E-01 0.20680E-01 MISSING 0.56136E-01 0.56136E-01 0.56136E-01 MISSING CARBO-01 CARBO-02 0.55043E-02 0.55043E-02 0.55043E-02 MISSING WATER 0.16218 0.16218 0.16218 MISSING OXYGEN 0.73758E-01 0.73758E-01 0.73758E-01 MISSING NITROGEN 0.68174 0.68174 0.68174 MISSING

BLOCK: REFORMER MODEL: RSTOIC

INLET STREAM: 24 OUTLET STREAM: FAKE1 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT

 GENERATION
 RELATIVE DIFF.

 TOTAL BALANCE

 MOLE(LBMOL/HR)
 22.2053
 43.7245
 21.5193
 0.00000

 MASS(LB/HR)
 384.388
 384.388
 -0.147880E-15

 ENTHALPY(BTU/HR)
 -0.119148E+07
 -152618.
 -0.871909

*** INPUT DATA *** STOICHIOMETRY MATRIX:

REACTION # 1: SUBSTREAM MIXED : HYDROGEN 3.00 CARBO-02 1.00 WATER -1.00 METHANE -1.00 REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:METHANE CONV FRAC: 1.000

TWOPHASE TP FLASHSPECIFIED TEMPERATURE F1,472.00SPECIFIED PRESSUREPSIA146.959MAXIMUM NO. ITERATIONS3030CONVERGENCE TOLERANCE0.000100000SIMULTANEOUS REACTIONSSOGENERATE COMBUSTION REACTIONS FOR FEED SPECIESNO

*** RESULTS *** OUTLET TEMPERATURE F OUTLET PRESSURE PSIA HEAT DUTY BTU/HR VAPOR FRACTION

1472.0 146.96 0.10389E+07 1.0000

REACTION EXTENTS:

REACTION REACTION NUMBER EXTENT LBMOL/HR 1 10.760

V-L PHASE EQUILIBRIUM :

COMP F(I)Y(I)K(I) X(I)0.74005 HYDROGEN 0.74005 0.74005 MISSING CARBO-01 0.60259E-02 0.60259E-02 0.60259E-02 MISSING CARBO-02 0.24608 0.24608 0.24608 MISSING WATER 0.78449E-02 0.78449E-02 0.78449E-02 MISSING

BLOCK: SEP MODEL: SEP

INLET STREAM:FAKE2OUTLET STREAMS:3328PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE

 *** MASS AND ENERGY BALANCE ***

 IN
 OUT
 RELATIVE DIFF.

 TOTAL BALANCE
 MOLE(LBMOL/HR)
 178.830
 178.830
 0.00000

 MASS(LB/HR)
 4836.68
 4836.68
 0.00000

 ENTHALPY(BTU/HR)
 -0.265712E+07
 -0.265715E+07
 0.981577E-05

*** INPUT DATA ***

FLASH SPECS FOR STREAM 33 TWO PHASE TP FLASH 0.0 PRESSURE DROP PSI MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR STREAM 28 TWO PHASE TP FLASH PRESSURE DROP PSI 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FRACTION OF FEED SUBSTREAM= MIXED STREAM= 33 CPT= OXYGEN FRACTION= 1.00000 NITROGEN 1.00000 *** RESULTS *** HEAT DUTY BTU/HR -26.082 COMPONENT = HYDROGEN STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = CARBO-01 STREAM SUBSTREAM SPLIT FRACTION MIXED 28 1.00000 COMPONENT = CARBO-02STREAM SUBSTREAM SPLIT FRACTION 28 MIXED 1.00000 COMPONENT = WATER STREAM SUBSTREAM SPLIT FRACTION 28 1.00000 MIXED COMPONENT = OXYGEN STREAM SUBSTREAM SPLIT FRACTION MIXED 1.00000 33 COMPONENT = NITROGEN STREAM SUBSTREAM SPLIT FRACTION 33 MIXED 1.00000 BLOCK: T-100 MODEL: COMPR _____ INLET STREAM: 35 OUTLET STREAM: 36 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE MOLE(LBMOL/HR) 135.106 135.106 0.00000

MASS(LB/HR) 3837.35 3837.35 0.00000 ENTHALPY(BTU/HR) 964482. 465398. 0.517464

*** INPUT DATA ***

14.6959
0.72000
1.00000

*** RESULTS ***

INDICATED HORSEPO	WER REQUIREMEN	NT HP	-196.148
BRAKE HORSEPOW	ER REQUIREMENT	HP	-196.148
NET WORK REQUIRED) HP	-196.148	
POWER LOSSES	HP	0.0	
ISENTROPIC HORSEPC	OWER REQUIREME	NT HP	-272.427
CALCULATED OUTLE	T TEMP F	565.7	43
ISENTROPIC TEMPERA	ATURE F	364.05	52
EFFICIENCY (POLYTRA	/ISENTR) USED	0.	72000
OUTLET VAPOR FRAC	TION	1.0000	0
HEAD DEVELOPED,	FT-LBF/LB	-140,567.	
MECHANICAL EFFICIE	ENCY USED	1.0	00000
INLET HEAT CAPACIT	Y RATIO	1.352	217
INLET VOLUMETRIC F	FLOW RATE, CUFT	/HR	15,769.5
OUTLET VOLUMETRIC	C FLOW RATE, CUF	T/HR	101,212.
INLET COMPRESSIBIL	JTY FACTOR	1.0	0356
OUTLET COMPRESSIB	ILITY FACTOR	1	.00046
AV. ISENT. VOL. EXPO	NENT	1.37652	
AV. ISENT. TEMP EXPO	ONENT	1.3739	1
AV. ACTUAL VOL. EXI	PONENT	1.214	34
AV. ACTUAL TEMP EX	IPONENT	1.21	233

Material Safety Data Sheets

<u>Hydrogen</u>

International Chemical Safety Cards

HYDROGEN

ICSC: 0001

HYDROGEN (cylinder) H₂ Molecular mass: 2.0

CAS # 1333-74-0 RTECS # MW8900000 ICSC # 0001 UN # 1049 EC # 001-001-00-9

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZA SYMPTON	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Extremely flammable reactions may cause a explosion.	e. Many fire or	NO open flames, NO sparl and NO smoking.	ks,	Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; (see notes) water spray, powder, carbon dioxide.
EXPLOSION	Gas/air mixtures are	explosive.	Closed system, ventilation explosion-proof electrical equipment and lighting. U non-sparking handtools. D handle cylinders with oily hands.	se Oo not	In case of fire: keep cylinder cool by spraying with water.Combat fire from a sheltered position.
EXPOSURE					
• INHALATION	Dizziness. Asphyxia. breathing. Unconscio	Laboured busness.	Closed system and ventila	tion.	Fresh air, rest. Refer for medical attention.
• SKIN	ON CONTACT WIT LIQUID: FROSTBIT	ΥН ГЕ.	Cold-insulating gloves. Protective clothing.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.
• EYES			Safety goggles, or face shi	ield.	
• INGESTION					
SPILLAGE	DISPOSAL	ł	STORAGE		PACKAGING & LABELLING
Evacuate danger a	rea! Consult an H	Fireproof. C	Cool.		

expert! Ventilation. Remove vapour with fine water spray.

F+ symbol R: 12 S: 9-16-33 UN Hazard Class: 2.1

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0001

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities @ IPCS CEC 1993

International Chemical Safety Cards

HYDROGEN

	PHYSICAL STATE; APPEARANCE: ODOURLESS , COLOURLESS COMPRESSED LIQUEFIED GAS	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation.
I M P O R T A N T D A T A	 PHYSICAL DANGERS: The gas mixes well with air, explosive mixtures are easily formed. The gas is lighter than air. CHEMICAL DANGERS: Heating may cause violent combustion or explosion. Reacts violently with air, oxygen, chlorine, fluorine, strong oxidants causing fire and explosion hazard. Metal catalysts, such as platinum and nickel, greatly enhance these reactions. OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV not established 	 INHALATION RISK: On loss of containment this liquid evaporates very quickly causing supersaturation of the air with serious risk of suffocation when in confined areas. EFFECTS OF SHORT-TERM EXPOSURE: The liquid may cause frostbite. Exposure could cause dizzines, high voice. Exposure may result in suffocation. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Boiling point: - 253°C Relative vapour density (air = 1): 0.07 Flash point: flammable gas	Auto-ignition temperature: 500-571°C Explosive limits, vol% in air: 4-76%
	NOTES	

Addition of small amounts of a flammable substance or an increase in the oxygen content of the air strongly enhances combustibility. High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. No odour warning if toxic concentrations are present. Measure hydrogen concentrations with suitable gas detector (a normal flammable gas detector is not suited for the purpose). After use for welding, turn valve off; regularly check tubing, etc., and test for leaks with soap and water. The measures mentioned in section PREVENTION are applicable to production, filling of cylinders, and storage of the gas.

Transport Emergency Card: TEC (R)-20 NFPA Code: H0; F4; R0;

ICSC: 0001

ADDITIONAL INFORMATION

ICSC: 0001

© IPCS, CEC, 1993

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.

IMPORTANT LEGAL NOTICE:

331

HYDROGEN

Water

Material Safety Data Sheet Water

ACC# 00339

Section 1 - Chemical Product and Company Identification

MSDS Name: Water Catalog Numbers: AC327390000, AC327390010, AC327390050 Synonyms: Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7732-18-5	Water	100	231-791-2

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: water-white liquid. Expected to be non-hazardous. **Target Organs:** None.

Potential Health Effects

Eye: Non-irritating to the eyes. **Skin:** Non-irritating to the skin. **Ingestion:** No hazard expected in normal industrial use. **Inhalation:** No hazard expected in normal industrial use. **Chronic:** None

Section 4 - First Aid Measures

Eyes: No specific treatment is necessary, since this material is not likely to be hazardous. **Skin:** No specific treatment is necessary, since this material is not likely to be hazardous. **Ingestion:** No specific treatment is necessary, since this material is expected to be non-hazardous.

Inhalation: No specific treatment is necessary since this material is not likely to be hazardous by inhalation.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: Material will not burn. Extinguishing Media: Not available. Flash Point: Not applicable. Autoignition Temperature: Not applicable. Explosion Limits, Lower:Not available. Upper: Not available. NFPA Rating: (estimated) Health: 0; Flammability: 0; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8.

Spills/Leaks: Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container.

Section 7 - Handling and Storage

Handling: No special handling procedures are required. **Storage:** No special storage requirements.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: There are no special ventilation requirements. **Exposure Limits**

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Water	none listed	none listed	none listed

OSHA Vacated PELs: Water: No OSHA Vacated PELs are listed for this chemical. **Personal Protective Equipment**

Eyes: Eye protection is not normally required.

Skin: Protective garments not normally required.

Clothing: Protective garments not normally required.

Respirators: Respirator protection is not normally required.

Section 9 - Physical and Chemical Properties

Physical State: Liquid Appearance: colorless - Clear - water-white Odor: odorless pH: Not available. Vapor Pressure: 17.5 mm Hg @ 20 deg C. Vapor Density: Not available. Evaporation Rate:Not available. Viscosity: 1 cP @ 20C Boiling Point: 100 deg C Freezing/Melting Point:Not available. Decomposition Temperature:Not available. Solubility: Not available. Specific Gravity/Density:1.000 Molecular Formula:H2O Molecular Weight:18.0134

Section 10 - Stability and Reactivity

Chemical Stability: Stable. Conditions to Avoid: None reported. Incompatibilities with Other Materials: None. Hazardous Decomposition Products: None. Hazardous Polymerization: Will not occur.

Section 11 - Toxicological Information

RTECS#: CAS# 7732-18-5: ZC0110000 LD50/LC50: CAS# 7732-18-5: Oral, rat: LD50 = >90 mL/kg;<br.

Carcinogenicity: CAS# 7732-18-5: Not listed by ACGIH, IARC, NTP, or CA Prop 65.

Epidemiology: No data available. Teratogenicity: No data available. Reproductive Effects: No data available. Mutagenicity: No data available. Neurotoxicity: No data available. Other Studies:</br

Section 12 - Ecological Information

Ecotoxicity: No data available. No information available. **Environmental:** Nonhazardous to the environment. **Physical:** No information available. **Other:** No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification. **RCRA P-Series:** None listed.

RCRA U-Series: None listed.

Section 14 - Transport Information

US DOT	Canada TDG

Shipping Name:	Please contact Fisher Scientific for shipping information	No information available.
Hazard Class:		
UN Number:		
Packing Group:		

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7732-18-5 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs None of the chemicals in this material have an RQ.

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

Section 313 No chemicals are reportable under Section 313.

Clean Air Act:

This material does not contain any hazardous air pollutants.

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA.

None of the chemicals in this product are listed as Priority Pollutants under the CWA. None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA. **STATE**

CAS# 7732-18-5 is not present on state lists from CA, PA, MN, MA, FL, or NJ.

California Prop 65

California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols: Not available. Risk Phrases:

Safety Phrases:

 WGK (Water Danger/Protection) CAS# 7732-18-5: No information available.
 Canada - DSL/NDSL CAS# 7732-18-5 is listed on Canada's DSL List.
 Canada - WHMIS WHMIS: Not available.
 Canadian Ingredient Disclosure List

Section 16 - Additional Information

MSDS Creation Date: 1/12/1999 **Revision #3 Date:** 3/18/2003

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

<u>Oxygen</u>

International Chemical Safety Cards

OXYGEN

ICSC: 0138

OXYGEN Oxygen, compressed O₂ Molecular mass: 32.0

CAS # 7782-44-7 RTECS # RS2060000 ICSC # 0138 UN # 1072 EC # 008-001-00-8

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Not combustible but enhances combustion of otherNO open flames, NO sparks, and NO smoking. NO contactsubstances. Many reactions may cause fire or explosion. Heating will cause rise in pressure with risk of bursting.NO open flames, NO sparks, and NO smoking. NO contact with flammable substances. NO contact with fuels and other combustible materials.			ks, ntact s. l lls.	In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION	Risk of fire and exp contact with combu materials such as oi	losion on stible ls or fats.		In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.	
EXPOSURE • INHALATION • SKIN					
• EYES	Redness.		Safety goggles.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
SPILLAGE	DISPOSAL		STORAGE		PACKAGING & LABELLING
Evacuate danger a expert! Ventilation	rea! Consult an 1.	Fireproof. S combustible substances.	Separated from e and reducing Cool.	O syn R: 8-3 S: 21 UN H	nbol 34 Iazard Class: 2.2

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0138

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

OXYGEN

ICSC: 0138

I M P O	PHYSICAL STATE; APPEARANCE: COMPRESSED GAS.PHYSICAL DANGERS: The gas is heavier than air.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and through the skin. INHALATION RISK:
R T A N T	CHEMICAL DANGERS: The substance is a strong oxidant and reacts violently with combustible and reducing materials, with risks of fire and explosion hazard.	EFFECTS OF SHORT-TERM EXPOSURE:
D A T A	OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV not established.	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Lungs may be affected by inhalation of high concentrations. Symptoms may be delayed.
PHYSICAL PROPERTIES	Boiling point: -183°C Melting point: -218.8°C Solubility in water: moderate (3.1 ml/100 ml at 20°C)	Relative vapour density (air = 1): 1.43 Octanol/water partition coefficient as log Pow: 0.65
ENVIRONMENTAL DATA	1	
	NOTES	

NOTES

Do NOT use in the vicinity of a fire or a hot surface, or during welding. Also consult ICSC # 0880.

IMPORTANT LEGAL NOTICE:

Transport Emergency Card: TEC (R)-842

ADDITIONAL INFORMATION

ICSC: 0138

© IPCS, CEC, 1993

OXYGEN

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. <u>Nitrogen</u>

International Chemical Safety Cards

NITROGEN (GASEOUS)

ICSC: 1198

NITROGEN (GASEOUS) Azote Nitrogen (Compressed) (cylinder) N_2 Molecular mass: 28.01

CAS # 7727-37-9 RTECS # QW9700000 ICSC # 1198 UN # 1066

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	LARDS/ DMS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Not combustible.				In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION					In case of fire: keep cylinder cool by spraying with water.
EXPOSURE					
• INHALATION • SKIN • EYES	Unconsciousness. V Death. See Notes.	Veakness.	Ventilation. Breathing protection.		Fresh air, rest. Artificial respiration if indicated. Oxygen may be beneficial if administered by a trained person on physician's advice. Refer for medical attention.
SPILLAGE	DISPOSAL	:	STORAGE		LABELLING
Ventilation (extra personal protection: self-contained breathing apparatus).		Cool. Keep room.	in a well-ventilated	UN H	lazard Class: 2.2
	SEE I	MPORTAN	T INFORMATION ON J	BACK	Σ.
ICSC: 1198 Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993					

Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

NITROGEN (GASEOUS)

ICSC: 1198

I M P O R T A	 PHYSICAL STATE; APPEARANCE: ODOURLESS, COLOURLESS, TASTELESS, COMPRESSED GAS. PHYSICAL DANGERS: Gas mixes readily with air. CHEMICAL DANGERS: Reacts with oxygen and hydrogen on sparking forming nitric oxide and ammonia Combines directly with lithium 	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation. INHALATION RISK: A harmful concentration of this gas in the air will be reached very quickly on loss of containment. On loss of containment this gas can cause suffocation by lowering the oxygen content of the air in confined areas. See Notes
N T D A T A	and at red heat with calcium, srontium and barium to form nitrides. Forms cyanides when heated with carbon in presence of alkalies or barium oxides. OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV not established.	EFFECTS OF SHORT-TERM EXPOSURE: EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Boiling point: -195.8°C Melting point: -210°C	Solubility in water: none Relative vapour density (air = 1): 0.97

NOTES

High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. Effects are the result of oxygen deficiency. Do not attempt rescue without air supplied respirator.

Transport Emergency Card: TEC (R)-20G01

ADDITIONAL INFORMATION

ICSC: 1198

© IPCS, CEC, 1993

NITROGEN (GASEOUS)

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.

IMPORTANT LEGAL NOTICE:

Carbon Monoxide

International Chemical Safety Cards

CARBON MONOXIDE

ICSC: 0023

CARBON MONOXIDE Carbon oxide (cylinder) CO Molecular mass: 28.0

CAS # 630-08-0 RTECS # FG3500000 ICSC # 0023 UN # 1016 EC # 006-001-00-2

TYPES OF HAZARD/ EXPOSUR E	ACUTE HAZARDS/ SYMPTOMS	PREVENTIO N	FIRST AID/ FIRE FIGHTIN G
FIRE	Extremely flammable.	NO open flames, NO sparks, and NO smoking.	Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with carbon dioxide, wate r spray, powder.
EXPLOSIO N	Gas/air mixtures are explosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Use non- sparking handtools.	In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.
EXPOSUR E		AVOID EXPOSURE OF	IN ALL CASES

• INHALATIO N • SKIN • EYES • INGESTION	Confusion. Dizziness kness.	. Headache. Nausea. Unconsciousness.	(PREGNANT) WOMEN! Wea Ventilation, local exhaust, or breathing protection.	CONSULT A DOCTOR! Fresh air, rest. Artificial respiration if indicated. Refer for medical attention.
SPILLAG	E DISPOSAL	STORAGE	PACKAGI LABELLI	NG & ING
Evacuate danger expert! Ventilati protection: self- apparatus).	r area! Consult an ion (extra personal contained breathing	Fireproof. Cool.	F+ symbol T symbol R: 61-12-23-48/23 S: 53-45 Note: E UN Hazard Class: 2.3 UN Subsidiary Risks: 2	2.1

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0023

Ι

Μ

Р

0

R

Т

A

N

Т

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

CARBON MONOXIDE

PHYSICAL STATE; APPEARANCE:]
ODOURLESS, TASTELESS,	5
COLOURLESS COMPRESSED GAS.	1
PHYSICAL DANGERS:]
The gas mixes well with air, explosive	1
mixtures are easily formed. The gas	2
penetrates easily through walls and ceilings.	(
CHEMICAL DANGERS:]
In the presence of finely dispersed metal]
powders the substance forms toxic and	1
flammable carbonyls. May react vigorously	1
with oxygen, acetylene, chlorine, fluorine,	1
nitrous oxide.	1
	(
OCCUPATIONAL EXPOSURE LIMITS	
(OELs):]

ROUTES OF EXPOSURE:

The substance can be absorbed into the body by inhalation.

ICSC: 0023

INHALATION RISK:

A harmful concentration of this gas in the air will be reached very quickly on loss of containment.

EFFECTS OF SHORT-TERM EXPOSURE:

The substance may cause effects on the blood, cardiovascular system and central nervous system. Exposure at high levels may result in lowering of consciousness and death. Medical observation is indicated.

EFFECTS OF LONG-TERM OR

D A T A	TLV: 25 ppm; 29 mg/m ³ (as TWA) (ACGIH 1994-1995). MAK: 30 ppm; 33 mg/m ³ ; Pregnancy: B (harmful effect probable in spite of observance of MAK) (1993).	REPEATED EXPOSURE: The substance may have effects on the nervous system and the cardiovascular system, resulting in neurological and cardiac disorders). Suspected to cause reproductive effects such as neurological problems, low birth weight, increased still births, and congenital heart problems.				
PHYSICAL PROPERTIES ENVIRONMENTAL	Boiling point: -191°C Melting point: -205°C Solubility in water, ml/100 ml at 20°C: 2.3 Relative vapour density (air = 1): 0.97	Flash point: Flammable Gas Auto-ignition temperature: 605°C Explosive limits, vol% in air: 12.5-74.2				
DATA						
N O T E S						

Carbon monoxide is a product of incomplete combustion of coal, oil, wood. It is present in vehicle exhaust and tobacco smoke. Depending on the degree of exposure, periodic medical examination is indicated. No odour

Transport Emergency Card: TEC (R)-827 NFPA Code: H3; F4; R0

ADDITIONAL INFORMATION

ICSC: 0023

warning if toxic concentrations are present.

IMPORTANT LEGAL NOTICE:

© IPCS, CEC, 1993

CARBON MONOXIDE

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. Carbon Dioxide

International Chemical Safety Cards

CARBON DIOXIDE

CARBON DIOXIDE Carbonic acid gas Carbonic anhydride (cylinder) CO_2 Molecular mass: 44.0

CAS # 124-38-9 RTECS # FF6400000 ICSC # 0021 UN # 1013

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZAF SYMPTOMS	RDS/ S	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Not combustible.				In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION	Containers may burst in the heat of a fire!				In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.
EXPOSURE					
• INHALATION	Dizziness. Headache. Elevated Ventilation. blood pressure. Tachycardia.			Fresh air, rest. Artificial respiration if indicated. Refer for medical attention.	
• SKIN	ON CONTACT WITH LIQUID: FROSTBITE.		Cold-insulating gloves. Protective clothing.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.
• EYES	On contact with liquid: Safety goggles, or face shield. frostbite.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.		
• INGESTION					
SPILLAGE	DISPOSAL	S	STORAGE		PACKAGING & LABELLING
Ventilation. NEVI on liquid (extra pe	ER direct water jet Fire	eproof if	in building. Cool.	UN F	lazard Class: 2.2

on liquid (extra personal protection: self-contained breathing apparatus). 345

ICSC: 0021

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0021

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

CARBON DIOXIDE

ICSC: 0021

	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
	ODOURLESS, COLOURLESS,	The substance can be absorbed into the body
Ι	COMPRESSED LIQUEFIED GAS.	by inhalation.
	DINGICAL DANGEDG.	
М	The gas is beguing then air and may	INHALATION KISK:
р	accumulate in low ceiling spaces causing	evaporates very quickly causing
r	deficiency of oxygen Build up of static	supersaturation of the air with serious risk of
0	electricity can occur at fast flow rates and	suffocation when in confined areas
U	may ignite any explosive mixtures present	sufficientin when in commet areas.
R	Free-flowing liquid condenses to form	EFFECTS OF SHORT-TERM
ĸ	extremely cold dry ice.	EXPOSURE:
Т	5	Inhalation of high concentrations of this gas
_	CHEMICAL DANGERS:	may cause hyperventilation and
Α	The substance decomposes on heating above	unconciousness.Rapid evaporation of the
	2000°C producing toxic carbon	liquid may cause frostbite.
Ν	monoxide. Reacts violently with strong	
	bases and alkali metals. Various metal dusts	EFFECTS OF LONG-TERM OR
Т	such as magnesium, zirconium, titanium,	REPEATED EXPOSURE:
	aluminium, chromium and manganese are	The substance may have effects on the
	ignitable and explosive when suspended and	metabolism.
_	heated in carbon dioxide.	
D	OCCUPATIONAL EXPOSURE LIMITS	
	OCCUPATIONAL EXPOSURE LIMITS	
Α	(UELS): TLV: $5000 \text{ ppm}: 9000 \text{ mg/m}^3$ (as TWA):	
т	$30\ 000\ \text{npm}$; 54 000 mg/m ³ (as STEL)	
1	(ACGIH 1994-1995)	
Α	MAK: 5000 ppm: 9000 mg/m^3 (1993).	
PHYSICAL	Sublimation point: -79°C	Vapour pressure, kPa at 20°C: 5720
PROPERTIES	Solubility in water, ml/100 ml at 20°C: 88	Relative vapour density (air = 1): 1.5
ENVIRONMENTAL		
DATA		

N O T E S

Carbon dioxide is given off by many fermentation processes (wine, beer, etc.) and is a major component of flue gas. High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. No odour warning if toxic concentrations are present. Turn leaking cylinder with the leak up to prevent escape of gas in liquid state. Other UN classification numbers for transport are: UN 1845 carbon dioxide, dry ice; UN 2187 carbon dioxide refrigerated liquid.

Transport Emergency Card: TEC (R)-11-1 (in cylinders); 11-2 (refrigerated gas)

ADDITIONAL INFORMATION

© IPCS, CEC, 1993

ICSC: 0021

CARBON DIOXIDE

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.

IMPORTANT LEGAL NOTICE:

347

Methane

International Chemical Safety Cards

METHANE

ICSC: 0291

METHANE (cylinder) CH₄ Molecular mass: 16.0

CAS # 74-82-8 RTECS # PA1490000 ICSC # 0291 UN # 1971;1972 EC # 601-001-00-4

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION	[FIRST AID/ FIRE FIGHTING
FIRE	Extremely flammable.		NO open flames, NO spar and NO smoking.	rks,	Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with water spray, powder, carbon dioxide
EXPLOSION	Gas/air mixtures are explosive.		Closed system, ventilation, explosion-proof electrical equipment and lighting.		In case of fire: keep cylinder cool by spraying with water.Combat fire from a sheltered position.
EXPOSURE					
• INHALATION	Unconsciousness.		Ventilation. Breathing protection if high concentration.		Fresh air, rest. Artificial respiration if indicated. Refer for medical attention.
• SKIN	Serious frostbite.		Cold-insulating gloves.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.
• EYES					
• INGESTION					
SPILLAGE	DISPOSAL	:	STORAGE		PACKAGING & LABELLING
Evacuate danger area! Consult an expert! Ventilation (extra personal protection: self-contained breathing apparatus).		Fireproof. C the floor and	Cool. Ventilation along d ceiling.	F sym R: 12 S: 9-1 UN H	ibol 6-33 Tazard Class: 2.1
	SEE I	TOODTAN	T INFORMATION ON	DACE	•

Prepared in the context of cooperation between the International Programme on Chemical Safety & the

Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

METHANE

ICSC: 0291

I M P	PHYSICAL STATE; APPEARANCE: COLOURLESS, COMPRESSED OR LIQUEFIED GAS, WITH NO ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation.
O R T A	The gas is lighter than air. CHEMICAL DANGERS:	On loss of containment this gas can cause suffocation by lowering the oxygen content of the air in confined areas.
N T D A T A	OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV: ppm; mg/m ³ simple asphyxiant (ACGIH 1993-1994). MAK not established.	EFFECTS OF SHORT-TERM EXPOSURE: Contact with compressed or liquid gas may cause frostbite. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
PHYSICAL PROPERTIES	Boiling point: -161°C Melting point: -183°C Solubility in water, ml/100 ml at 20°C: 3.3 Relative vapour density (air = 1): 0.6	Flash point: Flammable Gas Auto-ignition temperature: 537°C Explosive limits, vol% in air: 5-15
ENVIRONMENTAL DATA		

NOTES

Density of the liquid at boiling point: 0.42 kg/l. The substance may travel to a source of ignition and flash back. High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. Turn leaking cylinder with the leak up to prevent escape of gas in liquid state. After use for welding, turn valve off; regularly check tubing, etc., and test for leaks with soap and water. The measures mentioned in section PREVENTION are applicable to production, filling of cylinders, and storage of the gas.

Transport Emergency Card: TEC (R)-622, 20G04 NFPA Code: H 1; F 4; R 0;

ADDITIONAL INFORMATION

ICSC: 0291

© IPCS, CEC, 1993

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in

IMPORTANT LEGAL NOTICE:

349

METHANE

national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.
<u>Antimony</u>

Material Safety Data Sheet Antimony

ACC# 01610

Section 1 - Chemical Product and Company Identification

MSDS Name: Antimony Catalog Numbers: A845-500 Synonyms: Stibium; antimony regulus Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7440-36-0	ANTIMONY	>=99.5	231-146-5

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: silver white solid.

Warning! Causes eye, skin, and respiratory tract irritation. Harmful if inhaled or swallowed. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. May cause blood abnormalities. May cause cardiac disturbances. Inhalation of fumes may cause metal-fume fever.

Target Organs: Kidneys, liver, cardiovascular system.

Potential Health Effects

Eye: Causes eye irritation. May cause conjunctivitis.

Skin: Causes skin irritation. Chronic exposure may cause dizziness, dry throat, sleepiness, anorexia, and nausea. Chronic inhalation may result in liver, kidney, and cardiac changes. **Ingestion:** May cause severe digestive tract irritation with abdominal pain, nausea, vomiting and diarrhea. May cause slow pulse, low blood pressure, shallow breathing, and **Inhalation:** Dust is irritating to the respiratory tract. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. **Chronic:** Prolonged or repeated skin contact may cause dermatitis. Chronic exposure may cause dizziness, dry throat, sleepiness, anorexia, and nausea. Chronic inhalation may result in liver, kidney, and cardiac changes.

Section 4 - First Aid Measures

Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.

Ingestion: If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give anything by mouth to an unconscious person. Get medical aid.

Inhalation: Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

Notes to Physician: Treat symptomatically and supportively.

Antidote: The use of Dimercaprol or BAL (British Anti-Lewisite) as a chelating agent should be determined by qualified medical personnel.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Material will burn in a fire. Dust can be an explosion hazard when exposed to heat or flame. Bulk metal is combustible in air at high temperatures. Extinguishing Media: DO NOT USE WATER, CO2, OR FOAM DIRECTLY ON FIRE ITSELF. Use dry sand, graphite powder, dry sodium chloride-based extinguishers. Flash Point: Not applicable. Autoignition Temperature: 330 deg C (626.00 deg F) Explosion Limits, Lower: 0.42 oz/ft3 Upper: Not available. NFPA Rating: (estimated) Health: 2; Flammability: 1; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8.

Spills/Leaks: Vacuum or sweep up material and place into a suitable disposal container. Avoid generating dusty conditions.

Section 7 - Handling and Storage

Handling: Use with adequate ventilation. Minimize dust generation and accumulation. Avoid contact with eyes. Keep away from heat, sparks and flame. Avoid ingestion and inhalation.

Storage: Keep away from heat and flame. Do not store in direct sunlight. Store in a cool, dry, well-ventilated area away from incompatible substances. Tarnishes in moist air.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
ANTIMONY	0.5 mg/m3 TWA	0.5 mg/m3 TWA 50 mg/m3 IDLH	0.5 mg/m3 TWA

OSHA Vacated PELs: ANTIMONY: 0.5 mg/m3 TWA

Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.

Skin: Wear appropriate gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to minimize contact with skin.

Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149, Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Section 9 - Physical and Chemical Properties

Physical State: Solid Appearance: silver white Odor: none reported pH: Not available. Vapor Pressure: Negligible. Vapor Density: Not available. Evaporation Rate:Negligible. Viscosity: Not available. Boiling Point: 1635 deg C Freezing/Melting Point:630 deg C Decomposition Temperature:Not available. Solubility: Insoluble in water. Specific Gravity/Density: 6.684 Molecular Formula:Sb Molecular Weight:121.71

Section 10 - Stability and Reactivity

Chemical Stability: Stable at room temperature in closed containers under normal storage and handling conditions.

Conditions to Avoid: Incompatible materials, ignition sources, moisture.

Incompatibilities with Other Materials: Incompatible with ammonium nitrate, bromine, bromine trifluoride, bromoazide, chloric acid, chlorine, chlorine monoxide, chlorine trifluoride, fluorine, iodine, nitric acid, potassium nitrate, potassium permanganate, potassium peroxide, sodium nitrate, and sodium peroxide.

Hazardous Decomposition Products: Stibine fumes.

Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 7440-36-0: CC4025000 LD50/LC50: CAS# 7440-36-0: Oral, rat: LD50 = 7 gm/kg;

Carcinogenicity: CAS# 7440-36-0: Not listed by ACGIH, IARC, NTP, or CA Prop 65.

Epidemiology: Present evidence in humans is inconclusive regarding an increased risk of lung cancer and reproductive disorders from antimony exposure. **Teratogenicity:** No data available. **Reproductive Effects:** No data available. Mutagenicity: No data available. Neurotoxicity: No data available. Other Studies:

Section 12 - Ecological Information

No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification. **RCRA P-Series:** None listed.

RCRA U-Series: None listed.

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	ANTIMONY POWDER	ANTIMONY POWDER
Hazard Class:	6.1	6.1
UN Number:	UN2871	UN2871
Packing Group:	III	III

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7440-36-0 is listed on the TSCA inventory. Health & Safety Reporting List CAS# 7440-36-0: Effective 10/4/82, Sunset 10/4/92 Chemical Test Rules None of the chemicals in this product are under a Chemical Test Rule. Section 12b None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs

CAS# 7440-36-0: 5000 lb final RQ (no reporting of releases of this hazardous substance is requir

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7440-36-0: immediate, delayed.

Section 313

This material contains ANTIMONY (CAS# 7440-36-0, >=99.5%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants.

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 7440-36-0 is listed as a Priority Pollutant under the Clean Water Act. CAS# 7440-36-0 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA. **STATE**

CAS# 7440-36-0 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California Prop 65

California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives

Hazard Symbols:

XN N

Risk Phrases:

R 20/22 Harmful by inhalation and if swallowed. R 51/53 Toxic to aquatic organisms, may cause long-term adverse

effects in the aquatic environment.

Safety Phrases:

S 61 Avoid release to the environment. Refer to special instructions /safety data sheets.

WGK (Water Danger/Protection)

CAS# 7440-36-0: No information available.

Canada - DSL/NDSL

CAS# 7440-36-0 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D1B.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those

regulations. Canadian Ingredient Disclosure List

CAS# 7440-36-0 is listed on the Canadian Ingredient Disclosure List.

Section 16 - Additional Information

MSDS Creation Date: 5/26/1998 **Revision #6 Date:** 2/11/2008

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages. Antimony Trioxide

International Chemical Safety Cards

ANTIMONY TRIOXIDE

ICSC: 0012

ANTIMONY TRIOXIDE Antimony sesquioxide Antimony(III) oxide Antimony white Sb₂O₃ Molecular mass: 291.5

CAS # 1309-64-4 RTECS # CC5650000 ICSC # 0012 UN # 1549 EC # 051-005-00-X

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. Gives off irritating or toxic fumes (or gases) in a fire.		In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION			
EXPOSURE		PREVENT DISPERSION DUST! STRICT HYGIEN AVOID EXPOSURE OF (PREGNANT) WOMEN!	OF E!
• INHALATION	Cough. Headache. Nausea. Sor throat. Vomiting.	e Local exhaust or breathing protection.	Fresh air, rest. Refer for medical attention.
• SKIN	Redness. Pain. Blisters.	Protective gloves.	Remove contaminated clothes. Rinse and then wash skin with water and soap.
• EYES	Redness. Pain.	Safety goggles, or eye protection in combination v breathing protection if pow	First rinse with plenty of water for several minutes (remove der. contact lenses if easily possible), then take to a doctor.
• INGESTION	Abdominal pain. Diarrhoea. Sore throat. Vomiting. Burning sensation in the stomach (further see Inhalation).	Do not eat, drink, or smoke during work.	e Rinse mouth. Refer for medical attention.
SPILLAGE	DISPOSAL	STORAGE	PACKAGING &

		LABELLING		
Sweep spilled substance into containers. Carefully collect remainder, then remove to safe place. Do NOT let this chemical enter the environment (extra personal protection: P2 filter respirator for harmful particles).	Separated from food and feedstuffs.	Do not transport with food and feedstuffs. Xn symbol R: 40 S: 22-36 UN Hazard Class: 6.1		
SEE IMPORTANT INFORMATION ON BACK				

ICSC: 0012

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

ANTIMONY TRIOXIDE

PHYSICAL STATE; APPEARANCE: ROUTES OF EXPOSURE: ODOURLESS WHITE CRYSTALLINE The substance can be absorbed into the body POWDER. by inhalation of its aerosol. **PHYSICAL DANGERS: INHALATION RISK:** Evaporation at 20°C is negligible; a harmful I concentration of airborne particles can, Μ **CHEMICAL DANGERS:** however, be reached quickly on dispersion. Р The substance decomposes on heating 0 producing toxic fumes (antimony). Reacts **EFFECTS OF SHORT-TERM** R under certain circumstances with hydrogen, EXPOSURE: Т producing a very poisonous gas (stibine). The substance irritates the eyes, the skin A and the respiratory tract. N **OCCUPATIONAL EXPOSURE LIMITS** Т EFFECTS OF LONG-TERM OR (OELs): TLV (as Sb): ppm; 0.5 mg/m^3 (as TWA) **REPEATED EXPOSURE:** D (ACGIH 1991-1992). Repeated or prolonged contact with skin A may cause dermatitis. Lungs may be Т affected by repeated or prolonged exposure A to the dust of this substance. The substance may have effects on the lungs. This substance is possibly carcinogenic to humans. Animal tests show that this substance possibly causes toxic effects upon human reproduction. Boiling point: (partially sublimes) 1550°C Solubility in water, g/100 ml at 30°C: none PHYSICAL Melting point: 656°C (see Notes)°C Vapour pressure, Pa at 574°C: 130 Relative density (water = 1): 5.2/5.7 (see **PROPERTIES** Notes) This substance may be hazardous to the environment; special attention should be given to **ENVIRONMENTAL** fish. In the food chain important to humans, bioaccumulation takes place, specifically in DATA crustacea.

NOTES

Melting point established under the absence of oxygen. Density differs with crystalline structure. Depending on the

ICSC: 0012

degree of exposure, periodic medical examination is indicated. The recommendations on this card do not apply to vapour exposure during the production. Timonox is a trade name.

Transport Emergency Card: TEC (R)-61G11

ANTIMONY TRIOXIDE

ADDITIONAL INFORMATION

ICSC: 0012

© IPCS, CEC, 1993

Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.

IMPORTANT LEGAL NOTICE:

Methanation Catalyst Information

Methanation Catalyst

Methanation involves final removal of CO, CO₂ and trace quantities of O₂ from process gas in hydrogen and ammonia plants. For many years nickel catalysts have been giving adequate performance provided that the operating temperature has been sufficiently high. However, the typical operating temperature for methanation catalysts has gradually decreased due to more efficient shift catalysts and improved CO₂ removal systems. At lower operating temperatures, many plants have experienced unacceptable CO and CO₂ leakage from the methanator when using traditional catalysts.

Topsæe's highly active, prereduced methanation catalyst **PK-7R** is a nickel type catalyst based on an alumina carrier. It was developed to operate at inlet temperatures down to 190°C/375°F, a performance which has been proven in the industry since its introduction in 1994.

In plants, where the methanator is operating in low temperature range, PK-7R has provided full conversion of carbon oxides as opposed to traditional methanation catalysts used in the same service.

Advantages of PK-7R

Low Operating Temperature Capability In most plants, process gas entering the methanator is heated from a relatively low temperature to the required inlet temperature by heat exchange with the methanator effluent gas. With more efficient CO shift and CO_2 -removal technology available today, the temperature increase in such methanators will inevitably decrease and lead to a lower methanator inlet temperature. In these cases, use of conventional methanation catalysts may no longer ensure a full CO and CO₂ conversion.

The capability of PK-7R to operate at low temperatures will ensure that CO and CO₂ are fully converted at an operating temperature of 190°C/375°F. Furthermore, the lower level of the operating temperature will often lead to savings in energy consumption.

Prereduced for Higher Activity

The superior activity and capability of P.K- \mathcal{R} to operate at low temperatures are a result of Topsoe's optimised catalyst production and prereduction technology. PK- \mathcal{R} is reduced in our catalyst manufacturing plant under carefully controlled conditions, which cannot be reproduced in industrial plants and result in a substantially higher nickel surface area, which is preserved during the entire operating lifetime.

Low Pressure Drop

With the ring-shaped PK-7R catalyst, a 50% reduction in pressure drop is achieved relative to the conventional spherical or cylindrical shaped methanation catalysts. This shape also yields a higher catalyst activity resulting from a higher external surface/volume ratio.

Normal Operation and Catalyst Lifetime The high activity of PK-7R allows operation at inlet temperatures as low as 190°C/375°F with fully satisfactory conversion of all carbon oxides and oxygen. Typically the maximum recommended temperature for continuous operation is 450°C/840°F.

Topsee R & D Topsee's worldwide services to the chemical, petrochemical and refining industries are based on a fundamental understanding of heterogeneous catalysis, including development and production of catalysts, process technologies and engineering services.

Quality catalysts

- proven by performance Topsæ's unique integrated approach has resulted in profitable solutions providing catalysts in the areas of:

Feed Purification Adiabatic Steam Reforming Steam Reforming CO Shift Conversion Methanation
 Ammonia Synthesis
 Methanol Synthesis
 Formaldehyde
 Sulphuric Acid
 Refiney Hydroprocessing
 DeNOx and DeSOx
 Combustion of VOC

Based on many years of experience, the development of Topsee catalysts is declicated to provide a second-to-none performance. This means that focus always is on key factors such as enhancement of high and stable activity, long operating life, high resistance to poisoning, low pressure drop, energy savings and methiced emissions. reduced emissions.

Customized after sales service Topsæ's after sales service relies upon an on-going exchange of information between the client and us, to provide clients with relevant and most up-to-date information. The four pillars in Topsæs service programme are: Frequent Contact and Discussions, On-site Supervision, Evaluation of Hant Performance and Troubleshooting.

Visit www.haldortopsoe.com for more information.

The information and recommendations have been prepared by Topace specialists having a throough throwfeng or displays. Nowever, any operation interaction as should be considered to be of a general rabin and we cannot assume any labitly for upsate or demage of the conterment' plant or partornel. No high breach a to be constructed as recommending any products or valentian of any prime. Here on splittlen,

Denmark HALDOR TOPSØE A/S P.O. Box 213 Nymølle vej 55 DK-2800 Lyngby Denmark Denmark Phone: +45-45 27 20 00 Telefax: +45-45 27 29 99

India HALDOR TOPSØE INTERNATIONAL A/S India Liaison Office Apt. A-S, Qutab Hotel Off Sri Aurobindo Marg, New Dethi 110016 Phone: + 91-11-686 4735 Telefax: + 91-11-686 2252

Japan HALDOR TOPSØE INTERNATIONAL A/S Tokyo Branch Office Kiolcho Building, 14th Floor 3-12, Kiol-cho Chłyoda-Ku Tokyo 102-0094 Phone: +81-3-5210 2751 Telefax: +81-3-5210 2754

People's Republic of China HALDOR TOPSØE INTERNATIONAL A/S Beijing Representative Office Room 1008, Scitech Tower 22 Jianguomenwai Dajie 100 004 Beljing Phone: + 86-10-6512 3620 Telefax: + 86-10-6512 7381

 Russia

 HALDOR TOPSOE A/S

 Moscow Representative Office

 Bryusov Street 11, 4* Floor

 103009 Moscow

 Phone: +7.095-22 6350

 +7.503-956 3274

 Telefax: +7.503-956 3275

ZAO HALDOR TOPSØE 42 Respublikanskaya St. 150040 Yaroslavi Phone: +7-0852-730173 Telefax: +7-0852-252558

USA HALDOR TOPSOE, INC. 17629 El Camino Real Houston, Texas 77058 Phone: + 1-281-228-5000 Telefax + 1-281-228-5109

HALDOR TOPSOE, INC. Refining Technology Division 770 The City Drive Orange, CA 92868 Phone: +1-714-621-3800 Telefax: +1-714-748-4188