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Statistical signal processing with nonnegativity constraints

Abstract
Nonnegativity constraints arise frequently in statistical learning and pattern recognition. Multiplicative
updates provide natural solutions to optimizations involving these constraints. One well known set of
multiplicative updates is given by the Expectation-Maximization algorithm for hidden Markov models, as
used in automatic speech recognition. Recently, we have derived similar algorithms for nonnegative
deconvolution and nonnegative quadratic programming. These algorithms have applications to low-level
problems in voice processing, such as fundamental frequency estimation, as well as high-level problems, such
as the training of large margin classifiers. In this paper, we describe these algorithms and the ideas that connect
them.
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Abstract
Nonnegativity constraints arise frequently in statistical learning
and pattern recognition. Multiplicative updates provide natural
solutions to optimizations involving these constraints. One well
known set of multiplicative updates is given by the Expectation-
Maximization algorithm for hidden Markov models, as used in
automatic speech recognition. Recently, we have derived sim-
ilar algorithms for nonnegative deconvolution and nonnegative
quadratic programming. These algorithms have applications to
low-level problems in voice processing, such as fundamental
frequency estimation, as well as high-level problems, such as
the training of large margin classifiers. In this paper, we de-
scribe these algorithms and the ideas that connect them.

1. Introduction
Many problems in statistical learning and pattern recognition
involve optimizations that cannot be solved in closed form.
For these problems, iterative updates are required that con-
verge in the limit to actual solutions. Quite often, objective
functions have structure that can be exploited in their opti-
mizations; for example, they give rise to auxiliary functions—
lower or upper bounds—whose optimizations are themselves
tractable and guaranteed to improve the objective function at
each iteration[1, 8, 13]. The use of auxiliary functions to de-
rive iterative updates has emerged as a powerful alternative to
gradient-based methods.

Particularly useful updates have been derived in this way
for a large number of problems involving nonnegativity con-
straints. In this paper, we examine three such problems in sta-
tistical learning and pattern recognition. An interesting trend
in these problems has been the emergence of multiplicative up-
dates. Our goals in this paper are to describe these multiplica-
tive updates in simple terms, to develop their shared intuitions,
and to sketch their applications to problems in voice processing.

2. Maximum likelihood estimation
We begin by reviewing multiplicative updates and nonnega-
tivity constraints in a familiar context: maximum likelihood
(ML) estimation in discrete hidden Markov models (HMMs)[1].
Consider an HMM with n hidden states s∈{1, 2, .., n} and
m observations o∈{1, 2, ..., m}. The parameters of the HMM
are the transition matrix aii′ =P (st+1 = i′|st = i), the emis-
sion matrix bij =P (ot = j|st = i), and the initial distribution
πk =P (s1 = k). These parameters obey simplex constraints:
they are nonnegative, and the distributions they represent must
be properly normalized. The goal of ML estimation is to maxi-
mize the log-likelihood L=log P (o1, o2, .., oT ) of one or more
observation sequences.

2.1. Multiplicative updates

The Expectation-Maximization (EM) algorithm prescribes a set
of iterative updates for ML estimation. The update for aii′ can
be written in terms of the gradient of the log-likelihood as:

aii′ ← aii′

[

∂L/∂aii′
∑

k
aik(∂L/∂aik)

]

. (1)

The updates for the parameters bij and πi have a similar form.
Notably, these update rules are guaranteed to increase the log-
likelihood L at each iteration. They are derived by constructing
an auxiliary function which provides a lower bound on L.

We can view the EM algorithm as a set of multiplicative
updates. The multiplicative form of eq. (1) is apparent from
the factor that appears in square brackets. Note how the multi-
plicative update hinges on the nonnegativity of the gradient; in
particular, if it were not true that ∂L/∂aii′ ≥0 then the update
in eq. (1) would violate the nonnegativity constraints on aii′ .

2.2. Discrete Bayesian networks

Discrete HMMs are a special case of discrete Bayesian
networks—directed acyclic graphs whose nodes represent dis-
crete random variables and whose edges represent conditional
dependencies. Many such extensions of HMMs are being inves-
tigated for automatic speech recognition[10, 19]. The EM up-
dates in discrete Bayesian networks have the same multiplica-
tive form as eq. (1), with parameters rescaled by partial deriva-
tives of the log-likelihood, then renormalized to sum to one.
The nonnegativity of these derivatives makes possible the sim-
ple multiplicative form of the updates. The updates in sections 3
and 4 will exhibit interesting variations on this theme.

3. Nonnegative deconvolution
The problem of linear deconvolution is to estimate an unob-
served signal x from an observed signal y = Wx. The ma-
trix W is assumed to be known. The problem of nonnegative
deconvolution[7] arises when the matrix W and the vectors x

and y are constrained to be nonnegative. A generalization of the
Kullback-Leibler (KL) divergence provides a natural measure
of distance between nonnegative vectors. In this framework,
the distance between the vectors y and Wx is computed as:

G(x) =
∑

i

[

yi log
yi

(Wx)i

− yi + (Wx)i

]

. (2)

Given y and W, we can estimate x by minimizing eq. (2); the
function is convex and lower bounded by zero, with G(x)=0 if
and only if y=Wx. The minimum of eq. (2), however, cannot
be computed in closed form, and an iterative solution is needed.



3.1. Multiplicative updates

Multiplicative updates for this optimization are derived by writ-
ing the cost function as G(x) = G+(x)−G−(x), where

G+(x) =
∑

i
[(Wx)i − yi] , (3)

G−(x) =
∑

i
yi [log(Wx)i − log yi] . (4)

The gradient of G(x) can similarly be decomposed in terms of
contributions from these two pieces:

∂G+/∂xj =
∑

i
Wij , (5)

∂G−/∂xj =
∑

i
yiWij/(Wx)i. (6)

Note that these partial derivatives are themselves nonnegative.
The multiplicative updates for nonnegative deconvolution hinge
on the nonnegativity of these derivatives just as the EM updates
in section 2 hinge on the nonnegativity of derivatives of the log-
likelihood. In particular, the updates for minimizing eq. (2) take
the form:

xj ← xj

[

∂G−/∂xj

∂G+/∂xj

]

. (7)

The fixed points of these updates have a simple intuition. One
fixed point occurs at xj = 0; the other occurs when the nu-
merator and denominator in eq. (7) are perfectly balanced, im-
plying that ∂G+/∂xj = ∂G−/∂xj , or ∂G/∂xj = 0. It can be
shown that the function G(x) decreases monotonically to the
value of its global minimum under these updates[8]. The proof
of convergence relies on the construction of an auxiliary func-
tion which provides an upper bound on G(x). The algorithm
is similar in this respect to the EM algorithm of section 2. The
updates in eq. (7) have been successfully applied to a number
of problems in science and engineering[7].

3.2. Fundamental frequency estimation

The fundamental frequency f0 of a periodic signal is equal to
the reciprocal of the minimum period at which it repeats itself.
Given a mixture of periodic signals (or sources), a classic prob-
lem is to deduce the number of sources and the value of f0 for
each source. The problem is of great interest because a sound’s
fundamental frequency corresponds (in most cases) to its per-
ceived pitch as registered by the human auditory system[6].

It is helpful to visualize this problem in the frequency do-
main. Fig. 1 shows the time domain waveforms and magni-
tude spectrum of four periodic signals with f0 = 100 Hz.
Fig. 2 shows the same for four mixtures of periodic signals with
f0 = 100 Hz and f0 = 173 Hz. How can we deduce the num-
ber of periodic sources from observations of this form,1 as well
as their fundamental frequencies?

We will formulate this problem as a nonnegative deconvo-
lution. Let the elements of the observed vector y store a signal’s
magnitude spectrum, as shown in Figs. 1 and 2, with the excep-
tion that indices of these elements correspond to frequencies
that are equally spaced on a log scale. Thus, the nonzero ele-
ments of y in this setting correspond to nonzero frequency com-
ponents (or partials) of the individual sound sources, assumed
to be periodic.

1Pitch tracking of speech and music involves additional complica-
tions. Signals are not perfectly periodic: they are nonstationary, cor-
rupted by noise, and only approximately periodic over short time scales.
Nevertheless, it remains instructive to consider the idealized problem
sketched above.

0 200 400 600 800 (Hz)0 10 20(ms)

Figure 1: Time domain waveforms and magnitude spectra of
different periodic signals with the same fundamental frequency,
f0 = 100 Hz. From top to bottom: sinusoid, impulse train,
sawtooth wave, and highpass filtered impulse train with missing
fundamental.

0 200 400 600 800 (Hz)0 10 20(ms)

Figure 2: Time domain waveforms and magnitude spectra for
mixtures of two periodic signals, one with f0 = 100 Hz, the
other with f0 = 173 Hz. Shaded nodes denote harmonics of
the f0 = 100 Hz signal.

Likewise, let the unobserved vector x encode the number
of periodic sources, with precisely one nonzero element per
source, and with indices that correspond to possible fundamen-
tal frequencies (also spaced on a log scale). Thus, for example,
the “target” vector x for the signals in Fig. 1 has precisely one
nonzero element at the index representing f0 = 100 Hz, while
the “target” vector x for the signals in Fig. 2 has precisely two
nonzero elements, one at the index representing f0 = 100 Hz,
the other at the index representing f0 = 173 Hz.

We obtain x from the nonnegative deconvolution of y by
minimizing eq. (2). This requires specifying the matrix W. Let
each column of W store a basis function, or template, for the
magnitude spectra of a periodic source whose fundamental fre-
quency matches the corresponding index in the vector x. In
practice, we set the matrix W to be a discretized, truncated,
and smoothed approximation to the continuum kernel W (f, f0)
given by:

W (f, f0) =
∑

n

hn δ(f − nf0), (8)

where the sum is over all positive integers n. Intuitively, eq. (8)
describes each basis function as a weighted harmonic stack.
Suitable values for the coefficients hn were found by experi-
mentation; in practice, we used hn = 0.7 + 0.3/n. The basis
function for f0 = 100 Hz is plotted in Figure 3. Note that
basis functions for different values of f0 are related by simple
translations on the log-frequency axis.

Estimating f0 of overlapping sources by nonnegative de-
convolution is based on the familiar idea of harmonic template
matching[4]. We imagine that observed partials (such as the
ones in Figs. 1 and 2) are generated by a weighted nonnega-
tive combination of harmonic stacks (as shown in Fig. 3). The
nonzero elements of x encode the weights in this combination,
as expressed by the convolution y = Wx. Note that the cost
function in eq. (2) diverges if (Wx)i = 0 when yi is nonzero;
this useful property ensures that minima of eq. (2) explain each
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Figure 3: The discretized basis function for f0 =100 Hz stored
by one column of the matrix W, obtained from eq. (8). The ba-
sis functions are smoothed by assigning small weights to neigh-
boring log-frequency bins around each harmonic. There are 48
bins per octave.

observed partial by its attribution to one or more sources. Non-
negative deconvolution with the basis functions in Fig. 3 gives
the correct solution for all the examples in Figs. 1 and 2, as well
as many other signals (isolated and mixed) that we have tested.

There exists a large body of related work on fundamental
frequency estimation of overlapping sources[2, 5, 15, 17, 18].
Nonnegative deconvolution is similar to EM algorithms[5] for
harmonic template matching, but it does not impose normal-
ization constraints on spectral peaks as if they represented a
probability distribution. Our approach differs from subtractive
methods[2] that rely on extracting a predominant source, can-
celling out its frequency components, and analyzing the residual
signal. In particular, given a mixture of sources, the minimiza-
tion of eq. (2) solves simultaneously for all component weights
and fundamental frequencies. (It does not, however, assume as
prior knowledge the number of sources; this is obtained simply
from the final number of nonzero elements in x.) Our approach
also does not rely on heuristics for discovering harmonic ratios,
such as approximating fractions by ratios of small integers and
computing greatest common denominators.

We are currently investigating nonnegative deconvolution
as a back end for fundamental frequency estimation in speech
and music. These signals do not have the idealized spectra
shown in Figs. 1 and 2, but we can use an auditory filterbank
to resolve their lower-order harmonics[6], followed by simple
sinusoid detectors to estimate and track the frequencies of ob-
served partials[12]. The windowed output of such a front end
can then be analyzed by nonnegative deconvolution.

4. Nonnegative quadratic programming
Lastly, we consider the problem of nonnegative quadratic pro-
gramming. Here, the goal is to minimize the objective function:

F (v) =
1

2
v

T
Av + b

T
v, (9)

subject to constraints vi ≥ 0 for all i. In what follows, we as-
sume that the matrix A is symmetric and semipositive definite.
Thus, the objective function F (v) is bounded below, and its op-
timization is convex. Due to the nonnegativity constraints, how-
ever, there does not exist an analytical solution for the global
minimum (or minima), and an iterative solution is needed.

4.1. Multiplicative updates

We have derived multiplicative updates for the optimization[13]
of eq. (9), expressed in terms of the positive and negative com-
ponents of the matrix A. Let A+ and A− denote the nonnega-
tive matrices with elements:

A+

ij =

{

Aij if Aij > 0,
0 otherwise,

A−

ij =

{

|Aij | if Aij < 0,
0 otherwise.

It follows that A = A+−A−. In terms of these nonneg-
ative matrices, the objective function can be decomposed as
F (v) = Fa(v) + Fb(v)− Fc(v), where we use the first and
third of these terms to “split” the quadratic piece of F (v), and
the second term to capture the linear piece:

Fa(v) =
1

2
v

T
A

+
v, (10)

Fb(v) = b
T
v, (11)

Fc(v) =
1

2
v

T
A

−

v. (12)

The gradient of F (v) can be similarly decomposed in terms of
contributions from these three pieces. We have chosen our nota-
tion in eqs. (9) and (11) so that bi = ∂Fb/∂vi; for the quadratic
terms in the objective function, we define the corresponding
derivatives:

ai = ∂Fa/∂vi = (A+
v)i, (13)

ci = ∂Fc/∂vi = (A−

v)i. (14)

Note that these partial derivatives are themselves nonnegative:
that is, ai ≥ 0 and ci ≥ 0. Our multiplicative updates for non-
negative quadratic programming hinge on the nonnegativity of
these derivatives, just as the updates in previous sections. In
particular, they take the form:

vi ←− vi

[

−bi +
√

b2
i + 4aici

2ai

]

. (15)

These updates are meant to be applied in parallel to all the ele-
ments of v. They are remarkably simple to implement, neither
involving a learning rate nor other heuristic criteria that must
be tuned to ensure convergence. Previously, we have shown
that the function F (v) in eq. (9) decreases monotonically to the
value of its global minimum under these updates[13]. As in sec-
tions 2 and 3, the proof of convergence relies on the construction
of an auxiliary function.

The reader will recognize the factor multiplying vi on the
right hand side of eq. (15) as the quadratic formula for the posi-
tive root of the polynomial aiz

2 + biz − ci. This factor is guar-
anteed to be nonnegative, as we observed earlier that ai≥0 and
ci ≥ 0. The updates thus naturally enforce the nonnegativity
constraints on vi. An intuition for these multiplicative updates
can be gained by examining their fixed points. One fixed point
for eq. (15) occurs at v∗

i =0; the other occurs when the positive
root of the polynomial aiz

2 + biz − ci = 0 is located at z=1,
since in this case the multiplicative factor in eq. (15) is equal
to unity. The latter condition, together with the definitions in
eqs. (13–14), implies that (∂F/∂vi)|v∗ = ai + bi − ci = 0.
Thus the two criteria for fixed points are either (i) v∗

i = 0, or
(ii) (∂F/∂vi)|v∗ =0.

Further intuition is gained by considering the effects of the
multiplicative update away from its fixed points. Although the
partial derivative ∂F/∂vi does not appear explicitly in eq. (15),
there is a close link between the sign of this derivative and the
effect of the update on vi. In particular, using the fact that
∂F/∂vi = ai+bi−ci, it is easy to show that the update de-
creases vi if ∂F/∂vi >0 and increases vi if ∂F/∂vi <0. Thus,
the update in eq. (15) moves each element vi in the same direc-
tion as gradient descent (though not by the same amount).

4.2. Support vector machines

Various problems in nonnegative quadratic programming arise
in the training of large margin classifiers, such as support vector



machines (SVMs)[16]. In SVMs, kernel methods are used to
map inputs into a higher, potentially infinite, dimensional fea-
ture space; the decision boundary between classes is then iden-
tified as the maximum margin hyperplane in the feature space.
SVMs currently provide state-of-the-art solutions to many prob-
lems in statistical learning. There have also been promising ap-
plications of SVMs to automatic speech recognition[9, 14].

We briefly review the problem of computing the maxi-
mum margin hyperplane in SVMs[16]. Let {(xi, yi)}

N
i=1 de-

note labeled examples with binary class labels yi = ±1, and let
K(xi,xj) denote the kernel dot product between inputs. For
brevity, we consider only the simple case where in the high di-
mensional feature space, the classes are linearly separable and
the hyperplane is required to pass through the origin. In this
case, the maximum margin hyperplane is obtained by minimiz-
ing the loss function:

L(α) = −
∑

i

αi +
1

2

∑

ij

αiαjyiyjK(xi,xj), (16)

subject to the nonnegativity constraints αi ≥ 0. Let α∗ denote
the minimum of eq. (16). The maximal margin hyperplane has
normal vector w =

∑

i α∗

i yixi and satisfies the margin con-
straints yiK(w,xi) ≥ 1 for all examples in the training set.

The loss function in eq. (16) is a special case of eq. (9)
with Aij = yiyjK(xi,xj) and bi = −1. Thus, the multiplica-
tive updates in eq. (15) are easily adapted to SVMs. This al-
gorithm for training SVMs is known as Multiplicative Margin
Maximization (M3). The algorithm can be generalized[13] to
data that is not linearly separable and to separating hyperplanes
that do not pass through the origin.

Many iterative algorithms have been developed for nonneg-
ative quadratic programming in general and for SVMs as a spe-
cial case. Benchmarking experiments have shown that M3 is a
feasible algorithm for small to moderately sized data sets. On
the other hand, it does not converge as fast as leading subset
methods[3, 11] for large data sets. Nevertheless, the extreme
simplicity and convergence guarantees of M3 make it a useful
starting point for experimenting with SVMs.

5. Discussion
The multiplicative updates in this paper exhibit an interesting
progression. The updates for ML estimation hinge on the non-
negativity of the gradient of the log-likelihood. The updates
for nonnegative deconvolution hinge on the nonnegativity of
partial derivatives obtained from the two-way decomposition in
eqs. (3–4). Finally, the updates for nonnegative quadratic pro-
gramming hinge on the nonnegativity of partial derivatives ob-
tained from the three-way decomposition in eqs. (10–12). Fu-
ture work will continue to develop the theoretical foundations
and practical applications of these multiplicative updates.

6. References
[1] L. Baum. An inequality and associated maximization

technique in statistical estimation of probabilistic func-
tions of Markov processes. Inequalities, 3:1–8, 1972.

[2] A. de Cheveigne and H. Kawahara. Multiple period esti-
mation and pitch perception model. Speech Communica-
tion, 27:175–185, 1999.

[3] T. Friess, N. Cristianini, and C. Campbell. The Ker-
nel Adatron algorithm: a fast and simple learning proce-
dure for support vector machines. In Proceedings of the

Fifteenth International Conference on Machine Learning.
Morgan Kaufman, 1998.

[4] J. Goldstein. An optimum processor theory for the central
formation of the pitch of complex tones. Journal of the
Acoustical Society of America, 54:1496–1516, 1973.

[5] M. Goto. A robust predominant-F0 estimation method for
real-time detection of melody and bass lines in CD record-
ings. In Proceedings of ICASSP-2000, pages 757–760,
2000.

[6] W. M. Hartmann. Pitch, periodicity, and auditory orga-
nization. Journal of the Acoustical Society of America,
100(6):3491–3502, 1996.

[7] D. D. Lee and H. S. Seung. Learning the parts of objects
with nonnegative matrix factorization. Nature, 401:788–
791, 1999.

[8] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. In T. K. Leen, T. G. Dietterich, and
V. Tresp, editors, Advances in Neural and Information
Processing Systems, volume 13, Cambridge, MA, 2001.
MIT Press.

[9] P. Niyogi, C. Burges, and P. Ramesh. Distinctive feature
detection using support vector machines. In Proceedings
of ICASSP-99, pages 425–428, 1999.

[10] H. Nock and S. Young. Modelling asynchrony in auto-
matic speech recognition using loosely coupled HMMs.
Cognitive Science, 26(3):283–301, 2002.

[11] J. Platt. Fast training of support vector machines us-
ing sequential minimal optimization. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Ker-
nel Methods — Support Vector Learning, pages 185–208,
Cambridge, MA, 1999. MIT Press.

[12] L. K. Saul, D. D. Lee, C. L. Isbell, and Y. LeCun. Real
time voice processing with audiovisual feedback: toward
autonomous agents with perfect pitch. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neu-
ral Information Processing Systems 15. MIT Press, 2003.

[13] F. Sha, L. K. Saul, and D. D. Lee. Multiplicative updates
for large margin classifiers. Technical Report MS-CIS-
03-12, Department of Computer and Information Science,
University of Pennsylvania, 2003.

[14] N. Smith and M. Gales. Speech recognition using SVMs.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural and Information Processing Systems,
volume 14, Cambridge, MA, 2002. MIT Press.

[15] T. Tolonen and M. Karjalainen. A computationally effi-
cient multipitch analysis model. IEEE Transactions on
Speech and Audio Processing, 8(6):708–716, 2000.

[16] V. Vapnik. Statistical Learning Theory. Wiley, N.Y., 1998.

[17] T. Virtanen and A. Klapuri. Separation of harmonic
sounds using multipitch analysis and iterative parameter
estimation. In IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2001.

[18] M. Wu, D. Wang, and G. J. Brown. A multipitch tracking
algorithm for noisy speech. IEEE Transactions on Speech
and Audio Processing, 2003 (in press).

[19] G. Zweig and S. Russell. Probabilistic modeling with
Bayesian networks for automatic speech recognition. Aus-
tralian Journal of Intelligent Information Processing Sys-
tems, 5(4):253–60, 1999.


	University of Pennsylvania
	ScholarlyCommons
	9-1-2003

	Statistical signal processing with nonnegativity constraints
	Lawrence K. Saul
	Fei Sha
	Daniel D. Lee
	Recommended Citation

	Statistical signal processing with nonnegativity constraints
	Abstract
	Disciplines
	Comments


	tmp.1098103279.pdf.Oq1DV

