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Alaskan Natural Gas to Liquids (GTL) Using Microchannel Reactors

Abstract
The proposed Alaskan natural gas to liquids (GTL) plant utilizes microchannel technology for both steam-
methane reforming and Fischer-Tropsch synthesis. A natural gas feed of 21.8 million standard cubic feet per
hour is sent to a microchannel steam reformer, where it reacts with steam to produce a mixture comprised
mainly of carbon monoxide and hydrogen, or syngas. The syngas proceeds to another microchannel reactor, in
which the Fischer-Tropsch reaction converts it to hydrocarbons. Approximately 117,600 bbl/day of C5+
liquid hydrocarbons (25.86% gasoline, 24.78% diesel, 21.40% naphtha, 21.72% C20+, 6.25% other) are
recovered and fed to the Trans-Alaskan Pipeline System for delivery to the North American market. The
product contains little wax and few impurities and has an above average quality.

Using a 13% discount rate, the project yields a positive 25-year Net Present Value of $708 million in 2009 and
a 14.96% Internal Rate of Return, suggesting that the project has the potential to be an attractive investment.
The most promising alternative to the GTL project is the construction of a natural gas pipeline, which would
commence operation no sooner than 2019.

The project’s economic feasibility depends most strongly on the product’s selling price, which is tied to the
price of oil. The project is also capital-intensive and therefore sensitive to the final capital investment.
Sensitivity analysis has been done on both of these factors.
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Professor Stuart Churchill 
Professor Leonard Fabiano 
Mr. John Wismer 
Department of Chemical Engineering 
University of Pennsylvania 
Philadelphia, PA 19104 
 
April 14th, 2009 
 
Dear Professor Churchill, Professor Fabiano, and Mr. Wismer, 
 

The following report consists of our Senior Design Project, “Alaskan Natural Gas to 
Liquid (GTL) using Microchannel Reactors,” proposed by Mr. John Wismer.  The plant design 
utilizes microchannel reactors for both steam reforming and Fischer-Tropsch synthesis to convert 
Alaskan natural gas to liquid fuels.  The GTL products can be shipped to North American 
markets via the Trans-Alaskan Pipeline System. 
 

The report primarily focuses on a preliminary plant design and profitability analysis.  The 
plant has an estimated life of 25 years and utilizes 2.0 trillion standard cubic feet of Alaskan 
natural gas.  Alaska’s total proven natural gas reserves stand at around 12 trillion standard cubic 
feet. The output of the plant is proposed to be 117,600 barrels per day.  The plant would require a 
total capital investment of $7.17B.  The profitability of this process depends primarily on the 
price of oil and the total capital expenditure.  Using the Energy Information Administration’s 
Annual Energy Outlook for 2009 base case oil price projections and a discount rate of 13%, the 
plant has an IRR of 14.96% and an NPV of $708MM. 
 

Based on this analysis, it is recommended that further design work be undertaken to 
obtain a more precise initial investment figure.  The next step for this project would be to work 
with a microchannel reactor vendor in order to better assess the technical and economic 
feasibility of this technology. 
 
Sincerely, 
 
            
Jeffrey Hammond      Jared Lee 
 
            
Mohd. Shayaan Nadeem     Sophie Weiss 
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Abstract 

The proposed Alaskan natural gas to liquids (GTL) plant utilizes microchannel 

technology for both steam-methane reforming and Fischer-Tropsch synthesis.  A natural gas feed 

of 21.8 million standard cubic feet per hour is sent to a microchannel steam reformer, where it 

reacts with steam to produce a mixture comprised mainly of carbon monoxide and hydrogen, or 

syngas.  The syngas proceeds to another microchannel reactor, in which the Fischer-Tropsch 

reaction converts it to hydrocarbons. Approximately 117,600 bbl/day of C5+ liquid hydrocarbons 

(25.86% gasoline, 24.78% diesel, 21.40% naphtha, 21.72% C20+, 6.25% other) are recovered and 

fed to the Trans-Alaskan Pipeline System for delivery to the North American market. The 

product contains little wax and few impurities and has an above average quality. 

Using a 13% discount rate, the project yields a positive 25-year Net Present Value of 

$708 million in 2009 and a 14.96% Internal Rate of Return, suggesting that the project has the 

potential to be an attractive investment. The most promising alternative to the GTL project is the 

construction of a natural gas pipeline, which would commence operation no sooner than 2019.   

The project’s economic feasibility depends most strongly on the product’s selling price, 

which is tied to the price of oil.  The project is also capital-intensive and therefore sensitive to 

the final capital investment.  Sensitivity analysis has been done on both of these factors.    
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Introduction 

Enormous natural gas reserves on Alaska’s North Slope exist; however, they remain 

untapped due to their remote and extreme location.  A high premium is placed on finding a way 

to tap into these reserves because of the increasing world market demand for energy.  One 

potentially attractive method of monetizing the stranded gas reserves involves converting them to 

useful hydrocarbons such as gasoline, diesel fuel, and naphtha.  This is also a more economically 

and environmentally sensible alternative to the current practices of flaring the natural gas or re-

injecting it back into the oil wells.  The conversion technology is termed Gas to Liquids (GTL).   

In Alaska, oil and gas companies have abandoned the conversion technology because of 

poor economic feasibility and instead are exploring the idea of a trans-continental gas pipeline 

stretching from the North Slope to North American markets.  If, however, the GTL technology 

can be shown to be more attractive than the pipeline, the products could be pumped into the 

existing Trans-Alaskan Pipeline Systems (TAPS) with crude oil.  One of the most promising 

GTL technologies involves the use of microchannel reactors, which simultaneously function as 

miniature reactors and heat exchangers.  Microchannels are small channels, which at less than 

2.0 millimeters across, improve heat transfer.  The goal of this project is to design a GTL plant 

utilizing microchannel technology and evaluate its economic potential.    

Emerging studies have found that microchannel reactors enhance the heat transfer 

necessary for chemical reactions and provide superior reaction control due to their small size of 

their channels.  These channels are most often between 0.10 mm and 0.30 mm in diameter, rather 

than the 10+mm tubes in traditional reactors.  Moreover, the scale reduces mass transfer 

resistance, enabling the catalysts to accelerate the reaction much more efficiently.  It also allows 

the reactor wall to be coated with catalyst, rather than functioning as a packed bed.  Faster 

reaction rates result in smaller reactors achieving the same product yield, reducing the overall 

reactor scale without compromising capacity.  Microchannel technology reduces the plant 

footprint, and eases plant construction and operation.     

 The GTL process consists of two major steps. First, natural gas (methane, CH4) 

undergoes steam methane reforming (SMR).  This is a highly endothermic reaction in which 

steam reacts with methane to yield synthesis gas (syngas), which is a mixture of CO and H2: 

CH4 + H2O CO + 3H2 ΔH = +206 kJ/mol 
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This reaction is coupled with an undesirable water-gas shift reaction, through which CO reacts 

with water to form CO2 and H2: 

CO + H2O CO2 + H2  ΔH = -41 kJ/mol 

The rate of the water-gas shift reaction can be adjusted to control the amount and composition of 

syngas produced from the steam methane reforming (SMR).  

Second, the syngas reacts by the Fischer-Tropsch (FT) process to produce aliphatic 

hydrocarbons: 

(2n+1)H2 +nCO  CnH2n+2 + H2O  ΔH < 0 

The resulting mixture of hydrocarbons is composed of chains of varying length depending on 

reactor conditions.  The most useful products include diesel fuel (C12H23, an average of 

molecules ranging from approximately C10H20 to C15H28), gasoline (C8H18, ranging from C5H12 to 

C10H22), and naphtha (ranging from C12H26 to C20H42).   These long-chain hydrocarbon products 

are in the liquid state and can therefore be blended with crude oil in the TAPS pipeline. 

 The microchannel reactor GTL plant will produce 117,599 barrels per day.  This level of 

production will distinguish the project as one that seeks to take advantage of a large gas field far 

from market, similar to the GTL projects in Qatar.  The plant will contain two sets of 

microchannel reactors, one for SMR, and one for the FT reaction, both a CO2 and a CO 

separation system, and a power plant, as well as all equipment necessary for associated 

processing.  The economic analysis accounts for the challenges of the location, namely extreme 

environmental conditions such as low temperatures, high wind-speeds, and remoteness.  These 

challenges affect the cost of construction, supply, staffing, and product delivery.   

The primary reasons for entering the Alaskan GTL market at this time are high natural 

gas and oil prices.  Most economists believe that high prices for natural gas and oil will be 

sustained for the long term.  However, even with more moderate price projections, the plant is 

still economical.  Thus, microchannel technology could allow unprecedented access to the North 

Slope’s natural gas reserves with competitive economics.  
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Market and Competitive Analysis 
 
 The market for oil and natural gas products worldwide is enormous.  The average 

demand in 2008 in the United States alone for crude products was just over 19.4MM barrels per 

day.  The GTL project proposes to produce 117.6kbpd (thousand barrels per day).  This low 

increase in supply is unlikely to affect overall price levels. 

 Alaska contains over 12 trillion cubic feet of proven reserves of natural gas (EIA).  At the 

proposed production levels, the GTL plant and associated power plant, will consume 2.0 trillion 

cubic feet of this gas over 25 years of production.  This is about 17% of the total gas available.  

Unfortunately, Alaska’s natural gas is far from market and difficult to monetize.  GTL promises 

a way to monetize this valuable resource.  Thus, the two primary market drivers of GTL are high 

oil prices and the increased ability via new technology to bring this stranded gas to market.  

There are many sources of competition to a potential GTL plant in the region.  One 

source of competition is a proposed natural gas pipeline stretching from Alaska to central 

Alberta, where it would tie into the existing North American natural gas pipeline network.  This 

alternative is explored in detail in Section  14.9.  Another potential source of competition for GTL 

is liquefied natural gas (LNG).  This involves chilling, liquefying, and shipping the natural gas 

via LNG container ships.  There are also competing GTL technologies. Several oil and gas 

conglomerates have examined the possibility of GTL on the North Slope, but currently all have 

abandoned the idea, citing unfavorable economics.  However, all of the previous examinations of 

GTL economics have relied on traditional GTL reactor technology, and none have specifically 

examined microchannel technology. 

Significant players in the GTL market include British Petroleum (BP), ExxonMobil 

(Exxon), Shell Oil (Shell) and Sasol (Chevron).  These companies have pursued large -scale 

opportunities using traditional GTL technology.  However, many have recently pulled back after 

announcing new projects in the early 2000s.  In February of 2007, Exxon in partnership with 

Qatar Petroleum cancelled a GTL plant which had an estimated capacity of 154kbpd at a capital 

cost of $7B.  The plant would have begun production in 2011.  Exxon cited desire to instead 

pursue a traditional Qatar gas project (Gill). Recently, Shell explored compact reformer 

technology at a demonstration plant in Nikiski, south of Anchorage.  The $86MM plant produces 

300 barrels per day.  In 2004, Shell dismissed the idea of GTL for North Slope gas, stating that, 
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“a long-distance pipeline would hold more promise for such large reserves” (GasandOil.com).  

Shell, however, has continued to develop a project nicknamed “Pearl,” a 140kbpd GTL project in 

Qatar.  In 2003, Shell projected a capital cost of between $4B and $6B, but in 2007, estimated 

that the project would cost between $12B and $18B (Gill).  Qatar has seen much GTL interest 

due to its distance from market and enormous gas reserves.  Shell also owns and operates a 

14kbpd conventional plant in Malaysia that has been in operation since the early 1990s.  Oryx 

also began production in 2007 at their Qatar GTL plant which has a 34kbpd capacity.  Finally, 

Chevron has been operating GTL plants in South Africa since the 1970s.  The largest Chevron 

plant has a 124kbpd capacity (Mazanec “Synthetic Fuels”). 

The primary technology company exploring microchannel reactor technology is Velocys, 

a Cincinnati-based Battelle spinoff.  Velocys claims that their microchannel reactors result in a 

90% size reduction, a 33% capital cost reduction and 100% increase in profit margin (Mazanec 

“The Future”).  They claim the technology provides superior heat transfer capability as well as 

superior safety since reactions take place under more controlled conditions.   

While Velocys has made bold claims, specific performance and cost information remains 

proprietary and it is difficult to evaluate the validity of their claims.  Velocys has partnered with 

Oxford Catalysts Group to develop the best catalyst for their reactor technology.  Nextant Inc. 

conducted an independent review of both Velocys’ and Oxford Catalyst’s claims regarding 

microchannel reactor technology.  This report, entitled, “Oxford Catalysts Group PLC: Technical 

Expert’s Report on the Velocys Technology,” is the basis for much of the project analysis.   

Other companies such as CompactGTL PLC and Rentech INC are exploring ‘compact’ 

reactor technology, which would compete with microchannel technology.  CompactGTL has 

partnered with Brazilian oil conglomerate Petrobras and built a pilot plant that produces 20 

barrels per day. Rentech constructed a pilot plant in Colorado to explore GTL and is currently 

attempting to commercialize coal to liquids and biomass to liquids in Mississippi. 
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Reactor Design 

5.1 Steam Methane Reformer Design 

The steam-methane reforming (SMR) reaction is carried out in an Integrated Combustion 

Reactor (ICR) which utilizes this Microchannel Process Technology (MPT), as described by 

Tonkovich et al., U.S. Patent 7,250,151 B2. 

 

 

Figure 1 ‐ Cross‐section of a typical Integrated Combustion SMR microchannel reactor, based on U.S. Patent 
7,250,151 B2. The enlarged portion represents one set of exothermic and endothermic channels.   

 

  In an ICR, the SMR reaction 

occurs in endothermic reaction channels 

that are adjacent to exothermic reaction 

channels, where combustion fuel is burnt 

with air. The flow arrangement of the 

channels is shown in Figure 1 and Figure 2. Each microchannel has at least one internal 

dimension of 2 mm or less; the dimensions of each type of channel in this reactor are given in 

Table 1, and a schematic of a typical channel is shown in Figure 3. Microchannel reactors can be 

assembled in modules, which, in this particular application, are 1.5 m high, 1 m in width and 60 

cm long. Each module consists of 4,469 sets of exothermic and endothermic channels (one set 

Table 1  Channel Dimensions

  Length Width Thickness 
Endothermic 530 mm 9.70 mm 0.25 mm 

Product 443 mm 4.1 mm 0.41 mm 
Combustion 443 mm 4.1 mm 0.64 mm 

Air 443 mm 4.1 mm 0.64 mm 
Exhaust 443 mm 4.1 mm 0.36 mm 

Endothermic Channels 

Exothermic Channels 

Endothermic Channels 

Exothermic Channels 

Endothermic Channels 

Exothermic Channels 

Endothermic Channels 

Exothermic Channels 

Products 

Reactants 

 Fuel          Fuel 

    Exhaust   Exhaust  

  Fuel          Fuel 

Reactants 

Products 

Reactants 

  Fuel         Fuel 

    Exhaust   Exhaust

  Fuel          Fuel 

Reactants 

(…
Repeating units…

)
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equals two reactant channels, two product 

channels, four fuel channels, four air channels 

and two exhaust channels). 3,298 such 

modules are required to match the capacity of 

this plant, which processes 4,152 lb/hr of 

methane with approximately 90% conversion. 

As described in the patent, the reactor 

is manufactured as a stack of welded shims, 

stainless steel plates with microchannels 

etched into them. Each shim generally 

contains at least one endothermic reactant 

channel or a multiple of two 

product/exothermic/air/exhaust channels with spacers of varying width in between. Detailed 

design information of these shims can be found in the patent and in the Appendix on page A19. 

  A gaseous mixture of methane, steam and carbon dioxide (recycled from the product 

stream) at 225 psi enters the reactant channels (Figure 1), where it is heated by the counter-

currently flowing products (Figure 2). Even though the length of the endothermic reactant 

channel is 53 cm, the reactants only come into contact with catalyst in the last 18 cm of the 

channel, where they react using the energy evolved from fuel combustion. The reactants have a  

contact time with the catalyst (in the 18 cm reaction zone) of 6.0 ms. The reactor core can reach 

temperatures of up to 900°C; but more typically, the temperature will be close to 834°C 

(1,533°F). The warm products will enter the product channels through U-bends in the reactor, 

and proceed to lose thermal energy as they preheat the reactants in the adjacent reactant channels 

(Figure 2). The products exit the reactor at 401°C (754°F). A 2.99 mol H2 to mol CO ratio in the 

product stream is obtained. 

 

Figure 2‐ Flow orientation of streams within the 
reactor. The reactant feed is heated by the warm 
product feed, which is reciprocally cooled to 401°C 

(Source: U.S. Patent 7,250,151 B2). 
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The 18 cm long reaction zone in the 

endothermic reaction channels is adjacent to a 

catalyst insert 9.4 mm wide and 0.25 mm thick. 

The catalyst is 10 wt% Rh/4.5 wt% MgO/85.5 

wt% Al2O3 on spinel support with FeCrAlY felt 

coating (method of preparation is described in 

the patent). 

 On the combustion side, a mixture of 

methane, recycled hydrogen, excess air and 

heavier hydrocarbons (primarily gaseous 

hydrocarbons below C4 recycled from the 

Fischer-Tropsch Synthesis in reactor FTR-101 through stream RECYCLE) is fed (307 lb/hr fuel 

and 38 MMSCF/hr air) and combusted to provide energy for the reforming reaction.  

 SMR is highly endothermic, consuming approximately 1.34 × 1010 Btu/hr; combustion of 

the fuel provides this energy through a heat exchange surface of 1.07 × 109 cm2, resulting in a 

heat transfer rate of 12.48 Btu/hr-cm2 or 3.66 W/cm2. Detailed description of the design and 

costing of these modular reactors is presented in the Appendix on page A16; complete 

quantitative specifications are presented on page 66. 

 

5.2 Fischer-Tropsch Reactor Design 

The Fischer-Tropsch (FT) reaction, through which syngas (CO + H2) is converted to 

hydrocarbons, is carried out in a microchannel reactor. In the microchannel reactor, heat is 

removed from the exothermic FT reaction through a co-current cooling water stream adjacent to 

the process/reaction channels (see Figure 4). The method for conducting this reaction using 

Microchannel Process Technology (MPT) is described in U.S. Patent 7,084,180 B2.  

Figure 3 ‐ Schematic of the internal structure of a 
typical microchannel (Source: U.S. Patent 7,250,151) 
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 The FT reactor is a stack of 1mm 

thick parallel plates with spacers between 

them to form microchannels. Therefore, 

each channel has a rectangular cross-

section. The reactor is organized in pairs 

of one reaction layer and one cooling 

layer stacked vertically per pair. Each 

pair consists of 70 reaction channels and 

280 cooling channels along the reactor’s 

width. A reactor module measures 1m 

high, 1m wide and 1.5m long and 

contains 225 plate pairs. 

Reaction channels are 0.95mm thick, 17mm wide and 1.4m long, arranged side-by-side at 

a 20mm pitch; cooling channels are 1.5mm thick and 3mm wide, with a 5mm pitch. The cooling 

and reaction layers are separated by 1mm thick plates. A diagram of such a reactor is shown in 

Figure 5. To meet the capacity of this particular plant, 3,987 such modules are required. 

 
Figure 5 ‐ The detailed internal dimensions of the Fischer‐Tropsch reactor. The enlarged portion represents one 

plate pair; there are 225 plate pairs per 1m x 1m x 1.5m module. 

 

Figure 4 ‐ Image from a Velocys presentation of its FT 
Microchannel technology. This image summarizes the 

functioning of the reactor. 
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The feed to the reactor is syngas produced by SMR-101, including a recycled CO feed 

from the FT product stream at 437°F and 517 psi. An H2/CO ratio of 2.1 is maintained in the 

feed stream, since this is the recommended feed composition described by the patent. In this 

process, 4,149,000 lb/hr of CO and 647,300 lb/hr H2 are reacted in the parallel modules. The 

reactants are allowed a contact time of 0.26 seconds in the reactor. As a result, 192,000 bbl/day 

of hydrocarbons are produced, of which 54,300 bbl/day are methane and 13,700 bbl/day are 

gaseous C2-C4 hydrocarbons. The reaction yields approximately 124,000 bbl/day of C5+ 

products. The product stream, of course, contains large amounts of water, a byproduct of the 

reaction, as well as unreacted hydrogen, carbon monoxide and carbon dioxide. Before the 

effluent can be added to the TAPS pipeline, H2, CO2, CO and H2O must be removed. A pressure 

drop of approximately 75psi occurs across the reactor. 

1.16 × 107 lb/hr of partially vaporized water pass through the cooling channels, entering 

the reactor at 363°F and 150 psi from HX-201. As a result of heat transfer between the cooling 

and process channels, this water is completely vaporized, and exits at 401°F. This steam may 

then be used as feed for the Steam-Methane Reforming reactor. The highly exothermic FT 

reaction liberates 7.31 × 109 Btu/hr of heat is removed at a heat transfer rate of 0.38 Btu/hr-cm2 

or 0.11 W/cm2. 

 The catalyst used to conduct the Fischer-Tropsch reaction is a fixed bed of particulate 

solid, containing Co/Re catalyst in a molar ratio of 21 with a metal dispersion of 5.4%. Each 

particle is 177-250 microns in diameter. One gram of catalyst per 800ml/hr of flow is packed 

into each reaction channel; at the flow rates in this particular embodiment (80,500 ml/hr), 

approximately 0.11g of catalyst (0.032g Co, 0.0048g Re) is loaded per channel. 

 The rate of reaction is enhanced in this reactor since cooling water rapidly removes heat 

from the reaction channels. As a result, approximately 70% conversion per pass of CO is 

achieved. The product distribution of the FT reaction is given by the Anderson-Schulz-Flory 

distribution, a key parameter of which is α, the chain growth probability. Conventional FT 

processes have an alpha equal to less than 0.89; however, owing to the rapid heat removal and 

low mass transfer limitations in the small microchannels, an alpha of at least 0.905 is obtained (it 

may be as high as 0.93). Increasing α results in lower selectivity of the FT reaction towards 
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methane, a favorable result. Figure 6 shows a comparison of the product distribution obtained 

from a process with alpha equal to 89% versus alpha equal to 90.5%. 

 

Figure 6 – Fischer‐Tropsch Product Distribution as dictated by the Anderson‐Shultz Flory Distribution. A 
comparison is given between alpha values of 0.89 (conventional FT) versus 90.5% (microchannel technology). 

 

It is evident from the graph that, for higher values of alpha, less methane and more long-chain 

hydrocarbons are produced, improving product quality. 
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Section 6 - Process Flow Diagram 
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6.1 Process Block Overview 

The process flow diagram is divided into three sections for simplicity.  An overview of the 

process flow diagram is presented in Figure 7.  Figure 8 contains the complete process flow 

diagram, while Figures 9, 10 and 11 contain the details for each section of the complete process 

flow diagram.  Tables 2, 3 and 4 contain the stream results for each respective section of the 

process flow diagram. 

 

 

Figure 7 ‐ Overview of the Process Flow Diagram
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Figure 8 ‐ Complete plant process flow diagram 
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Figure 9 ‐ Process Block 100 
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Table 2 ‐ Process Block 100 Stream Results  
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Figure 10‐ Process Block 200 
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Table 3‐ Process Block 200 Stream Results 
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Figure 11 ‐ Process Block 300 
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Table 4 ‐ Process Block 300 Stream Results 
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Section 7 - Product Evolution 
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Product Evolution: 

7.1 Process Block 100  

Properly proportioned feed is transformed into syngas by SMR: 

 

Figure 12 ‐ Mole Fractions of Feed Stream to SMR 

 

Figure 13 ‐ Mole Fractions of Product Stream from SMR 
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Interim 

  CO2 is removed and recycled to the SMR, H2 is added for FT optimal 2.1:1 H2:CO ratio: 

 
Figure 14 ‐ Mole Fractions of Feed Stream to FTR 

 

7.2 Process Block 200 

 Hydrocarbons are formed:  
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7.3 Process Block 300 

Isolated product is sent to the pipeline: 

 

Figure 15 ‐ Mass Fractions of the final product sent to the Trans‐Alaskan Pipeline System (stream: “TO‐PIPE”). 
The Hydrocarbons are classified as: gasoline (C5H12 to C10H22), diesel fuel (C10H20 to C15H28), and naphtha (C12H26 ‐

to C20H42).  The components in red are undesirable, but are in low concentrations and therefore acceptable. 
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Section 8 - Process Description 
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Process Description 

 The production of liquid natural gas is accomplished in three major sections: the steam-

methane reformer (Block 100), the Fischer-Tropsch reactor (Block 200), and product purification 

and waste recycle (Block 300). Many of the operating conditions in Blocks 100 and 200 are set 

by the optimal microchannel design developed by Velocys in U.S. Patents 7,250,151 B2 and 

7,084,180, and the Nextant Technical Report.  Stream compositions at crucial points in the 

process are shown in Section 7. 

 

8.1 Block 100: Steam-Methane Reformer Section (Figure 9) 

 

The main unit in this process is the steam-methane reforming reactor, SMR-101.  SMR-

101 is comprised of numerous microchannels that alternate between steam reforming channels 

and combustion heating channels.    

This reaction is thermodynamically driven to produce the syngas products (H2 and CO) 

by combustion in an adjacent microchannel.  Prior to entering the reactor, the SMR reactants, 

streams FEED-CH4 (comprised of gaseous methane) and STEAM-201 (comprised of water 

vapor), are compressed to the optimal pressure of 217.6psi.  In SMR-101 these reactants undergo 

steam reforming and produce a mixture of syngas, unreacted methane, water and carbon dioxide.  

The combustion of natural gas, and recycled hydrogen and light hydrocarbons provides heat to 

the endothermic steam reforming reaction in the adjacent microchannels. 

The adjacent SMR microchannels were simulated in ASPEN (see Appendix, page H2 for 

flowsheet) by simulating the two types of microchannels in adjacent reactors.  The outlet 

temperatures of the reactors were simulated by “tricking” ASPEN.  ASPEN initially yielded the 

resulting streams at the reactor temperature.  This fails to account for the heat transfer the occurs 

within the microchannels, with the inlet temperatures being higher or lower than the entering 

temperatures depending on whether the stream is receiving or generating heat.  On both the 

combustion and the reforming reactor, a heat stream run through a heater and recycled back to 

the reactor gave proper exit temperatures.  The heat duties on the two heaters were set equal in 

magnitude, opposite in sign.  This achieved an effective microchannel containing simultaneous 

SMR and combustion reactions.     
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A closed loop of cooling water is used to cool the reactor effluents due to the limited 

amount of useable water.  Pump PUMP-101 is used to supply sufficient pressure for the cooling 

water to pass through heat exchangers HX-102 and HX-101.  After the cooling water has passed 

through both heat exchangers, AIRCOOLER-101 reduces the temperature of the water back to 

39.2°F.  CW-104 then re-enters PUMP-101 and the cooling cycle is continued. 

The effluent from the combustion channels, S-105, passes through HX-101 and is cooled 

to 320° F.  After it is cooled, it is released into the atmosphere as flue gas.  The effluent from the 

steam reforming channels, S-102, passes through HX-102 and is cooled to 437°F to meet the 

requirements for entry to the monoethanolamine separation block MEA-101.  This block is 

clearly detailed in the unit descriptions and in the Appendix on page B2.  MEA-101 effectively 

separates 80% of the carbon dioxide in S-103. Stream CO2 RECYCLE is a portion of the 

separated carbon dioxide that is to be mixed with the steam reforming reactants.  This carbon 

dioxide feed provides the optimal feed concentrations for the steam reforming reaction specified 

by Velocys.  The added carbon dioxide shifts the equilibrium-based water gas shift (WGS) 

reaction in the desired reverse direction, effectively preventing large amounts of carbon 

monoxide from being converted into carbon dioxide, and too much hydrogen from being formed.  

Stream CO2 PURGE is a product stream that contains excess carbon dioxide, which has 

potential to be transported and sold for enhanced oil recovery.   

Stream S-104 is the product of process block 100 containing the syngas that will be fed to 

the process block 200 reactor. 

 

8.2 Block 200: Fischer-Tropsch Reactor Section (Figure 10) 

 

Stream S-305 is a recycle of pure carbon monoxide that is mixed with the syngas stream 

of S-104.  This recycle stream is crucial in achieving the ideal 2.1 ratio of hydrogen to carbon 

monoxide that yields optimal Fischer-Tropsch products (Nextant).  Compressor COMP-201 

compresses stream S-201 to the reactor pressure of 440.9psi. Stream S-202 enters the 

microchannel reactor FTR-201 at 440.9psi and 437°F and proceeds to undergo the Fischer-

Tropsch reaction, producing an array of hydrocarbons of varying length.   
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The Fischer-Tropsch reaction, unlike the steam reforming reaction, is exothermic and 

requires the removal of heat to maintain reactor conditions.  Cooling water stream CW-205 

passes through adjacent microchannels to remove the heat produced by the Fischer-Tropsch 

reaction. While cooling the reactor, CW-205 becomes fully vaporized and exits the reactor as 

steam in stream CW-206.  65.58% of stream CW-206 is sent back to process Block 100 to 

provide SMR-101 with its required steam feed.  The remaining steam is passed through turbine 

TURB-201 to recover electricity.  After the energy has been recovered from CW-207, it is air 

cooled to 39.7°F.  Streams CW-209 and CW-202 are mixed and passed through pump PUMP-

202 to achieve a pressure of 159.73psi. This pressurized water allows for a higher generation of 

electricity after it becomes vaporized.  Stream CW-204 is then used to cool the effluent gas from 

FTR-101, stream S-203, to 86°F in preparation for process Block 300. 
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8.3 Figure 11) 

 

Stream S-204 enters process Block 300 as a gas comprised of long hydrocarbon products, 

unreacted methane, carbon monoxide, carbon dioxide, hydrogen and water.  To separate these 

various components, S-204 is passed through the flash drum F-301. F-301 produces three 

streams: S-301 comprised of liquid water with small amounts of impurities, S-303 comprised of 

the desired longer liquid hydrocarbons product, and S-304, the effluent gas comprised mainly of 

hydrogen, carbon monoxide and methane.  S-301 is sent to a decanter (DEC-301) where most of 

the remaining hydrocarbons that remain in the water are removed and returned to the product 

stream S-303.  The bottoms from the decanter, stream WASTE WATER, will be sold at a low 

price for use in enhanced oil recovery.  The gaseous stream S-304 is sent through the COPure-

301 block, which is detailed in the Appendix on page B6.  The COPure separation system allows 

for 99% separation of all carbon monoxide from S-304.  This relatively pure stream of carbon 

monoxide is sent back to process block 200 where it is used in the FTR-201 reactor.  The stream 

RECYCLE is sent to SMR-101 where it is burned as fuel to heat the reactor.  S-303 is combined 

with the recovered hydrocarbons from DEC-301, and sent to F-302.  This flash vessel removes 

dissolved CO2 and CO from the hydrocarbon stream in S-307, which is subsequently flared.  S-

308 is re-pressurized as the final product stream, TOPIPE, and sent to the Trans-Alaska Pipeline 

System. 
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Descriptions 
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Equipment List and Unit Descriptions 

9.1 CO2 Separation 

Overview 
 The SMR product contains 8.2% CO2 to be removed before the FT process.  The 

presence of other gases with similar molecular weight and polarity (CH4, H2, H2O, and CO) 

makes this separation difficult.  Aqueous monoethanolamine (MEA) exhibits selective reactivity 

towards CO2, and hence provides the best separation option.  It complexes with CO2 to form the 

carbamate ion MEACOO- via equilibrium reactions: 

 2H20 ↔ H30
+ + OH- 

C02 + 2H20 ↔ H30
+ + HCO3

- 

HCO3
- + H20 ↔ H30

+ + CO3
2- 

C2H8NO+ (MEAH+) + H20 ↔ H30
+ + C2H7NO (MEA) 

C3H6NO3
- (MEACOOH-) + H20 ↔ C2H7NO (MEA) + HCO3

- 

 MEA reacts with CO2 in an absorption column, effectively separating it from the syngas.  

Then, MEA is regenerated in a stripping column as the carbamate ion breaks down to form 

MEA, released gaseous CO2 and some vaporized H20.  The MEA is then re-circulated with the 

addition of water and ions to maintain the MEA concentration.  The separated CO2 is both 

recycled to the SMR and possibly sold.  The product stream, with 80% CO2 removed, is sent to 

the FT reactor microchannel. 

 

CO2 Separation - MEA-101 

  The SMR product passes through a flash vessel to remove some of the water and reduce 

the pressure for the absorption column.  The amine absorber operates at 100oF and atmospheric 

pressure to favor 80% CO2-MEA complexation.  It is built of stainless steel to resist MEA 

corrosion, and consists of 28 18ft towers.  The use of more MEA and bigger equipment for more 

separation is not economically justified.  The column consists of two packed beds modeled as 

equilibrium stages in which the syngas is contacted with a lean (3.7M) MEA solution.  Because 

of the low operating pressure of the absorber and the high vapor pressure of MEA, there is a 

significant amount of MEA (over 500 ppmv) leaving the absorption section with the clean 

syngas.  This is removed in a flash vessel, and the resulting MEA recycled back to the absorber.  

Some MEA in the column is taken out, cooled, and re-circulated to cool the column.  The rich 
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MEA solution from the bottom of the absorber is then pumped through a mass/heat exchanger, 

where it undergoes rich/lean MEA exchange and is preheated by the hot lean amine before 

returning to the amine stripper for regeneration.      

 The absorbed CO2 in STRFEED is separated from the aqueous MEA in 12 18ft stripping 

columns operating at 250oF and 41psi to yield a lean amine solution consisting of 0.16 mol 

CO2/mol MEA.  Cooling is provided by seawater, the resulting CO2 is flashed and compressed 

for recycle to the SMR or sold or used for enhanced oil recovery, and the lean amine is recycled.  

Both the inlet (S-103, also DRYGAS) and outlets (S-104, also VENT GAS and CO2 PURGE, 

also CO2 VENT) are at 437oF and 232 psi.  The costs of amine treating, preparation, 

reclamation, and storage away from air are included provided for.  The total installed cost of the 

system is $960,315,790 (Thomas).  See Page 53 for the unit specification sheet, and appendices 

A5, A12 for the design calculations. 

 

9.2 CO Separation 

Overview 

 The COPure separation utilizes similar reactions and unit operations as the MEA, except 

with a CuAlCl4 complexing agent.  For more details, see page 54 for the unit specification sheet, 

and the Appendix, page A5 for costing and further details.   

 

CO Separation - COPure - 301 

 The gaseous product stream from F-301 is sent to a CO separation unit that is performed 

best using COPure technology.  The major challenge to overcome is CO separation from CO2 

because of their molecular similarity.  This is another chemical complexation process, differing 

only in that the solvent is CuAlCl4 dissolved in an organic such as toluene.  The inlet stream (S-

305) at 80.3oF and 160 psi goes through a dryer to remove water, which reacts adversely with 

CuAlCl4, and a similar absorption/stripping process as MEA.  The product stream RECYCLE 

exits the process at 80.6oF and 225psi from the absorption column for combustion in the SMR, 

and the CO stream (S-305) leaves with 100% recovery from the top of the stripper, and after 

treatment, at 80.6oF and 225psi for recycle to the FT.  A lean/rich mass/heat exchanger in 

between the two columns plays the same role as in the MEA process.  The total installed cost of 
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CO Pure technology is $1,496,470,800 (R.C. Costello).   See page 54 for the unit specification 

sheet, page A5 of the Appendix for the design calculations, and page B6 of the Appendix for 

vendor information and a sample flowsheet.  

 

9.3 Steam-Methane Reformer - SMR-101 

This unit performs the steam-methane reforming reaction in a custom-fabricated 

microchannel reactor. The reactor is modular in design; with 3,298 parallel modules measuring 

1.5m high, 1m wide and 60cm in length. The reactor is operated at 1,652°F, with the reaction 

channels at 225psi pressure, and the combustion channels at atmospheric pressure. Since the 

reactor doubles as a heat exchanger, the product stream does not emerge at this high temperature, 

but instead loses heat to preheat the reactor feed. The reactor input is CH4 and steam in a 2.64 

molar ratio.  The reactor effluent (S-102) emerges from SMR-101 at 753°F and 232psi. The 

catalyst used is 10 wt% Rh/4.5 wt% MgO/85.5 wt% Al2O3 on spinel support with FeCrAlY felt 

coating to achieve 90% conversion of methane.  The reactor design is based on the information 

in U.S. Patent 7,250,151 B2; the cost of the reactor is estimated based on the amount of metal 

used in the construction of the reactor, and inflated by a factor of 5 to account for manufacturing 

costs. The bare module cost is estimated as $128,892 per module, and $425,084,912 for all 3,298 

modules. Detailed design and costing calculations for this reactor are presented in the Appendix 

on page A16, and the unit specification sheet can be found on page 66. 

 

9.4 Fischer-Tropsch Reactor - FTR-201 

  This unit is a custom-fabricated microchannel reactor that conducts the Fischer-Tropsch 

synthesis.  The reactor is modular in design, with 3,987 parallel modules measuring 1m high, 1m 

wide and 1.5m in length.  The feed to the reactor (S-203) contains syngas with an H2/CO feed 

ratio of approximately 2.1:1, at a temperature of 437oF and a pressure of 440.9psi. The reactor 

achieves 70% conversion of CO, yielding 192,000 bbl/day of hydrocarbons.  The reactor is 

operated at 225°C, with the reaction channels at 525psi pressure, the cooling channels at 150psi, 

and a pressure drop of 75psi.  The heat of reaction of the FT synthesis is transferred to the 

cooling channels, completely vaporizing the water, which is heated from 184°C to 205°C.  The 

catalyst used to conduct Fischer-Tropsch is a fixed bed of particulate solid, with each particle 
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177-250 microns in diameter and containing Co/Re catalyst in a molar ratio of 2:1 with a metal 

dispersion of 5.4%.  The reactor design is based on the information in U.S. Patent 7,084,180 B2 

and reactor dimensions provided by Arkema, Inc.; the cost of the reactor is estimated by 

estimating the amount of metal used in the construction of the reactor, and inflated by a factor of 

10 to account for manufacturing costs. The bare module cost is estimated as $186,408 per 

module, and $743,210,558 for all 3,987 modules. Detailed design and costing calculations for 

this reactor are presented in the Appendix on page A29, and the unit specification sheet can be 

found on page 58. 

 

9.5 Flash Vessel - F-301 

 The V-L-L equilibrium vertical pressure vessel separates S-108 into product gas (S-109) 

for recycle to be burned in the SMR, desired liquid hydrocarbons for the pipeline (S-113), and 

liquid water for decanting (S-112).  The flash vessel presumes equilibrium takes place at 80.6oF 

and 225 psi.  Due to the high total flow rate, F-301 is broken down into 22 carbon steel vessels, 

each with a flow of 1895 ft3/min.  The bare module cost per unit is $2,981,056 and the total 

indexed cost is $88,337,615 (Seider 2005).  For additional information, see Aspen report for F-

301 in the Appendix on page H29, costing calculations on page A12 of the Appendix, and 

specifications on page 56. 

 

9.6 Flash Vessel – F-302 

 The V-L equilibrium vertical pressure vessel separates S-306 into a flared waste gas 

stream (S-307), and the final hydrocarbon mixture (S-308) to be pumped into the pipeline.  The 

flash vessel presumes equilibrium takes place at 80.6oF and 14.5 psi to remove dissolved CO2 in 

the product hydrocarbon mixture.  F-302 is composed of 12 carbon steel vessels, with a 65.2 ft3 

capacity.  The bare module cost per unit is $41,600 and the total indexed cost is $680,168 (Icarus 

Cost Charts).   For additional information, see Aspen report for F-302 on page H31 of the 

Appendix, and specifications on page 57.   
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9.7 Decanter - DEC-301 

 The decanter is modeled as a single-stage flash vessel/settler and further separates the 

liquid water S-118 stream from F-301 into pure water with trace hydrocarbons 

(WASTEWATER), and hydrocarbons (S-114) for recombination into the final pipeline stream.  

The residence time is only 5 minutes, because the mixture separates readily, and the vertical 

pressure vessel operates at 80.6oF and 225psi.  Again due to the high total flow rate, DEC-301 is 

broken down into 30 carbon steel vessels, each with a flow of 69.84 ft3/min.  The bare module 

cost per unit is $135,200 and the total indexed cost is $5,526,365 (Icarus Cost Charts).  For 

additional information, see Aspen report for DEC-301 on page H28 of the Appendix, costing 

calculations in the Appendix on page A12, and specifications on page 55.   

 

9.8 Air Cooled Heat Exchanger - Aircool-101 

 Aircool-101 removes heat from the SMR cooling water recycle loop and is modeled as an 

air-cooled heat exchanger to take advantage of the average yearly North Slope temperature of 

14oF.  Its heat duty is 8.345E7 Btu/hr and cools 2,482,306 lb/hr at atmospheric pressure from 

463.6oF (CW-11) to 39.2oF (CW-12).  Because of the large flow rate, it is modeled as 40 carbon 

steel heat exchangers with an area of 5,890ft2.  The individual unit bare module cost is $345,188 

and the total installed cost is $18,598,099 (Seider 2005).  For additional information, see costing 

calculations in the Appendix on page A14 and specifications on page 51.   

 

9.9 Air Cooled Heat Exchanger - Aircool-201 

 Aircool-201 removes heat from the FT cooling water recycle loop and is modeled as an 

air-cooled heat exchanger due to the low Alaskan-air -temperatures.  Its heat duty is 1.293E8 

Btu/yr and cools 4.00E6 lb/hr at 120psi from 369.6oF (CW-3) to 39.2oF (CW-1).  Because of the 

large flow rate, it is modeled as 40 carbon steel heat exchangers with an area of 91,769 ft2.  The 

individual unit bare module cost is $415,052 and the total installed cost is $22,254,487 (Seider 

2005).  For additional information, see costing calculations in the Appendix on page A15, and 

specifications on page 52.        
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9.10 Centrifugal Compressor- COMP-101 

Compressor COMP-101 is a set of two two-stage compressors running in parallel used to 

pressurize the natural gas feed stream to the required pressure for steam reforming in SMR-101.  

Stream FEED-CH4 containing 3.63E5 scf/min, is compressed from 44.09 psi to 232.25 psi.  

Additionally, the temperature of FEED-CH4 increases from 100°F to 255.25°F while the 

compression achieved.  It is constructed of carbon steel and consumes 4.5E8 Btu/hr.  The bare 

module cost for both compressors, including electric motors, is $28,612,837 (H.P. Loh).  For 

additional information, see costing calculations in the Appendix on page A6 and the specification 

sheet on page 48. 

 

9.11 Centrifugal Compressor- COMP-102 

Compressor COMP-101 is a set of two single-stage compressors running in parallel used 

to pressurize the recycled steam stream STEAM-201 to the required pressure for steam 

reforming in SMR-101.  Stream STEAM-201containing 3.89E5 scf/min, is compressed from 

159.73 psi to 232.25 psi.  Additionally, the temperature of STEAM-201 increases from 401°F to 

638.6°F while the compression achieved.  It is constructed of carbon steel and consumes 3.75 

Btu/hr.  The total indexed cost for both compressors, including electric motors, is $26,650,814 

(H.P. Loh).  For additional information, see costing calculations in the Appendix on page A7 and 

specifications on page 49. 

 

9.12 Centrifugal Compressor- COMP-201 

Compressor COMP-101 is a set of three three-stage compressors running in parallel used 

to pressurize the syngas product stream from the process block 100  to the required pressure for 

the Fischer-Tropsch reactor FTR-201.  Stream S-201 containing 4.78E5 scf/min, is compressed 

from 232.25 psi to 514.36 psi.  Additionally, the temperature of FEED-CH4 increases from 

232.25°F to 514.36°F while the compression achieved.  It is constructed of carbon steel and 

consumes 1.822E9 Btu/hr.  The total indexed cost for all three compressors, including electric 

motors, is $49,050,578 (H.P. Loh).  For additional information, see costing calculations in the 

Appendix on A7 and specifications on page 50. 
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9.13 Centrifugal Pump- PUMP-101 

PUMP-101 is a set of two centrifugal pumps running in parallel used to pressurize the 

cooling water stream CW-104 from 22.04 psi to 29.39 psi at 35°F.  The volume of water pumped 

is 673.3 scf/min.  This pressure will allow for the water to travel through the two heat exchangers 

that need cooling.  An extra pump has been included to prevent problems that would occur, 

including plant shutdown, if one pump failed.  PUMP-101 requires 63,875.76 Btu/hr and has a 

head of 17.22 ft.  The pump is constructed out of stainless steel and has an rpm of 3600.  The 

3600 rpm electric motor that accompanies the pump features a totally enclosed, fan-cooled 

enclosure to prevent against moisture damage.  The total indexed cost for both pump/motor units 

was $56,387 (Seider 2005).  For additional information, see costing calculations in the Appendix 

on page A8. The specification sheet can be found on page 62. 

 

9.14 Centrifugal Pump- PUMP-201 

PUMP-201 is a set of five centrifugal pumps running in parallel used to pressurize the 

cooling water stream CW-201 from 14.7 psi to 130.73 psi at 39.2°F.  The volume of water 

pumped is 2009.7 scf/min.  This pressure will allow for the safe mixing of this water with CW-

209.  An extra pump has been included to prevent problems that would occur, including plant 

shutdown, if one pump failed.  PUMP-201 requires 3.013E 6 Btu/hr and has a head of 236.95 ft.  

The pump is constructed out of stainless steel and has an rpm of 3600.  The 3600 rpm electric 

motor that accompanies the pump features a totally enclosed, fan-cooled enclosure to prevent 

against moisture damage.  The total indexed cost for all of the pump & motor units is $580,768 

(Seider 2005).  For additional information, see costing calculations in the Appendix on page A9.  

The specification sheet can be found on page 63. 

 

9.15 Centrifugal Pump- PUMP-202 

PUMP-202 is a set of three centrifugal pumps running in parallel used to pressurize the 

cooling water stream CW-203 from 130.73 psi to 159.73 psi at 39.2°F.  The volume of water 

pumped is 3064.38.7 scf/min.  The additional pressure in this water stream will allow for a 

higher recovery of electricity in TURB-201.  An extra pump has been included to prevent 

problems that would occur, including plant shutdown, if one pump failed.  PUMP-202 requires 
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1.1485E6 Btu/hr and has a head of 65.99 ft.  The pump is constructed out of stainless steel and 

has an rpm of 3600.  The 3600 rpm electric motor that accompanies the pump features a totally 

enclosed, fan-cooled enclosure to prevent against moisture damage.  The total indexed cost for 

all of the pump & motor units is $229,369 (Seider 2005).  For additional information, see costing 

calculations in the Appendix on page A10.  The specification sheet can be found on page 64. 

 

9.16 Centrifugal Pump- PUMP-301 

PUMP-301 is a set of two centrifugal pumps running in parallel used to pressurize the 

final product stream for transportation to the Trans-Alaskan Pipeline.  It pumps stream S-308 

from 29.2 psi to 101.72 psi at 80.6°F.  The volume of liquid pumped is 488.45 scf/min.  An extra 

pump has been included to prevent problems that would occur, including plant shutdown, if one 

pump failed.  PUMP-301 requires 4.64E5 Btu/hr and has a head of 235.14 ft.  The pump is 

constructed out of stainless steel and has an rpm of 3600.  The 3600 rpm electric motor that 

accompanies the pump features a totally enclosed, fan-cooled enclosure to prevent against 

moisture damage.  The total indexed cost for all of the pump & motor units is $128,166 (Seider 

2005).  For additional information, see costing calculations in the Appendix on page A10.  The 

specification sheet can be found on page 65. 

 

9.17 Steam Turbine- Turb-201 

Turb-201 is a turbine used to recover the energy from steam stream CW-207.  CW-207 

enters at 149.73 psi and 401°F and CW-208 exits at 130.73 psi and 369.56°F.  The volume of 

steam entering is 204,237.99 scf/min and expands to 241,493.5 scf/min at exit.  The turbine is 

constructed out of carbon steel and has a 3600 rpm motor.  It has a power production capacity of 

14.96 MW or 5.106E7 Btu/hr.  After the TURB-201 has recovered the energy from the team, it 

exits as stream CW-208.  The total indexed cost of the turbine is $2,180,026 (H.P. Loh).  For 

additional information, see costing calculations in the Appendix on page A6 and the specification 

sheet on page 67. 
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9.18 Heat Exchanger - HX-102  

HX-102 is a countercurrent floating head shell and tube heat exchanger that cools the 

primary products from the Steam-Methane Reformer (SMR) in S-102.  S-102 contains primarily 

hydrogen, steam and carbon monoxide.  The cooling water loop, which enters HX-102 as stream 

CW-101 is a closed loop that is kept at pressure by Pump-101.  S-102 is cooled from a 

temperature of 753.8oF to 437.0oF.  The shell side cooling water rises from a temperature of 

39.2oF to a temperature of 252.8oF, where it partially vaporizes to a vapor fraction of 0.49.  A 

heat transfer coefficient of 100Btu/hr-sqft-R was used (Perry).  The unit uses 11,615 20ft tubes 

for a 1.82E09 Btu/hr heat duty, as calculated by Aspen’s HeatX subroutine.  The tubes have an 

ID of 0.625 in. while the shell has an ID of 110 in.  The minimum baffle spacing is 22 in. and 

total area for heat transfer is 40,729 sqft.  The total indexed cost is $408,683 (Seider 2005).  For 

calculation details, please see page A3 of the Appendix. The specification sheet can be found on 

page 60. 

 

9.19 Heat Exchanger - HX-101 

HX-101 is system of countercurrent floating head shell and tube heat exchangers that 

cool the combustion products from the Steam-Methane Reformer (SMR) in S-105.  There are a 

total of four identical exchangers in parallel.  S-105 contains mostly nitrogen, water and 

unreacted oxygen.  It enters at a temperature of 627.8oF.  Cooling water enters the exchanger via 

CW-102 at 252.8oF and exits as stream CW-103 at 463.6oF.  The exit stream is labeled S-106 

and is cooled to a temperature of 320.0oF.  The cooling water is on the shell side and enters 

partially vaporized, at a vapor fraction of 0.49.  In the exchanger, the remaining liquid is 

completely vaporized. A heat transfer coefficient of 100Btu/hr-sqft-R has been postulated based 

on values obtained from the literature (Perry).  Each of the four units uses 12,493 20ft tubes for a 

3.79E08 Btu/hr heat duty, as calculated by Aspen’s HeatX subroutine.  The tubes have an ID of 

0.625 in. while the shell has an ID of 114 in.  The minimum baffle spacing is 23 in. and total area 

for heat transfer is 49,046 sqft.  The total indexed cost for all four exchangers is $1,884,936 

(Seider 2005).  For calculation details, please see page A3 of the Appendix. The specification 

sheet can be found on page 59.  
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9.20 Heat Exchanger - HX-201 

HX-201 is system of countercurrent floating head shell and tube heat exchangers that cools 

the Fischer-Tropsch Reactor (FTR) stream products, S-203.  There are a total of 120 identical 

exchangers in parallel.  S-203, containing crude products, including saturated hydrocarbons from 

methane to C20+ and 61% mass steam and 13% mass CO, enters the exchangers at a temperature 

of 437oF.  The exit stream is labeled S-204 and is cooled to a temperature of 86oF.  Shell-side 

cooling water enters the exchanger via CW-204 at 39.2oF and exits partially vaporized (vapor 

fraction 0.32) as stream CW-205 at 364.0oF.  A heat transfer coefficient of 100Btu/hr-sqft-R has 

been assumed based on values obtained from the literature (Perry).  Each of the 120 units uses 

13,469 24ft tubes for a 6.55E06 Btu/hr heat duty, as calculated by Aspen’s HeatX subroutine.  

The tubes have an ID of 0.625 in. while the shell has an ID of 118 in.  The minimum baffle 

spacing is 24 in. and total area for heat transfer is 63,455 sqft, nearly the maximum practical size 

of a shell and tube heat exchanger.  The total indexed cost for all four exchangers is $74,196,004 

(Seider 2005).  For calculation details, please see page A3 of the Appendix. The specification 

sheet can be found on page 61. 
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1 For detailed information on the internal structure of the module, see page A29 of the Appendix 
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Equipment Cost Summary 
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Energy Balance and Utility Requirements 

 

The operation of this plant requires processing water, cooling water, and natural gas as 

utilities.  One of the main benefits in using microchannel reactors is the significant decrease in 

required utilities.  For steam reforming, the high rate of heat transfer in the microchannels allows 

for the reaction to be sustained at the temperature of 753.8°F.  This is very low when compared 

to conventional reactor temperatures of 1472°F.  When compared with a conventional process 

sheet that was prepared, the natural gas required for combustion with microchannel reactors was 

reduced by 94%.  Additionally, the cooling water utility required to cool these streams was 

significantly decreased.  The following utility requirements are small in comparison to 

conventional gas-to-liquid processes. 

 

11.1 Cooling Water 

The streams cooling heat exchangers HX-101 and HX-102 form a closed loop using an air 

cooler, to lower the cooling water requirements. This cooling loop requires a flow rate of 

7,152,457 gallons/hour.  A makeup requirement of 3% of the total enclosed flow per year yields 

a requirement of 214,574 gallons of makeup/year.(Petrakis)  Similarly the cooling water streams 

passing through the HX-201 cooling loop has a flow rate requirement of 11,541,573 gallons/hour 

and a makeup requirement of 346,247 gallons/year.  The total amount of makeup cooling water 

that is required per year is 560,821gallons/year, which is equal to 0.131 gallons of makeup/bbl of 

product produced.  The resulting cost of cooling water is $560.82/year.  The initial purchase cost 

of cooling water is $18,964. 

 

11.2 Process Water 

The flow rate of stream CW-201 is the requirement of process water for the plant.  This 

process water initially serves as cooling water for HX-201.  In HX-201 the cooling water is 

vaporized into steam at 401°F.  The steam produced from the process water will then serve as a 

feed to the steam reforming reaction.  This method of producing steam from process water 

eliminates the need for steam as a purchased utility.  The process water requirement is 901,769 

gallons/hour at an annual cost of $7,697,700. 
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11.3 Natural Gas 

Natural Gas is required to heat the SMR-101 reactor. Stream FUEL FEED has a natural 

gas requirement of 21,800,000 cubic feet per hour at an annual cost of $27,200.  Other 

requirements of natural gas include the feed of natural gas that will undergo steam reforming and 

the natural gas power plant that will be operating on site.  These natural gas requirements have 

been categorized under raw material costs. 

 

11.4 Electricity 

Electricity is a major requirement for the proposed 

project.  The electricity requirement is summarized in Table 5 

and is equal to an approximate total of 782.3MW plus 

ancillary demand. The GTL plant design includes a single 

turbine capable of producing just under 15MW. This leaves 

~765MW of unmet demand.  Unfortunately, currently, the 

largest power plant in the North Slope region is only capable 

of producing approximately 300MW. In order to meet the 

electricity requirement, a new power plant must be 

constructed. Due to the availability and 

low cost of natural gas, a plant utilizing 

this fuel makes the most economic sense.  

NG fired generation is also among the 

cheapest options from a capital cost 

standpoint.  The current project proposes 

to construct a natural gas combined 

cycle (NGCC) plant using newer 

generation and emission controls 

technologies.  The plant will have a capacity of between 800MW and 1000MW, depending on 

factors such as the demand for additional electricity in the area and the final needs of the GTL 

plant and supporting infrastructure.   

Table 5 ‐ Electricity Requirements 

Block 
Name 

Electricity(MW)

COMP-101 131.81
COMP-102 109.89
COMP-201 533.96
PUMP-101 0.018
PUMP-201 0.88
PUMP-202 0.33
PUMP-301 0.136
MEA-101 20.35
TURB-201 -14.96
Total 782.30

 

Figure 16 ‐ Power Capital Cost Index 
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Capital costs for such a plant range from $500/kW to $1500/kW depending on numerous 

factors.  At the low end of this range, a May 2007 NETL (DOE) model put the cost of a 560MW 

plant at $311MM, or $555/kW.  In March of 2009, Idaho Power Company announced their 

Langley Gulch NGCC plant would cost $427MM and would be capable of producing 300MW.  

A 2008 comparison done by PJM put the capital cost of a NGCC plant at between $987/kW and 

$1131/kW in its region.  The Northwest Power Planning Council estimated the cost in 2002 of an 

NGCC plant at $621/MW.  The wide variance in costs can be attributed to geographic location, 

financing assumptions, capacity factor assumptions and other factors.  Unfortunately, over the 

past five years, the cost of construction for power plants has escalated greatly.  The PCCI or 

Power Capital Cost Index tracked by CERA (Cambridge Energy Research Associates) for 2008 

can be found in Figure 17.  In summer of 2008, FERC released a report estimating capital costs 

for new plants of various types.  

This information can be found in 

Figure 17.   

For the purposes of the 

proposed project, the capital cost 

for a new NGCC plant in Alaska 

has been estimated to be 

$1500/kW.  This would yield a total 

capital cost of $1200MM to $1500MM depending on the final capacity.  This estimate is based 

on escalating capital costs and an increased site factor for Alaska, including strict environmental 

regulations, harsh climate conditions and remoteness of location.  Construction would begin in 

2010, with completion scheduled for 2012.  

Figure 17 ‐ FERC Estimated Cost of New Generation (June)
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Alternative Process Sequences 

There were many potential process sequences considered before arriving upon the final 

process design, mostly due to variations in the separation processes.  Stream compositions at 

crucial points in the process are shown in Section 7.  In an initial survey of the capital cost 

investments, the MEA and COPure separations seem costly.  However, after further analysis, 

these separations have proven to be important if not crucial to the operation of the plant.  

The MEA separation unit’s current location in the sequence is ideal for several reasons.  

This separation removes CO2 from the SMR products.  The removal of 80% of the CO2 from 

stream S-102 provides a decrease in capital cost for the numerous downstream process 

operations.  More importantly, its recycle provides a source of carbon dioxide for the SMR, and 

a 10.9% dry basis volume of CO2, as specified by the Nextant Technical Report.  Furthermore, 

separation of CO2 and C2H6 is difficult, as it often requires a liquid-liquid extraction.  This makes 

placement of the MEA separation unit before the Fischer-Tropsch reaction important.  The 

Velocys patent also specifies that CO2 should be removed before the FT reactor.  Additionally, 

the extra CO2 that is produced can be sold to outside companies for various uses, the most 

relevant of which in Northern Alaska is supercritical CO2 use in enhanced oil recovery (Austell 

1). 

Another possible source for carbon dioxide is stream S-106.  However, placing the MEA 

system to separate this stream is not a good alternative.  Stream S-106 is nearly equivalent in 

volume to S-103, but its CO2 content is much lower.  S-106 is also contaminated with inerts from 

the air inlet to SMR-101 on the combustion side of the microchannel.  These inerts would require 

more separation equipment, and if allowed to circulate with the CO2 would greatly increase 

downstream equipment size and price.  Therefore, the separation of CO2 in S-106 is not a good 

alternative.   

 MEA was chosen as the best CO2 separation system because it has been extensively 

researched and has performed reliably for over 60 years.  This is especially important in the 

harsh operating conditions in Alaska.  It also provides high CO2 recovery and purity potential, up 

to 95% depending on the amount of solvent circulated and operating conditions.  It has 

significant disadvantages in that it may increase the footprint of the Alaskan plant by as much as 
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60% because it is very energy and equipment intensive.  Amine degradation concerns are eased 

because the feed does not contain acids, nitrogen, or sulfur.   

The best alternative separation method is membrane technology.  This provides lower 

energy and equipment, and a competitive cost separation at the expense of CO2 purity.  While 

this option is extremely promising and has made rapid progress against MEA separation, large-

scale operation is not yet being performed.  Patents are pending, and this should be looked into 

again in a few years (Yang, et al.).  Thus, although the MEA separation cost is $967 million and 

33.7% of the total equipment cost, it is worth the investment.    

The COPure separation unit’s placement after S-304 is ideal for many reasons.  The 

Nextant Technical Report specifies that the best feed for the Fischer-Tropsch microchannel 

reactor contains a H2 to CO ratio of 2.1:1.  The SMR produces a ratio of 2.99, which would lead 

to non-ideal FT conditions and decreased production of pipeline quality hydrocarbons.   This 

leads to two options: H2 removal from the effluent of the SMR, or CO recycle from the FTR 

product stream to its inlet stream.   

The first option involves adding a H2 separation unit before FTR-201 and is unfavorable 

for several reasons.  Hydrogen separation from a gaseous stream is as difficult as a CO 

separation, and the resulting cost would be comparable to the COPure separation.  More 

importantly, the H2 separation would result in the lower limit of production capacity.  Thus, CO 

separation and recycle allows maximum carbon monoxide usage to achieve the highest possible 

feed with produced materials, whereas H2 removal results in wasting produced materials, as CO 

is the limiting reactant.  When these two options were compared, an 18% increase in total 

sellable product resulted from former option.  For the similarly priced H2 and CO separations, it 

is apparent that CO recycle is best.   

For CO separation, CO Pure technology provides the most reliable method of separating 

CO.  High yields result (typical recovery is 98%, purity is 100%), no separation from H2, N2, CO2, 

or CH4 is required, no temperature or pressure extremes are required, and the solvent is non-

corrosive and has a high absorption capacity.  However, it is equipment intensive, requiring feed 

pre-treatment and regulation of potential tar buildup due to the presence of trace heavier 

hydrocarbons in the feed.  It is an improvement over the alternative COSORB technology, which 

also uses copper salts.  COPure copper salts do not degrade; there is indirect cooling and heating, 
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a solid management system, a self-cleaning re-boiler, and seal-less pumps.  All other processes 

require harsh chemicals, and high temperatures/pressures.  This would demand even more 

equipment and energy intensive processes.  The only other potential competitor is the emerging 

technology of membranes, which are cheaper and more cost efficient.  However, their use has 

only been proven on small to moderate-scale plants, and they only achieve approximately 70% 

purity (Dutta, Paul).  Membranes should be considered again in the future.  Thus, the COPure 

process technology is the most suitable CO separation unit, in spite of its large capital cost of 

$1.48 billion, or 52% of the total equipment cost. 
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Summary 
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Fixed Capital Investment Summary 

The total permanent investment (TPI) of $6.86B was calculated using the profitability 

analysis spreadsheet v2.0 provided by Seider et al.  The total permanent investment is equal to 

the total capital investment minus the working capital. A breakdown of the components of Total 

Capital Investment is shown in Table 16.9 of Seider et al. Some important alterations were made 

to this spreadsheet in order to account for circumstances unique to this project. 

The years of construction was assumed to be three due to the nature and scope of the 

project and limited yearly period suitable for construction in Alaska’s cold climate. 

 A site factor of 1.4 was chosen due to the remoteness of the North Slope and extreme 

conditions.  The site factor is based on costs in the US Gulf Coast, which has a site factor of 1.0.  

For comparison purposes, the US West Coast has the highest site factor, which is 1.25.  The 

biggest contributor to an increased site factor is the extra cost associated with equipment design, 

transportation and installation, which quickly add up in Alaska.  For instance, to prevent the 

cooling water streams from freezing, they must be jacketed with either steam or thermal 

electrical resistance.  Additionally, the ground may have to be insulated from the plant to prevent 

the permafrost from melting.   Other factors such as earthquake codes and additional 

environmental concerns also add to the cost.  Thus a 1.4 site factor proves quite reasonable. 

Additionally, certain other TPI costs were escalated.  The cost of site preparation and 

startup were both adjusted.  The cost of site preparation was escalated from 5% to 15% of total 

bare module costs to account for the difficulty and expense of transporting heavy construction 

equipment to the North Slope and the extra costs of construction of a grass-roots plant in an 

extraordinarily cold climate (Seider 2005).  The cost of startup was adjusted from 10% to 15% of 

total depreciable capital to account for increased difficulty, and labor costs (Seider 2005).  

On the contrary, land costs in Alaska are comparatively low and the cost of land was 

assumed to be just 1.0% of total depreciable capital.  The cost of royalties was purposefully 

excluded here and the cost associated with potential royalties was rolled into annual licensing 

fees.  Discussion of these annual licensing fees is included in the section on costs. 

For cash flow purposes, the total depreciable capital expenditure was distributed evenly 

over the three years of construction.  Total depreciable capital is equal to the TPI minus the cost 
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of land, royalties and startup.  The cost of land was included in the first year of construction 

while the cost of startup was included in the last year of construction. 

A summary of the fixed capital investment components is shown in Table 6. 

Table 6- Investment Summary 
 

Alaskan Natural Gas to Liquids Using Microchannel Reactor 
                     

Bare Module Costs                
  Fabricated Equipment                 

    SMR101         $84,877,200          

    HX-101         $1,884,900          

    HX-102         $408,700          

    HX-201         $74,196,000          
    AIRCOOLER-101       $18,598,100          
    AIRCOOLER-201       $22,254,500          
    MEA-101         $967,315,800          
    FTR-201         $4,101,000          
    TURB-201         $2,155,100          
    FLASH-301         $88,606,200          
    COPure-301         $1,496,470,800          
    DEC-301         $5,463,200          
     Total Fabricated Equipment: $2,766,331,500          
  Process Machinery                   
    COMP-101         $28,612,800          
    COMP-102         $26,650,800          
    COMP-201         $49,050,600          
    PUMP-201         $580,800          
    PUMP-202         $229,400          
    PUMP-101         $56,400          
      Total Process Machinery: $105,180,800          
  Catalysts                     
    SMR101 Catalyst $5,000          
    FTR-201 Reform Catalyst $5,000          
    FTR-201 Combustion Catalyst $5,000          
              Total Catalysts: $15,000          
                          

Total Bare Module Costs: $3,950,691,500  
                          

Direct Permanent Investment       
    Cost of Site Preparation:  $ 200,645,000         
    Cost of Service Facilities: $66,881,700         

    
Allocated Costs for Utility Plants and Related 
Facilities: $1,500,000,000          
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 Direct Permanent Investment: $5,718,218,200 

                          

Total Depreciable Capital       

    
Cost of Contingencies and Contractor Fees: $558,928,900 

        
                          
      Total Depreciable Capital: $6,277,147,100  
                          

Total Permanent Investment       
    Cost of Land:         $36,640,900          
    Cost of Royalties:       $0          
    Cost of Plant Start-Up: $549,613,400          
                          

 Total Permanent Investment: $6,863,401,400  
                          

Working Capital       
  Accounts Receivable:        $242,918,200          
  Cash Reserves:         $76,883,900          
  Accounts Payable:          $ (8,387,000)         
                          
  Inventory                     
              Total Inventory: $0          
                          
                          
              Total Working Capital: $311,415,100  
                          
TOTAL CAPITAL INVESTMENT $7,174,816,500  
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Section 14 - Operating Cost and Economic 
Analysis 
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Operating Cost and Economic Analysis 

14.1 Fixed Costs 

The total annual fixed costs are $572MM (in year 1) and include operations, 

maintenance, overhead, property insurance and taxes, and annual licensing fees.  Fixed costs 

escalate at the rate of inflation, 2.4% per year.  Some important assumptions were made in the 

calculation of the fixed costs. 

 Twenty operators per shift were assumed based on information provided by Mr. David 

M. Kolesar and the rules of thumb provided by Seider (2005).  Operations wages were increased 

by 50% over Gulf Coast baseline salaries to account for the difficulty of attracting and keeping a 

talented labor force in northern Alaska. 

 Maintenance wages and benefits were increased from 3.5% to 4.75% of total depreciable 

capital (TDC).  Property taxes and insurance was reduced from 2.0% of TDC to 1.0% of TDC to 

reflect the lower property tax rates in the state of Alaska (Seider 2005).   

All other cost assumptions remained as described in Seider’s et al. profitability analysis 

2.0 and Chapter 17 (Seider). A summary of the fixed costs is shown in Table 7. 
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Table 7 - Fixed Cost Summary 
Alaskan Natural Gas to Liquids Using Microchannel Reactor 

    
  Operations 

  Direct Wages and Benefits:   $39,312,000   
  Direct Salaries and Benefits:   $5,896,800   
  Operating Supplies and Services: $2,358,720   
  Technical Assistance to Manufacturing: $1,300,000   
  Control Laboratory:     $1,400,000   
  Total Operations: $50,267,520  $50,267,520  
 

Maintenance 
  Wages and Benefits: $174,044,234   
  Salaries and Benefits: $43,511,058    
  Materials and Services: $174,044,234    
  Maintenance Overhead: $8,702,212    
  Total Maintenance: $400,301,738  $450,569,258  
   

Operating Overhead 
  General Plant Overhead:  $18,656,251    
  Mechanical Department Services: $6,306,338    
  Employee Relations Department:  $15,503,081    
  Business Services: $19,444,543    
  Total Operating Overhead: $59,910,213  $510,479,471  
  
Property Insurance and Taxes  
  Property Insurance and Taxes: $36,640,891    
 Total Property Insurance and Taxes: $36,640,891  $547,120,362  
  

Other Annual Expenses         
  Annual Licensing Fees:     $25,000,000    
Total Other Annual Expenses: $25,000,000  $572,120,362  
 
TOTAL $572,120,362  
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14.2 Variable Costs 

 Variable costs are divided into two categories – variable costs that are based production 

level and variable costs that are based on the quantity of sales.  If the plant were to run at 100% 

capacity, the total non-sales, or production-based, variable costs would be $106MM per year.  

For purposes of cash flows, the variable cost is the product of $106MM and the percent design 

capacity the plant is operating at in that year.  The costs are escalated annually at the rate of 

inflation.  These costs include utilities and raw materials for the production process.  The MEA 

system solvents and reactants were calculated to cost $0.31 per barrel of GTL products produced 

while the COPure system solvents and reactants were calculated to cost $0.44 per barrel of GTL 

products produced.  Details of these calculations can be found in the Appendix on page B6.  

Utility costs (process water and cooling water) were calculated using the inflation adjusted dollar 

values given in Table 17.1 of Seider (2005) multiplied by the amount of utility required as 

calculated using ASPEN PLUS.  Finally, the natural gas will be supplied at a price of $0.80MCF, 

according to Energy Information Administration Report #SR-OIAF/2002-02.  This price is 

justified based on the fact that the gas on the North Slope is stranded from market and is 

currently being compressed and sent back underground or otherwise being flared and thus has 

comparatively minimal current market value.  The amount of natural gas required for the process 

was calculated using ASPEN PLUS, while the amount required for the natural gas combined 

cycle (NGCC) plant was calculated using a lower heating value of 50,100 kJ/kg.  The NGCC 

plant has a capacity of 1000MW.  It was assumed that the composition of the natural gas was 

100% methane as the gas has already been processed by third parties. 

 The sales-based variable costs include selling/transfer expenses, direct research, allocated 

research, administrative expense and management incentive compensation.  These costs were 

also adjusted as appropriate to this particular project.  The selling/transfer expenses were reduced 

from 3% to 0.25% of sales since there is a ready market at the end of the Trans-Alaskan Pipeline 

(TAPS) for petroleum products and little expense would be associated with tapping that market.  

Direct research was set at 1.0% of sales (versus 4.8% as given by Seider et al.) to reflect low 

costs associated with quality control and minimal need for additional research.  Allocated 

research would be covered by the parent company and was thus set to 0%.  Other expense ratios 

remain as given by Seider et al.  The sales-based variable costs total 4.5% of sales. In addition to 
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these standard costs, the plant is charged a fee to pump its product through the TAPS oil 

pipeline. This tariff is $4.87 as of January 1, 2008, as reported by FERC (Federal Energy 

Regulation Commission). These sales-based costs are separated in the cash flow sheet for clarity. 

A summary of all the variable costs is shown in Table 8, except for the pipeline tariff. 

Table 8 - Variable Cost Summary 
Alaskan Natural Gas to Liquids Using Microchannel Reactor 

 
 Per bbl GTL Product   TOTAL 

Raw Materials       
  Process Natural Gas $0.0225 per bbl of GTL Product $925,100    
  Air $0 per bbl of GTL Product $0    
  MEA Solvents and Reactants $0.3100 per bbl of GTL Product $12,759,500    

  
CO Separation Solvents and 
Reactants $0.4400 per bbl of GTL Product $18,110,200    

  Power Plant Feed Gas $1.3304 per bbl of GTL Product $66,053,000    
  Total Raw Materials: $2.1029 per bbl of GTL Product $97,847,800  $97,847,800  

       

Utilities         
  Process Water $0.1870 per bbl of GTL Product $7,697,700    
  Cooling Water $1.3066E-05 per bbl of GTL Product $500    
  Natural Gas $6.5968E-04 per bbl of GTL Product $27,200    
  Total Utilities: $0.1877 per bbl of GTL Product $7,725,400.00 $105,573,200  

       

General Expenses       
  Selling / Transfer: 0.25% of Sales    

  Direct Research:  1.00% of Sales    

  Allocated Research:  0.0% of Sales    

  Administrative Expense:  2.00% of Sales    

  Management Incentives: 1.25% of Sales    

  Total General Expenses: 4.5% of Sales   
TOTAL   $2.2906 per bbl of GTL Product  $105,573,200  

 

14.3 Taxes 

The tax situation of an oil and gas operation in Alaska is quite complicated.  State taxable 

income is equal to sales minus costs minus depreciation.  Alaska imposes a 9.4% corporate 

income tax.  For oil and gas operation, Alaska also imposes a windfall profit tax.  This tax is 

equal to 25% plus an escalation factor.  The escalation only applies if the price of oil is above 
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$52 per barrel.  The escalated tax rate is calculated by subtracting $52 from the market price of 

oil and multiplying this number by 0.10%.  This result is then added to the 25% base rate.  For 

example, if the price of oil is $102 per barrel, the escalation factor is equal to $50 x 0.10%, or 

5.0%, for a total windfall tax rate of 30%.  Total state taxes are then calculated by multiplying 

the state taxable income by the sum of the windfall tax rate and 9.4%. 

 Furthermore, the US federal government levies a corporate tax rate of 35% on taxable 

income above $18MM per year.  However, state tax is deductible. 

 The effective tax rate was calculated on the cash flow sheet for informational purposes 

and was obtained by dividing the total income tax (the sum of all Alaskan and federal income 

taxes) by the state taxable income (equivalent to pretax earnings).  The effective tax rate in the 

first year of production (Year 5) is equal to 60.46% with an oil price of $99.75 for the base case.  

The highest effective tax rate (62.88%) occurs in the final year of production and coincides with 

the highest price of oil ($136.93). 

 

14.4 Sales 

In order to estimate sales, a price per barrel of oil must be assumed.  For the base case, 

the Energy Information Administration Annual Energy Outlook 2009 market price projections to 

2030 were used.  The prices quoted are the weighted average price of delivery to US refiners. 

These projections are included in the cash flow sheets. Since plant life extends beyond 2030, to 

2037, additional price projection was required.  The average yearly projected increase in crude 

price from 2025 to 2030 was used to project prices to 2037.  It was felt that this gave a more 

accurate projection than using an average increase from the entire time period (2009 – 2037).  

This increase was 1.36%.  Sensitivity analysis is discussed under the summary section by the 

same name. 

 

14.5 Working Capital 

Working capital is equal to accounts receivable minus accounts payable plus cash 

reserves. Since all product is immediately transported to the TAPS pipeline as it is produced, 

inventory does not factor into working capital.  Accounts payable is assumed to be 30 days of the 

cost feedstock (raw materials and utilities) and accounts receivable is assumed to be 30 days of 
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sales.  Cash reserves are equal to 30 days of the cost of manufacture (raw materials, utilities, 

operations, maintenance, overhead, property taxes and insurance).  As production increases to 

from 45% to 67.5% to 90% in years 5, 6 and 7 respectively, working capital will necessarily 

increase. 

 

14.6 Overall Feasibility Summary 

A discount rate of 13% was applied to the project to strike a balance between a typical 

discount rate of 15% and typical utility discount rate of approximately 10%.  The project 

presents less risk than a typical project due to likely securitization of capital by the state and 

federal governments.  Under this scenario, the project yields a positive NPV of $708MM after 25 

years.  The investor’s rate of return or IRR, based on annual cash flow, is equal to 14.96%.  The 

breakeven point (i.e. payback period) occurs in year 19 (equal to year 15 of production).  A 

summary of the cash flows is shown in Table 9.
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Table 9 ‐ Cash Flow Summary 
Alaskan Natural Gas to Liquids Using Microchannel Reactor 

Year 
% of 

Design 
Capacity 

EIA Base 
Case 

AEO2009 
Sales Capital Costs 

Working 
Capital 

Total Variable 
Costs 

Fixed Costs 
Depreciation 
Allowance 

Total Income 
Tax 

Effect-
ive Tax 

Rate 
Net Earnings 

Annual Cash 
Flow 

2009 0.0% $59  Design $0  $0  $0  $0  $0  $0   0% $0  $0  

2010 0.0% $78  Construction ($2,129,023,267) $0  $0  $0  $0  $0   0%  ($2,092,382,367) ($1,638,642,311) 

2011 0.0% $86  Construction ($2,092,382,367) $0  $0  $0  $0  $0    0% ($2,092,382,367) ($3,088,768,250) 

2012 0.0% $95  Construction ($2,092,382,367) ($68,496,900) $0  $0  $0  $0    0% ($2,160,879,267) ($4,414,075,972) 

2013 45.0% $100  $1,847,618,227   ($549,613,400) ($153,906,598) ($225,579,726) ($629,052,991)  $766,448,446  $136,973,317  60.46% $152,492,196  ($4,331,309,318) 

2014 67.5% $105  $2,916,185,265  $0  ($89,011,634) ($346,764,174) ($644,150,262)  $1,226,317,514  $424,982,129  60.80% $1,411,277,064  ($3,653,446,796) 

2015 90.0% $109  $4,020,164,275  $0  ($91,961,452) ($470,855,990) ($659,609,869)  $735,790,509  $1,314,618,783  61.03% $1,483,118,182  ($3,023,031,627) 

2016 90.0% $110  $4,066,132,280  $0  $0  ($475,553,650) ($675,440,505)  $441,474,305  $1,511,774,238  61.11% $1,403,363,886  ($2,495,142,462) 

2017 90.0% $111  $4,101,935,542  $0  $0  ($479,856,996) ($691,651,078)  $441,474,305  $1,522,681,934  61.18% $1,407,745,535  ($2,026,525,324) 

2018 90.0% $112  $4,133,201,043  $0  $0  ($484,020,755) ($708,250,703)  $220,737,153  $1,665,640,907  61.23% $1,275,288,677  ($1,650,840,139) 

2019 90.0% $113  $4,167,510,936  $0  $0  ($488,387,675) ($725,248,720) $0  $1,810,508,548  61.29% $1,143,365,993  ($1,352,767,308) 

2020 90.0% $112  $4,150,630,556  $0  $0  ($490,518,785) ($742,654,690) $0  $1,787,323,172  61.26% $1,130,133,910  ($1,092,038,761) 

2021 90.0% $112  $4,160,972,219  $0  $0  ($493,944,264) ($760,478,402) $0  $1,781,168,321  61.28% $1,125,381,233  ($862,275,861) 

2022 90.0% $114  $4,226,380,019  $0  $0  ($499,918,761) ($778,729,884) $0  $1,809,788,147  61.40% $1,137,943,228  ($656,676,204) 

2023 90.0% $113  $4,184,653,024  $0  $0  ($501,144,940) ($797,419,401) $0  $1,769,828,892  61.32% $1,116,259,791  ($478,196,585) 

2024 90.0% $114  $4,224,133,466  $0  $0  ($506,099,947) ($816,557,467) $0  $1,781,274,869  61.39% $1,120,201,183  ($319,692,328) 

2025 90.0% $115  $4,272,118,536  $0  $0  ($511,513,944) ($836,154,846) $0  $1,797,841,233  61.48% $1,126,608,513  ($178,620,761) 

2026 90.0% $116  $4,315,067,584  $0  $0  ($516,779,432) ($856,222,562) $0  $1,810,887,989  61.55% $1,131,177,601  ($53,272,356) 

2027 90.0% $119  $4,395,257,587  $0  $0  ($523,800,750) ($876,771,904) $0  $1,847,489,796  61.69% $1,147,195,138  $59,226,180  

2028 90.0% $121  $4,471,375,871  $0  $0  ($530,720,746) ($897,814,429) $0  $1,881,262,317  61.83% $1,161,578,378  $160,030,618  

2029 90.0% $122  $4,518,079,255  $0  $0  ($536,400,945) ($919,361,976) $0  $1,895,812,858  61.91% $1,166,503,476  $249,616,324  

2030 90.0% $125  $4,615,813,515  $0  $0  ($544,463,418) ($941,426,663) $0  $1,943,034,525  62.08% $1,186,888,909  $330,281,171  

2031 90.0% $126  $4,678,432,683  $0  $0  ($551,033,658) ($964,020,903) $0  $1,967,278,783  62.19% $1,196,099,339  $402,219,948  

2032 90.0% $128  $4,741,901,356  $0  $0  ($557,732,183) ($987,157,405) $0  $1,991,755,704  62.30% $1,205,256,065  $466,369,952  

2033 90.0% $130  $4,806,231,060  $0  $0  ($564,561,672) ($1,010,849,182) $0  $2,016,465,441  62.41% $1,214,354,765  $523,568,432  

2034 90.0% $132  $4,871,433,476  $0  $0  ($571,524,866) ($1,035,109,563) $0  $2,041,408,046  62.53% $1,223,391,002  $574,563,216  

2035 90.0% $133  $4,937,520,441  $0  $0  ($578,624,562) ($1,059,952,192) $0  $2,066,583,464  62.64% $1,232,360,224  $620,022,197  

2036 90.0% $135  $5,004,503,958  $0  $0  ($585,863,622) ($1,085,391,045) $0  $2,091,991,529  62.76% $1,241,257,763  $660,541,835  

2037 90.0% $137  $5,072,396,188  $0  $403,376,584  ($593,244,969) ($1,111,440,430) $0  $2,117,631,959  62.88% $1,653,455,414  $708,307,698  

         Net Present Value at 13.0% $708,307,698 
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14.7 Sensitivity Analysis 

14.7.1 Market price of oil 
 

The project economics are most sensitive to the price of oil, which affects sales revenue, 

and to the initial capital expenditure.  Sensitivities were completed for both low and high cases 

for each condition. 

 For the price of oil, the Energy Information Administration’s (EIA) Annual Energy 

Outlook 2009 was again used.  In addition to the base case already discussed, the EIA publishes 

a low and a high case for the price of crude to 2030.  Projections to 2037 (Year 29) were 

estimated using the same method as previously described in the base case.  For the low case, the 

EIA estimates the price of crude to decrease to between $46 and $47 per barrel by 2015 and 

hover at those levels for the 

duration of the projection.  

For the project, this resulted 

in an IRR of 0.11% and an 

NPV of negative $2.80B, using the discount rate of 13%.  On the contrary, in the high price case, 

the EIA projects the price reaching $154 per barrel by 2015 (Year 6) and approaching nearly 

$200 by 2030 (Year 29).  This results in an NPV for the project of $3.23B and an IRR of 

20.69%.  As can be seen, by this analysis, summarized in Table 10, the risk to the favorability of 

the project due to the price of oil is enormous.  For this reason, long term contracts or hedging 

may be appropriate to mitigate some of this risk. 

Finally, a minimum price of oil was determined that would give the project an NPV of $0 

at a discount rate of 13% and an IRR of 13%.  This was accomplished by assuming a baseline 

crude price for 2009 (Year 1) and escalating this price at 1.0%.  This minimum price is $87.73 

per barrel (for 2009, Year 1).  It is also worth noting that the price in the first year of production 

is $91 (in 2013, Year 5) in the breakeven case, while in the EIA base case, it was just under 

$100. A comparison of the breakeven prices and the EIA base case prices is shown in Table 11. 

 

 

 

Table 10  Sensitivity of project feasibility to fluctuation in oil price 

  IRR  NPV 
EIA Low Price Case  0.11%  ‐$2,847,428,292 

EIA Base Case  14.96% $708,307,698 

EIA High Price Case  20.69% $3,228,804,759 
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Table 11 ‐ Breakeven market price of oil and corresponding EIA base case price 
projections 

 
Year 

EIA Base 
Case 

AEO2009 

Breakeven 
Case 

 
Year 

EIA Base 
Case 

AEO2009 

 
Breakeven Case 

2009 $58.61 $87.73 2024 $114.03 $101.85 

2010 $77.56 $88.61 2025 $115.33 $102.87 

2011 $85.58 $89.49 2026 $116.49 $103.90 

2012 $94.84 $90.39 2027 $118.65 $104.94 

2013 $99.75 $91.29 2028 $120.71 $105.99 

2014 $104.96 $92.20 2029 $121.97 $107.05 

2015 $108.52 $93.13 2030 $124.60 $108.12 

2016 $109.77 $94.06 2031 $126.30 $109.20 

2017 $110.73 $95.00 2032 $128.01 $110.29 

2018 $111.58 $95.95 2033 $129.74 $111.39 

2019 $112.50 $96.91 2034 $131.51 $112.51 

2020 $112.05 $97.88 2035 $133.29 $113.63 

2021 $112.33 $98.86 2036 $135.10 $114.77 

2022 $114.09 $99.84 2037 $136.93 $115.92 

2023 $112.97 $100.84    

 

14.7.2 Total Depreciable Capital and Reactor Costs 
 

Sensitivity analysis was additionally conducted on the total depreciable capital, since a 

significant level of estimation was employed in calculating its components. The TDC was varied 

over a very large range, from $4.3 billion to $10 billion. These limits were approximated as the 

minimum and maximum foreseeable deviation from the current estimate of $6.28 billion; a major 

driver of the variation was the uncertainty about the costs of the microchannel reactors and 

power plant. The results of the analysis are shown in Table 12. 

The results show that if significant changes occur in the value of the total depreciable 

capital, the NPV of the project can vary dramatically swing from positive to negative. If TDC 

rises above $7.6 billion, the IRR drops below 13%, the break-even point. While the range of 

values studied is very large, it must be stressed that such large uncertainty is not unlikely,  
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 particularly because microchannel reactors are not being sold 

commercially, and costing information is difficult to obtain at the 

time of writing. To further explore the effect of reactor price 

uncertainty on the project’s feasibility, a two-variable analysis was 

conducted. The prices of SMR-101 and FTR-101 were 

simultaneously increased up to $2 billion per reactor system; the 

results are shown in Table 13. The table very clearly shows that the 

project is feasible as long as the combination of FTR-101 and 

SMR-101 prices does not lie in the red region above the dark line. 

Therefore, once more accurate pricing information is available; all 

other factors remaining the same, Table 5 should be consulted for 

the combination of reactor costs. 

 

14.7.1  Fixed Costs, Variable Costs and Utility Costs 
 

Sensitivity analyses were conducted by changing fixed 

costs, variable costs and utility costs by -50% to +100% of their 

currently estimated values. As shown in Table 14, Table 15 and Table 16, large variations in 

these costs do not have a significant impact on the IRR of the project, since these costs are 

insignificant compared to the annual sales and fixed capital investment. 

 

Table 12 ‐ Sensitivity of 
project feasibility to the Total 

Depreciable Capital 

TDC IRR 
$ 10,000,000,000 9.34% 
$  9,700,000,000 9.67% 
$  9,400,000,000 10.01% 
$  9,100,000,000 10.37% 
$  8,800,000,000 10.75% 
$  8,500,000,000 11.15% 
$  8,200,000,000 11.57% 
$  7,900,000,000 12.02% 
$  7,600,000,000 12.49% 
$  7,300,000,000 12.99% 

$  7,000,000,000 13.52% 
$  6,700,000,000 14.09% 
$  6,400,000,000 14.70% 
$  6,100,000,000 15.35% 
$  5,800,000,000 16.05% 
$  5,500,000,000 16.82% 
$  5,200,000,000 17.60% 
$  4,900,000,000 18.50% 
$  4,600,000,000 19.49% 
$  4,300,000,000 20.57% 

Table 13 ‐ Sensitivity of project feasibility to bare module costs of SMR‐101 and FTR‐101 

  FTR-101 Bare Module Cost 

 IRR $2,000MM $1,750MM $1,500MM  $1,250MM  $1,000MM  $743MM  $500MM  $250MM $50MM  

S
M

R
-1

01
 B

ar
e 

M
o

d
u

le
 C

o
st

 $2,000MM  10.36% 10.68% 11.01% 11.35% 11.71% 12.09% 12.48% 12.89% 13.24% 

$1,500MM  11.01% 11.35% 11.71% 12.08% 12.48% 12.90% 13.32% 13.78% 14.17% 

$1,250MM 11.35% 11.71% 12.08% 12.48% 12.89% 13.34% 13.78% 14.27% 14.68% 

$1,000MM  11.71% 12.08% 12.48% 12.89% 13.32% 13.80% 14.27% 14.78% 15.22% 

$750MM  12.08% 12.48% 12.89% 13.32% 13.78% 14.28% 14.78% 15.33% 15.79% 

$425MM  12.60% 13.02% 13.46% 13.93% 14.42% 14.96% 15.50% 16.09% 16.60% 

$250MM  12.89% 13.32% 13.78% 14.27% 14.78% 15.35% 15.91% 16.53% 17.06% 

$50MM  13.24% 13.69% 14.17% 14.68% 15.22% 15.81% 16.40% 17.06% 17.62% 
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Table 14  Sensitivity of 
project feasibility to the 

fixed cost 
 
 

Fixed Cost 

 
 

IRR 
$1,143,939,300 11.25% 
$1,000,946,888  12.24% 
 $857,954,475  13.19% 
 $714,962,063  14.09% 
 $571,969,650  14.96% 
 $428,977,238  15.80% 
 $285,984,825  16.62% 

Table 15  Sensitivity of 
project to nonsales 
based variable cost 
Non-sales 

based variable 
cost 

 
IRR 

 $ 211,146,400 14.43% 
 $ 184,753,100  14.57% 
 $ 158,359,800  14.70% 
 $ 131,966,500  14.83% 
 $ 105,573,200  14.96% 
 $  79,179,900  15.09% 
 $  52,786,600  15.22% 

 

Table 16  Sensitivity of 
project feasibility to 

utilities cost 
 
 

Utilities 

 
 

IRR 
 $15,450,800  14.92% 
 $13,519,450  14.93% 
 $11,588,100  14.94% 
 $9,656,750  14.95% 
 $7,725,400  14.96% 
 $5,794,050  14.97% 
 $3,862,700  14.98% 

 

 

14.7.2 Discount Rate 
 

Sensitivity analysis was also conducted was on the 

discount rate. The choice of discount rate very dramatically 

affects the feasibility of the project, as shown in Table 17. By 

convention, a discount rate of 15% is used to calculate NPV, for 

which the project looks unfavorable with an NPV of -$12 

million. Of course, at an IRR of 14.96%, the NPV would be zero. 

The discount rate depends on the capital structure of the firm 

undertaking the project as well as the securitization of capital 

from the state or federal government. 

 

14.8 Conclusion 

As previously noted, the economics of this project depend heavily on the price of oil and 

the CAPEX.  Whether the project makes economic sense depends on what one believes about the 

price of oil.  Ultimately, the price of oil needs to be at least $91 by the first year of production 

(Year 5) and increase by at least an average of 1.0% per year (assuming a discount rate of 13%, 

2.4% inflation, etc).  Uncertainty around the CAPEX also needs to be addressed in order to 

obtain more rigorous economic analysis results. The greatest source of uncertainty in CAPEX is 

from reactor costs, and it has been shown that a large enough deviation in the reactor cost could 

turn the project NPV negative. Once more information is available on the cost of microchannel 

Table 17 ‐ Sensitivity of the 
project feasibility to the 

discount rate 
Discount rate NPV 

11% $1,713,933,700  

13% $708,307,700  

15% ($12,454,400) 

17% ($532,843,500) 

19% ($910,007,500) 

21% ($1,183,292,200) 

23% ($1,380,248,200) 
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reactors, the project should carefully be reconsidered in terms of the sensitivity table discussed 

above. Other drivers of CAPEX are the NGCC power plant, MEA separation system and 

COPure separation system at $1.5B, $1.5B and $1.0B, respectively.  If any of these costs could 

be reduced, the project would become more favorable.  If any of the capital costs increase, the 

price of oil necessary to support the project would increase. 

 
14.9 Comparison to the Alaska Natural Gas Pipeline as an alternative 

The leading competitive solution to stranded natural gas in the North Slope is the 

construction of a natural gas pipeline from Prudhoe Bay, Alaska to Alberta, Canada. Once 

delivered in Alberta, the natural gas will be able to enter the existing gas transportation 

infrastructure for distribution in North America. 

Multiple proposals for the pipeline have been presented, but TransCanada Corp.’s 

proposal holds the most promise; the company was awarded a license by the Alaska Legislature 

in August, 2008. On-site construction will commence in April, 2016 for start of service in 

September, 2018. The pipeline is expected to have a capital cost of $26 billion and will be built 

to transport up to 4.5 billion cubic feet of natural gas per day. Alternative designs by 

TransCanada are still under consideration for capacities of 5.1 billion and 5.9 billion cubic feet 

per day. 

Due to the high construction cost of the pipeline and the cost of maintaining the gas at 

high pressure, the natural gas pipeline must charge higher tariffs than the TAPS. Therefore, in 

analyzing the pipeline’s future cash flows, it was assumed that a tariff of 75% of the market price 

of natural gas would be charged to customers wishing to utilize the pipeline to transport natural 

gas. The tariff is expected to decrease in the future, as capital costs are recovered.  

The cash flow projections for the natural gas pipeline are shown in Table 18. 

Assumptions used to make these projections are explained in detail in Appendix E. While cash 

flows from operations are substantially positive, the enormous capital investment required in the 

development and construction phase drives down the internal rate of return on the project. 

Analysis reveals that the IRR of the pipeline project is 11.16%. Based on this information, 

constructing a GTL plant (IRR = 14.96%) is a somewhat more attractive alternative than 

building a natural gas pipeline. Moreover, the proposed GTL plant can be in service as early as 
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2013, almost six years before the pipeline is complete, bringing the North Slope gas reserves to 

market sooner. 

On the other hand, due consideration must be given to the risk profile of the GTL plant 

versus the natural gas pipeline. The GTL plant discussed in this report utilizes novel technology, 

which may not meet performance targets and may experience unforeseen problems in 

implementation. Moreover, the natural gas pipeline has received considerable support from the 

government, potentially making it easier to finance than the GTL plant. One potentially 

significant concern in the construction of a GTL plant is a carbon emissions tax; while Alaska 

currently enjoys free carbon emissions, this could change in coming years. The issue of carbon 

emissions may be less substantial for the pipeline project.  

To account for the difference in risk profiles, a hurdle rate of 10% could be postulated for 

the gas pipeline and 13% for the GTL plant. Comparing the IRR of each project to the 

corresponding hurdle rate, both projects are only marginally profitable. Therefore, the ultimate 

decision of which method to use to bring Alaskan natural gas to the North American market 

depends on the investor’s appetite for risk and the cost of financing for each project. 
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Table 18 - Cash Flow Projections for the Alaska Natural Gas Pipeline Project 

 
Year Load 

Factor 
Average 
Lower 48 
Wellhead 

Price ($/Mcf) 

Annual Revenue  Depreciation 
Allowance  

Operations and 
Maintenance 

(37% of revenue) 

Tax (State and 
Federal) 

Net Earnings Cash Flow 

2009   $5.7373 

D
ev

el
op

m
en

t &
 C

on
st

ru
ct

io
n 

    ($42,000,000) 

2010   $6.0458      ($75,000,000) 

2011   $6.0099      ($139,000,000) 

2012   $6.1343      ($138,000,000) 

2013   $6.1371      ($139,000,000) 

2014   $6.1987      ($413,000,000) 

2015   $6.2711      ($3,502,000,000) 

2016   $6.3728      ($5,937,000,000) 

2017   $6.5191      ($10,006,000,000) 

2018   $6.7001      ($6,025,000,000) 

2019   $6.8684      ($71,000,000) 

2020 85%  $6.7480  $7,065,831,716 $5,297,400,000 $2,631,832,372 - ($863,400,656) $4,433,999,344  

2021 90%  $6.5568  $7,269,464,280 $8,475,840,000 $2,707,680,029 - ($3,914,055,748) $4,561,784,252  

2022 95%  $6.6199  $7,747,108,840 $5,085,504,000 $2,885,589,787 - ($223,984,947) $4,861,519,053  

2023 95%  $6.7228  $7,867,548,671 $3,051,302,400 $2,930,450,387 $775,250,688  $1,110,545,196  $4,161,847,596  

2024 95%  $7.0541  $8,255,326,767 $3,051,302,400 $3,074,887,303 $875,288,247  $1,253,848,817  $4,305,151,217  

2025 95%  $7.3330  $8,581,650,857 $1,525,651,200 $3,196,434,255 $1,586,667,337  $2,272,898,066  $3,798,549,266  

2026 95%  $7.6068  $8,902,050,863  $3,315,774,644 $2,296,518,154  $3,289,758,065  $3,289,758,065  

2027 95%  $7.8766  $9,217,791,288  $3,433,379,465 $2,377,971,700  $3,406,440,123  $3,406,440,123  

2028 95%  $8.0948  $9,473,174,800  $3,528,502,958 $2,443,854,594  $3,500,817,248  $3,500,817,248  

2029 95%  $8.2527  $9,657,983,247  $3,597,339,136 $2,491,530,794  $3,569,113,317  $3,569,113,317  

2030 95%  $8.4026  $9,833,355,346  $3,662,660,529 $2,536,772,639  $3,633,922,178  $3,633,922,178  

2031 95%  $8.5888  $10,051,366,524  $3,743,863,832 $2,593,014,357  $3,714,488,335  $3,714,488,335  

2032 95%  $8.7793  $10,274,211,136  $3,826,867,460 $2,650,502,985  $3,796,840,691  $3,796,840,691  

2033 95%  $8.9739  $10,501,996,342  $3,911,711,326 $2,709,266,170  $3,881,018,846  $3,881,018,846  

2034 95%  $9.1729  $10,734,831,677  $3,998,436,229 $2,769,332,169  $3,967,063,280  $3,967,063,280  

2035 95%  $9.3762  $10,972,829,107  $4,087,083,874 $2,830,729,865  $4,055,015,368  $4,055,015,368  

2036 95%  $9.5841  $11,216,103,078  $4,177,696,888 $2,893,488,785  $4,144,917,405  $4,144,917,405  

2037 95%  $9.7966  $11,464,770,573  $4,270,318,846 $2,957,639,105  $4,236,812,622  $4,236,812,622  

2038 95%  $10.013  $11,718,951,171  $4,364,994,286 $3,023,211,676  $4,330,745,210  $4,330,745,210  

2039 95%  $10.236  $11,978,767,099  $4,461,768,735 $3,090,238,028  $4,426,760,337  $4,426,760,337  

2040 95%  $10.463  $12,244,343,297  $4,560,688,729 $3,158,750,393  $4,524,904,175  $4,524,904,175  

2041 95%  $10.695  $12,515,807,473  $4,661,801,837 $3,228,781,717  $4,625,223,919  $4,625,223,919  

2042 95%  $10.932  $12,793,290,167  $4,765,156,682 $3,300,365,676  $4,727,767,810  $4,727,767,810  

2043 95%  $11.174 $13,076,924,813  $4,870,802,963 $3,373,536,693  $4,832,585,158  $4,832,585,158  

2044 95%  $11.422  $13,366,847,803  $4,978,791,483 $3,448,329,953  $4,939,726,367  $4,939,726,367  

2045 95%  $11.675  $13,663,198,553  $5,089,174,171 $3,524,781,424  $5,049,242,959  $5,049,242,959  
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Section 15 - Other Important Considerations 
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15.1 Plant Safety 

The proposed plant has several aspects that must be designed cautiously.  From feed to final 

product, nearly every process stream has a highly combustible component such as natural gas, 

hydrocarbon chains and carbon monoxide.  Although the feed and product streams do not contain 

oxygen, a leak in piping could lead to an explosion.  Microchannel geometry makes it nearly 

impossible for explosions to occur within the reactor; therefore, the combustion of fuel in the reactor is 

more easily controlled.  However, throughout the rest of the plant open flames and sparks should not 

be permitted and proper emergency shut-off valves should be installed.  Reserves of nitrogen will be 

used when cleaning out pipelines or regenerating catalysts.  The use of nitrogen enables safe removal 

of any potentially combustible residue in the pipes.   

Many of the streams are at high temperatures contact with hot surfaces and gases should be 

avoided.  The flue gas from the combustion products leaves at 320°F and should be released from an 

elevated pipe to prevent exposure to the immediate environment.  The steam stream STEAM-101 

enters the steam reforming reactor at 600°F and a pressure of 230 psi and must be designed to prevent 

a dangerous leak. 

The separation unit MEA-101 makes use of the chemical compound monoethanolamine.  

Monoethanolamine is a weak base that is both corrosive and flammable.  Proper equipment should be 

kept on the site of the MEA-101 unit to deal with a monoethanolamine spill, and storage tank 

insulation to prevent MEA degradation.  Similar care must be utilized for the COPure CuAlCl4 

solvent.   

 Plant operation in Alaska presents the potential for pipes freezing.  This could lead to pipe 

pressure build up, and subsequent rupture.  To prevent freezing, appropriate insulation and heating 

equipment must also be installed. A possible heating solution is to wrap all plant piping with tubes 

containing a stream of steam. Additionally, during periods of shutdown, the plant’s liquid streams will 

be kept from freezing. 

15.2 Environmental Considerations 

Carbon dioxide is a major byproduct in the plant.  Carbon dioxide is a known greenhouse gas.  

A step taken to lower the total carbon dioxide emissions is using the MEA-101 separation unit to 

remove carbon dioxide from the steam reforming products.  The carbon dioxide that is purged may be 

sold for enhanced oil recovery, increasing the amount of crude oil that can be extracted from Alaskan 
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reserves.  Sequestration may also be utilized if enhanced oil recovery does not prove attractive.  The 

MEA separation is not 100% efficient however, so small amounts of carbon dioxide, monoxide, and 

light hydrocarbon vapor separated from the final mixture is subsequently flared.  The waste water 

stream that is separated from the FT product is contaminated with trace amounts of hydrocarbons.  

Releasing this waste stream into natural bodies of water would be an environmental hazard to local 

wildlife and plants.  Instead, the waste water will also be transported and sold for use in secondary oil 

recovery. 

15.3 Plant Control 

Plant control will be an important issue for a plant of this size.  The feeds to the steam reforming 

reactor and Fischer-Tropsch reactor must be controlled to maintain ideal reactor conditions.  Streams 

FEED FUEL must be increased or decreased if the SMR reactor is not reaching the temperature 

conditions for optimal output.  Similarly, CW-205 will need to be increased or decreased accordingly 

if the FTR reactor is not reaching optimal temperature levels. 

 Moreover, the air temperature in the North Slope can vary between -62°F and 54°F over a year, 

which has profound effects on the heat flux in the air coolers. Therefore, to maintain the heat transfer 

coefficient within a desired range throughout the year, fans are installed in the cooler whose power can 

be adjusted to achieve the desired heat transfer rate. This is integral, since too large a heat transfer 

coefficient could freeze the cooling water loops, and too small a coefficient could result in insufficient 

cooling of reactor effluent streams. 

Control systems should also be installed to regulate the recycle streams of carbon dioxide and 

carbon monoxide. The flow of S-305 must be controlled to maintain a 2.1:1 H2/CO molar ratio in the 

feed to the FT reactor (Stream S-202). Moreover, a specific flow rate (4.5E6 lb/hr) of CO2 must be 

recycled back to SMR-101 (Stream CO2 RECYCLE). 

15.4 Plant layout 

The plant is designed to be located near Prudhoe Bay, Alaska. It must be located in the vicinity 

of an entrance to the Trans-Alaskan Pipeline System (TAPS); otherwise, a smaller pipeline must be 

constructed to deliver the plant’s product to the TAPS. Prudhoe Bay was chosen since there are 

immense reserves of associated and unassociated natural gas and because the TAPS is nearby.
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Section 16 - Conclusions and 
Recommendations 
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Based on the technical and economic analysis completed, it is recommended that further design 

work be undertaken so that a more precise initial investment dollar figure can be obtained.  The capital 

expenditure is the financial variable that most affects the project feasibility and is also under the 

control of the project team.  Oil prices, though the most influential economic factor, cannot be 

controlled by the project team.  Therefore, as technology continues to improve, the most expensive 

process units must be monitored for potential cost savings.  Additionally, the great amount of 

uncertainty associated with the cost of the microchannel reactors must be addressed.  As the 

microchannel reactor technical performance and design are proprietary information, the next step 

would be to obtain additional information from a microchannel vendor. 
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Pump Calculations
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Flash, Decanter, MEA and COPure Separations 

Flash-301 

Number = 22 
V = 1895.55 ft3/min     
τ  =  5 min 
D =  (4Vτ/∏)1/3 = 22.94 ft                           (Seider 2005) 
L = 2D = 45.88 ft 
ts = 2.55 in 
W (lb) = ∏ (D + ts)(L + 0.8D)tsρ = 526,751 
Cv = exp{7.0374 + 0.18255[ln(W)] + 0.02297[ln(W)]2} = $679,585 
Cpl = 237.1(D)0.63316(L)0.80161 = $37,015 
Fm = 1 
Cp = Cpl+CvxFm =  $716,600 
FBM = 4.16 
CBM = $2,981,056                                     (2000 CE = 394) 
CIND = CBMx(525.4/394) =  $88,337,615 (2008) 
 
DEC-301 

Number = 30 
Capacity =  349.2 ft3 

Cp = $32,500                   (Icarus Cost Charts  
                                           - Vertical Pressure Vessel) 
FBM = 4.16 
CBM = CPFBM                           (1998 CE = 389.5) 
CBM = $4,056,000 
CIND = CBMx(530.7/394) =  $5,526,365  (2008) 
 
MEA-101 

Number = 1 
Efficiency = 80% 
Amount of CO2 produced = 10,955.87 ft3/min 
Cinstalled = $967,315,790        (Thomas p.110) 
 
COPure-301 

Number = 1 
Efficiency = 99% 
Amount of CO produced = 4,534,760 ton/yr 
Cinstalled = $1,496,470,800     (R.C. Costello) 
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Air Cooled Heat Exchanger Explanations/Calculations 
 The air-cooled heat exchanger calculations were carried out using an excel spreadsheet and the 

formulas specified in Industrial Chemical Process Design by Erwin.  An overview of the inputs is next 

discussed.   

 The air temperature rise was determined by a trial-and error approach, with the results shown in 

the upper right box.  The required tube outside surface area was calculated using A = Q/(U*DTM), where 

DTM is the log-mean temperature difference and U was guessed and then adjusted based on the final 

value to give negligible error.  Table 5.4 provided initial guesses.  Air-cooler face area was calculated 

using a 4-row, 2½-inch pitch, 10 fins/in, 5/8 in-high fins heat exchanger.  This design usually gives good 

results.  16BWG tubes with an inner diameter (Di) of 0.87in and an outer diameter (Do) of 1in is also 

standard technology.  A tube length of 40ft yields efficient heat transfer while minimizing cost.  With this, 

an integer number of tubes and tubes per pass are obtained.  A modified Reynolds number takes into 

account oil viscosity, and a shell side heat transfer coefficient (Ht) is derived from correlations.  Airflow 

(Wa) is calculated as Wa = Q/0.24*DTA, where 0.24 Btu/lb oF is the specific heat of air, and the airside 

heat transfer coefficient (Ha) is calculated from correlations.  The calculated U value is: 

                 
)/1()/*(*)/*(*)/1(

1
HaDiDoARRDtDiDoARHT

U
++

=   

where AR = ratio of outside tube extended surface to bare outside tube surface, and  

RDt = tube inside fouling factor (here 0.002).  This calculated U was then used instead of the initial 

guessed U until there was no error. 

 The pressure drop across the tubes was well below the 10psi limit.  The fan design and power 

requirements were also calculated according Erwin’s formulas and correlations, which include air density 

and flow rate.    
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Air Cooled Heat Exchanger Explanations/Calculations(Continued) 
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Air Cooled Heat Exchanger Explanations/Calculations(Continued) 
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Steam Methane Reformer SMR-101 Calculations 

 

Steam Methane Reformer SMR-101 

This microchannel reactor is based on U.S. Patent 7,250,151 B2. However, the patent does not 

give a detailed description of an industrial-sized reactor; instead, data is given for tests conducted 

using small reactors consisting of only one set of microchannels. In reality, industrial 

applications of this technology will be in the form of modular reactors, consisting of hundreds or 

thousands of channels per reactor. 

 A microchannel is defined in the patent as a channel having at least one internal 

dimension less than 2 mm. Several embodiments of integrated combustion reactors are described 

in the patent, using a variety of fuels and channels dimensions. Since natural gas and recycled 

hydrocarbons are the fuel of choice for this project (owing to the abundance of hydrocarbon 

reserves in the North Slope region of Alaska), the “N-type Welded Integrated Combustion 

Reactor” is chosen (performance results are shown in Table 5, page 59 of U.S. Patent 7,250,151 

B2; channel dimensions are described on pages 35 to 38 of U.S. Patent 7,250,151 B2). 

 Optimum conversion of methane to syngas can be achieved by controlling the extent to 

which the reactants interact, which is a function of the contact time of the reactants with the 

catalyst. For the test run of N3 Welded ICR (Table 5, U.S. Patent 7,250,151 B2), the steam-

methane reforming reaction has a contact time of 6.0ms. The contact time is the parameter which 

determines the number of channels required to handle the amount of material being dealt with in 

the process. 
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Reactor Sizing 

 Before the number of channels can be determined, the required reaction chamber volume 

must be determined (the reaction chamber volume is defined as the internal volume of an 

endothermic or exothermic reaction chamber, which must contain catalyst somewhere within its 

cross-section; therefore, it does not include the portion of the channels which is not coated with 

catalyst). In order to determine this volume, the structure of a microchannel reactor described in 

the patent is studied. 

 According to the patent, a microchannel reactor is made from a stack of shims, 

substantially planar sheets with a thickness of 2 mm or less, with channels etched into them. The 

shims are diffusion bonded together to form the reactor.  According to pages 32 and 33 of the 

patent, an endothermic reaction channel is 0.25 mm thick, 9.7 mm wide and 53 cm in length. 

Page 37 explains that the reaction zone length is 18 cm; that is, only the last 18 cm of the 

reaction channel is in contact with catalyst.  

 The contact time is defined in the patent as the reaction chamber volume divided by inlet 

volumetric flow rate at the standard condition of 0°C and 1.013 bar. Consequently, the specified 

6.0 ms contact time is different from the actual time the reactants spend in contact with catalyst 

at reaction conditions of 900°C and 35 barg. The temperature and pressure change must be dealt 

with before calculating the required reactor size. According to ASPEN, the volumetric flow rate 

of streams S-101 and CO2 RECYCLE is 58.14×106 ft3/hr at standard conditions, as opposed to 

5.35×106 ft3/hr at reaction conditions. Therefore, to convert the feed flow rate from STP to 

reaction conditions, a factor of 58.14/5.35 = 10.9 ft3 at STP/ft3 at reaction conditions was used. 
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Given the required contact time, reaction chamber volume, and reactant volume, the 

number of channels required to meet the plant capacity can be calculated; the calculations are 

shown in Table A1. 

Table A1 – Sizing Calculation for Steam Methane Reformer (SMR-101) 
Volumetric flow rate of feed (volumes at reaction conditions) 
Stream STEAM-101 89,065,700  bbl/day 20,836,116  ft3/hr (1) 
Stream S-101 26,046,400  bbl/day 6,093,320  ft3/hr (2) 
Stream CO2 RECYCLE 262,264  bbl/day 61,354  ft3/hr (3) 

Total Volume Flow 115,374,364  bbl/day 26,990,791  ft3/hr (4) = (1)+(2)+(3) 

Endothermic reaction channel dimensions 
Thickness 0.25  mm (5) 
Width  9.70  mm (6) 
Reaction zone length 18.8 cm 188 mm (7) 
Reaction zone volume 455.9 mm3 1.61 × 10-5 ft3 (8) = (5)×(6)×(7) 
Contact time1 6.0 ms 1.67 × 10-6 hr (9) 
Volume Flow per channel2 75.98 mm3/ms 9.66 ft3/hr (10) = (8) ÷ (9) 
Volume Flow per channel3 6.99 mm3/ms 0.89 ft3/hr (11) = (10)÷10.9 
Channels required 29,473,133  Channels (12) = (4) ÷ (11) 
1 Contact time is defined in the patent as the reaction channel volume divided by the volumetric flow rate of reactants, based on 
volumes at standard temperature. 
2 Required volume flow per channel derived from the contact time and is therefore at STP 
3 The STP volume flow is adjusted by a factor to determine the required volume flow per channel at reaction conditions  

According to Table A1, 29,473,133 endothermic reaction channels are required to 

process the plant’s capacity. Referring to Figure 1 in Section 5, one set of channels consists of 

two endothermic reaction channels, one endothermic product channel, four combustion channels, 

two exhaust channels and four air channels. Therefore, the number of such sets required is:  

Number of channel sets required =   ,   ,                               = 14,736,566 sets 
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Table A2 – Shim Stack in a typical set 
Shim #1 Description Thickness 

(mm) 
19 Solid wall 0.51 
20 Catalyst Stop 0.25 
21 Endothermic Reaction 0.25 
22 Welded Wall/Product 0.50 
23 Endothermic Product 0.41 
24 Welded Product/Wall 0.50 
25 Endothermic Reaction 0.25 
26 Catalyst Stop 0.25 
27 Solid Wall 0.51 
28 Solid Wall 0.51 
29 Fuel 0.64 
30 Welded Jet/Air/Wall 1.14 
31 Exhaust 0.36 
32 Exhaust 0.25 
33 Exhaust 0.36 
34 Welded Wall/Air/Jet 1.14 
35 Fuel 0.64 
36 Solid wall 0.51 

Total thickness 8.98 mm 
1 Corresponds to the “Shim #” column in Figure 7 of the patent 

  

 One set of channels consists of at least 18 shims of varying design and thickness. The 

shim stack of a small microchannel reactor is described in Figure 7 of the Velocys patent. Using 

the information from that figure, the thickness of one set of channels is calculated in Table A2.  
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Table A3 – Capacity of one module 
End Plate thickness1 12.7 mm (1) 
Effective module height 987.3 mm (2) = 1 m – (1) 
Thickness of channel set 8.98 mm (3) 
No. of sets along module height2 109 pairs (4) = (2) ÷ (3) 
--> Reaction channels 220 channels (5) = 2 × (4) 
--> Combustion channels 220 channels (6) = 2 × (4) 
Shim width3 36 mm (7) 
No. of sets along module width2 41 sets (8) = 1.5 m ÷ (7) 

Total sets 4469 sets/module (9) = (4) × (8) 

--> Reaction channels 8938 channels (10) = (9) × 2 
--> Combustion channels 17,876 channels (11) = (9) × 2 
1 Figure 7 of the patent shows that each end plate is 6.35 mm thick. End plates are placed at the top and base of the reactor, 
totaling to 6.35 + 6.35 = 12.70 mm 
2 A whole number is not obtained by conducting the division calculation described in the table. Instead, the result is rounded 
down, and the remaining width/height of the reactor is sacrificed to structural features of the module. 
3 A shim may be of any width desired; in fact, during the manufacture of this reactor, each shim will not be 36 mm wide, but 
will be 41 × 36 = 1,476 mm wide. The patent describes a reactor with only one channel per shim, whereas a larger, industrial 
scale reactor will be etched with multiple adjacent channels per shim. 

 

The modular design of these reactors allows small modules approximately 1 m high and 

1.5 m wide to be assembled into a large unit. The length of the reaction channels is already 

known to be 53 cm; therefore, to account for manifolding and the frame of the module, a length 

of 60 cm was assumed. Given these module dimensions, the capacity of one reactor module is 

calculated as in Table A3. Finally, knowing the number of reaction channels required, and the 

number of reaction channels per module, the number of modules required for this process can be 

found easily: 

29,473,133 channels required8,938 channelsmodule =  ,                      

Therefore, a total of 3,298 modules are required to meet the capacity of the plant and satisfy the 

6.0 ms contact time requirement.  
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Based on this sizing, much information can be obtained about the flow within the reactor; 

this information, along with the calculations behind these numbers, is shown in Table A4. 

Table A4 – Miscellaneous Data for SMR-101 
Core Temperature 900 °C 1,533 °F 
Reaction Pressure 15 Barg 
Combustion Channel 
Width 4.10 Mm (1) 
Length 443 Mm (2) 
Thickness 0.64 Mm (3) 
Area 1,816 mm2/combustion channel (4) = (1) × (2) 
Volume 1,162 mm3/combustion channel (5) = (4) ×(3) 
Total no. of channels1a  58,955,048 Channels (6) 
Total volume 68,531,234,357 mm3 2,420 ft3 (7) = (6) × (5) 
Fuel Flow rate      26,113,053 ft3/hr (8) 
Air Flow Rate    199,693,651 ft3/hr (9) 
Total Flow Rate 225,806,704 ft3/hr (10) = (8)+(9) 
Flow per channel 3.83 ft3/hr (11) = (10)÷(6) 
Residence Time 38.6 ms (12) = (5) ÷ (11) 
Endothermic Reaction Channel 
Area2 3,633 mm2/reaction channel (13)=(4) × 2 
Total no. of channels1b 29,477,524 Channels (14) 

Heat Transfer 
Total heat transfer area 107,080,053,682 mm2 1,070,800,537 cm2 (15)=(13) × (14) 
Heat duty 3.92 × 109 W 1.34 × 1010 Btu/hr (16) 
Average area heat flux3 3.66 W/cm2 12.48 Btu/hr-cm2 (17)=(16)÷(15) 
 

1a In the patent, each combustion channel shim contains two adjacent combustion channels with a rib support separating the two 
channels. This shim is bonded to an endothermic reaction shim containing only one, wide channel. In one set of channels, there 
would therefore be two such combustion shims (i.e. four combustion channels) and two such endothermic reaction shims. 
Therefore, the number of combustion channels is 3,298 modules × (8,938 × 2) combustion channels/module = 58,955,048 
combustion channels. 
1b The total number of channels is computed using the whole number of modules and the number of channels per module. 
Therefore, even though 2,794,085 endothermic reaction channels are required, 3,298 modules contain 2,797,594 channels = 8,938 
channels/module × 313 modules. 
2 Heat exchange occurs between one endothermic reaction channel on one shim and two combustion channels on an adjacent 
shim. Therefore, the heat transfer area is 2 times the area of a combustion channel surface. 
3 The average area heat flux is defined in the patent as the endothermic reaction heat duty divided by the area of endothermic 
reaction chamber heat transfer surface. 
The average area heat flux calculated as 3.66 W/cm2 is well within the average area heat flux 

range expressed in the table on page 30 of the patent. 
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Reactor Costing 

Since microchannel reactors are still in the R&D phase for GTL applications, cost 

information cannot be obtained directly from manufacturers. In this infant stage, such reactors 

will be custom-fabricated to suit the needs of particular plants. In order to estimate the cost of the 

SMR-101 reactor, an estimate of metal mass is obtained. The reactor is constructed using 304-

grade stainless steel. 

 The metal mass is estimated by taking the volume of the entire reactor, assuming it is a 

solid block of stainless steel. Then, the volume of empty spaces, namely the channels and 

catalyst inserts, is subtracted from this total volume. These calculations are presented in Table 

A5. 
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Table A5 – Calculation of reactor metal mass by subtracting void space volume from 
total reactor volume 

Reaction channel volume 
--> Height 0.25 mm 
--> Width 9.70 mm 
--> Length 443 mm 
--> Volume 1074.28 mm3/channel 
# per pair 2 per pair 
# per module 8938 per module 
Volume per module 9,601,870 mm3 per module 
Combustion channel volume 
--> Height 0.64 mm 
--> Width 4.10 mm 
--> Length 443 mm 
--> Volume 2590.68 mm3/channel 
> # per pair 4 per pair 
> # per module 17876 per module 
Volume per module 46,310,910 mm3 per module 
Exhaust channel volume1 
--> Height (1,3) 0.36 mm 
--> Width (1,3) 4.10 mm 
--> Length (1,3) 443 mm 
--> Volume (1+3) 1307.74 mm3/two channels 
--> Height (2) 0.25 mm 
--> Width (2) 4.10 mm 
--> Length (2) 438 mm 
--> Volume (2) 448.95 mm3/channel 
> # per pair 2 per pair 
> # per module 8938 per module 
Volume per module 4,012,715 mm3 per module 
Air channel volume 
--> Height 0.64 mm 
--> Width 4.10 mm 
--> Length 443 mm 
--> Volume 1162.43 mm3/channel 
> # per pair 4 per pair 
> # per module 17876 per module 
Volume per module 20,779,634 mm3 per module 
Product channel volume2 
--> Height (1,3) 0.25 mm 
--> Width (1,3) 4.10 mm 
--> Length (1,3) 110 mm 
--> Volume (1+3) 225.50 mm3/two channels 
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--> Height (2) 0.41 mm 
--> Width (2) 4.10 mm 
--> Length (2) 443 mm 
--> Volume (2) 744.68 mm3/channel 
> # per pair 2 per pair  
> # per module 8938 per module 
Volume per module  6,655,977 mm3 per module 
Catalyst Volume 
--> Length 188.00 mm 
--> Width 9.40 mm 
--> Height 0.25 mm 
--> Volume 441.8 mm3/channel 
> # per pair 2 per pair 
> # per module 8938 per module 
 Volume per module 3,948,808 mm3 per module 
Totals 
Total non-Metal Volume  91,309,914  mm3 9.13E-02 m3/module 
Total module volume 795,000,000  mm3 0.795 m3/module 
Metal volume 703,690,086  mm3 7.04E-01 m3/module 
Material SS-304    
Material Density 8,010 kg/m3   
Material Mass 5,637  kg/module    
1 According to the patent, exhaust channels each consist of one shim running the length of reactor (443 mm) 
sandwiched between two shims ended 5 mm short of the u-turn bend. They are 0.36 mm, 0.25 mm and 0.36 mm 
thick. 
2 According to the patent, product channels each consist of one shim running the length of the reactor (443 mm) 
sandwiched between two shims which add to the cross-section of the channels in the first 110 mm of the channel 
after a u-turn bend. The shims are 0.25 mm, 0.25 mm and 0.41 mm thick. 
 

The price of 304-grade stainless steel can be obtained from MEPS International Ltd., an 

independent supplier of steel market information. The average price of stainless steel Hot Rolled 

Plate in 2008 was $4,573.42 per ton. This results in a material cost of  

$4,573.42/ton × 5.637 tons/module = $25,778.35/module 

In addition, it is anticipated that manufacturing of these modules by detailed methods such as 

wire EDM and laser cutting will add on very substantial costs to the reactors. There is much in 

the way of detailed manufacturing work to be done on plates with such small thickness and 
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channels of such miniscule dimensions. To account for these steep manufacturing costs, a factor 

of 5× is used to escalate the material cost to arrive at a bare module cost for the reactors: 

Bare module cost per module = 5 × $25,778.35/module = $128,892/module 

and 

Bare module cost of 3,298 modules = 3,298 modules × $128,892/module = $425,084,912. 

More (or less) conservative estimates can be made by increasing (or decreasing) the 5× factor; 

such an analysis is done in section 14, the Economic Analysis section, to explore the effect of 

this approximation on the feasibility of the project. 

Material Balance and Feed Composition 

The enhanced heat and mass transfer properties of the microchannel reactor result in 

higher CO and H2 yields, as discussed in an independent study conducted by Nexant, Inc. to  

evaluate Velocys’ Microchannel Process Technology SMR Reactor systems. The only 

information available to us for closing a material balance across the reactor is that published by 

Nexant; therefore, that data is used to derive the composition of the SMR product stream. 

Nexant’s data is tabulated in Table A6. 

Table A6 – Nexant, Inc.’s data for Velocys’ SMR 
microchannel reactor, based on “Tokyo” Pilot operation 

Methane conversion 88.60%  
Steam to reformer, mol/mol CH4 2.64  
   
Effluent composition, dry basis, vol % Original Normalized 

Carbon monoxide 20.0% 21.44% 
Hydrogen 59.8% 64.09% 

Carbon dioxide 10.9% 11.68% 
Methane 2.60% 2.79% 

Total 93.3% 100% 
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Assuming ideal gas behavior for the effluent, the volume fractions of the effluent stream 

(S-102) can be thought as analogous to the mole fraction of the stream. One problem 

encountered when using the given dry basis volume fractions is that the percentages add up to 

93.3% rather than 100%. To rectify this, they are normalized. For example, the mol% of CO is 

normalized as        .    .   .  = 21.44%. In order for the material balance to work, a feed of 

CO2 must be assumed. It is assumed that this CO2 is obtained by recycling it (Stream labeled 

CO2 RECYCLE) from the effluent stream. With a basis of 100 mol of product, the material 

balance across the reactor closes, and is shown in Table A7. Therefore, the composition of the 

feed stream is 24% CH4, 12% CO2 and 64% H2O. 

Table A7 – Material Balance across SMR-101 assuming 100-mol basis of 
product 

 In Out 
 Moles Mass (g)   Moles Mass (g) 
CH4 24.17 387.74  

Total mass in  
 

2054.19 g 

 
Total mass out  

 
2054.19 g 

2.79 44.76 
CO2 11.74 516.68 11.68 514.04 
CO 0 0 21.44 600.53 
H2 0 0 64.08 129.19 
H2O 63.82 1149.78 42.50 765.68 
C 35.9 431.3    35.9 431.3 
H 224.3 226.1 224.3 226.1 
O 87.3 1396.8 87.3 1396.8 

 

Catalyst Structure 

The 18 cm long reaction zone in the endothermic reaction channels is adjacent to a 

catalyst insert 9.4 mm wide and 0.25 mm thick. The catalyst is 10 wt% Rh/4.5 wt% MgO/85.5 

wt% Al2O3 on spinel support with FeCrAlY felt coating (method of preparation is described in 

the patent). The volume of this catalyst insert is therefore 9.4 × 0.25 × 180 = 441.8 mm3 per 

reactant channel. The entire system contains 29,477,524 reaction channels and hence as many 
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catalyst inserts. The total amount of catalyst required is 13,023,170,103 mm3 or 459.9 ft3 (0.14 

ft3 per module). 
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Fischer-Tropsch Reactor FTR-201 

This microchannel reactor is based on U.S. Patent 7,084,180. Several embodiments of a Fischer-

Tropsch reactor are described in the patent; however, a detailed design of an industrial-sized 

reactor is not discussed. Test results for small reactors with only one channel are given. In 

reality, industrial applications of this technology will be in the form of modular reactors, 

consisting of hundreds or thousands of channels per reactor. 

 The reactor can achieve CO conversion of up to 70% and chain growth probability of up 

to 0.93. The superior performance of the reactor is due to the rapid heat removal from the 

reaction channels. The results obtained in the test runs of the patent can be reproduced by 

carefully controlling the reaction conditions and reactants’ contact time with catalyst. 

Reactor Sizing 

 The size of the reactor is governed by the required contact time of the reactants with 

catalyst in the reactor. According to the patent and Nexant’s technical report on Velocys’ 

technology, 0.26 seconds of contact time is sufficient to achieve the claimed results at 225°C and 

35 barg.  

Table A8 – Reaction Zone Volume Requirement for FTR-201 
Volumetric flow rate of feed (volumes at reaction conditions) 
Stream S-202 13,251,363  ft3/hr   (1) 
Contact time1 0.26 s 7.22 × 10-5 hr (2) 
Volume Flow S-202 at STP 178,495,856 ft3/hr   (3) = (2) × 13.47 
Reaction zone volume2 12,891 ft3 3.65×1011 mm3 (4) = (2)×(3) 
1 Contact time is defined in the patent as the reaction channel volume divided by the volumetric flow rate of reactants, based on 
volumes at standard temperature. 
2 The reaction zone volume is given by: contact time = reaction zone volume / volumetric feed flow at STP à reaction zone 
volume = contact time × volumetric feed flow at STP 
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 A complication in using contact time as a parameter to size the reactor is that contact time 

is defined in the patent as the volume of the reaction zone divided by the volumetric feed flow 

rate at 0°C and 1 atm. Therefore, the contact time referred to in the patent is different from the 

actual time spent by the reactants at reaction conditions in contact with the catalyst. To account 

for this, the volumetric flow rate of the feed (S-202) at standard conditions was found in ASPEN 

PLUS to be 1.79×108 ft3/hr, as opposed to 1.33×107 ft3/hr. The data suggests that a factor of 

17.9/1.33 = 13.47 ft3 at STP/ft3 at reaction conditions should be used to convert the feed flow rate 

from STP to reaction conditions. 

 Given the contact time, the reaction zone volume required to process the syngas in stream 

S-202 can be calculated. The calculations are shown in Table A8. 

 The dimensions of the channels in an industrially-sized FTR reactor are not given in the 

patent; however, Mr. John Wismer provided detailed measurements for a similar reactor being 

studied by Arkema, Inc. The provided data is shown in Table A9. 

The key piece of information derived from Table A9 is the reaction zone volume per 

channel:  

1,017,450mm plate ÷  70 reaction channelsplate = 14,535mm  per channel 
The reactor is packed with catalyst; it is assumed that the void fraction of the packed bed 

is 40%. 
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Table A9 – Microchannel Dimensions provided by Arkema, Inc. 
Plate Geometry      
Plate width 1 m 1000 mm = (1) 
Plate height 1.5 m 1500 mm = (2) 
Margins for manifolds, etc. 5 cm 50 mm = (3) 
Channel length (width-wise)  900 mm (4) = (1)-(3)×2 
Active length for channels  1400 mm (5) = (2)-(3)×2 
      
Reaction Plates      
Reactive channel thickness 0.95 mm 0.0374 inches (6) 
Cover plate thickness 1 mm 0.0394 inches (7) 
Reaction channel width 17 mm 0.669 inches (8) 
Spacer width 3 mm   (9) 
Reaction channel pitch 20    (10) = (8)+(9) 
# channels per plate 70    (11) 
Cover plate metal volume 1,500,000 mm3/plate 5.30E-02 ft3/plate (12) = (1)×(2)×(7) 
Spacer plate metal volume 407,550 mm3/plate 1.44E-02 ft3/plate (13) 
      
Cooling Plates      
Coolant channel thickness 1.5 mm 0.0591 inches (14) 
Cover plate thickness 1 mm 0.0394 inches (15) 
Cooling channel width 3 mm 0.118 inches (16) 
Spacer width 2 mm   (17) 
Cooling channel pitch 5    (18) = (16)+(17) 
# channels per plate 280    (19) 
Cover plate metal volume 1,500,000 mm3/plate 5.30E-02 ft3/plate (20) = (1)×(2)×(15) 
Spacer plate metal volume 1,116,000 mm3/plate 3.94E-02 ft3/plate (21) 
Combustion Volume1 1,134,000  mm3/plate 4.00E-02 ft3/plate (22) = see footnote1 
      
Plate Pairs      
Pair thickness  4.45  mm   (23)=(6)+(7)+(14)+(15) 
Total reaction volume2 1,017,450  mm3/plate 3.59E-02 ft3/plate (24) = see footnote2  
Cooling area (rx. channel 
faces) 

2,142,000  mm2 /plate 23.056 ft2/plate (25) = (4)×(8)×(11)×2 

Metal density (304 SS) 8.01 g/cm3   (26) 
Metal mass3 36.23 kg   (27) = see footnote3 
      
Modules      
Module thickness 1 m 3.28084 ft (28) 
Plate pairs 225 per module   (29) 
Total reaction volume 228,926,250 mm3/module 8.084 ft3/module (30) = (24)×(29) 
Cooling area 481,950,000 mm2/module 5187.66 ft2/module (31) = (25)×(29) 
Metal mass 8,153 kg/module   (32)=(27)×(29) 
1 The combustion volume (per plate pair) is given by the total volume of the channels (including plates), minus the cover plate metal 
volume and the spacer plate metal volume. That is, (22) = [(14)+(15)]×(1)×(2) – (20) – (21) 
2 The total reaction volume (per plate pair) is given by the total volume of the channels (including plates), minus the cover plate metal 
volume and the spacer plate metal volume. That is, (24) = [(6)+(7)]×(1)×(2) – (12) – (13) 
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3 The metal volume is the spacer plate volume plus the cover plant volume; ehnce, (27)=[(12)+(13)+(20)+(21)] ×(26) 

The volume for flow per channel (εvr) and the total required reaction zone volume (Vreq) 

are used to finally size the reactor: 

No. plate pairs required     =       = 3.65 × 10   mm 40% × 14,535mm channel × 70 channelsplate pair = 896,956 

No. plate pairs per module = 225  
⇒ No. modules required (  ) = 896,956225 = 3,987 

The average area heat flux in this reactor is calculated as: 

∆    = 2.14 × 10 W 

        = 481,950,000mm module × 3,987 modules = 1.92 × 10  mm  

 = 2.14 × 10 W1.92 × 10  mm × cm 100 mm = 0.11W/cm  

Reactor Costing 

Since microchannel reactors are still in the R&D phase for GTL applications, cost 

information cannot be obtained directly from manufacturers. In this infant stage, such reactors 

will be custom-fabricated to suit the needs of particular plants. In order to estimate the cost of the 

FR-201 reactor, the metal mass is used as the key cost-driver. The reactor is constructed using 

304-grade stainless steel. 
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The price of 304-grade stainless steel can be obtained from MEPS International Ltd., an 

independent supplier of steel market information. The average price of stainless steel Hot Rolled 

Plate in 2008 was $4,573.42 per ton. This results in a material cost of  

$4,573.42/ton × 8.153 tons/module = $37,281.69/module 

In addition, it is anticipated that manufacturing of these modules by detailed methods such as 

wire EDM and laser cutting will add on very substantial costs to the reactors. There is much in 

the way of detailed manufacturing work to be done on plates with such small thickness and 

channels of such miniscule dimensions. To account for these steep manufacturing costs, a factor 

of 5× is used to escalate the material cost to arrive at a bare module cost for the reactors: 

Bare module cost per module = 5 × $37,281.69/module = $186,408/module 

and 

Bare module cost of 3,987 modules = 3,987 modules × $186,408/module = $743,210,558. 

More (or less) conservative estimates can be made by increasing (or decreasing) the 5× factor; 

such an analysis is done in section 14, the Economic Analysis section, to explore the effect of 

this approximation on the feasibility of the project. 

Product Distribution 

The product distribution is determined using the Anderson-Schulz-Flory Distribution, which is: 

Wn/n = (1-α)2αn-1 

   = (1 −  )     ⇒  =  (1 −  )      
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Where Wn is the product weight fraction of a 

hydrocarbon chain containing n Carbon atoms and α is 

the chain growth probability. According to the Nexant 

technical report on Velocys’ microchannel technology, 

the chain growth probability lies in the range 0.89 to 

0.92 (average of 0.905), while the patent claimed a 

value as high as 0.93. To be conservative in evaluating 

this new technology, only α = 0.905 was assumed, 

rather than the optimistic 0.93. A CO conversion of 

70% per pass was assumed. Using this information, the 

product distribution was converted to fractional 

conversion of feed CO so it could be input into 

RYIELD in ASPEN.  

 The procedure used to do the calculation was 

iteratively performed in Microsoft Excel. Iteration was necessary since the reaction 

stoichiometry was specific for each hydrocarbon product. The steps of the procedure are: 

1. Guess a total weight of the reaction product 

2. Use α in the Anderson-Schulz-Flory distribution  to calculate the weight fraction of each 

hydrocarbon product 

3. Use the resulting product weight to calculate the number of moles of carbon atoms in 

each product. This is how many moles of CO react to form that component of the 

product. With each hydrocarbon product, there is associated a contribution to the total 

fractional conversion of CO which brought about that hydrocarbon product 

Table A10 – Fischer-Tropsch Product 
Distribution in terms of Fractional 

CO Conversion 
Product 

(n) 
Fractional Conversion of 

CO 
1 0.560% 
2 1.081% 
3 1.501% 
4 1.832% 
5 2.087% 
6 2.277% 
7 2.412% 
8 2.501% 
9 2.552% 

10 2.570% 
11 2.562% 
12 2.532% 
13 2.484% 
14 2.423% 
15 2.351% 
16 2.271% 
17 2.185% 
18 2.095% 
19 2.002% 
20 1.908% 
32 27.814% 
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4. Sum the moles of CO reacted in (3) above to calculate the percentage conversion of CO 

(using the molar flow rate of CO in the feed) 

5. Repeat steps 1-4 until the percentage conversion of CO from step (4) is equal to 70% 

The results are shown in Table A10. Note that all products above C20 are grouped into a single 

category whose molecular formula is C32H66. C32 is the median hydrocarbon product for all 

products more than 20 carbon atoms large. 

Catalyst Structure 

The catalyst used to conduct Fischer-Tropsch is a fixed bed of particulate solid, containing 

Co/Re catalyst in a molar ratio of 21 with a metal dispersion of 5.4%. Each particle is 177-250 

microns in diameter. One gram of catalyst per 800ml/hr of flow is packed into each reaction 

channel; at the flow rates in this particular embodiment (80,500 ml/hr), approximately 0.11g of 

catalyst (0.032g Co, 0.0048g Re) is loaded per channel, for a grand total of 6.7 tons of catalyst 

(0.11 g/channel × 896,956 plate pairs × 70 channels/plate pair). 
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Appendix B - Separation Specifications 
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MEA-CO2 Process Flow Diagram
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MEA Absorber/Stripper Block Reports: 
 BLOCK:  ABSORBER MODEL: RADFRAC          
 ------------------------------- 
   ***    SUMMARY OF KEY RESULTS    *** 
    TOP STAGE LIQ. TEMPERATURE     F                       145.685       
    TOP STAGE VAP. TEMPERATURE     F                       145.685       
    BOTTOM STAGE LIQ. TEMPERATURE  F                       135.643       
    BOTTOM STAGE VAP. TEMPERATURE  F                       125.743       
    TOP STAGE LIQUID FLOW          LBMOL/HR          2,460,900.          
    BOTTOM STAGE LIQUID FLOW       LBMOL/HR          2,459,760.          
    TOP STAGE VAPOR FLOW           LBMOL/HR            221,397.          
    BOTTOM STAGE VAPOR FLOW        LBMOL/HR            276,740.          
    CONDENSER DUTY (W/O SUBCOOL)   BTU/HR                    0.0         
    REBOILER DUTY                  BTU/HR                    0.0         
 
            ***** SIZING RESULTS @ STAGE WITH MAXIMUM DIAMETER ***** 
 
    STAGE WITH MAXIMUM DIAMETER                                   2 
    COLUMN DIAMETER                 FT                      117.573       
    DC AREA/COLUMN AREA                                       0.100000    
    DOWNCOMER VELOCITY              FT/SEC                    0.27293     
    WEIR LENGTH                     FT                       85.4301      
 
                          **** SIZING PROFILES **** 
 
       STAGE    DIAMETER      TOTAL AREA   ACTIVE AREA   SIDE DC AREA 
                  FT            SQFT         SQFT           SQFT     
          1       117.17        10783.       8626.4        1078.3     
          2       117.57        10857.       8685.5        1085.7     
 
 
                 ************************************  
 BLOCK:  REGENR   MODEL: RADFRAC          
 ------------------------------- 
    INLETS   - STRFEED  STAGE   1 
    OUTLETS  - REGVAPR  STAGE   1 
               MEARECYC STAGE   8 
               NOPURGE  STAGE   3 
   PROPERTY OPTION SET:   ELECNRTL  ELECTROLYTE NRTL / REDLICH-KWONG             
   HENRY-COMPS ID:        GLOBAL   
   CHEMISTRY ID:          GLOBAL   - TRUE SPECIES 
 
     ***********************************************************************    
 
                      ***  MASS AND ENERGY BALANCE  *** 
                              IN          OUT       GENERATION   RELATIVE DIFF. 
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   TOTAL BALANCE 
   MOLE(LBMOL/HR)        0.247226E+07  0.252566E+07   53397.2      0.397772E-06 
   MASS(LB/HR   )        0.621263E+08  0.621263E+08                0.319911E-10 
   ENTHALPY(BTU/HR  )   -0.320643E+12 -0.315881E+12               -0.148525E-01 
                          ***** SIZING RESULTS ***** 
 
    COLUMN DIAMETER                 FT                       62.5166      
    MAXIMUM FRACTIONAL CAPACITY                               0.62000     
    MAXIMUM CAPACITY FACTOR         FT/SEC                    0.16104     
    PRESSURE DROP FOR THE SECTION   PSI                       0.059603    
    AVERAGE PRESSURE DROP/HEIGHT    IN-WATER/FT               0.078562    
    MAXIMUM LIQUID HOLDUP/STAGE     CUFT                  1,314.09        
    MAX LIQ SUPERFICIAL VELOCITY    FT/SEC                    0.10151     
 
            ***** SIZING RESULTS @ STAGE WITH MAXIMUM DIAMETER ***** 
    STAGE WITH MAXIMUM DIAMETER                                   7 
    COLUMN DIAMETER                 FT                      120.563       
    DC AREA/COLUMN AREA                                       0.100000    
    DOWNCOMER VELOCITY              FT/SEC                    0.27293     
    WEIR LENGTH                     FT                       87.6027      
Stream 
Summary 
 

CO2VENT DRYGAS VENTGAS 
From REFDRM ABSSEPR 
To SATR 
Substream: MIXED 
Phase:  Vapor Mixed Vapor 
Component Mass Flow 
    
HYDROGEN LB/HR 2.49 49458.23 49455.35 
    OXYGEN LB/HR 0 0 0 
    
NITROGEN LB/HR 0 0 0 
    CO2 LB/HR 2885782 4291527 1388366 
    MEA LB/HR 0 0 0 
    WATER LB/HR 22810.87 2618922 216313.9 
    MEA+ LB/HR 0 0 0 
    H3O+ LB/HR 0 3.26 0 
    
MEACOO- LB/HR 0 0 0 
    HCO3- LB/HR 0 10.45 0 
    CO3-- LB/HR 0 0 0 
    SULFU-01 LB/HR 0.76 24.99 24.05 
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METHANE LB/HR 5323.35 136414 130017.2 
    CO LB/HR 11565.99 3193532 3179308 
Component Mass Fraction 
    
HYDROGEN 0 0 0.01 
    OXYGEN 0 0 0 
    
NITROGEN 0 0 0 
    CO2 0.99 0.42 0.28 
    MEA 0 0 0 
    WATER 0.01 0.25 0.04 
    MEA+ 0 0 0 
    H3O+ 0 0 0 
    
MEACOO- 0 0 0 
    HCO3- 0 0 0 
    CO3-- 0 0 0 
    SULFU-01 0 0 0 
    
METHANE 0 0.01 0.03 
    CO 0 0.31 0.64 
Mole Flow LBMOL/HR 67583.53 389935.8 189696.2 
Mass Flow LB/HR 2925485 10289890 4963484 
Volume Flow CUFT/HR 9631282 93116040 77302650 
Temperature F 92 100 99 
Pressure PSIA 41 16.7 14.7 
Vapor Fraction 1 0.66 1 
Liquid Fraction 0 0.34 0 
Solid 
Fraction 0 0 0 
Molar 
Enthalpy BTU/LBMOL -166556 -101807 -64411.4 
Molar 
Density LBMOL/CUFT 0.01 0 0 
Mass Density LB/CUFT 0.3 0.11 0.06 
Average Molecular Weight 43.29 26.39 26.17 
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COPure-CO Separations and Specifications: 
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Appendix C - Cash Flow Sensitivities 
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Cash Flow Summary- Oil Price Low Case 
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Cash Flow Summary- Oil Price High Case
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Cash Flow Summary- Oil Price Breakeven Cash
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2. Alaskan Natural Gas to Liquid (GTL) using Microchannel Reactors 
(recommended by John Wismer, Arkema, Inc.) 
 
The development of technology to convert methane to useful hydrocarbons has been escalating 
in recent years. This family of technologies – designated as Gas to Liquids or GTL – can target a 
variety of end products, such as methanol, gasoline or diesel fuel. As of today, most of the 
natural gas produced by oil wells in remote locations – sometimes referred to as stranded gas- is 
wasted. As a result, a premium is put on technologies most easily adapted to hostile 
environments. For most technologies the first step is the steam reforming of methane into a 
mixture of mostly CO and H2 – usually called syngas. The syngas is then converted to a useful 
liquid, such as methanol, gasoline, or diesel fuel in a catalyzed synthesis reaction.  
 
Your client is a major oil company that is exploring technology options in this area. You have 
been asked to evaluate a promising technology that offers the possibility of a compact plant 
through the use of microchannel technology. The use of microchannels in heat exchangers has 
been shown to increase overall heat transfer coefficients by as much as an order of magnitude. 
This technology has been extended to reactor systems, in which the combined effects of high 
heat and mass transfer rates yield very high reaction rates – even for highly exothermic or 
endothermic systems. The potentially small footprints of microchannel systems makes them 
ideally suited to the challenge of GTL processing in remote locations. 
 
The proposed technology first proposes using the steam reforming of methane to produce a 
synthesis gas: 
 

CH4 + H2O ↔ 3H2 + CO  (3) 
 

In addition to being highly endothermic, the above reaction is both kinetically and equilibrium 
limited. Invariably, it is accompanied by the water-gas shift reaction. 
 

CO + H2O ↔ H2 + CO2 

 
The required heat is often supplied by partial combustion of the methane using an air co feed. 
With the microchannel technology, the heat can be supplied by fuel combustion that occurs in 
adjacent channels2,5. Part of the advantage of microchannels is the ability to run combustion 
reactions in a controlled manner. The very high surface area to volume ratio allows free radicals 
to get “quenched” as they are formed, tempering the rate of combustion. Furthermore, since the 
heat of combustion is transferred as quickly as it is generated, there is no need to operate with a 
large amount of excess air in the combustion channels. On the process side, the channels are 
coated with a highly effective catalyst and diffusion is eliminated as a mass-transfer resistance. 
The second step of the process is the Fischer-Tropsch synthesis, whereby the carbon monoxide 
in the syngas is hydrogenated into alipahatic hydrocarbons primarily. The target products are 
paraffinic oligomers in the C5 to C10 range: 
 

(2n+1) H2 + nCO → CnH2n+2 + nH2O 
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However, the synthesis also can produce olefins, alcohols, coke, and carbon dioxide7. The 
Fischer-Tropsch synthesis is highly exothermic. One of the non-selectives of Fischer-Tropsch 
synthesis is methane. Together with the light gases, methane can be recycled either to the inlet of 
the Fischer-Tropsch reactor or to the reformer. One of the problems with the above process is 
that hydrogen is produced in excess. Either the excess hydrogen can be oxidized to recover 
energy or CO2 from combustion can be added to the make up the carbon deficit. In most process 
concepts, the latter approach, called autothermal reforming8, is used but that technique 
compromises some of the microchannel advantages. A major design challenge is to seek a heat 
and material balance that makes optimum use of the microchannel technology. 
 
The only current commercialization venture involving this technology is offshore oil drilling 
platform6. However, it appears to be well suited to onshore areas that place a premium on small 
footprint, low environmental-impact processing. The site for you to explore is the North Slope of 
Alaska, where this technology can be used in lieu of or as a stopgap measure for a trans-
continental pipeline that is in the planning stages. In this sense, the North Slope gas is not truly 
stranded. BP claims that the pipeline project is more economical then GTL technologies at the 
gas production capacities of the North Slope9. However, the pipeline project is long term and 
expensive, costing $30B to $40B by the time it is completed in 2018, the earliest possible date. 
The scale of the GTL project should be about 100 kbpd – the scale originally proposed by Exxon 
for its now abandoned Alaskan GTL project10. At this capacity, the liquid product can be fed 
directly into the TAPS (Trans Alaskan Pipeline System) where it would be blended with crude 
oil for shipment to U.S. Northwest refineries. The current TAPS throughput is about 700kpd 
with a maximum4 capacity of about 2Mbpd. At this capacity, the TAPS will still have enough 
capacity to handle the ANWR oil – if it ever gets delivered. 
 
References 
 
1. Wang, Yong et al., U.S. Patent 7,084,180 B2, “Fischer-Tropsch Synthesis Using 
Microchannel Technology and Novel Catalyst and Microchannel Reactor”, Aug 1, 2006. 
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3. Tonkovich, A.Y., “From Seconds to Milliseconds to Microseconds though Tailored 
Microchannel Reactor Design of a Steam Methane Reformer,” Catalysis Today, 120, 21-29 
(2007). 
 
4. Cao, C. et al., “Catalyst Screening and Kinetic Studies Using Microchannel Reactors”, 
Catalysis Today, 125, 29-33 (2007). 
 
5. Tonkovich et al., U.S. Patent 0033455A1, “Integrated combustion Reactors and Methods of 
Conducting Simultaneous Endothermic and Exothermic Reactions”, Feb. 19, 2004 
 
6. “A new Offshore GTL production System takes Advantage of Microchannel Reactors”, 
Chemical Engineering, January, 2008. 
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7. www.pnl.gov/biobased/docs/acs2003presentation.pdf (Battelle presentation showing Fischer-
Tropsch results). 
 
8. Parkinson, G., “Gas to Liquids Gain Momentum,” Chemical Engineering Progress, May 
2005. 
 
9. Alexander’s Oil and Gas Connection, Voume 9, Issue #2- January 29,2004, “BP and Partner 
prove Alaska GTL technologies” at http://www.gasandoil.com/goc/company/cnn40481.htm 
 

10. See www.arcticgaspipeline.com/GTL.htm. 

 

http://www.pnl.gov/biobased/docs/
http://www.gasandoil.com/goc/company/cnn40481.htm
http://www.arcticgaspipeline.com/GTL.htm
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Appendix E – Pipeline Analysis 

Several postulations were made in order to prepare projected cash flows for 

TransCanada’s natural gas pipeline project. The estimates used in the analysis are summarized in 

this section. 

Since TransCanada, Inc. was awarded a license from the Alaska Legislature for the 

pipeline project in August, 2008, the company plans to begin on-site construction in April, 2016 

and begin operations in September, 2018. However, the project has been delayed multiple times 

in the past; accounting for construction and legal delays, the project is postulated to begin 

operation no sooner than 2020.  

TransCanada is using a 4.5 billion cubic feet per day capacity as their base case, which is 

the maximum capacity used in this analysis. Possibilities exist for a 5.1 bcf/day or 5.9 bcf/day 

pipeline; however, capital cost data in unavailable for these variations at this time. The load 

factors used for the first two years of operation are 85% and 90%, and 95% onwards. 

TransCanada will be charging its customers a high fee for using the pipeline to transport 

their gas, to cover the large capital cost of the project. According to the Institute of Social and 

Economic Research, University of Alaska, Anchorage, the tariff charged for pipeline use will be 

approximately 75% of the value of the gas at the pipeline’s outlet. The outlet value of the gas is 

taken to be the Lower 48 Wellhead price projected in the Energy Information Administration 

Annual Energy Outlook, 2009. This 75% tariff is the source of the revenue for TransCanada. 

The annual capital expenditure in the development phase was obtained from 

TransCanada’s 2007 Application for License to the Alaska Gasline Inducement Act. This capital 

was depreciated using the 5-year MACRS depreciation schedule.  

The cost of operations and maintenance is estimated as a percentage of total revenue. 

TransCanada’s financial statements suggest that the typical total cost of operating its other 

pipelines was about 37% of pipeline revenue in 2008. A 37.25% factor was used in the cash flow 

projections. State taxes were at 9.4% and federal tax at 35%. Pipelines are generally not charged 

oil/gas windfall tax, so none was accounted for in the analysis. One should be mindful, however, 
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that the windfall tax burden may sometimes be shared by a pipeline company under certain 

circumstances, even though the company is never directly taxed by the government. 

 A 10% discount rate was used to discount the projected cash flows to obtain an 

NPV of $1.58 billion; the discount rate was so chosen to reflect that the supply of North Slope 

gas as well the demand for its transportation will remain strong. 
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MEA Correspondence 

Sophie, 
The gas must be free of particulate and free of water.   Use a molecular sieve to remove the water 
vapor. 
A scrubber before the dehydration unit can get rid of particulate or a bag house maybe. 
The reject gas from the absorption column has all gases but CO. 
The gas off of the desorption column is pure CO. 
Run the reject has through a mol sieve and recover the Hydrogen. 
Back blend the pure hydrogen with the pure Co for your proper ratio. 
 
Regards, 
 
Rocky Costello, P.E. 

 
Sophie 
 
That is metric tons per annum (year) of finished CO. 
Use $30.00 per gallon. 
Regards, 
 
--  
Rocky C. Costello 
-Following are the attachments with the correspondence: 
 
 
Velocys Correspondence 

From: McDaniel, Jeff [mailto:mcdaniel@velocys.com] 
Sent: Thursday, January 29, 2009 4:27 PM 
To: Jeffrey Hammond 
Subject: RE: GTL Project Inquiry 
 
Jeff, 
 
The attached report provides an overview of our microchannel technology. 
I do not have much additional information that I can provide on a 
non-confidential basis.  We will have much more information as we 
complete the field demonstrations that will occur later this year and in 
2010. 
 
Regards, 
Jeff McDaniel
 
  

mailto:mcdaniel@velocys.com
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Appendix H - Aspen Results 
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Aspen Process Flow Diagram
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Input Summary Report: 
; 
;Input Summary created by Aspen Plus Rel. 21.0 at 15:45:25 Mon Apr 13, 2009 
;Directory S:\CBE 459 Senior Design\Renamed Final Aspen  Filename 
c:\temp\~ap9c3e.tmp 
; 
 
 
DYNAMICS 
    DYNAMICS RESULTS=ON 
 
IN-UNITS SI ENTHALPY='Btu/lb' ENTROPY='Btu/lbmol-R' FLOW='lb/hr'  & 
        MASS-FLOW='lb/hr' MOLE-FLOW='kmol/hr' VOLUME-FLOW='cuft/hr'  & 
        ENTHALPY-FLO='Btu/hr' MOLE-HEAT-CA='Btu/lbmol-R'  & 
        HEAT-TRANS-C='Btu/hr-sqft-F' PRESSURE=psi TEMPERATURE=F  & 
        DELTA-T=F HEAD=ft MOLE-ENTHALP='Btu/scf'  & 
        MASS-ENTHALP='Btu/lb' MOLE-ENTROPY='Btu/lbmol-R'  & 
        MASS-ENTROPY='Btu/lb-R' MASS-HEAT-CA='Btu/lb-R'  & 
        UA='Btu/hr-R' HEAT=Btu PDROP=psi VOL-HEAT-CAP='Btu/cuft-R'  & 
        HEAT-FLUX='Btu/hr-ft' VOL-ENTHALPY='Btu/cuft'  
 
DEF-STREAMS CONVEN ALL  
 
DATABANKS PURE20  / AQUEOUS  / SOLIDS  / INORGANIC  /  & 
        NOASPENPCD 
 
PROP-SOURCES PURE20  / AQUEOUS  / SOLIDS  / INORGANIC  
 
COMPONENTS  
    CH4 CH4 /  
    H2O H2O /  
    CO CO /  
    CO2 CO2 /  
    H2 H2 /  
    C2H6 C2H6 /  
    C3H8 C3H8 /  
    C4H10 C4H10-1 /  
    N-HEX-01 C6H14-1 /  
    N-NON-01 C9H20-1 /  
    N-UND-01 C11H24 /  
    N-DOD-01 C12H26 /  
    N-HEX-02 C16H34 /  
    N-PEN-01 C5H12-1 /  
    N-HEP-01 C7H16-1 /  
    N-OCT-01 C8H18-1 /  
    N-TRI-01 C13H28 /  
    N-TET-01 C14H30 /  
    N-PEN-02 C15H32 /  
    N-HEP-02 C17H36 /  
    N-OCT-02 C18H38 /  
    N-NON-02 C19H40 /  
    N-EIC-01 C20H42 /  
    N-DEC-01 C10H22-1 /  
    N-DOT-01 C32H66 /  
    N2 N2 /  
    OXYGE-01 O2 /  
    AIR AIR  
 
FLOWSHEET  
    BLOCK FTR-101 IN=S-202 OUT=S-203 HS-FT-1  
    BLOCK SMR-101 IN=S-101 CO2RECYL STEAM101 HS-SMR-1 HS-SMR-4  & 
        OUT=12 HS-SMR-3  
    BLOCK MEA-101 IN=S-103 OUT=CO2 S-104  
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    BLOCK SPLIT-1 IN=CO2 OUT=CO2PURGE CO2RECYL  
    BLOCK SMR-3 IN=FEEDFUEL RECYCLE FEEDAIR HS-SMR-2 OUT= & 
        FLUEGAS HS-SMR-1  
    BLOCK FT-2 IN=CW-205 HS-FT-1 OUT=CW-206 HS-FT-2  
    BLOCK COMP-101 IN=FEED-CH4 OUT=S-101  
    BLOCK HX-101IN=PRO1 CW-101 OUT=S-103 CW-102  
    BLOCK HX-101 IN=S-105 CW-102 OUT=S-106 CW-103  
    BLOCK COPURE IN=S-304 OUT=S-305 RECYCLE  
    BLOCK MIX-1 IN=S-104 S-305 OUT=S-201  
    BLOCK HX-201 IN=S-203 CW-204 OUT=15 CW-205  
    BLOCK F-301 IN=15 OUT=S-304 S-303 S-301  
    BLOCK DEC-301 IN=S-301 OUT=S-302 WASTEH2O  
    BLOCK MIX-2 IN=S-302 S-303 OUT=S-306  
    BLOCK PUMP-202 IN=CW-203 OUT=CW-204  
    BLOCK COMP-201 IN=S-201 OUT=S-202  
    BLOCK SMR-2 IN=12 OUT=PRO1 HS-SMR-4  
    BLOCK SMR-4 IN=FLUEGAS OUT=S-105 HS-SMR-2  
    BLOCK SPLIT-2 IN=CW-206 OUT=CW-207 STEAM201  
    BLOCK COMP-102 IN=STEAM201 OUT=STEAM101  
    BLOCK TURB-201 IN=CW-207 OUT=CW-208  
    BLOCK AC101 IN=CW-103 OUT=CW-101  
    BLOCK B16 IN=CW-202 CW-209 OUT=CW-203  
    BLOCK PUMP201 IN=CW-201 OUT=CW-202  
    BLOCK AC201 IN=CW-208 OUT=CW-209  
    BLOCK F-302 IN=S-306 OUT=S-307 S-308  
    BLOCK PUMP301 IN=S-308 OUT=TO-PIPE  
 
PROPERTIES RK-SOAVE  
    PROPERTIES NRTL-RK / PENG-ROB  
 
PROP-DATA NRTL-1 
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PROP-LIST NRTL  
    BPVAL H2O N-HEX-01 0.0 3040.000000 .2000000000 0.0 0.0  & 
        0.0 0.0 55.00000000  
    BPVAL N-HEX-01 H2O 0.0 1512.000000 .2000000000 0.0 0.0  & 
        0.0 0.0 55.00000000  
    BPVAL H2O N-NON-01 0.0 1693.523300 .2000000000 0.0 0.0  & 
        0.0 25.00000000 25.00000000  
    BPVAL N-NON-01 H2O 0.0 1693.523300 .2000000000 0.0 0.0  & 
        0.0 25.00000000 25.00000000  
    BPVAL H2O N-UND-01 21.99718000 -2245.965000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL N-UND-01 H2O -5.471097000 3614.017000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL H2O N-DOD-01 23.42913000 -2638.143000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL N-DOD-01 H2O -6.088709000 3794.107000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL H2O N-HEX-02 28.21783000 -3920.972000 .2000000000 0.0  & 
        0.0 0.0 20.00000000 50.00000000  
    BPVAL N-HEX-02 H2O -5.445453000 3588.225000 .2000000000 0.0  & 
        0.0 0.0 20.00000000 50.00000000  
    BPVAL H2O N-PEN-01 12.38660000 -791.7913000 .2000000000 0.0  & 
        0.0 0.0 0.0 30.00000000  
    BPVAL N-PEN-01 H2O -10.68920000 5051.727500 .2000000000 0.0  & 
        0.0 0.0 0.0 30.00000000  
    BPVAL H2O N-HEP-01 10.54680000 440.7775000 .2000000000 0.0  & 
        0.0 0.0 0.0 50.00000000  
    BPVAL N-HEP-01 H2O -9.865200000 4795.660200 .2000000000 0.0  & 
        0.0 0.0 0.0 50.00000000  



 

H5 
 

    BPVAL H2O N-OCT-01 1.216600000 2997.701400 .2000000000 0.0  & 
        0.0 0.0 0.0 30.00000000  
    BPVAL N-OCT-01 H2O -12.03500000 5381.433600 .2000000000 0.0  & 
        0.0 0.0 0.0 30.00000000  
    BPVAL H2O N-TRI-01 24.63887000 -2962.920000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL N-TRI-01 H2O -6.914652000 4044.105000 .2000000000 0.0  & 
        0.0 0.0 25.00000000 40.00000000  
    BPVAL H2O N-TET-01 26.14467000 -3376.979000 .2000000000 0.0  & 
        0.0 0.0 40.00000000 40.00000000  
    BPVAL N-TET-01 H2O -5.920609000 3739.217000 .2000000000 0.0  & 
        0.0 0.0 40.00000000 40.00000000  
    BPVAL H2O N-DEC-01 0.0 4504.280000 .2000000000 0.0 0.0  & 
        0.0 25.00000000 40.00000000  
    BPVAL N-DEC-01 H2O 0.0 1959.410000 .2000000000 0.0 0.0  & 
        0.0 25.00000000 40.00000000  
    BPVAL C3H8 N-PEN-01 4.112400000 -1031.210000 .3000000000  & 
        0.0 0.0 0.0 63.41000000 110.0000000  
    BPVAL N-PEN-01 C3H8 -.7004000000 8.919100000 .3000000000  & 
        0.0 0.0 0.0 63.41000000 110.0000000  
    BPVAL C4H10 N-HEX-01 .1644000000 -4.362500000 .3000000000  & 
        0.0 0.0 0.0 -20.00000000 149.8000000  
    BPVAL N-HEX-01 C4H10 -.0530000000 -27.35750000 .3000000000  & 
        0.0 0.0 0.0 -20.00000000 149.8000000  
    BPVAL C4H10 N-PEN-01 0.0 -251.0092000 .3000000000 0.0 0.0  & 
        0.0 25.00000000 25.00000000  
    BPVAL N-PEN-01 C4H10 0.0 402.0097000 .3000000000 0.0 0.0  & 
        0.0 25.00000000 25.00000000  
    BPVAL N-HEX-01 N-UND-01 0.0 99.41190000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 35.00000000  
    BPVAL N-UND-01 N-HEX-01 0.0 -104.5852000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 35.00000000  
    BPVAL N-HEX-01 N-DOD-01 0.0 113.4685000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 35.00000000  
    BPVAL N-DOD-01 N-HEX-01 0.0 -120.0042000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 35.00000000  
    BPVAL N-HEX-01 N-HEX-02 0.0 -6.812100000 .3000000000 0.0  & 
        0.0 0.0 20.00000000 60.00000000  
    BPVAL N-HEX-02 N-HEX-01 0.0 -31.16210000 .3000000000 0.0  & 
        0.0 0.0 20.00000000 60.00000000  
    BPVAL N-HEX-01 N-PEN-01 0.0 -213.8231000 .3000000000 0.0  & 
        0.0 0.0 25.00000000 68.20000000  
    BPVAL N-PEN-01 N-HEX-01 0.0 246.7632000 .3000000000 0.0  & 
        0.0 0.0 25.00000000 68.20000000  
    BPVAL N-HEX-01 N-HEP-01 0.0 41.09800000 .3000000000 0.0  & 
        0.0 0.0 14.00000000 98.60000000  
    BPVAL N-HEP-01 N-HEX-01 0.0 -47.34870000 .3000000000 0.0  & 
        0.0 0.0 14.00000000 98.60000000  
    BPVAL N-HEX-01 N-OCT-01 -.2878000000 231.9725000 .3000000000  & 
        0.0 0.0 0.0 14.00000000 124.3000000  
    BPVAL N-OCT-01 N-HEX-01 -.8769000000 122.2197000 .3000000000  & 
        0.0 0.0 0.0 14.00000000 124.3000000  
    BPVAL N-HEX-01 N-DEC-01 0.0 298.4441000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 144.8000000  
    BPVAL N-DEC-01 N-HEX-01 0.0 -237.0642000 .3000000000 0.0  & 
        0.0 0.0 35.00000000 144.8000000  
    BPVAL N-HEX-02 N-OCT-01 0.0 108.8865000 .3000000000 0.0  & 
        0.0 0.0 25.00000000 25.00000000  
    BPVAL N-OCT-01 N-HEX-02 0.0 -115.0525000 .3000000000 0.0  & 
        0.0 0.0 25.00000000 25.00000000  
    BPVAL N-PEN-01 N-HEP-01 6.359900000 -2516.694600 .3000000000  & 
        0.0 0.0 0.0 130.6000000 253.5000000  
    BPVAL N-HEP-01 N-PEN-01 -3.335700000 1283.840100 .3000000000  & 
        0.0 0.0 0.0 130.6000000 253.5000000  



 

H6 
 

    BPVAL N-HEP-01 N-OCT-01 -.2362000000 350.9965000 .3000000000  & 
        0.0 0.0 0.0 39.50000000 124.3000000  
    BPVAL N-OCT-01 N-HEP-01 -.5846000000 1.367600000 .3000000000  & 
        0.0 0.0 0.0 39.50000000 124.3000000  
 
PROP-DATA PRKBV-1 
    IN-UNITS ENG  
    PROP-LIST PRKBV  
    BPVAL CH4 CO .0300000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO CH4 .0300000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 CO2 .0919000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 CH4 .0919000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 H2 .0156000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CH4 .0156000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2O CO2 .1200000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 H2O .1200000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO H2 .0919000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CO .0919000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 H2 -.1622000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CO2 -.1622000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 C2H6 -2.6000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CH4 -2.6000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO C2H6 -.0226000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CO -.0226000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 C2H6 .1322000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CO2 .1322000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C2H6 -.0667000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 H2 -.0667000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 C3H8 .0140000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 CH4 .0140000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO C3H8 .0259000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C3H8 CO .0259000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 C3H8 .1241000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 CO2 .1241000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C3H8 -.0833000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 H2 -.0833000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 C3H8 1.10000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 C2H6 1.10000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 C4H10 .0133000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 CH4 .0133000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 C4H10 .1333000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 CO2 .1333000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C4H10 -.3970000000 0.0 0.0 -459.6699923  & 
        1340.329993  



 

H7 
 

    BPVAL C4H10 H2 -.3970000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 C4H10 9.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 C2H6 9.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 C4H10 3.30000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 C3H8 3.30000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-HEX-01 .0422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 CH4 .0422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-HEX-01 .1100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 CO2 .1100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 N-HEX-01 -.0300000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 H2 -.0300000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-HEX-01 -.0100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C2H6 -.0100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-HEX-01 7.00000000E-4 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C3H8 7.00000000E-4 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-HEX-01 -5.6000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C4H10 -5.6000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-NON-01 .0474000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-NON-01 CH4 .0474000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-PEN-01 .0230000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 CH4 .0230000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-PEN-01 .1222000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 CO2 .1222000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-PEN-01 7.80000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C2H6 7.80000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-PEN-01 .0267000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C3H8 .0267000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-PEN-01 .0174000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C4H10 .0174000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-HEP-01 .0352000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 CH4 .0352000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-HEP-01 .1000000000 0.0 0.0 -459.6699923  & 
        1340.329993  



 

H8 
 

    BPVAL N-HEP-01 CO2 .1000000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 N-HEP-01 -.1167000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 H2 -.1167000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-HEP-01 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C2H6 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-HEP-01 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C3H8 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-HEP-01 3.30000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C4H10 3.30000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 N-HEP-01 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N-HEX-01 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N-HEP-01 7.40000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N-PEN-01 7.40000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-OCT-01 .0496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 CH4 .0496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-OCT-01 .0185000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 C2H6 .0185000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N-OCT-01 0.0 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 N-PEN-01 0.0 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-DEC-01 .0422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 CH4 .0422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-DEC-01 .1141000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 CO2 .1141000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-DEC-01 .0144000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 C2H6 .0144000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-DEC-01 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N-DEC-01 C3H8 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C4H10 N-DEC-01 7.80000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 C4H10 7.80000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N2 .0311000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CH4 .0311000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO N2 .0307000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CO .0307000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 N2 -.0170000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CO2 -.0170000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 N2 .1030000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 H2 .1030000000 0.0 0.0 -459.6699923 1340.329993  



 

H9 
 

    BPVAL C2H6 N2 .0515000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 C2H6 .0515000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C3H8 N2 .0852000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 C3H8 .0852000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C4H10 N2 .0800000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 C4H10 .0800000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 N2 .1496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-HEX-01 .1496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N2 .1000000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-PEN-01 .1000000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N2 .1441000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-HEP-01 .1441000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 N2 -.4100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-OCT-01 -.4100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 N2 .1122000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-DEC-01 .1122000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 OXYGE-01 -.0119000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL OXYGE-01 N2 -.0119000000 0.0 0.0 -459.6699923  & 
        1340.329993  
 
PROP-DATA RKSKBV-1 
    IN-UNITS ENG  
    PROP-LIST RKSKBV  
    BPVAL CH4 CO .0322000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO CH4 .0322000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 CO2 .0933000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 CH4 .0933000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 H2 -.0222000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CH4 -.0222000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2O CO2 .0737000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 H2O .0737000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO H2 .0804000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CO .0804000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 H2 -.3426000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 CO2 -.3426000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 C2H6 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CH4 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO C2H6 -.0278000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CO -.0278000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 C2H6 .1363000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 CO2 .1363000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C2H6 -.1667000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 H2 -.1667000000 0.0 0.0 -459.6699923  & 
        1340.329993  



 

H10 
 

    BPVAL CH4 C3H8 9.00000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 CH4 9.00000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO C3H8 .0156000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C3H8 CO .0156000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 C3H8 .1289000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 CO2 .1289000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C3H8 -.2359000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 H2 -.2359000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 C3H8 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 C2H6 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 C4H10 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 CH4 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 C4H10 .1430000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 CO2 .1430000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 C4H10 -.5100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 H2 -.5100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 C4H10 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 C2H6 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 C4H10 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C4H10 C3H8 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CH4 N-HEX-01 .0374000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 CH4 .0374000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-HEX-01 .1178000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 CO2 .1178000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 N-HEX-01 -.0800000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 H2 -.0800000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-HEX-01 -.0156000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C2H6 -.0156000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-HEX-01 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C3H8 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-HEX-01 -.0111000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 C4H10 -.0111000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-NON-01 .0448000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-NON-01 CH4 .0448000000 0.0 0.0 -459.6699923  & 
        1340.329993  
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    BPVAL CH4 N-PEN-01 .0190000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 CH4 .0190000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-PEN-01 .1311000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 CO2 .1311000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-PEN-01 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C2H6 5.60000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-PEN-01 .0233000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C3H8 .0233000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-PEN-01 .0204000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 C4H10 .0204000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-HEP-01 .0307000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 CH4 .0307000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-HEP-01 .1100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 CO2 .1100000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL H2 N-HEP-01 -.2200000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 H2 -.2200000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-HEP-01 4.10000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C2H6 4.10000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-HEP-01 4.40000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C3H8 4.40000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C4H10 N-HEP-01 -4.0000000E-4 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 C4H10 -4.0000000E-4 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 N-HEP-01 -1.1000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N-HEX-01 -1.1000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N-HEP-01 1.90000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N-PEN-01 1.90000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N-OCT-01 .0448000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 CH4 .0448000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-OCT-01 .0170000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 C2H6 .0170000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N-OCT-01 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 N-PEN-01 -2.2000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
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    BPVAL CH4 N-DEC-01 .0411000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 CH4 .0411000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CO2 N-DEC-01 .1304000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 CO2 .1304000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C2H6 N-DEC-01 .0152000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 C2H6 .0152000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL C3H8 N-DEC-01 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N-DEC-01 C3H8 0.0 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C4H10 N-DEC-01 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 C4H10 6.70000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL CH4 N2 .0278000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CH4 .0278000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO N2 .0374000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CO .0374000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL CO2 N2 -.0315000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 CO2 -.0315000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL H2 N2 .0978000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 H2 .0978000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C2H6 N2 .0407000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 C2H6 .0407000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C3H8 N2 .0763000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL N2 C3H8 .0763000000 0.0 0.0 -459.6699923 1340.329993  
    BPVAL C4H10 N2 .0700000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 C4H10 .0700000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEX-01 N2 .1496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-HEX-01 .1496000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-PEN-01 N2 .0878000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-PEN-01 .0878000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-HEP-01 N2 .1422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-HEP-01 .1422000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-OCT-01 N2 -.4000000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-OCT-01 -.4000000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N-DEC-01 N2 .1033000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 N-DEC-01 .1033000000 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL N2 OXYGE-01 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
    BPVAL OXYGE-01 N2 -7.8000000E-3 0.0 0.0 -459.6699923  & 
        1340.329993  
 
STREAM CW-101  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    SUBSTREAM MIXED TEMP=35. <C> PRES=1. <atm>  
    MOLE-FLOW H2O 1500000.  
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STREAM CW-201  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    SUBSTREAM MIXED TEMP=4. PRES=0.  
    MOLE-FLOW H2O 4612391.1  
 
STREAM CW-203  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    SUBSTREAM MIXED TEMP=4. PRES=0.  
    MOLE-FLOW H2O 7005500.14  
 
STREAM FEED-CH4  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    SUBSTREAM MIXED TEMP=100. <F> PRES=3. <atm>  
    MOLE-FLOW CH4 1746811.24  
 
STREAM FEEDAIR  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    SUBSTREAM MIXED TEMP=25. PRES=1. <atm>  
    MOLE-FLOW N2 50728. <mol/sec> / OXYGE-01 13485. <mol/sec>  
 
STREAM FEEDFUEL  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    SUBSTREAM MIXED TEMP=25. <C> PRES=1. <atm>  
    MOLE-FLOW CH4 15000. <mol/sec> / N2 162821. <mol/sec> /  & 
        OXYGE-01 43500. <mol/sec>  
 
DEF-STREAMS HEAT HS-FT-1 
 
DEF-STREAMS HEAT HS-FT-2 
 
DEF-STREAMS HEAT HS-SMR-1 
 
DEF-STREAMS HEAT HS-SMR-2 
 
DEF-STREAMS HEAT HS-SMR-3 
 
DEF-STREAMS HEAT HS-SMR-4 
 
BLOCK B16 MIXER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM PRES=8.  
 
BLOCK MIX-1 MIXER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
 
BLOCK MIX-2 MIXER  
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    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM PRES=19. NPHASE=1 PHASE=L T-EST=27.  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK SPLIT-1 FSPLIT  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    MOLE-FLOW CO2RECYL 848471. <mol/hr>  
 
BLOCK SPLIT-2 FSPLIT  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    MOLE-FLOW STEAM201 4612391.1  
 
BLOCK COPURE SEP  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM  
    FRAC STREAM=S-305 SUBSTREAM=MIXED COMPS=CH4 H2O CO CO2  & 
        H2 C2H6 C3H8 C4H10 N-HEX-01 N-NON-01 N-UND-01 N-DOD-01  & 
        N-HEX-02 N-PEN-01 N-HEP-01 N-OCT-01 N-TRI-01 N-TET-01  & 
        N-PEN-02 N-HEP-02 N-OCT-02 N-NON-02 N-EIC-01 N-DEC-01  & 
        N-DOT-01 N2 OXYGE-01 AIR FRACS=0. 0. 1. 0. 0. 0.  & 
        0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.  & 
        0. 0. 0. 0. 0. 0. 0.  
 
BLOCK MEA-101 SEP  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    PARAM  
    FRAC STREAM=CO2 SUBSTREAM=MIXED COMPS=CO2 FRACS=0.8  
 
BLOCK AC101 HEATER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=4. PRES=1.  
 
BLOCK AC201 HEATER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=4. PRES=8.  
 
BLOCK FT-2 HEATER  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    PARAM TEMP=205. <C> PRES=10. <barg>  
 
BLOCK SMR-2 HEATER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=401. PRES=15.  
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BLOCK SMR-4 HEATER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=331. PRES=0.  
 
BLOCK F-302 FLASH2  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=27. PRES=1.  
 
BLOCK F-301 FLASH3  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=27. PRES=15.  
    PROPERTIES NRTL-RK FREE-WATER=STEAM-TA SOLU-WATER=3  & 
        TRUE-COMPS=YES  
 
BLOCK DEC-301 DECANTER  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TEMP=27. PRES=19. L2-COMPS=H2O  
 
BLOCK HX-101HEATX  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    PARAM T-HOT=225. <C> U-OPTION=CONSTANT  
    FEEDS HOT=PRO1 COLD=CW-101  
    PRODUCTS HOT=S-103 COLD=CW-102  
    HEAT-TR-COEF U=100. <Btu/hr-sqft-F>  
 
BLOCK HX-101 HEATX  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM T-HOT=160. LMTD-CORRECT=0.7116 U-OPTION=CONSTANT  
    FEEDS HOT=S-105 COLD=CW-102  
    PRODUCTS HOT=S-106 COLD=CW-103  
    HEAT-TR-COEF U=100. <Btu/hr-sqft-F>  
 
BLOCK HX-201 HEATX  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM T-HOT=30. U-OPTION=CONSTANT  
    FEEDS HOT=S-203 COLD=CW-204  
    PRODUCTS HOT=15 COLD=CW-205  
    HEAT-TR-COEF U=100.  
 
BLOCK FTR-101 RSTOIC  
    IN-UNITS ENG  
    PARAM TEMP=225. <C> PRES=-5. <atm> HEAT-OF-REAC=YES  
    STOIC 1 MIXED H2 -19. / CO -9. / N-NON-01 1. / H2O  & 
        9.  



 

H16 
 

    STOIC 2 MIXED H2 -3. / CO -1. / CH4 1. / H2O 1.  
    STOIC 3 MIXED H2 -5. / CO -2. / C2H6 1. / H2O 2.  
    STOIC 4 MIXED H2 -7. / CO -3. / C3H8 1. / H2O 3.  
    STOIC 5 MIXED H2 -9. / CO -4. / C4H10 1. / H2O 4.  
    STOIC 6 MIXED H2 -13. / CO -6. / N-HEX-01 1. / H2O  & 
        6.  
    STOIC 7 MIXED H2 -11. / CO -5. / N-PEN-01 1. / H2O  & 
        5.  
    STOIC 8 MIXED H2 -15. / CO -7. / N-HEP-01 1. / H2O  & 
        7.  
    STOIC 9 MIXED H2 -17. / CO -8. / N-OCT-01 1. / H2O  & 
        8.  
    STOIC 10 MIXED CO -10. / H2 -21. / N-DEC-01 1. / H2O  & 
        10.  
    STOIC 11 MIXED H2 -23. / CO -11. / N-UND-01 1. / H2O  & 
        11.  
    STOIC 12 MIXED H2 -25. / CO -12. / N-DOD-01 1. / H2O  & 
        12.  
    STOIC 13 MIXED H2 -27. / CO -13. / N-TRI-01 1. / H2O  & 
        13.  
    STOIC 14 MIXED CO -14. / H2 -29. / N-TET-01 1. / H2O  & 
        14.  
    STOIC 15 MIXED H2 -31. / CO -15. / N-PEN-02 1. / H2O  & 
        15.  
    STOIC 16 MIXED H2 -33. / CO -16. / N-HEX-02 1. / H2O  & 
        16.  
    STOIC 17 MIXED CO -17. / H2 -35. / N-HEP-02 1. / H2O  & 
        17.  
    STOIC 18 MIXED CO -18. / H2 -37. / N-OCT-02 1. / H2O  & 
        18.  
    STOIC 19 MIXED CO -19. / H2 -39. / N-NON-02 1. / H2O  & 
        19.  
    STOIC 20 MIXED CO -20. / H2 -41. / N-EIC-01 1. / H2O  & 
        20.  
    STOIC 21 MIXED CO -32. / H2 -65. / H2O 32. / N-DOT-01  & 
        1.  
    CONV 1 MIXED CO 0.0255408  
    CONV 2 MIXED CO 0.0056023  
    CONV 3 MIXED CO 0.0108199  
    CONV 4 MIXED CO 0.0150238  
    CONV 5 MIXED CO 0.0183383  
    CONV 6 MIXED CO 0.0227928  
    CONV 7 MIXED CO 0.0208901  
    CONV 8 MIXED CO 0.0241461  
    CONV 9 MIXED CO 0.0250369  
    CONV 10 MIXED CO 0.0257231  
    CONV 11 MIXED CO 0.0256404  
    CONV 12 MIXED CO 0.0253413  
    CONV 13 MIXED CO 0.0248677  
    CONV 14 MIXED CO 0.0242554  
    CONV 15 MIXED CO 0.023535  
    CONV 16 MIXED CO 0.0227326  
    CONV 17 MIXED CO 0.0218703  
    CONV 18 MIXED CO 0.0209666  
    CONV 19 MIXED CO 0.0200373  
    CONV 20 MIXED CO 0.0190953  
    CONV 21 MIXED CO 0.2784676  
    HEAT-RXN REACNO=1 CID=CO / REACNO=2 CID=CO / REACNO=3  & 
        CID=CO / REACNO=4 CID=CO / REACNO=5 CID=CO /  & 
        REACNO=6 CID=CO / REACNO=7 CID=CO / REACNO=8 CID=CO /  & 
        REACNO=9 CID=CO / REACNO=10 CID=CO / REACNO=11 CID=CO / & 
        REACNO=12 CID=CO / REACNO=13 CID=CO / REACNO=14  & 
        CID=CO / REACNO=15 CID=CO / REACNO=16 CID=CO /  & 
        REACNO=17 CID=CO / REACNO=18 CID=CO / REACNO=19  & 
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        CID=CO / REACNO=20 CID=CO / REACNO=21 CID=CO  
 
BLOCK SMR-3 RSTOIC  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    PARAM TEMP=900. <C> PRES=1. <atm>  
    STOIC 2 MIXED CH4 -1. / OXYGE-01 -2. / H2O 2. / CO2  & 
        1.  
    STOIC 1 MIXED H2 -1. / OXYGE-01 -0.5 / H2O 1.  
    STOIC 3 MIXED C2H6 -1. / OXYGE-01 -3.5 / H2O 3. / CO2  & 
        2.  
    STOIC 4 MIXED C3H8 -1. / OXYGE-01 -5. / H2O 4. / CO2  & 
        3.  
    STOIC 5 MIXED C4H10 -1. / OXYGE-01 -6.5 / H2O 5. /  & 
        CO2 4.  
    CONV 2 MIXED CH4 1.  
    CONV 1 MIXED H2 1.  
    CONV 3 MIXED C2H6 1.  
    CONV 4 MIXED C3H8 1.  
    CONV 5 MIXED C4H10 1.  
 
BLOCK SMR-101 RYIELD  
    IN-UNITS ENG  
    PARAM TEMP=900. <C> PRES=15. <barg>  
    MASS-YIELD MIXED CH4 0.0218 / H2O 0.3727 / CO 0.2923 /  & 
        CO2 0.2502 / H2 0.0629  
 
BLOCK PUMP-202 PUMP  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM PRES=10.  
 
BLOCK PUMP201 PUMP  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM PRES=8.  
 
BLOCK PUMP301 PUMP  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM DELP=5.  
 
BLOCK TURB-201 COMPR  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM TYPE=ISENTROPIC PRES=8. MODEL-TYPE=TURBINE  
 
BLOCK COMP-101 MCOMPR  
    IN-UNITS SI MASS-FLOW='kg/day' MOLE-FLOW='kmol/day'  & 
        VOLUME-FLOW='bbl/day'  
    PARAM NSTAGE=2 TYPE=ISENTROPIC PRES=15. <barg>  
    FEEDS FEED-CH4 1  
    PRODUCTS S-101 2  
    COOLER-SPECS 1 TEMP=100. <F> / 2 DUTY=0.  
 
BLOCK COMP-102 MCOMPR  
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    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM NSTAGE=1 TYPE=ISENTROPIC PRES=15.  
    FEEDS STEAM201 1  
    PRODUCTS STEAM101 1  
    COOLER-SPECS 1 TEMP=337.  
 
BLOCK COMP-201 MCOMPR  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    PARAM NSTAGE=1 TYPE=ISENTROPIC PRES=35. <atm>  
    FEEDS S-201 1  
    PRODUCTS S-202 1  
    COMPR-SPECS 1 SEFF=0.6  
    COOLER-SPECS 1 TEMP=225.  
 
DESIGN-SPEC FTCW  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    DEFINE FTCW INFO-VAR INFO=HEAT VARIABLE=DUTY  & 
        STREAM=HS-FT-2  
    SPEC "FTCW" TO "0"  
    TOL-SPEC "1000"  
    VARY STREAM-VAR STREAM=CW-203 SUBSTREAM=MIXED  & 
        VARIABLE=MOLE-FLOW  
    LIMITS "10" "100000000000000000000"  
 
DESIGN-SPEC QREFOR  
    IN-UNITS SI FLOW='kg/day' MASS-FLOW='kg/day'  & 
        MOLE-FLOW='kmol/day' VOLUME-FLOW='bbl/day' PRESSURE=barg  & 
        TEMPERATURE=C DELTA-T=C PDROP-PER-HT='mbar/m' PDROP=bar  & 
        INVERSE-PRES='1/bar'  
    DEFINE HEAT INFO-VAR INFO=HEAT VARIABLE=DUTY  & 
        STREAM=HS-SMR-3  
    SPEC "HEAT" TO "0"  
    TOL-SPEC "1000"  
    VARY STREAM-VAR STREAM=FEEDFUEL SUBSTREAM=MIXED  & 
        VARIABLE=MOLE-FLOW  
    LIMITS "0" "100000000000000000000" STEP-SIZE=1.  
 
EO-CONV-OPTI  
 
STREAM-REPOR MOLEFLOW MASSFLOW STDVOLFLOW MOLEFRAC MASSFRAC  & 
        STDVOLFRAC  
 
PROPERTY-REP PCES  
; 
; 
; 
; 
; 
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Block Reports: 

(Units appear in alphabetical order) 

AirCooler-101 
 BLOCK:  AC101    MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          CW-103   
   OUTLET STREAM:         CW-101   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            62500.0         62500.0         0.00000     
       MASS(LB/HR   )           0.248231E+07    0.248231E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.138929E+11   -0.172310E+11    0.193726     
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                        39.2000      
   SPECIFIED PRESSURE                   PSI                      29.1997      
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    39.200     
   OUTLET PRESSURE       PSI                                  29.200     
   HEAT DUTY             BTU/HR                             -0.33381E+10 
   OUTLET VAPOR FRACTION                                      0.0000     
   PRESSURE-DROP CORRELATION PARAMETER                        0.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O               1.0000         1.0000         1.0000        0.27288E-
02 
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AirCooler-201 
BLOCK:  AC201    MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          CW-208   
   OUTLET STREAM:         CW-209   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            100853.         100853.         0.00000     
       MASS(LB/HR   )           0.400558E+07    0.400558E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.226311E+11   -0.278035E+11    0.186033     
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                        39.2000      
   SPECIFIED PRESSURE                   PSI                     130.726       
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    39.200     
   OUTLET PRESSURE       PSI                                  130.73     
   HEAT DUTY             BTU/HR                             -0.51724E+10 
   OUTLET VAPOR FRACTION                                      0.0000     
   PRESSURE-DROP CORRELATION PARAMETER                      -0.40301E-14 
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O               1.0000         1.0000         1.0000      0.70881E-03 
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MIXER-B16 
 
 BLOCK:  B16      MODEL: MIXER            
 ----------------------------- 
   INLET STREAMS:         CW-202      CW-209   
   OUTLET STREAM:         CW-203   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            293036.         293036.         0.00000     
       MASS(LB/HR   )           0.116385E+08    0.116385E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.807847E+11   -0.807847E+11     0.00000     
 
                          ***  INPUT DATA  *** 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   OUTLET PRESSURE   PSI                                  130.726       
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COMP-101 
BLOCK:  COMP-101 MODEL: MCOMPR           
 ------------------------------ 
   INLET STREAMS:    FEED-CH4     TO STAGE   1 
   OUTLET STREAMS:   S-101      FROM STAGE   2 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            72783.8         72783.8         0.00000     
       MASS(LB/HR   )           0.257423E+07    0.257423E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.511237E+10   -0.489215E+10   -0.430747E-01 
 
                          ***  INPUT DATA  *** 
 
   ISENTROPIC CENTRIFUGAL COMPRESSOR 
   NUMBER OF STAGES                                          2 
   FINAL PRESSURE, PSI                                     232.253       
 
                    COMPRESSOR SPECIFICATIONS PER STAGE 
 
   STAGE                     MECHANICAL      ISENTROPIC                  
   NUMBER                    EFFICIENCY      EFFICIENCY                  
     1                        1.000          0.7200     
     2                        1.000          0.7200     
 
                    COOLER SPECIFICATIONS PER STAGE 
 
 
   STAGE      PRESSURE        COOLER 
   NUMBER     DROP            SPECIFICATION 
              PSI      
     1         0.000          OUTLET TEMPERATURE   100.0      F        
     2         0.000          HEAT DUTY            0.000      BTU/HR   
 
                           ***  RESULTS  *** 
 
   FINAL PRESSURE, PSI                                     232.253       
   TOTAL WORK REQUIRED, WATT                                 0.131818+09 
   TOTAL COOLING DUTY , BTU/HR                              -0.229567+09 
 
                           ***  PROFILE  *** 
 
                           COMPRESSOR PROFILE 
   STAGE      OUTLET       PRESSURE     OUTLET 
   NUMBER     PRESSURE     RATIO        TEMPERATURE 
              PSI                       F    
 
     1        101.2        2.295        254.8     
     2        232.3        2.295        255.2     
 
   STAGE      INDICATED      BRAKE                                        
   NUMBER     HORSEPOWER     HORSEPOWER                                   
              WATT           WATT     
     1       0.6606E+08     0.6606E+08 
     2       0.6576E+08     0.6576E+08 
 
                           COOLER PROFILE 
   STAGE      OUTLET          OUTLET       COOLING     VAPOR 
   NUMBER     TEMPERATURE     PRESSURE     LOAD        FRACTION 
              F               PSI          BTU/HR   
     1         100.0           101.2       -.2296E+09   1.000     
     2         255.2           232.3        0.000       1.000     
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COMP-102 
BLOCK:  COMP-102 MODEL: MCOMPR           
 ------------------------------ 
   INLET STREAMS:    STEAM201     TO STAGE   1 
   OUTLET STREAMS:   STEAM101   FROM STAGE   1 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            192183.         192183.         0.00000     
       MASS(LB/HR   )           0.763291E+07    0.763291E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.430279E+11   -0.421645E+11   -0.200649E-01 
 
                          ***  INPUT DATA  *** 
 
   ISENTROPIC CENTRIFUGAL COMPRESSOR 
   NUMBER OF STAGES                                          1 
   FINAL PRESSURE, PSI                                     232.253       
 
                    COMPRESSOR SPECIFICATIONS PER STAGE 
 
   STAGE                     MECHANICAL      ISENTROPIC                  
   NUMBER                    EFFICIENCY      EFFICIENCY                  
                      
 
     1                        1.000          0.7200     
 
                    COOLER SPECIFICATIONS PER STAGE 
 
 
   STAGE      PRESSURE        COOLER 
   NUMBER     DROP            SPECIFICATION 
              PSI      
     1         0.000          OUTLET TEMPERATURE   638.6      F        
 
                           ***  RESULTS  *** 
 
   FINAL PRESSURE, PSI                                     232.253       
   TOTAL WORK REQUIRED, WATT                                 0.109893+09 
   TOTAL COOLING DUTY , BTU/HR                               0.488378+09 
 
                           ***  PROFILE  *** 
 
                           COMPRESSOR PROFILE 
 
   STAGE      OUTLET       PRESSURE     OUTLET 
   NUMBER     PRESSURE     RATIO        TEMPERATURE 
              PSI                       F    
 
     1        232.3        1.454        511.4     
 
   STAGE      INDICATED      BRAKE                                        
   NUMBER     HORSEPOWER     HORSEPOWER                                   
              WATT           WATT     
     1       0.1099E+09     0.1099E+09 
 
                           COOLER PROFILE 
 
   STAGE      OUTLET          OUTLET       COOLING     VAPOR 
   NUMBER     TEMPERATURE     PRESSURE     LOAD        FRACTION 
              F               PSI          BTU/HR   
 
     1         638.6           232.3       0.4884E+09   1.000     
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COMP-201 
BLOCK:  COMP-201 MODEL: MCOMPR           
 ------------------------------ 
   INLET STREAMS:    S-201        TO STAGE   1 
   OUTLET STREAMS:   S-202      FROM STAGE   1 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            321093.         321093.         0.00000     
       MASS(LB/HR   )           0.937378E+07    0.937378E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.298349E+11   -0.297596E+11   -0.252371E-02 
 
                          ***  INPUT DATA  *** 
 
   ISENTROPIC CENTRIFUGAL COMPRESSOR 
   NUMBER OF STAGES                                          1 
   FINAL PRESSURE, PSI                                     514.358       
 
                    COMPRESSOR SPECIFICATIONS PER STAGE 
   STAGE                     MECHANICAL      ISENTROPIC                  
   NUMBER                    EFFICIENCY      EFFICIENCY                  
                      
 
     1                        1.000          0.6000     
 
                    COOLER SPECIFICATIONS PER STAGE 
 
 
   STAGE      PRESSURE        COOLER 
   NUMBER     DROP            SPECIFICATION 
              PSI      
     1         0.000          OUTLET TEMPERATURE   437.0      F        
 
                           ***  RESULTS  *** 
 
   FINAL PRESSURE, PSI                                     514.358       
   TOTAL WORK REQUIRED, WATT                                 0.533966+09 
   TOTAL COOLING DUTY , BTU/HR                              -0.174667+10 
 
                           ***  PROFILE  *** 
                           COMPRESSOR PROFILE 
 
   STAGE      OUTLET       PRESSURE     OUTLET 
   NUMBER     PRESSURE     RATIO        TEMPERATURE 
              PSI                       F    
 
     1        514.4        2.215        750.0     
 
   STAGE      INDICATED      BRAKE                                        
   NUMBER     HORSEPOWER     HORSEPOWER                                   
              WATT           WATT     
     1       0.5340E+09     0.5340E+09 
 
                           COOLER PROFILE 
 
   STAGE      OUTLET          OUTLET       COOLING     VAPOR 
   NUMBER     TEMPERATURE     PRESSURE     LOAD        FRACTION 
              F               PSI          BTU/HR   
 
     1         437.0           514.4       -.1747E+10   1.000     
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COPure-301 
BLOCK:  COPURE   MODEL: SEP              
 --------------------------- 
   INLET STREAM:          S-304    
   OUTLET STREAMS:        S-305       RECYCLE  
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            73730.9         73730.9         0.00000     
       MASS(LB/HR   )           0.188408E+07    0.188408E+07    0.247155E-15 
       ENTHALPY(BTU/HR  )      -0.346182E+10   -0.346250E+10    0.196173E-03 
 
 
                          ***  INPUT DATA  *** 
 
   FLASH SPECS FOR STREAM S-305    
   TWO    PHASE  TP  FLASH 
   PRESSURE DROP         PSI                                 0.0         
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FLASH SPECS FOR STREAM RECYCLE  
   TWO    PHASE  TP  FLASH 
   PRESSURE DROP         PSI                                 0.0         
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FRACTION OF FEED 
     SUBSTREAM= MIXED    
       STREAM= S-305     CPT= CH4       FRACTION=          0.0         
                              H2O                          0.0         
                              CO                           1.00000     
                              CO2                          0.0         
                              H2                           0.0         
                              C2H6                         0.0         
                              C3H8                         0.0         
                              C4H10                        0.0         
                              N-HEX-01                     0.0         
                              N-NON-01                     0.0         
                              N-UND-01                     0.0         
                              N-DOD-01                     0.0         
                              N-HEX-02                     0.0         
                              N-PEN-01                     0.0         
                              N-HEP-01                     0.0         
                              N-OCT-01                     0.0         
                              N-TRI-01                     0.0         
                              N-TET-01                     0.0         
                              N-PEN-02                     0.0         
                              N-HEP-02                     0.0         
                              N-OCT-02                     0.0         
                              N-NON-02                     0.0         
                              N-EIC-01                     0.0         
                              N-DEC-01                     0.0         
                              N-DOT-01                     0.0         
                              N2                           0.0         
                              OXYGE-01                     0.0         
                              AIR                          0.0         
 
 
                           ***  RESULTS  *** 
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   HEAT DUTY             BTU/HR                             -0.67925E+06 
 
  COMPONENT = CH4      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = H2O      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = CO       
    STREAM     SUBSTREAM    SPLIT FRACTION 
    S-305      MIXED                 1.00000     
 
  COMPONENT = CO2      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = H2       
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = C2H6     
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = C3H8     
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = C4H10    
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-HEX-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-NON-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-UND-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-DOD-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-HEX-02 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-PEN-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-HEP-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-OCT-01 
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    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-TRI-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-TET-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-PEN-02 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-HEP-02 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-OCT-02 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-NON-02 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-EIC-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
 
  COMPONENT = N-DEC-01 
    STREAM     SUBSTREAM    SPLIT FRACTION 
    RECYCLE    MIXED                 1.00000     
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DEC-301 
BLOCK:  DEC-301  MODEL: DECANTER         
 -------------------------------- 
   INLET STREAM:          S-301    
   FIRST LIQUID OUTLET:   S-302    
   SECOND LIQUID OUTLET:  WASTEH2O 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            151434.         151434.         0.00000     
       MASS(LB/HR   )           0.698378E+07    0.698378E+07   -0.540611E-07 
       ENTHALPY(BTU/HR  )      -0.408205E+11   -0.412626E+11    0.107143E-01 
 
                          ***  INPUT DATA  *** 
 
   LIQUID-LIQUID SPLIT, TP SPECIFICATION 
   SPECIFIED TEMPERATURE               F                         80.6000      
   SPECIFIED PRESSURE                  PSI                   290.268       
   CONVERGENCE TOLERANCE ON EQUILIBRIUM                       0.10000E-03 
   MAXIMUM NO ITERATIONS ON EQUILIBRIUM                       30 
   EQUILIBRIUM METHOD                           EQUATION-SOLVING 
   KLL COEFFICIENTS FROM                       OPTION SET OR EOS 
   KLL BASIS                                                MOLE 
   KEY COMPONENT(S):       H2O                                    
 
                           ***  RESULTS  *** 
 
   OUTLET TEMPERATURE      F                                  80.600     
   OUTLET PRESSURE         PSI                                290.27     
   CALCULATED HEAT DUTY    BTU/HR                           -0.44210E+09 
   MOLAR RATIO 1ST LIQUID / TOTAL LIQUID                     0.52509E-01 
 
   L1-L2 PHASE EQUILIBRIUM :  
      COMP          F             X1            X2            K 
      CH4        0.014867      0.28273       0.223527-04   0.790607-04  
      H2O        0.94765       0.0079256     0.99973       126.139      
      CO         0.010419      0.19836       0.292647-05   0.147532-04  
      CO2        0.015462      0.28996       0.00024894    0.00085852   
      H2         0.294506-07   0.560089-06   0.432411-10   0.772039-04  
      C2H6       0.0012982     0.024715      0.517535-06   0.209402-04  
      C3H8       0.0017229     0.032811      0.265343-07   0.808708-06  
      C4H10      0.0018599     0.035420      0.979164-09   0.276441-07  
      N-HEX-01   0.118714-04   0.00022608    0.937313-15   0.414585-11  
      N-NON-01   0.00014361    0.0027350     0.143254-18   0.523787-16  
      N-UND-01   0.126652-04   0.00024120    0.126988-20   0.526484-17  
      N-DOD-01   0.117930-04   0.00022459    0.357444-21   0.159153-17  
      N-HEX-02   0.893656-05   0.00017019    0.237264-23   0.139410-19  
      N-PEN-01   0.755999-05   0.00014398    0.593841-13   0.412460-09  
      N-HEP-01   0.104856-04   0.00019969    0.873709-17   0.437527-13  
      N-OCT-01   0.133700-04   0.00025462    0.462998-19   0.181836-15  
      N-TRI-01   0.110894-04   0.00021119    0.929196-22   0.439979-18  
      N-TET-01   0.103557-04   0.00019722    0.278230-22   0.141078-18  
      N-PEN-02   0.00068884    0.013119      0.564641-21   0.430413-19  
      N-HEP-02   0.00056481    0.010756      0.107565-21   1.000000-20  
      N-OCT-02   0.00051139    0.0097391     0.973911-22   1.000000-20  
      N-NON-02   0.00046300    0.0088176     0.881758-22   1.000000-20  
      N-EIC-01   0.00041917    0.0079829     0.798290-22   1.000000-20  
      N-DEC-01   0.155276-04   0.00029571    0.642578-20   0.217297-16  
      N-DOT-01   0.0038205     0.072759      0.727593-21   1.000000-20  
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FLASH-301 
BLOCK:  F-301    MODEL: FLASH3           
 ------------------------------ 
   INLET STREAM:          15       
   OUTLET VAPOR STREAM:   S-304    
   FIRST LIQUID OUTLET:   S-303    
   SECOND LIQUID OUTLET:  S-301    
   PROPERTY OPTION SET:   NRTL-RK   RENON (NRTL) / REDLICH-KWONG                 
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            226866.         226866.         0.00000     
       MASS(LB/HR   )           0.937378E+07    0.937378E+07    0.101984E-06 
       ENTHALPY(BTU/HR  )      -0.449352E+11   -0.447530E+11   -0.405465E-02 
 
                          ***  INPUT DATA  *** 
   THREE  PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE F                                  80.6000      
   SPECIFIED PRESSURE    PSI                               232.253       
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   NO KEY COMPONENT IS SPECIFIED 
   KEY LIQUID STREAM:      S-301    
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    80.600     
   OUTLET PRESSURE       PSI                                  232.25     
   HEAT DUTY             BTU/HR                              0.18220E+09 
   VAPOR FRACTION                                            0.32500     
   1ST LIQUID/TOTAL LIQUID                                   0.11106E-01 
 
   V-L1-L2 PHASE EQUILIBRIUM :  
 
      COMP           F(I)      X1(I)     X2(I)     Y(I)      K1(I)     K2(I) 
      CH4           0.296E-01 0.150E-01 0.149E-01 0.603E-01  4.03      4.05     
      H2O           0.633     0.220E-02 0.948     0.229E-02  1.04     0.242E-
02 
      CO            0.887E-01 0.105E-01 0.104E-01 0.251      24.0      24.1     
      CO2           0.234E-01 0.156E-01 0.155E-01 0.399E-01  2.56      2.58     
      H2            0.207     0.296E-07 0.295E-07 0.638     0.215E+08 
0.217E+08 
      C2H6          0.160E-02 0.131E-02 0.130E-02 0.224E-02  1.71      1.72     
      C3H8          0.148E-02 0.176E-02 0.172E-02 0.988E-03 0.561     0.573     
      C4H10         0.136E-02 0.190E-02 0.186E-02 0.317E-03 0.167     0.170     
      N-HEX-01      0.113E-02 0.889E-01 0.119E-04 0.139E-02 0.156E-01  117.     
      N-NON-01      0.841E-03 0.972E-01 0.144E-03 0.520E-04 0.535E-03 0.362     
      N-UND-01      0.691E-03 0.908E-01 0.127E-04 0.495E-05 0.545E-04 0.391     
      N-DOD-01      0.626E-03 0.824E-01 0.118E-04 0.148E-05 0.180E-04 0.126     
      N-HEX-02      0.421E-03 0.554E-01 0.894E-05 0.123E-07 0.222E-06 0.138E-
02 
      N-PEN-01      0.124E-02 0.612E-01 0.756E-05 0.238E-02 0.389E-01  315.     
      N-HEP-01      0.102E-02 0.114     0.105E-04 0.506E-03 0.445E-02  48.2     
      N-OCT-01      0.928E-03 0.114     0.134E-04 0.192E-03 0.168E-02  14.3     
      N-TRI-01      0.567E-03 0.746E-01 0.111E-04 0.443E-06 0.594E-05 0.400E-
01 
      N-TET-01      0.513E-03 0.676E-01 0.104E-04 0.135E-06 0.200E-05 0.131E-
01 
      N-PEN-02      0.465E-03 0.693E-03 0.689E-03 0.481E-09 0.694E-06 0.699E-
06 
      N-HEP-02      0.381E-03 0.568E-03 0.565E-03 0.422E-10 0.743E-07 0.748E-
07 
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      N-OCT-02      0.345E-03 0.514E-03 0.511E-03 0.138E-10 0.267E-07 0.269E-
07 
      N-NON-02      0.313E-03 0.466E-03 0.463E-03 0.368E-11 0.791E-08 0.795E-
08 
      N-EIC-01      0.283E-03 0.422E-03 0.419E-03 0.107E-11 0.253E-08 0.254E-
08 
      N-DEC-01      0.762E-03 0.996E-01 0.155E-04 0.169E-04 0.170E-03  1.09     
      N-DOT-01      0.258E-02 0.384E-02 0.382E-02 0.880E-17 0.229E-14 0.230E-
14 
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FLASH-302 
  
BLOCK:  F-302    MODEL: FLASH2           
 ------------------------------ 
   INLET STREAM:          S-306    
   OUTLET VAPOR STREAM:   S-307    
   OUTLET LIQUID STREAM:  S-308    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            9652.33         9652.33         0.00000     
       MASS(LB/HR   )           0.178896E+07    0.178896E+07    0.134956E-10 
       ENTHALPY(BTU/HR  )      -0.245104E+10   -0.240497E+10   -0.187968E-01 
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE F                                  80.6000      
   SPECIFIED PRESSURE    PSI                                29.1997      
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    80.600     
   OUTLET PRESSURE       PSI                                  29.200     
   HEAT DUTY             BTU/HR                              0.46072E+08 
   VAPOR FRACTION                                            0.72087     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      CH4              0.23555        0.39898E-02    0.32521         81.509     
      H2O              0.69165E-02    0.71609E-02    0.68219E-02    0.95265     
      CO               0.16526        0.10522E-02    0.22884         217.49     
      CO2              0.24162        0.15226E-01    0.32927         21.626     
      H2               0.46663E-06    0.10163E-08    0.64691E-06     636.53     
      C2H6             0.20590E-01    0.18498E-02    0.27847E-01     15.054     
      C3H8             0.27340E-01    0.80618E-02    0.34804E-01     4.3172     
      C4H10            0.29513E-01    0.25120E-01    0.31215E-01     1.2426     
      N-HEX-01         0.15847E-01    0.43780E-01    0.50313E-02    0.11492     
      N-NON-01         0.19371E-01    0.68752E-01    0.25016E-03    0.36385E-
02 
      N-UND-01         0.16199E-01    0.57969E-01    0.25559E-04    0.44092E-
03 
      N-DOD-01         0.14699E-01    0.52641E-01    0.74837E-05    0.14216E-
03 
      N-HEX-02         0.98968E-02    0.35456E-01    0.61373E-07    0.17309E-
05 
      N-PEN-01         0.10908E-01    0.19939E-01    0.74111E-02    0.37169     
      N-HEP-01         0.20166E-01    0.66066E-01    0.23928E-02    0.36218E-
01 
      N-OCT-01         0.20335E-01    0.70807E-01    0.79257E-03    0.11193E-
01 
      N-TRI-01         0.13321E-01    0.47721E-01    0.19619E-05    0.41113E-
04 
      N-TET-01         0.12067E-01    0.43231E-01    0.63805E-06    0.14759E-
04 
      N-PEN-02         0.10929E-01    0.39155E-01    0.18948E-06    0.48393E-
05 
      N-HEP-02         0.89614E-02    0.32105E-01    0.16522E-07    0.51463E-
06 
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      N-OCT-02         0.81138E-02    0.29069E-01    0.51913E-08    0.17859E-
06 
      N-NON-02         0.73461E-02    0.26318E-01    0.15955E-08    0.60622E-
07 
      N-EIC-01         0.66507E-02    0.23827E-01    0.41691E-09    0.17498E-
07 
      N-DEC-01         0.17789E-01    0.63537E-01    0.75004E-04    0.11805E-
02 
      N-DOT-01         0.60617E-01    0.21717        0.26701E-13    0.12295E-
12 
 
 BLOCK:  FT-2     MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          CW-205   
   INLET HEAT STREAM:     HS-FT-1  
   OUTLET STREAM:         CW-206   
   OUTLET HEAT STREAM:    HS-FT-2  
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            293036.         293036.         0.00000     
       MASS(LB/HR   )           0.116385E+08    0.116385E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.656079E+11   -0.656079E+11     0.00000     
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                       401.000       
   SPECIFIED PRESSURE                   PSI                     159.734       
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    401.00     
   OUTLET PRESSURE       PSI                                  159.73     
   HEAT DUTY             BTU/HR                              0.73123E+10 
   NET DUTY              BTU/HR                              -888.33     
   OUTLET VAPOR FRACTION                                      1.0000     
   PRESSURE-DROP CORRELATION PARAMETER                        0.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O               1.0000         1.0000         1.0000         1.5236     
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FT-2 

 
BLOCK:  FT-2     MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          CW-205   
   INLET HEAT STREAM:     HS-FT-1  
   OUTLET STREAM:         CW-206   
   OUTLET HEAT STREAM:    HS-FT-2  
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            293036.         293036.         0.00000     
       MASS(LB/HR   )           0.116385E+08    0.116385E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.656079E+11   -0.656079E+11     0.00000     
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                       401.000       
   SPECIFIED PRESSURE                   PSI                     159.734       
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    401.00     
   OUTLET PRESSURE       PSI                                  159.73     
   HEAT DUTY             BTU/HR                              0.73123E+10 
   NET DUTY              BTU/HR                              -888.33     
   OUTLET VAPOR FRACTION                                      1.0000     
   PRESSURE-DROP CORRELATION PARAMETER                        0.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O               1.0000         1.0000         1.0000         1.5236     
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FTR-101 
BLOCK:  FTR-101  MODEL: RSTOIC           
 ------------------------------ 
   INLET STREAM:          S-202    
   OUTLET STREAM:         S-203    
   OUTLET HEAT STREAM:    HS-FT-1  
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                              IN          OUT       GENERATION   RELATIVE 
DIFF. 
   TOTAL BALANCE 
   MOLE(KMOL/HR )         321093.       226866.      -94227.5      0.453199E-
16 
   MASS(LB/HR   )        0.937378E+07  0.937378E+07                 0.00000     
   ENTHALPY(BTU/HR  )   -0.297596E+11 -0.297596E+11               -0.256368E-
15 
 
                          ***  INPUT DATA  *** 
   STOICHIOMETRY MATRIX: 
 
    REACTION #   1: 
     SUBSTREAM MIXED   : 
     H2O        9.00    CO        -9.00    H2        -19.0    N-NON-01   1.00     
 
    REACTION #   2: 
     SUBSTREAM MIXED   : 
     CH4        1.00    H2O        1.00    CO        -1.00    H2        -3.00     
 
    REACTION #   3: 
     SUBSTREAM MIXED   : 
     H2O        2.00    CO        -2.00    H2        -5.00    C2H6       1.00     
 
    REACTION #   4: 
     SUBSTREAM MIXED   : 
     H2O        3.00    CO        -3.00    H2        -7.00    C3H8       1.00     
 
    REACTION #   5: 
     SUBSTREAM MIXED   : 
     H2O        4.00    CO        -4.00    H2        -9.00    C4H10      1.00     
 
    REACTION #   6: 
     SUBSTREAM MIXED   : 
     H2O        6.00    CO        -6.00    H2        -13.0    N-HEX-01   1.00     
 
    REACTION #   7: 
     SUBSTREAM MIXED   : 
     H2O        5.00    CO        -5.00    H2        -11.0    N-PEN-01   1.00     
 
    REACTION #   8: 
     SUBSTREAM MIXED   : 
     H2O        7.00    CO        -7.00    H2        -15.0    N-HEP-01   1.00     
 
    REACTION #   9: 
     SUBSTREAM MIXED   : 
     H2O        8.00    CO        -8.00    H2        -17.0    N-OCT-01   1.00     
 
    REACTION #  10: 
     SUBSTREAM MIXED   : 
     H2O        10.0    CO        -10.0    H2        -21.0    N-DEC-01   1.00     
 
    REACTION #  11: 
     SUBSTREAM MIXED   : 
     H2O        11.0    CO        -11.0    H2        -23.0    N-UND-01   1.00     
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    REACTION #  12: 
     SUBSTREAM MIXED   : 
     H2O        12.0    CO        -12.0    H2        -25.0    N-DOD-01   1.00     
 
    REACTION #  13: 
     SUBSTREAM MIXED   : 
     H2O        13.0    CO        -13.0    H2        -27.0    N-TRI-01   1.00     
 
    REACTION #  14: 
     SUBSTREAM MIXED   : 
     H2O        14.0    CO        -14.0    H2        -29.0    N-TET-01   1.00     
 
    REACTION #  15: 
     SUBSTREAM MIXED   : 
     H2O        15.0    CO        -15.0    H2        -31.0    N-PEN-02   1.00     
 
    REACTION #  16: 
     SUBSTREAM MIXED   : 
     H2O        16.0    CO        -16.0    H2        -33.0    N-HEX-02   1.00     
 
    REACTION #  17: 
     SUBSTREAM MIXED   : 
     H2O        17.0    CO        -17.0    H2        -35.0    N-HEP-02   1.00     
 
    REACTION #  18: 
     SUBSTREAM MIXED   : 
     H2O        18.0    CO        -18.0    H2        -37.0    N-OCT-02   1.00     
 
    REACTION #  19: 
     SUBSTREAM MIXED   : 
     H2O        19.0    CO        -19.0    H2        -39.0    N-NON-02   1.00     
 
    REACTION #  20: 
     SUBSTREAM MIXED   : 
     H2O        20.0    CO        -20.0    H2        -41.0    N-EIC-01   1.00     
 
    REACTION #  21: 
     SUBSTREAM MIXED   : 
     H2O        32.0    CO        -32.0    H2        -65.0    N-DOT-01   1.00     
 
 
   REACTION CONVERSION SPECS: NUMBER=   21 
     REACTION #   1: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2554E-01 
     REACTION #   2: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.5602E-02 
     REACTION #   3: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.1082E-01 
     REACTION #   4: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.1502E-01 
     REACTION #   5: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.1834E-01 
     REACTION #   6: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2279E-01 
     REACTION #   7: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2089E-01 
     REACTION #   8: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2415E-01 
     REACTION #   9: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2504E-01 
     REACTION #  10: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2572E-01 
     REACTION #  11: 
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     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2564E-01 
     REACTION #  12: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2534E-01 
     REACTION #  13: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2487E-01 
     REACTION #  14: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2426E-01 
     REACTION #  15: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2354E-01 
     REACTION #  16: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2273E-01 
     REACTION #  17: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2187E-01 
     REACTION #  18: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2097E-01 
     REACTION #  19: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2004E-01 
     REACTION #  20: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.1910E-01 
     REACTION #  21: 
     SUBSTREAM:MIXED    KEY COMP:CO       CONV FRAC: 0.2785     
 
 
 
 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE F                                 437.000       
   PRESSURE DROP         PSI                                73.4797      
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   SIMULTANEOUS REACTIONS 
   GENERATE COMBUSTION REACTIONS FOR FEED SPECIES          NO   
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    437.00     
   OUTLET PRESSURE       PSI                                  440.88     
   HEAT DUTY             BTU/HR                             -0.73124E+10 
   VAPOR FRACTION                                             1.0000     
 
 
 
   HEAT OF REACTIONS: 
 
     REACTION          REFERENCE          HEAT OF  
     NUMBER            COMPONENT          REACTION 
                                           BTU/SCF          
      1                   CO                -177.75     
      2                   CO                -233.33     
      3                   CO                -196.41     
      4                   CO                -188.47     
      5                   CO                -184.57     
      6                   CO                -180.47     
      7                   CO                -182.20     
      8                   CO                -179.32     
      9                   CO                -178.52     
      10                  CO                -177.22     
      11                  CO                -176.81     
      12                  CO                -176.41     
      13                  CO                -176.13     
      14                  CO                -175.87     
      15                  CO                -175.63     
      16                  CO                -175.46     
      17                  CO                -175.25     
      18                  CO                -175.09     
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      19                  CO                -174.95     
      20                  CO                -174.83     
      21                  CO                -173.66     
 
   REACTION EXTENTS: 
 
      REACTION          REACTION 
      NUMBER            EXTENT   
                        KMOL/HR          
      1                  190.81     
      2                  376.68     
      3                  363.74     
      4                  336.71     
      5                  308.25     
      6                  255.42     
      7                  280.91     
      8                  231.93     
      9                  210.42     
      10                 172.95     
      11                 156.72     
      12                 141.99     
      13                 128.62     
      14                 116.49     
      15                 105.49     
      16                 95.528     
      17                 86.498     
      18                 78.317     
      19                 70.907     
      20                 64.194     
      21                 585.09     
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      CH4              0.29619E-01    0.74891E-04    0.29619E-01     535.54     
      H2O              0.63332        0.99955        0.63332        0.85797     
      CO               0.88696E-01    0.56911E-04    0.88696E-01     2110.4     
      CO2              0.23394E-01    0.15978E-03    0.23394E-01     198.26     
      H2               0.20742        0.13788E-03    0.20742         2037.1     
      C2H6             0.16033E-02    0.63875E-05    0.16033E-02     339.90     
      C3H8             0.14842E-02    0.42895E-05    0.14842E-02     468.53     
      C4H10            0.13587E-02    0.27486E-05    0.13587E-02     669.38     
      N-HEX-01         0.11258E-02    0.53751E-06    0.11258E-02     2836.3     
      N-NON-01         0.84105E-03    0.22370E-07    0.84105E-03     50912.     
      N-UND-01         0.69082E-03    0.12509E-08    0.69082E-03    
0.74783E+06 
      N-DOD-01         0.62586E-03    0.25919E-09    0.62586E-03    
0.32698E+07 
      N-HEX-02         0.42108E-03    0.26870E-12    0.42108E-03    
0.21220E+10 
      N-PEN-01         0.12382E-02    0.12911E-05    0.12382E-02     1298.7     
      N-HEP-01         0.10223E-02    0.21828E-06    0.10223E-02     6342.1     
      N-OCT-01         0.92752E-03    0.69271E-07    0.92752E-03     18131.     
      N-TRI-01         0.56692E-03    0.53106E-10    0.56692E-03    
0.14456E+08 
      N-TET-01         0.51347E-03    0.83673E-11    0.51347E-03    
0.83096E+08 
      N-PEN-02         0.46500E-03    0.15872E-11    0.46500E-03    
0.39671E+09 
      N-HEP-02         0.38127E-03    0.73001E-13    0.38127E-03    
0.70724E+10 
      N-OCT-02         0.34521E-03    0.10867E-13    0.34521E-03    
0.43017E+11 
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      N-NON-02         0.31255E-03    0.17543E-14    0.31255E-03    
0.24124E+12 
      N-EIC-01         0.28296E-03    0.38150E-15    0.28296E-03    
0.10044E+13 
      N-DEC-01         0.76235E-03    0.53386E-08    0.76235E-03    
0.19337E+06 
      N-DOT-01         0.25790E-02    0.74952E-16    0.25790E-02    
0.46594E+14 
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HX-102 
 BLOCK:  HX-102     MODEL: HEATX            
 ----------------------------- 
   HOT SIDE: 
   --------- 
   INLET STREAM:          PRO1     
   OUTLET STREAM:         S-103    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
   COLD SIDE: 
   ---------- 
   INLET STREAM:          CW-101   
   OUTLET STREAM:         CW-102   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            386296.         386296.         0.00000     
       MASS(LB/HR   )           0.127718E+08    0.127718E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.510569E+11   -0.510569E+11     0.00000     
                          ***  INPUT DATA  *** 
 
   FLASH SPECS FOR HOT SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FLASH SPECS FOR COLD SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FLOW DIRECTION AND SPECIFICATION: 
     COUNTERCURRENT   HEAT EXCHANGER 
     SPECIFIED HOT OUTLET TEMP      
     SPECIFIED VALUE                F                      437.0000 
     LMTD CORRECTION FACTOR                                  1.00000 
 
   PRESSURE SPECIFICATION: 
     HOT  SIDE PRESSURE DROP        PSI                      0.0000 
     COLD SIDE PRESSURE DROP        PSI                      0.0000 
 
   HEAT TRANSFER COEFFICIENT SPECIFICATION: 
     OVERALL COEFFICIENT            BTU/HR-SQFT-F          100.0000 
 
                        ***  OVERALL RESULTS  *** 
   STREAMS: 
                   -------------------------------------- 
                   |                                    | 
   PRO1      ----->|                HOT                 |-----> S-103    
   T=  7.5380D+02  |                                    |       T=  
4.3700D+02 
   P=  2.3225D+02  |                                    |       P=  
2.3225D+02 
   V=  1.0000D+00  |                                    |       V=  
1.0000D+00 
                   |                                    | 
   CW-102    <-----|                COLD                |<----- CW-101   
   T=  2.5281D+02  |                                    |       T=  
3.9200D+01 
   P=  2.9200D+01  |                                    |       P=  
2.9200D+01 
   V=  4.8696D-01  |                                    |       V=  
0.0000D+00 
                   -------------------------------------- 
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   DUTY AND AREA: 
     CALCULATED HEAT DUTY           BTU/HR          1822273928.9965 
     CALCULATED (REQUIRED) AREA     SQM                   3783.8592 
     ACTUAL EXCHANGER AREA          SQM                   3783.8592 
     PER CENT OVER-DESIGN                                    0.0000 
 
   HEAT TRANSFER COEFFICIENT: 
     AVERAGE COEFFICIENT (DIRTY)    BTU/HR-SQFT-F          100.0000 
     UA (DIRTY)                     BTU/HR-R           4072912.1079 
 
   LOG-MEAN TEMPERATURE DIFFERENCE: 
     LMTD CORRECTION FACTOR                                  1.0000 
     LMTD (CORRECTED)               F                      447.4130 
     NUMBER OF SHELLS IN SERIES                               1 
 
   PRESSURE DROP: 
     HOTSIDE, TOTAL                 PSI                      0.0000 
     COLDSIDE, TOTAL                PSI                      0.0000 
 
   PRESSURE DROP PARAMETER: 
     HOT SIDE:                                             0.0000     
     COLD SIDE:                                            0.0000     
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HX-101
 BLOCK:  HX-101   MODEL: HEATX            

 ----------------------------- 
   HOT SIDE: 
   --------- 
   INLET STREAM:          S-105    
   OUTLET STREAM:         S-106    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
   COLD SIDE: 
   ---------- 
   INLET STREAM:          CW-102   
   OUTLET STREAM:         CW-103   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            357053.         357053.         0.00000     
       MASS(LB/HR   )           0.198702E+08    0.198702E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.306232E+11   -0.306232E+11     0.00000     
                          ***  INPUT DATA  *** 
   FLASH SPECS FOR HOT SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   FLASH SPECS FOR COLD SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   FLOW DIRECTION AND SPECIFICATION: 
     COUNTERCURRENT   HEAT EXCHANGER 
     SPECIFIED HOT OUTLET TEMP      
     SPECIFIED VALUE                F                      320.0000 
     LMTD CORRECTION FACTOR                                  0.71160 
   PRESSURE SPECIFICATION: 
     HOT  SIDE PRESSURE DROP        PSI                      0.0000 
     COLD SIDE PRESSURE DROP        PSI                      0.0000 
   HEAT TRANSFER COEFFICIENT SPECIFICATION: 
     OVERALL COEFFICIENT            BTU/HR-SQFT-F          100.0000 
 
                        ***  OVERALL RESULTS  *** 
 
   STREAMS: 
                   -------------------------------------- 
                   |                                    | 
   S-105     ----->|                HOT                 |-----> S-106    
   T=  6.2780D+02  |                                    |       T=  
3.2000D+02 
   P=  1.4696D+01  |                                    |       P=  
1.4696D+01 
   V=  1.0000D+00  |                                    |       V=  
1.0000D+00 
                   |                                    | 
   CW-103    <-----|                COLD                |<----- CW-102   
   T=  4.6356D+02  |                                    |       T=  
2.5281D+02 
   P=  2.9200D+01  |                                    |       P=  
2.9200D+01 
   V=  1.0000D+00  |                                    |       V=  4.8696D-
01 
                   -------------------------------------- 
 
   DUTY AND AREA: 
     CALCULATED HEAT DUTY           BTU/HR          1515813135.5034 
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     CALCULATED (REQUIRED) AREA     SQM                  18226.1484 
     ACTUAL EXCHANGER AREA          SQM                  18226.1484 
     PER CENT OVER-DESIGN                                    0.0000 
 
   HEAT TRANSFER COEFFICIENT: 
     AVERAGE COEFFICIENT (DIRTY)    BTU/HR-SQFT-F          100.0000 
     UA (DIRTY)                     BTU/HR-R          19618462.7280 
 
   LOG-MEAN TEMPERATURE DIFFERENCE: 
     LMTD CORRECTION FACTOR                                  0.7116 
     LMTD (CORRECTED)               F                       77.2646 
     NUMBER OF SHELLS IN SERIES                               1 
 
   PRESSURE DROP: 
     HOTSIDE, TOTAL                 PSI                      0.0000 
     COLDSIDE, TOTAL                PSI                      0.0000 
 
   PRESSURE DROP PARAMETER: 
     HOT SIDE:                                             0.0000     
     COLD SIDE:                                            0.0000     
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HX-201
 
 BLOCK:  HX-201   MODEL: HEATX            
 ----------------------------- 
   HOT SIDE: 
   --------- 
   INLET STREAM:          S-203    
   OUTLET STREAM:         15       
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
   COLD SIDE: 
   ---------- 
   INLET STREAM:          CW-204   
   OUTLET STREAM:         CW-205   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            519902.         519902.         0.00000     
       MASS(LB/HR   )           0.210123E+08    0.210123E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.117856E+12   -0.117856E+12   -0.258941E-15 
 
                          ***  INPUT DATA  *** 
 
   FLASH SPECS FOR HOT SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   FLASH SPECS FOR COLD SIDE: 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   FLOW DIRECTION AND SPECIFICATION: 
     COUNTERCURRENT   HEAT EXCHANGER 
     SPECIFIED HOT OUTLET TEMP      
     SPECIFIED VALUE                F                       86.0000 
     LMTD CORRECTION FACTOR                                  1.00000 
   PRESSURE SPECIFICATION: 
     HOT  SIDE PRESSURE DROP        PSI                      0.0000 
     COLD SIDE PRESSURE DROP        PSI                      0.0000 
   HEAT TRANSFER COEFFICIENT SPECIFICATION: 
     OVERALL COEFFICIENT            BTU/HR-SQFT-F           17.6110 
                        ***  OVERALL RESULTS  *** 
   STREAMS: 
                   -------------------------------------- 
                   |                                    | 
   S-203     ----->|                HOT                 |-----> 15       
   T=  4.3700D+02  |                                    |       T=  
8.6000D+01 
   P=  4.4088D+02  |                                    |       P=  
4.4088D+02 
   V=  1.0000D+00  |                                    |       V=  3.6714D-
01 
                   |                                    | 
   CW-205    <-----|                COLD                |<----- CW-204   
   T=  3.6400D+02  |                                    |       T=  
3.9221D+01 
   P=  1.5973D+02  |                                    |       P=  
1.5973D+02 
   V=  3.2466D-01  |                                    |       V=  
0.0000D+00 
                   -------------------------------------- 
 
   DUTY AND AREA: 
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     CALCULATED HEAT DUTY           BTU/HR          7863297672.3823 
     CALCULATED (REQUIRED) AREA     SQM                 704002.4475 
     ACTUAL EXCHANGER AREA          SQM                 704002.4475 
     PER CENT OVER-DESIGN                                    0.0000 
 
   HEAT TRANSFER COEFFICIENT: 
     AVERAGE COEFFICIENT (DIRTY)    BTU/HR-SQFT-F           17.6110 
     UA (DIRTY)                     BTU/HR-R         133453114.5780 
 
   LOG-MEAN TEMPERATURE DIFFERENCE: 
     LMTD CORRECTION FACTOR                                  1.0000 
     LMTD (CORRECTED)               F                       58.9218 
     NUMBER OF SHELLS IN SERIES                               1 
 
   PRESSURE DROP: 
     HOTSIDE, TOTAL                 PSI                      0.0000 
     COLDSIDE, TOTAL                PSI                      0.0000 
 
   PRESSURE DROP PARAMETER: 
     HOT SIDE:                                             0.0000     
     COLD SIDE:                                            0.0000     
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MEA-101 
 
 BLOCK:  MEA-101  MODEL: SEP              
 --------------------------- 
   INLET STREAM:          S-103    
   OUTLET STREAMS:        CO2         S-104    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            323796.         323796.         0.00000     
       MASS(LB/HR   )           0.102895E+08    0.102895E+08   -0.181024E-15 
       ENTHALPY(BTU/HR  )      -0.356482E+11   -0.356493E+11    0.293829E-04 
 
 
                          ***  INPUT DATA  *** 
 
   FLASH SPECS FOR STREAM CO2      
   TWO    PHASE  TP  FLASH 
   PRESSURE DROP         PSI                                 0.0         
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FLASH SPECS FOR STREAM S-104    
   TWO    PHASE  TP  FLASH 
   PRESSURE DROP         PSI                                 0.0         
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
   FRACTION OF FEED 
     SUBSTREAM= MIXED    
       STREAM= CO2       CPT= CO2       FRACTION=          0.80000     
 
 
                           ***  RESULTS  *** 
 
   HEAT DUTY             BTU/HR                             -0.10475E+07 
 
  COMPONENT = CH4      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    S-104      MIXED                 1.00000     
 
  COMPONENT = H2O      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    S-104      MIXED                 1.00000     
 
  COMPONENT = CO       
    STREAM     SUBSTREAM    SPLIT FRACTION 
    S-104      MIXED                 1.00000     
 
  COMPONENT = CO2      
    STREAM     SUBSTREAM    SPLIT FRACTION 
    CO2        MIXED                 0.80000     
    S-104      MIXED                 0.20000     
 
  COMPONENT = H2       
    STREAM     SUBSTREAM    SPLIT FRACTION 
    S-104      MIXED                 1.00000     
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MIX-1 
BLOCK:  MIX-1    MODEL: MIXER            
 ----------------------------- 
   INLET STREAMS:         S-104       S-305    
   OUTLET STREAM:         S-201    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            321093.         321093.         0.00000     
       MASS(LB/HR   )           0.937378E+07    0.937378E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.298349E+11   -0.298349E+11   -0.127860E-15 
 
                          ***  INPUT DATA  *** 
   TWO    PHASE      FLASH 
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   OUTLET PRESSURE:  MINIMUM OF INLET STREAM PRESSURES 
 
MIX-2  
BLOCK:  MIX-2    MODEL: MIXER            
 ----------------------------- 
   INLET STREAMS:         S-302       S-303    
   OUTLET STREAM:         S-306    
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            9652.33         9652.33         0.00000     
       MASS(LB/HR   )           0.178896E+07    0.178896E+07    0.130148E-15 
       ENTHALPY(BTU/HR  )      -0.245104E+10   -0.245104E+10     0.00000     
 
                          ***  INPUT DATA  *** 
   ONE    PHASE      FLASH   SPECIFIED PHASE IS  LIQUID  
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   OUTLET PRESSURE   PSI                                  290.268       
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PUMP-202
BLOCK:  PUMP-202 MODEL: PUMP             

 ---------------------------- 
   INLET STREAM:          CW-203   
   OUTLET STREAM:         CW-204   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            293036.         293036.         0.00000     
       MASS(LB/HR   )           0.116385E+08    0.116385E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.807847E+11   -0.807836E+11   -0.142158E-04 
 
                          ***  INPUT DATA  *** 
    OUTLET PRESSURE  PSI                                  159.734       
    DRIVER EFFICIENCY                                       1.00000     
 
    FLASH SPECIFICATIONS: 
    LIQUID PHASE CALCULATION 
    NO FLASH PERFORMED 
    MAXIMUM NUMBER OF ITERATIONS                            30 
    TOLERANCE                                               0.000100000 
 
                           ***  RESULTS  *** 
    VOLUMETRIC FLOW RATE  CUFT/HR                     183,860.          
    PRESSURE CHANGE  PSI                                   29.0075      
    NPSH AVAILABLE   FT                                   297.208       
    FLUID POWER  WATT                                 289,240.          
    BRAKE POWER  WATT                                 336,570.          
    ELECTRICITY  WATT                                 336,570.          
    PUMP EFFICIENCY USED                                    0.85938     
    NET WORK REQUIRED  WATT                           336,570.          
    HEAD DEVELOPED FT                                      65.9877      
 

PUMP-202 
BLOCK:  PUMP201  MODEL: PUMP             
 ---------------------------- 
   INLET STREAM:          CW-201   
   OUTLET STREAM:         CW-202   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            192183.         192183.         0.00000     
       MASS(LB/HR   )           0.763291E+07    0.763291E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.529843E+11   -0.529813E+11   -0.568598E-04 
 
                          ***  INPUT DATA  *** 
    OUTLET PRESSURE  PSI                                  130.726       
    DRIVER EFFICIENCY                                       1.00000     
 
    FLASH SPECIFICATIONS: 
    LIQUID PHASE CALCULATION 
    NO FLASH PERFORMED 
    MAXIMUM NUMBER OF ITERATIONS                            30 
    TOLERANCE                                               0.000100000 
 
                           ***  RESULTS  *** 
    VOLUMETRIC FLOW RATE  CUFT/HR                     120,580.          
    PRESSURE CHANGE  PSI                                  116.030       
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    NPSH AVAILABLE   FT                                    33.2565      
    FLUID POWER  WATT                                 758,768.          
    BRAKE POWER  WATT                                 882,928.          
    ELECTRICITY  WATT                                 882,928.          
    PUMP EFFICIENCY USED                                    0.85938     
    NET WORK REQUIRED  WATT                           882,928.          
    HEAD DEVELOPED FT                                     263.949       
 

PUMP-301 
BLOCK:  PUMP301  MODEL: PUMP             
 ---------------------------- 
   INLET STREAM:          S-308    
   OUTLET STREAM:         TO-PIPE  
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            2694.21         2694.21         0.00000     
       MASS(LB/HR   )           0.130153E+07    0.130153E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.113043E+10   -0.112997E+10   -0.410790E-03 
 
                          ***  INPUT DATA  *** 
    PRESSURE CHANGE  PSI                                   72.5189      
    DRIVER EFFICIENCY                                       1.00000     
 
    FLASH SPECIFICATIONS: 
    LIQUID PHASE CALCULATION 
    NO FLASH PERFORMED 
    MAXIMUM NUMBER OF ITERATIONS                            30 
    TOLERANCE                                               0.000100000 
 
                           ***  RESULTS  *** 
    VOLUMETRIC FLOW RATE  CUFT/HR                      29,307.2         
    PRESSURE CHANGE  PSI                                   72.5189      
    NPSH AVAILABLE   FT                                     0.0         
    FLUID POWER  WATT                                 115,262.          
    BRAKE POWER  WATT                                 136,093.          
    ELECTRICITY  WATT                                 136,093.          
    PUMP EFFICIENCY USED                                    0.84694     
    NET WORK REQUIRED  WATT                           136,093.          
    HEAD DEVELOPED FT                                     235.143       
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SMR-2  
BLOCK:  SMR-2    MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          12       
   OUTLET STREAM:         PRO1     
   OUTLET HEAT STREAM:    HS-SMR-4 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            323796.         323796.         0.00000     
       MASS(LB/HR   )           0.102895E+08    0.102895E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.282785E+11   -0.282785E+11    0.134898E-15 
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                       753.800       
   SPECIFIED PRESSURE                   PSI                     232.253       
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    753.80     
   OUTLET PRESSURE       PSI                                  232.25     
   HEAT DUTY             BTU/HR                             -0.55475E+10 
   OUTLET VAPOR FRACTION                                      1.0000     
   PRESSURE-DROP CORRELATION PARAMETER                        0.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      CH4              0.19589E-01    0.16726E-01    0.19589E-01     46.004     
      H2O              0.29823        0.49146        0.29823         23.835     
      CO               0.15043        0.10652        0.15043         55.475     
      CO2              0.81954E-01    0.75184E-01    0.81954E-01     42.817     
      H2               0.44980        0.31011        0.44980         56.977     
 
SMR-3   
BLOCK:  SMR-3    MODEL: RSTOIC           
 ------------------------------ 
   INLET STREAMS:         FEEDFUEL    RECYCLE     FEEDAIR  
   INLET HEAT STREAM:     HS-SMR-2 
   OUTLET STREAM:         FLUEGAS  
   OUTLET HEAT STREAM:    HS-SMR-1 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                              IN          OUT       GENERATION   RELATIVE 
DIFF. 
   TOTAL BALANCE 
   MOLE(KMOL/HR )         317891.       294553.      -23338.4      0.801086E-
16 
   MASS(LB/HR   )        0.173879E+08  0.173879E+08                 0.00000     
   ENTHALPY(BTU/HR  )    0.384507E+10  0.384507E+10                0.124013E-
15 
 
                          ***  INPUT DATA  *** 
   STOICHIOMETRY MATRIX: 
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    REACTION #   1: 
     SUBSTREAM MIXED   : 
     H2O        1.00    H2        -1.00    OXYGE-01 -0.500     
 
    REACTION #   2: 
     SUBSTREAM MIXED   : 
     CH4       -1.00    H2O        2.00    CO2        1.00    OXYGE-01  -2.00     
 
    REACTION #   3: 
     SUBSTREAM MIXED   : 
     H2O        3.00    CO2        2.00    C2H6      -1.00    OXYGE-01  -3.50     
 
    REACTION #   4: 
     SUBSTREAM MIXED   : 
     H2O        4.00    CO2        3.00    C3H8      -1.00    OXYGE-01  -5.00     
 
    REACTION #   5: 
     SUBSTREAM MIXED   : 
     H2O        5.00    CO2        4.00    C4H10     -1.00    OXYGE-01  -6.50     
 
 
   REACTION CONVERSION SPECS: NUMBER=    5 
     REACTION #   1: 
     SUBSTREAM:MIXED    KEY COMP:H2       CONV FRAC:  1.000     
     REACTION #   2: 
     SUBSTREAM:MIXED    KEY COMP:CH4      CONV FRAC:  1.000     
     REACTION #   3: 
     SUBSTREAM:MIXED    KEY COMP:C2H6     CONV FRAC:  1.000     
     REACTION #   4: 
     SUBSTREAM:MIXED    KEY COMP:C3H8     CONV FRAC:  1.000     
     REACTION #   5: 
     SUBSTREAM:MIXED    KEY COMP:C4H10    CONV FRAC:  1.000     
 
 
 
 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE F                               1,652.00        
   SPECIFIED PRESSURE    PSI                                14.6959      
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
   SIMULTANEOUS REACTIONS 
   GENERATE COMBUSTION REACTIONS FOR FEED SPECIES          NO   
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    1652.0     
   OUTLET PRESSURE       PSI                                  14.696     
   HEAT DUTY             BTU/HR                             -0.80224E+10 
   NET DUTY              BTU/HR                             -0.13541E+11 
   VAPOR FRACTION                                             1.0000     
 
 
 
   REACTION EXTENTS: 
 
      REACTION          REACTION 
      NUMBER            EXTENT   
                        KMOL/HR          
      1                  47057.     
      2                  6578.9     
      3                  164.92     
      4                  72.816     
      5                  23.374     
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   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O              0.20807        0.20807        0.20807         MISSING  
      CO2              0.34493E-01    0.34493E-01    0.34493E-01     MISSING  
      N-HEX-01         0.34783E-03    0.34783E-03    0.34783E-03     MISSING  
      N-NON-01         0.13012E-04    0.13012E-04    0.13012E-04     MISSING  
      N-UND-01         0.12391E-05    0.12391E-05    0.12391E-05     MISSING  
      N-DOD-01         0.37147E-06    0.37147E-06    0.37147E-06     MISSING  
      N-HEX-02         0.30828E-08    0.30828E-08    0.30828E-08     MISSING  
      N-PEN-01         0.59624E-03    0.59624E-03    0.59624E-03     MISSING  
      N-HEP-01         0.12657E-03    0.12657E-03    0.12657E-03     MISSING  
      N-OCT-01         0.47999E-04    0.47999E-04    0.47999E-04     MISSING  
      N-TRI-01         0.11095E-06    0.11095E-06    0.11095E-06     MISSING  
      N-TET-01         0.33865E-07    0.33865E-07    0.33865E-07     MISSING  
      N-PEN-02         0.12046E-09    0.12046E-09    0.12046E-09     MISSING  
      N-HEP-02         0.10572E-10    0.10572E-10    0.10572E-10     MISSING  
      N-OCT-02         0.34445E-11    0.34445E-11    0.34445E-11     MISSING  
      N-NON-02         0.92191E-12    0.92191E-12    0.92191E-12     MISSING  
      N-EIC-01         0.26690E-12    0.26690E-12    0.26690E-12     MISSING  
      N-DEC-01         0.42390E-05    0.42390E-05    0.42390E-05     MISSING  
      N2               0.69872        0.69872        0.69872         MISSING  
      OXYGE-01         0.57584E-01    0.57584E-01    0.57584E-01     MISSING  
SMR-4 
 BLOCK:  SMR-4    MODEL: HEATER           
 ------------------------------ 
   INLET STREAM:          FLUEGAS  
   OUTLET STREAM:         S-105    
   OUTLET HEAT STREAM:    HS-SMR-2 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            294553.         294553.         0.00000     
       MASS(LB/HR   )           0.173879E+08    0.173879E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.969565E+10   -0.969613E+10    0.493018E-04 
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE                F                       627.800       
   SPECIFIED PRESSURE                   PSI                      14.6959      
   MAXIMUM NO. ITERATIONS                                        30 
   CONVERGENCE TOLERANCE                                          0.000100000 
 
 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    627.80     
   OUTLET PRESSURE       PSI                                  14.696     
   HEAT DUTY             BTU/HR                             -0.55188E+10 
   OUTLET VAPOR FRACTION                                      1.0000     
   PRESSURE-DROP CORRELATION PARAMETER                        0.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      H2O              0.20807        0.35915        0.20807         273.90     
      CO2              0.34493E-01    0.35055E-01    0.34493E-01     465.22     
      N-HEX-01         0.34783E-03    0.40169E-03    0.34783E-03     409.39     
      N-NON-01         0.13012E-04    0.16037E-04    0.13012E-04     383.59     
      N-UND-01         0.12391E-05    0.14713E-05    0.12391E-05     398.16     
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      N-DOD-01         0.37147E-06    0.42863E-06    0.37147E-06     409.71     
      N-HEX-02         0.30828E-08    0.30488E-08    0.30828E-08     478.02     
      N-PEN-01         0.59624E-03    0.69105E-03    0.59624E-03     407.92     
      N-HEP-01         0.12657E-03    0.14761E-03    0.12657E-03     405.39     
      N-OCT-01         0.47999E-04    0.69324E-04    0.47999E-04     327.35     
      N-TRI-01         0.11095E-06    0.12365E-06    0.11095E-06     424.22     
      N-TET-01         0.33865E-07    0.36248E-07    0.33865E-07     441.67     
      N-PEN-02         0.12046E-09    0.12417E-09    0.12046E-09     458.65     
      N-HEP-02         0.10572E-10    0.10252E-10    0.10572E-10     487.49     
      N-OCT-02         0.34445E-11    0.31545E-11    0.34445E-11     516.20     
      N-NON-02         0.92191E-12    0.80227E-12    0.92191E-12     543.25     
      N-EIC-01         0.26690E-12    0.22418E-12    0.26690E-12     562.83     
      N-DEC-01         0.42390E-05    0.48130E-05    0.42390E-05     416.39     
      N2               0.69872        0.55311        0.69872         597.26     
      OXYGE-01         0.57584E-01    0.51346E-01    0.57584E-01     530.23     
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SMR-101
BLOCK:  SMR-101  MODEL: RYIELD           
 ------------------------------ 
   INLET STREAMS:         S-101       CO2RECYL    STEAM101 
   INLET HEAT STREAMS:    HS-SMR-1    HS-SMR-4 
   OUTLET STREAM:         12       
   OUTLET HEAT STREAM:    HS-SMR-3 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
 
     *********************************************************************** 
     *                                                                     * 
     *     SPECIFIED YIELDS HAVE BEEN NORMALIZED TO MAINTAIN MASS BALANCE  *    
     *                                                                     * 
     *********************************************************************** 
 
 
                      ***  MASS AND ENERGY BALANCE  *** 
                              IN          OUT       GENERATION   RELATIVE 
DIFF. 
   TOTAL BALANCE 
   MOLE(KMOL/HR )         265815.       323796.       57980.7      0.674124E-
16 
   MASS(LB/HR   )        0.102895E+08  0.102895E+08                0.362049E-
15 
   ENTHALPY(BTU/HR  )   -0.282785E+11 -0.282785E+11                0.134898E-
15 
 
                          ***  INPUT DATA  *** 
   TWO    PHASE  TP  FLASH 
   SPECIFIED TEMPERATURE F                               1,652.00        
   SPECIFIED PRESSURE    PSI                               232.253       
   MAXIMUM NO. ITERATIONS                                   30 
   CONVERGENCE TOLERANCE                                     0.000100000 
 
    MASS-YIELD   
     SUBSTREAM MIXED   : 
     CH4       0.218E-01    H2O       0.373        CO        0.292     
     CO2       0.250        H2        0.629E-01 
 
                           ***  RESULTS  *** 
   OUTLET TEMPERATURE    F                                    1652.0     
   OUTLET PRESSURE       PSI                                  232.25     
   HEAT DUTY             BTU/HR                              0.19088E+11 
   NET DUTY              BTU/HR                             -0.39049E-04 
   VAPOR FRACTION                                             1.0000     
 
 
 
   V-L PHASE EQUILIBRIUM :  
 
      COMP              F(I)           X(I)           Y(I)           K(I)       
      CH4              0.19589E-01    0.19589E-01    0.19589E-01     MISSING  
      H2O              0.29823        0.29823        0.29823         MISSING  
      CO               0.15043        0.15043        0.15043         MISSING  
      CO2              0.81954E-01    0.81954E-01    0.81954E-01     MISSING  
      H2               0.44980        0.44980        0.44980         MISSING  
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SPLIT-1 
 BLOCK:  SPLIT-1  MODEL: FSPLIT           
 ------------------------------ 
   INLET STREAM:          CO2      
   OUTLET STREAMS:        CO2PURGE    CO2RECYL 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            21229.0         21229.0         0.00000     
       MASS(LB/HR   )           0.205975E+07    0.205975E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.775619E+10   -0.775619E+10     0.00000     
 
                          ***  INPUT DATA  *** 
 
  MOLE-FLOW  (KMOL/HR )            STRM=CO2RECYL FLOW=       848.471       
KEY= 0 
 
                           ***  RESULTS  *** 
 
  STREAM= CO2PURGE       SPLIT=          0.96003     KEY=  0    STREAM-ORDER=   
2 
          CO2RECYL                       0.039968          0                    
1 
 
SPLIT-2 
 BLOCK:  SPLIT-2  MODEL: FSPLIT           
 ------------------------------ 
   INLET STREAM:          CW-206   
   OUTLET STREAMS:        CW-207      STEAM201 
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            293036.         293036.         0.00000     
       MASS(LB/HR   )           0.116385E+08    0.116385E+08     0.00000     
       ENTHALPY(BTU/HR  )      -0.656079E+11   -0.656079E+11     0.00000     
 
                          ***  INPUT DATA  *** 
 
  MOLE-FLOW  (KMOL/HR )            STRM=STEAM201 FLOW=   192,183.          
KEY= 0 
 
                           ***  RESULTS  *** 
 
  STREAM= CW-207         SPLIT=          0.34417     KEY=  0    STREAM-ORDER=   
2 
          STEAM201                       0.65583           0                    
1 
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TURB-201
 BLOCK:  TURB-201 MODEL: COMPR            
 ----------------------------- 
   INLET STREAM:          CW-207   
   OUTLET STREAM:         CW-208   
   PROPERTY OPTION SET:   RK-SOAVE  STANDARD RKS EQUATION OF STATE               
 
                      ***  MASS AND ENERGY BALANCE  *** 
                                    IN              OUT        RELATIVE DIFF. 
    TOTAL BALANCE 
       MOLE(KMOL/HR )            100853.         100853.         0.00000     
       MASS(LB/HR   )           0.400558E+07    0.400558E+07     0.00000     
       ENTHALPY(BTU/HR  )      -0.225800E+11   -0.226311E+11    0.225607E-02 
 
                           ***  INPUT DATA  *** 
 
   ISENTROPIC TURBINE 
    OUTLET PRESSURE  PSI                                   130.726       
    ISENTROPIC EFFICIENCY                                    0.72000     
    MECHANICAL EFFICIENCY                                    1.00000     
 
                           ***  RESULTS  *** 
 
    INDICATED  HORSEPOWER REQUIREMENT  WATT                 -0.149634+08 
    BRAKE      HORSEPOWER REQUIREMENT  WATT                 -0.149634+08 
    NET WORK REQUIRED                  WATT                 -0.149634+08 
    POWER LOSSES                       WATT                  0.0         
    ISENTROPIC HORSEPOWER REQUIREMENT  WATT                 -0.207825+08 
    CALCULATED OUTLET TEMP  F                              369.563       
    ISENTROPIC TEMPERATURE  F                              359.346       
    EFFICIENCY (POLYTR/ISENTR) USED                          0.72000     
    OUTLET VAPOR FRACTION                                    1.00000     
    HEAD DEVELOPED,       FT                           -13,776.4         
    MECHANICAL EFFICIENCY USED                               1.00000     
    INLET HEAT CAPACITY RATIO                                1.37264     
    INLET VOLUMETRIC FLOW RATE , CUFT/HR                     0.122543+08 
    OUTLET VOLUMETRIC FLOW RATE, CUFT/HR                     0.144896+08 
    INLET  COMPRESSIBILITY FACTOR                            0.95316     
    OUTLET COMPRESSIBILITY FACTOR                            0.95733     
    AV. ISENT. VOL. EXPONENT                                 1.30617     
    AV. ISENT. TEMP EXPONENT                                 1.32898     
    AV. ACTUAL VOL. EXPONENT                                 1.19603     
    AV. ACTUAL TEMP EXPONENT                                 1.22801     
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Convergence Report: 
 CONVERGENCE BLOCK:  $OLVER10             
 ---------------------------- 
     Tear Stream  :  12         S-305      HS-SMR-2   CW-203     CW-101 
     Tolerance used:  0.100D-03  0.100D-03  0.100D-03  0.100D-03  0.100D-03  
     Trace molefrac:  0.100D-05  0.100D-05             0.100D-05  0.100D-05  
  
     MAXIT=   30 WAIT   1 ITERATIONS BEFORE ACCELERATING 
     QMAX =   0.0     QMIN =  -5.0     
     METHOD: WEGSTEIN      STATUS: CONVERGED        
     TOTAL NUMBER OF ITERATIONS:    60 
     NUMBER OF ITERATIONS ON LAST OUTER LOOP:     0 
 
                          *** FINAL VALUES *** 
    VARIABLE                       VALUE           PREV VALUE      ERR/TOL 
 TOTAL MOLEFLOW   KMOL/HR      3.2380+05      3.2380+05         0.0          
 TOTAL MOLEFLOW   KMOL/HR      1.8527+04      1.8527+04         0.0          
 TOTAL MOLEFLOW   KMOL/HR      2.9304+05      2.9304+05         0.0          
 TOTAL MOLEFLOW   KMOL/HR      6.2500+04      6.2500+04         0.0          
 CH4 MOLEFLOW     KMOL/HR      6342.7776      6342.7776         0.0          
 H2O MOLEFLOW     KMOL/HR      9.6565+04      9.6565+04         0.0          
 CO MOLEFLOW      KMOL/HR      4.8709+04      4.8709+04         0.0          
 CO2 MOLEFLOW     KMOL/HR      2.6536+04      2.6536+04         0.0          
 H2 MOLEFLOW      KMOL/HR      1.4564+05      1.4564+05         0.0          
 C2H6 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C3H8 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C4H10 MOLEFLOW   KMOL/HR         0.0            0.0            0.0          
 N-HEX-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-UND-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOD-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEX-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TRI-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TET-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-EIC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DEC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 OXYGE-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 AIR MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 PRESSURE         PSI           232.2526       232.2526         0.0          
 MASS ENTHALPY    BTU/LB      -2748.2926     -2748.2926         0.0          
 CH4 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2O MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 CO MOLEFLOW      KMOL/HR      1.8527+04      1.8527+04         0.0          
 CO2 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 C2H6 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C3H8 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C4H10 MOLEFLOW   KMOL/HR         0.0            0.0            0.0          
 N-HEX-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-UND-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOD-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEX-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
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 N-HEP-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TRI-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TET-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-EIC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DEC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 OXYGE-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 AIR MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 PRESSURE         PSI           232.2526       232.2526         0.0          
 MASS ENTHALPY    BTU/LB      -1697.2817     -1697.2817         0.0          
 INFO-VAR                      1.6173+09      1.6173+09         0.0          
 CH4 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2O MOLEFLOW     KMOL/HR      2.9304+05      2.9304+05         0.0          
 CO MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 CO2 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 C2H6 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C3H8 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C4H10 MOLEFLOW   KMOL/HR         0.0            0.0            0.0          
 N-HEX-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-UND-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOD-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEX-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TRI-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TET-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-EIC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DEC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 OXYGE-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 AIR MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 PRESSURE         PSI           130.7261       130.7261         0.0          
 MASS ENTHALPY    BTU/LB      -6941.1706     -6941.1706         0.0          
 CH4 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2O MOLEFLOW     KMOL/HR      6.2500+04      6.2500+04         0.0          
 CO MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 CO2 MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 H2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 C2H6 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C3H8 MOLEFLOW    KMOL/HR         0.0            0.0            0.0          
 C4H10 MOLEFLOW   KMOL/HR         0.0            0.0            0.0          
 N-HEX-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-UND-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOD-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEX-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-TRI-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
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 N-TET-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-PEN-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-HEP-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-OCT-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-NON-02MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-EIC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DEC-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N-DOT-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 N2 MOLEFLOW      KMOL/HR         0.0            0.0            0.0          
 OXYGE-01MOLEFLOW KMOL/HR         0.0            0.0            0.0          
 AIR MOLEFLOW     KMOL/HR         0.0            0.0            0.0          
 PRESSURE         PSI            29.1997        29.1997         0.0          
 MASS ENTHALPY    BTU/LB      -6941.5102     -6941.5102         0.0          
 
                          *** ITERATION HISTORY ***  
     TEAR STREAMS:  
 
     ITERATION   MAX-ERR/TOL   STREAM ID   VARIABLE 
     ---------   -----------   ---------   -------- 
          1       0.000        12          CH4 MOLEFLOW     
 
 CONVERGENCE BLOCK:  $OLVER17             
 ---------------------------- 
     SPECS: FTCW 
     MAXIT=   30 STEP-SIZE=    1.0000    % OF RANGE 
                 MAX-STEP=       100.    % OF RANGE 
                 XTOL=       1.000000E-08 
     THE NEW ALGORITHM WAS USED WITH BRACKETING=NO       
     METHOD: SECANT        STATUS: CONVERGED        
     TOTAL NUMBER OF ITERATIONS:     1 
     NUMBER OF ITERATIONS ON LAST OUTER LOOP:     0 
 
                          *** FINAL VALUES *** 
    VARIABLE                       VALUE           PREV VALUE      ERR/TOL 
 TOTAL MOLEFL     KMOL/HR      2.9304+05      2.9304+05         0.2603       
 
                          *** ITERATION HISTORY ***  
 
     DESIGN-SPEC ID: FTCW                                                                                     
 
     ITERATION  VARIABLE         ERROR          ERR/TOL  
     ---------  --------         -----          -------  
          1     0.2930E+06        260.3         0.2603     
 
 CONVERGENCE BLOCK:  $OLVER18             
 ---------------------------- 
     SPECS: QREFOR 
     MAXIT=   30 STEP-SIZE=    100.00    % OF RANGE 
                 MAX-STEP=       100.    % OF RANGE 
                 XTOL=       1.000000E-08 
     THE NEW ALGORITHM WAS USED WITH BRACKETING=NO       
     METHOD: SECANT        STATUS: CONVERGED        
     TOTAL NUMBER OF ITERATIONS:     1 
     NUMBER OF ITERATIONS ON LAST OUTER LOOP:     0 
 
                          *** FINAL VALUES *** 
 
    VARIABLE                       VALUE           PREV VALUE      ERR/TOL 
 TOTAL MOLEFL     KMOL/HR      3.1520+04      3.1520+04      1.1444-08       
 
                          *** ITERATION HISTORY ***  
     DESIGN-SPEC ID: QREFOR                                                                                   
     ITERATION  VARIABLE         ERROR          ERR/TOL  
     ---------  --------         -----          -------  
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          1     0.3152E+05 LB    0.1144E-04     0.1144E-07 
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