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Phaseless Three-Dimensional Optical Nanoimaging

Abstract
We propose a method for optical nanoimaging in which the structure of a three-dimensional inhomogeneous
medium may be recovered from far-field power measurements. Neither phase control of the illuminating field
nor phase measurements of the scattered field are necessary. The method is based on the solution to the
inverse scattering problem for a system consisting of a weakly-scattering dielectric sample and a strongly-
scattering nanoparticle tip. Numerical simulations are used to illustrate the results.
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We propose a method for optical nanoimaging in which the structure of a three-dimensional

inhomogeneous medium may be recovered from far-field power measurements. Neither phase control

of the illuminating field nor phase measurements of the scattered field are necessary. The method is based

on the solution to the inverse scattering problem for a system consisting of a weakly-scattering dielectric

sample and a strongly-scattering nanoparticle tip. Numerical simulations are used to illustrate the results.

DOI: 10.1103/PhysRevLett.103.213901 PACS numbers: 42.30.Wb, 42.25.Fx

The development of tools for three-dimensional imaging
of nanostructures is of considerable current interest [1–4].
There are multiple potential applications including inspec-
tion of semiconductor devices, detection of atoms buried
beneath surfaces and characterization of biologically im-
portant supramolecular assemblies, among others. Optical
methods, especially near-field scanning optical micros-
copy (NSOM) and its variants, hold great promise for
nanoscale imaging due to their subwavelength resolution,
spectroscopic sensitivity to chemical composition, and
nondestructive nature. Although traditionally viewed as a
technique for imaging surfaces, near-field microscopy has
recently demonstrated the capacity to detect subsurface
structure [1,3]. Experiments in which a near-field probe
is scanned over a three-dimensional volume outside the
sample suggest that information on the three-dimensional
structure of the sample is encoded in the data. That is, the
measured intensity viewed as a function of height above
the sample is seen to depend upon the depth of subsurface
features. However, the intensity images obtained in this
manner are not tomographic, nor are they quantitatively
related to the optical properties of the medium.

The above noted difficulties have led to the use of
inverse-scattering theory to elucidate the precise manner
in which three-dimensional subwavelength structure is
encoded in the optical near field [5–13]. Results in this
direction have been reported for two-dimensional recon-
structions of thin samples [8] and also for three-
dimensional inhomogeneous media [14]. In either case,
solution of the inverse scattering problem generally re-
quires measurements of the optical phase, in the form of
a near-field hologram, an experiment that is notorious for
its difficulty. The replacement of phase measurements by
phase control of the illuminating field has also been pro-
posed [7]. In this approach, the power extinguished from an
incident evanescent wave field is used to reconstruct the
imaginary (absorptive) part of the dielectric susceptibility,
leaving the real part unrecoverable.

In this Letter we propose a method for nanoscale optical
tomography that relies neither on phase measurements of

the scattered field nor on phase control of the illuminating
field. Our approach enables the reconstruction of the
complex-valued dielectric susceptibility with subwave-
length resolution in three dimensions. As a proxy for the
optical phase, we introduce a controlled scatterer, such as
an atomic force microscopy tip, into the near field of the
sample. The power extinguished from the incident field,
which illuminates the sample and the tip, is then measured.
Since the tip is placed externally to the sample, changing
its position controls the pattern of illumination, which thus
modifies the power extinguished from the incident beam.
The crucial difference from conventional holographic tech-
niques is that the interference pattern is regulated by an
internal degree of freedom of the system (regarded as the
sample plus the tip) rather than by external illumination.
The burden of phase-resolved measurements or phase-
controlled illumination is thus replaced by the problem
of controlling the position of the tip. The readily available
nanometer precision in probe positioning that is achievable
in atomic force microscopy, in combination with the sim-
plicity of far-field measurements of the extinguished
power, is expected to allow the practical realization of
the proposed method.
We begin by considering an experiment in which a

sample is deposited on a planar substrate. The lower
half-space z < 0 (the substrate) is taken to have a constant
index of refraction n. The sample occupies the upper half-
space z � 0 and is assumed to be nonmagnetic. The index
of refraction in the upper half-space varies within the
sample, but otherwise has a value of unity. The upper
half-space also contains the tip which is placed in the
near field of the sample. The sample and tip are illuminated
from below by a monochromatic evanescent plane wave
and the power extinguished from the illuminating field is
monitored, as shown in Fig. 1.
The electric field E in the upper half-space obeys the

reduced wave equation

r � r� EðrÞ � k20EðrÞ ¼ 4�k20½�ðrÞ þ �ðrÞ�EðrÞ;
(1)
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where � is the generally-complex dielectric susceptibility
of the sample, � is the susceptibility of the tip, k0 ¼ 2�=�
is the free-space wave number and the field obeys the
necessary interface and boundary conditions. The field is
taken to consist of two parts,E ¼ Ei þEs, whereEi is the
incident field and Es is the scattered field. The incident
field obeys Eq. (1) in the absence of the sample and the tip.
The scattered field obeys the integral equation

E sðrÞ ¼ k20

Z
�Gðr; r0Þ � Eðr0Þ½�ðr0Þ þ �ðr0Þ�d3r0; (2)

where �G is the half-space Green’s tensor. The power Pe

extinguished from the illuminating field can be obtained
using the generalized optical theorem [15]:

Pe ¼ k0c

2
Im

Z
V
E�

i ðrÞ �EðrÞ½�ðrÞ þ �ðrÞ�d3r; (3)

where the integration is performed over the volume V,
which contains both the sample and the tip.

Suppose that the tip is a strongly-scattering, possibly
metallic, nanoparticle and the sample is a weakly-
scattering dielectric. We may then compute the electric
field perturbatively, accounting for all orders of scattering
from the tip and one order of scattering from the sample.
We find that the resulting perturbation series can be re-
summed and, neglecting contributions arising solely from
the sample or the tip, consists of a sum of three terms [13].
The first, or ‘‘TS’’, term corresponds to scattering from the
tip and then from the sample. The second, or ‘‘ST’’, term is
due to scattering from the sample and then from the tip.
The third, or ‘‘TST’’ term, arises from scattering first from
the tip, then from the sample and finally from the tip. Note
that two additional terms originating solely from scattering
by the sample or the tip contain no structural information

and will be omitted. In practice they can be removed by
calibration. To proceed further, we must specify a model
for the tip. We treat the tip as a small scatterer with
susceptibility �ðrÞ ¼ �0�ðr� rtÞ, where rt is the tip’s
position and �0 is its polarizability. Resummation of the
perturbation series, as explained above, leads to a renor-
malization of the polarizability of the tip of the form � ¼
�0=ð1� 2ik3�0=3Þ. We note that this result includes ra-
diative corrections to the Lorent-Lorenz form of the polar-
izability but neglects the dependence on the tip height
above the interface [13,16].
It follows from Eq. (3) that the extinguished power can

be expressed as a sum of contributions of ST, TS and TST
types:

PeðrtÞ ¼ ck30
4i

Z X2
p¼1

KðpÞðrt; rÞ�ðpÞðrÞd3r; (4)

where �ð1ÞðrÞ ¼ �ð2Þ�ðrÞ ¼ �ðrÞ, the kernels KðpÞðrt; rÞ are
defined by

Kð1Þðrt; rÞ ¼ �Kð2Þ�ðrt; rÞ
¼ �E�

i ðrtÞ � �Gðrt; rÞ �EiðrÞ
þ �E�

i ðrÞ � �Gðr; rtÞ �EiðrtÞ
þ �2k2E�

i ðrtÞ � ð �Gðrt; rÞ �Gðr; rtÞÞ � EiðrtÞ (5)

and the dependence of the extinguished power on the tip
position has been made explicit.
We will assume that the sample occupies the region 0 �

z � L and that it is illuminated by a plane wave of the form
EiðrÞ ¼ E0 expðiqi � �þ kzzÞ. Here r ¼ ð�; zÞ and the
field has amplitudeE0, transverse wave vector qi, and kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnk0Þ2 � q2i

q
. The extinguished power is measured for a

discrete set of tip positions located on a three-dimensional
Cartesian grid with transverse spacing h and longitudinal
spacing �z. Note that the tip occupies the region L < z �
Lt and thus does not overlap the sample.
It will prove useful to perform a two-dimensional lattice

Fourier transform of the sampled extinguished power in the
plane z ¼ zt, namely ~Peðq; ztÞ ¼ P

� expðiq � �ÞPeð�; ztÞ.
Here the sum is carried out over all lattice vectors and q is
restricted to the first Brillouin zone (FBZ) of the lattice.
Next, we require the plane-wave decomposition of the
tensor Green’s function

�Gðr; r0Þ ¼
Z d2q

ð2�Þ2 exp½iq � ð�� �0Þ� �gqðz; z0Þ; (6)

where the form of �gq is given in Ref. [17]. Making use of

this result and carrying out the lattice Fourier transform,
we find that Eq. (4) becomes

~P eðq; ztÞ ¼
Z L

0

X2
p¼1

~KðpÞðq; zt; zÞ~�ðpÞðq; zÞdz; (7)

η(r)

n

P

z
Lt

L

FIG. 1. Illustrating the experiment. The tip scatters the inci-
dent evanescent field and modifies the interference pattern in the
sample, which has dielectric susceptibility �ðrÞ. The power P
extinguished from the illuminating field is measured as the tip is
scanned on a three-dimensional grid in the near zone of the
sample.
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where ~Kð1Þðq; zt; zÞ is defined as

~Kð1Þðq; zt; zÞ ¼ �T

�
�E�

0 � �gqi�qðzt; zÞ � E0

þ ��E�
0 � �gqiþqðz; ztÞ �E0

þ �k20

Z d2q0

ð2�Þ2 E
�
0 � ð �gq0 ðzt; zÞ

� �gqþq0 ðz; ztÞÞ �E0

�
(8)

and ~Kð2Þðq; zt; zÞ ¼ ~Kð1Þ�ð�q; zt; zÞ. Here T ¼
ck30=ð4ih2Þ exp½�2Imkzzt�, � ¼ exp½ikzðz� ztÞ� and

~�ðq; zÞ ¼ R
d2� expðiq � �Þ�ð�; zÞ. Note that for fixed q,

Eq. (7) defines a one-dimensional integral equation for

~�ðpÞðq; zÞ.
The inverse scattering problem we consider consists of

recovering �ðpÞ, for p ¼ 1, 2, from measurements of Pe.
This corresponds to solving the integral equation Eq. (7). If
it is known, a priori, that the susceptibility � is purely real
or imaginary, then the inverse problem is formally deter-
mined and the solution to Eq. (7) is readily obtained by
singular value decomposition (SVD) [6,7]. However, if �
is complex valued, the inverse problem is underdeter-
mined. To resolve this difficulty, it is necessary to intro-
duce additional data, which we take to consist of a second
set of measurements. That is, two sets of measurements
must be carried out for each location of the tip, yielding ~Pe1

and ~Pe2, one for each incident plane wave with transverse
wave vectors q1;2 and amplitudes E1;2, respectively. In this

manner, it is possible to reconstruct both � and �� simul-
taneously, which is equivalent to recovering the real and
imaginary parts of �. Following the approach of Ref. [18],
we find that the solution to the integral equation (7) is given
by the formula

~� ðpÞðq; zÞ ¼ X
zt;z

0
t

X
i;j

~KðpÞ�
i ðq; zt; zÞM�1

ij ðq; zt; z0tÞ ~Pejðq; z0tÞ;

where i, j ¼ 1, 2 label the incident waves. HereM�1
ij is the

inverse of the matrix whose elements are given by

Mijðq; zt; z0tÞ ¼
Z L

0

X
p

~KðpÞ
i ðq; zt; zÞ ~KðpÞ�

j ðq; z0t; zÞdz: (9)

An inverse Fourier transform is applied to obtain a trans-
versely bandlimited approximation to �ðrÞwith bandwidth
2�=h. Several remarks on this result are necessary. (i) The
computation of the inverse of the matrixM is unstable due
to the presence of small eigenvalues. We thus regularize
M�1 according to the formula

M�1 ¼ X
n

1

	2
n

�ð	2
n � 
Þjunihunj; (10)

where juni is an eigenvector ofM with eigenvalue 	2
n. The

step function � serves to cut off eigenvalues that are
smaller than 
. With the above choice, the solution to the

inverse problem is the unique minimum L2 norm solution
of (7). (ii) The inverse problem we have considered is
severely ill posed, in the same class as inversion of the
Laplace transform [19]. Regularization of M�1 restores
stability, consistent with the requirement that the resolution
in the transverse direction is set by the lattice spacing h and
in the longitudinal direction by �z.

FIG. 2 (color online). The model (left) and simulated recon-
structions (right) of Re�ðrÞ and Im�ðrÞ. The scatterers are
distributed in two planes at z ¼ 0:016� (top) and z ¼ 0:068�
(bottom). The scatterers are separated in-plane by 0:05� and
0:2� in the x and y directions, respectively. Each image is
normalized to its own maximum and any small negative values
are not displayed. The field of view of each image is 0:4��
0:4�.
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To demonstrate the feasibility of the inversion, we have
numerically simulated the reconstruction of �ðrÞ for a
collection of point scatterers. The left column in Fig. 2
shows the configuration of the scatterers. The tip was
modeled as a small sphere of polarizability �0 ¼
ð
� 1Þ=ð
þ 2ÞR3 with radius R ¼ 8� 10�2� and per-
mittivity 
 ¼ �11:39þ 0:13i, which corresponds to silver
at a wavelength � ¼ 550 nm. The incident fields were
taken to be evanescent plane waves with transverse wave
vectors q1 ¼ ð3:15k0=�; 0Þ and q2 ¼ ð0; 3:25k0=�Þ, and
vector amplitudes E1 ¼ ð�0:521;�0:714; 0:468Þ and
E2 ¼ ð0:714;�0:507; 0:483Þ, respectively. The suscepti-
bility � was reconstructed on a 40� 40� 20 Cartesian
grid whose transverse extent was 0:4�� 0:4� and height
in the z direction was 0:08�. The forward data were
calculated from Eq. (4) for the positions of the tip center
located on the same 40� 40 transverse grid with 20 steps
of size �z ¼ 0:001� in the z direction, beginning 0:16�
from substrate. The integral in the kernel (8) was numeri-
cally evaluated using a trapezoidal rule with 300 points in
each direction, spanning six Brillouin zones. The compu-
tation of M�1

ij was regularized by setting 
 ¼ 10�11. We

note that a priori information on the form of the scatter is
not employed in the reconstructions. In particular, it is not
necessary to assume that the medium is composed of point
scatterers.

In Fig. 2 we present reconstructions of the real and
imaginary parts of �. Tomographic slices are shown in
the planes z ¼ 0:016� and z ¼ 0:068�. It can be seen that
the scatterers in the top layer (nearest the tip) are better
resolved than the scatterers in the deeper layer. This is due
to the decay of high-frequency evanescent waves with
depth and is a typical feature of tomographic reconstruc-
tions in the near field [6]. It may also be observed that the
reconstructions of the imaginary part of the susceptibility
are of higher quality than those of the real part. This effect
may be explained by noting that the extinction of power
due to absorption is greater than that due to elastic scatter-
ing in the near field, since the optical phase changes
minimally in the near-zone of the scatterer.

In conclusion, we have shown that the three-dimensional
subwavelength structure of an inhomogeneous scattering
medium can be recovered from measurements of the ex-
tinguished power. Remarkably, neither phase control of the
illuminating field nor phase measurements of the scattered
field are required. Our approach is based on the solution to
the inverse scattering problem for a system consisting of a
weakly-scattering sample and a strongly-scattering nano-

scale tip. Finally, we note that concepts we have presented
are quite general since they can be applied to imaging with
any wave field for which the usual apparatus of scattering
theory and the optical theorem can be constructed.
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