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LETTER Communicated by Terrence Sejnowski

Parallel Hopfield Networks

Robert C. Wilson
rcwilson@seas.upenn.edu
Department of Bioengineering, University of Pennsylvania, Philadelphia,
PA 19103, USA

We introduce a novel type of neural network, termed the parallel Hopfield
network, that can simultaneously effect the dynamics of many different,
independent Hopfield networks in parallel in the same piece of neu-
ral hardware. Numerically we find that under certain conditions, each
Hopfield subnetwork has a finite memory capacity approaching that of
the equivalent isolated attractor network, while a simple signal-to-noise
analysis sheds qualitative, and some quantitative, insight into the work-
ings (and failures) of the system.

1 Introduction

The Hopfield network (Hopfield, 1982) is a milestone in computational
neuroscience due to its conceptual simplicity, effectiveness as an associative
memory, and analytic tractability. Despite some biologically implausible
assumptions (such as a symmetric weight matrix, full connectivity, uniform
axon delays, and neurons with both excitatory and inhibitory character),
the concept of the attractor is a powerful idea, and there is evidence that
attractors exist in the brain (Wills, Lever, Cacucci, Burgess, & O’Keefe, 2005).
In the light of this, many authors have worked to remove the nonbiological
constraints on Hopfield networks (Derrida, Gardner, & Zippelius, 1987;
Sompolinsky, 1986).

Of particular relevance to this letter is the work of Herz and coworkers
(Herz, Li, & van Hemmen, 1991), who extended the Hopfield formalism
to include nonuniform transmission delays between neurons. In particular,
they showed that for transmission delays with certain properties, there ex-
ists a Lyapunov function for the dynamics of the delayed Hopfield network.
In contrast to the regular Hopfield network, however, memories, rather than
being just static patterns of activity, are now represented by spatiotemporal
patterns of spiking.

Precise temporal relationships between spikes on different neurons are
also important in the synfire chain model of Abeles (1991), which postulates
that synchrony across groups of neurons is the computational currency
of the brain. This hypothesis has yet to be proved experimentally, but a
growing body of evidence suggests that precisely timed spikes do exist in
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832 R. Wilson

the brain (Foster & Wilson, 2006; Ikegaya et al., 2004; Shmiel et al., 2005;
Meister, 1996).

Extending the concept of synchrony to include networks with nonuni-
form axon delays leads to the polychronization network of Izhikevich
(2005). In this model, the presence of nonuniform delays means that
synchronous spiking no longer propagates through the system. Instead
the delays allow specific asynchronous spike patterns to travel through the
network if the axon delays are such that for each neuron in the pattern,
the asynchronicity in the input spikes is cancelled by the axon delays and
the spikes arrive at the next cell in the sequence in synchrony.

A related model is the concurrent recall network (CRN) of Wills (2004).
This model is similar to the polychronization network in that it uses nonuni-
form axon delays to store asynchronous memories, but it uses very different
neurons. In this model, each neuron has a set of conjunction detectors, each
of which receives a set of delayed inputs from presynaptic neurons. The ac-
tivation rule then has two stages. First, a conjunction detector will activate if
it receives enough synchronous input to pass a threshold. Then the neuron
will fire if a certain number (usually set to 1) of the conjunction detectors
are active within a given time window (e.g., 1 ms).

Interestingly, recent experiments (Gasparani & Magee, 2006) have found
that dendritic sodium spikes can carry out a very similar function. In par-
ticular, a dendritic spike will occur only when the neuron receives syn-
chronous input at a localized spot on the dendrite and, furthermore, the
dendritic spike will cause a somatic neural spike with about 80% probability.

Wills (2004) used these elements to create a network capable of stor-
ing and recalling many spatiotemporal spike patterns. Furthermore, the
conjunction detector activation rule allowed enough separation between
different memories such that many different patterns could be recalled
concurrently—hence, the name concurrent recall networks.

A diagram demonstrating the output of a CRN is shown in Figures 1A
and 1B. In Figure 1A, we show the spike pattern produced by a CRN
recalling just one periodic memory. The gray boxes indicate what we term
the CRN mask, which are the time points at which we expect the neurons to
fire if the CRN network is performing properly. In Figure 1B, we show the
same network simultaneously recalling two CRN memories with different
spatiotemporal characteristics. For clarity we denote the CRN mask and
spikes associated with the second memory by gray circles and black “plus”
marks, respectively.

One disadvantage of these precise timing networks is that, in relation
to the Hopfield model, they are rather ferromagnetic in nature, in that
each memory (spatiotemporal pattern) is either activated or not activated.
A more general approach would be to have a network where each
spatiotemporal pattern can be activated in different ways, each time
activating a subset of the neurons at the mask points. In this letter, we
create such a network. In particular, by perturbing the weights of the
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Figure 1: Diagram illustrating the behavior of concurrent recall networks and
parallel Hopfield networks. (A) Activity from five neurons in a CRN recalling
one periodic memory. Time is on the x-axis and neuron number on the y-axis.
The small black bars correspond to spikes, and the gray boxes correspond to
the CRN mask. For the CRN network, all of the mask points are occupied
with a spike. (B) The same CRN recalling two memories simultaneously. For
clarity, spikes associated with the first memory are denoted by solid lines, and
spikes from the second memory are associated with solid plus symbols. The
CRN mask for the first memory consists of gray boxes, and the gray circles
denote the CRN mask for the second memory. (C) Five neurons from a PHN
with one subnetwork activated. Notice that this time, the CRN mask boxes
are not all filled with spikes and that the same pattern of spiking propagates
through time. (D) The same PHN with the same subnetwork activated (hence the
same CRN mask) but with a different Hopfield pattern. (E) Double activation
of the same subnetwork (hence the same CRN mask for each) with different
Hopfield patterns. (F) Concurrent activation of two different subnetworks with
two different CRN masks.

connections between neurons, we extend the CRN model in order to store
multiple, random, Hopfield-like patterns on each of the spatiotemporal
CRN memories. In this case, each CRN memory effectively acts as an inde-
pendent subnetwork approximating the dynamics of an isolated Hopfield
network.

The resulting model has the ability of the CRN to store and simultane-
ously recall multiple spatiotemporal memories while retaining the ability
of the Hopfield network to act as an error-correcting associative memory.
The combination of these two functions allows the network to effect the
behavior of many independent Hopfield networks in parallel; hence, we
term these networks Parallel Hopfield Networks (PHNs).

This idea is illustrated in Figures 1C through 1F. As before, the boxes
and circles indicate the CRN mask points, where a neuron would be active
if the network was a pure CRN network. Notice that unlike Figures 1A and
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1B, the networks in these panels do not have all neurons active at the CRN
mask points; instead only a subset of them produces spikes.

In Figure 1C, we show a network with a single subnetwork activated
with a particular pattern. In Figure 1D, we show the same network with the
same subnetwork activated, but in a different way.

Figures 1E and 1F illustrate the ability of the network to access several
different memories simultaneously. In Figure 1E, the same subnetwork is
activated twice at two different onset times and with two different patterns.
The two subnetworks are independent, and so the network is effectively
running two different Hopfield network simulations (of the same Hopfield
network, but with different initial conditions) in parallel.

Clearly, this is a rather trivial example of parallelism, and for the rest of
this letter, we focus on the more interesting case shown in Figure 1F. Here
we activate two different subnetworks (with, in general, different CRN
masks and different connection weights) that correspond to quite differ-
ent Hopfield networks. In this case, we demonstrate that the network can
be thought of as approximating the dynamics of many different Hopfield
networks in parallel.

The remainder of this letter is laid out as follows. In section 2, we outline
the technical details of the PHN. In section 3, we present a simple signal-
to-noise analysis that sheds some light on where we can expect to see the
parallel Hopfield behavior and when we can expect the network to fail.
Results of numerical simulations are presented in section 4. We discuss
the biological plausibility of these networks in section 5 and conclude in
section 6.

2 The Parallel Hopfield Network

In this section, we describe a nuts-and-bolts approach to constructing a
PHN. Our aim is not to justify how such a network could occur naturally
through learning, but how, as an engineer, one might go about building it.

2.1 Connectivity. We begin by specifying a set of M periodic CRN mem-
ories. Note that although a PHN could be implemented in a feedforward
manner (the major limitation being the maximum number of iterations
available to each Hopfield subnetwork), for simplicity we require that the
CRN memories be periodic.

Since the memories are periodic, each subnetwork, labeled µ, is fully
specified by a period Tµ; a set of spike times tµ

i (0 ≤ tµ

i < Tµ), one for each
neuron i ; and a set of P randomly generated Hopfield patterns, η

µp
i , where

η
µp
i =

{
1 with probability b

0 otherwise
(2.1)
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denotes the activity of neuron i in Hopfield pattern p on subnetwork µ.
Note that we are using [0, 1] neurons rather than the more usual [−1, 1]
neurons to emphasize the asymmetry between active and inactive cells.

We then connect the network in the following way. For each subnetwork
µ, we create one conjunction detector per neuron. For a given neuron i , this
conjunction detector (labeled µ) is wired up to receive inputs from all the
other neurons in the network. The axon delay from neuron j to conjunction
detector µ on neuron i is given by

τ
µ

i j =
{(

tµ

i − tµ

j

)
mod Tµ if tµ

i �= tµ

j

Tµ if tµ

i = tµ

j
, (2.2)

and the weight is

Wµ

i j =




1
b(1 − b)N

P∑
p=1

(
η

µp
i − b

)(
η

µp
j − b

)
if i �= j

0 if i = j

, (2.3)

which is the same weight matrix as used in Tsodyks and Feigelman (1988)
and Buhmann, Divko, and Schulten (1989) and is balanced on average. This
form of the weight matrix ensures that the all-zero state is a stable state
of the subnetwork, which is important, as we do not want subnetworks to
become spontaneously active.

Note also that this construction requires that for M > 1, there are mul-
tiple connections from neuron j to neuron i , all going through different
conjunction detectors and all with potentially different axon delays and
weights. This overfull connectivity is clearly unrealistic, and in section 5,
we discuss ways in which it might be removed. For now, however, we press
on with it, as it simplifies the analysis.

2.2 Dynamics. First, we compute the activation function for each con-
junction detector µ on neuron i at time t,

Aµ

i (t) =
N∑

j=1

Wµ

i j x j
(
t − τ

µ

i j

)
, (2.4)

where Wµ

i j is given in equation 2.3 and xj (t − τ
µ

i j ) is the activity of neuron
j at time t − τ

µ

i j . Note that unlike the original CRN case (Wills, 2004), we
work in discrete time.

The conjunction detector activation rule then takes the following form.
A conjunction detector fires if its activation Aµ

i (t) is above some threshold
θ

µ

i , and the neuron fires if any of its conjunction detectors fire. We denote
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the activation of the conjunction detector by yµ

i , where

yµ

i (t) =
{

1 when Aµ

i (t) ≥ θ
µ

i

0 otherwise
, (2.5)

and then the neuron is active if any one of the conjunction detectors is
active,

xi (t) = y1
i OR y2

i OR, . . . , OR yM
i

= 1 −
M∏

µ=1

(
1 − yµ

i

)
. (2.6)

As noted in section 1, this form of activation rule is a highly simplified
caricature of a dendritic spike (Gasparani & Magee, 2006).

3 Analysis

Given its complexity, it seems unlikely that a complete theoretical analysis
of the PHN is feasible. However, by making a series of approximations, we
can shed some light on the workings (and failures) of the system.

We begin with a simple signal-to-noise approach that gives some quali-
tative insight into the network, before we construct a more detailed, though
approximate, self-consistent mean field equation for erroneous spiking in
the network.

3.1 Signal-to-Noise Analysis. Consider a PHN running in the parallel
Hopfield state, that is, with one or more subnetworks activated recalling a
pattern. If such a state exists, then we can divide the output of the network
into two types based on whether it occurred at a CRN mask point. In the
ideal case, we would like the output at the CRN mask points to be exactly
the same as one of the stored Hopfield patterns, and the activity away from
the mask points should be zero.

There are therefore three ways in which the network could fail: two
possible bit flips away from the activated Hopfield pattern at the mask
points, 1 → 0 or 0 → 1, and spurious spiking away from the mask points.
Our goal is to derive expressions for the initial probabilities of these events;
i.e., the probability of a failure at the next time step, given that the network
is set up in the parallel Hopfield state. We consider the case of spurious
spiking first.
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3.1.1 Off Mask Point Failure. We begin by writing the expression for the
activation of conjunction detector µ on neuron i at time t:

Aµ

i (t) = 1
b(1 − b)N

P∑
p=1

N∑
j=1

(
η

µp
i − b

)(
η

µp
j − b

)
xj

(
t − τ

µ

i j

)
. (3.1)

Since we are considering activity away from the mask points, if we assume
that the different CRN masks and Hopfield patterns are all uncorrelated
with one another, then it follows that all of the terms in the double sum are
independent random variables. If we write Pr[xj (t − τ

µ

i j ) = 1] = f , then, as
N → ∞, we have that Aµ

i (t) is a gaussian random variable with mean 0 and
standard deviation α f , where α = P/N is the loading of the subnetwork.

This allows us to compute the probability that a conjunction detector
becomes active. Since the conjunction detector will fire only if Aµ

i (t) ≥ θ
µ

i ,
we have

p1
iµ = 1 − p0

iµ = 1 − �

(
θ

µ

i√
α f

)
, (3.2)

where �(x) is given by

�(x) = 1√
2π

∫ x

−∞
e−z2/2dz. (3.3)

To get the probability that a neuron will fire, we note that it will fail to
fire only if all of its conjunction detectors are silent. Using this fact and
assuming that all conjunction detectors have the same threshold, θ , we can
write the probability of generating spurious spikes as

f sp = 1 −
[
�

(
θ√
α f

)]M

. (3.4)

3.1.2 Mask Point Failures. We can take a similar approach for the activity
at the mask points. However, it is now not always the case that xj (t − τ

µ

i j ) is
uncorrelated with the Hopfield pattern, η

µp
j . Without loss of generality, we

consider the activity at a mask point belonging to subnetwork 1, and we
begin by computing the activation of the first conjunction detector, µ = 1.

If the subnetwork is perfectly recalling the first Hopfield pattern, then
xj (t − τ 1

i j ) = η
1,1
j , and we can write A1

i (t) as the sum of a signal, s, and noise,
r , terms:

A1
i (t) = s + r, (3.5)
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where

s = 1
b(1 − b)N

N∑
j=1

(
η

1,1
i − b

)(
η

1,1
j − b

)
η

1,1
j = η

1,1
i − b (3.6)

and

r = 1
b(1 − b)N

N∑
j=1

P∑
p=2

(
η

1,p
i − b

)(
η

1,p
j − b

)
η

1,1
j . (3.7)

In analogy to the case of spurious spiking, as N → ∞, r becomes a gaussian
random variable with mean 0 and standard deviation αb.

From this, we can write the probability that the conjunction detector will
fire given η

1,1
i , what the neuron should do if the subnetwork is correctly

recalling the pattern. We write pI→J
iµ=1 as the probability that conjunction

detector 1 on neuron i will be in state J (∈ [0, 1]) given that it should be in
state I :

p0→0
iµ=1 = �

(
θ1

i + b√
αb

)
; p0→1

iµ=1 = 1 − �

(
θ1

i + b√
αb

)

p1→0
iµ=1 = �

(
θ1

i + b − 1√
αb

)
; p1→1

iµ=1 = 1 − �

(
θ1

i + b − 1√
αb

) (3.8)

Next, we note that the other conjunction detectors will behave in the
same way as in the spurious spiking case (except for the rare events when
two or more CRN masks overlap). Again, noting that a neuron fails to fire
only when all of its component conjunction detectors are silent, we can
write the probabilities for the neural output given the expected state of the
neuron. If we assume homogeneous thresholds such that θi = θ for all i ,
then we can write, pI→J as the probability that a neuron is in state J given
that it should be in state I . Therefore,

p0→0 = p0→0
iµ=1

M∏
µ=2

p0
iµ = �

(
θ + b√

αb

) [
�

(
θ√
α f

)]M−1

p0→1 = 1 − p0→0
i = 1 − �

(
θ + b√

αb

) [
�

(
θ√
α f

)]M−1

p1→0 = p1→0
iµ=1

M∏
µ=2

p0
iµ = �

(
θ + b − 1√

αb

) [
�

(
θ√
α f

)]M−1

p1→1 = 1 − p1→0
i = 1 − �

(
θ + b − 1√

αb

) [
�

(
θ√
α f

)]M−1

.

(3.9)
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Figure 2: Signal-to-noise analysis of the parallel Hopfield networks. In each
panel, we plot the three different failure probabilities as a function of θ for
different parameter settings. Unless otherwise stated, b = 0.1, f = 0.01, M = 5,
and α = 0.2. In all of the panels, p0→1 is denoted by the solid gray line, p1→0 by
the solid black line, and f sp by the dashed black line. (A) The default settings.
(B) M = 50. (C) f = 0.1. (D) We increase α to 0.4, which is close to the maximum
memory capacity of the Hopfield subnetworks.

3.1.3 Evaluation for Specific Parameter Settings. To get a handle on the
relative sizes of these quantities, we plot the three failure probabilities ( f sp,
p0→1 and p1→0) as a function of θ for four different parameter settings in
Figure 2. In all of the panels, p0→1 is denoted by the solid gray line, p1→0

by the solid black line, and f sp by the dashed black line. Unless otherwise
stated, the default parameter settings are b = 0.1, f = 0.01, M = 5, and
α = 0.2.

In Figure 2A, we use the default settings. The first thing to notice is that
there is a range of θ values over which all of the failure probabilities are
approximately zero and where we might hope to find the parallel Hopfield
behavior. Note also that f sp ≈ p0→1, which suggests that failure of the
network due to 0 → 1 bit flipping is likely to occur at a similar point in
parameter space as failure due to excess spurious spiking.

In Figure 2B, we increase M to 50 while keeping all other parameters the
same. This leaves p1→0 approximately unchanged, while f sp and p0→1 are
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both increased. In Figure C, we set f = 0.1, which significantly reduces the
range where the failure probability is close to zero. Finally in Figure 2D, we
increase α to 0.4, which is close to the maximum memory capacity of the
equivalent, isolated Hopfield network.

3.2 Self-Consistent Mean Field Equation for Spurious Spiking. We
can gain further insight into the effects of spurious spiking by turning
equation 3.4 into a self-consistent equation for f sp. To do this we make
three assumptions. First, we assume that the number of memories we are
trying to recall is small, so that the mask points represent a fairly small
proportion of the total output of the network. Next, we assume that f sp

changes slowly relative to the longest axon delays in the system, such that
all inputs to each conjunction detector have the same probability of firing
spuriously. Finally, we assume that all of the spurious spiking activity is
asynchronous and apolychronous; none of the subnetworks is activated by
chance. This assumption is justified for low levels of spurious spiking as
the choice of weight matrix in equation 2.3 ensures that the all-zero pattern
is a stable state of the subnetworks (Buhmann et al., 1989).

Given these assumptions, we can write an expression for f as

f = f sp + f gen − f sp f gen, (3.10)

which gives the self-consistent equation for f sp as

f sp = 1 −
[
�

(
θ√

α( f sp + f gen − f sp f gen)

)]M

. (3.11)

The stable fixed points of equation 3.11 are found easily by iteration.
In Figure 3, we show cobweb diagrams illustrating the iterative solution
to the equation. We can identify three different regimes depending on the
parameter settings. In Figure 3A, f sp ≈ 0 is the only stable fixed point of
the system. In Figure 3B, there are two stable fixed points at f sp ≈ 0 and
f sp ≈ 0.8; which one the network falls into is determined by the initial
conditions. For the parameter settings in Figure 3C, we expect the network
to always fail by proliferation, where the probability of spurious spiking
is high. Finally in Figure 3D, we show the equilibrium values of f sp for
different values of f gen. Stable fixed points lie on the solid lines, while
the dotted line represents the locus of unstable equilibria. It is clear from
the diagram that the system undergoes two saddle-node bifurcations at
f gen ≈ 0.1 and 0.15.

Below f gen ≈ 0.1, only the silent state, with low levels of spurious spik-
ing, is stable. At f gen ≈ 0.1, the proliferation state also becomes stable,
and the fixed point we converge to will depend on the initial conditions
in the network. At f gen ≈ 0.15, the silent state destabilizes, and only the
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Figure 3: Self-consistent solutions for spurious spiking activity. In all panels,
θ = 0.5 and b = 0.1. (A) α = 0.2, M = 5, f gen = 0.01. For these parameter set-
tings, the self-consistent equation has only one fixed point at f sp ≈ 0. (B) α = 0.2,
M = 15, f gen = 0.01. Here there are two stable fixed points at high and low val-
ues of f sp separated by an unstable fixed point that acts as a threshold to
proliferation. (C) α = 0.3, M = 15, f gen = 0.1. In this case, the only stable state
is proliferation. (D) We show the fixed points of equation 3.11 as a function of
f gen for α = 0.2, M = 10. The solid lines represent stable fixed points, while the
unstable fixed points lie on the dotted line. In this case, the network is stable
with respect to proliferation up to about f gen = 0.15.

proliferation state is stable. If the initial rate of spurious spiking is always
zero, then this is the maximum level of genuine spiking that the network
can tolerate before it will fail by proliferation, f gen

thresh . Note that in general,
f gen
thresh is a function of θ , α, and M.

All that remains is to relate f gen to the other parameters in the system.
To do this, we note that the rate of genuine spiking associated with the
activation of a single subnetwork µ is given by

f gen
µ = aµ

Tµ

, (3.12)

where we have introduced the variable aµ to denote the fraction of neurons
in subnetwork µ that are firing.
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If we assume that the spike times associated with different subnetworks
are uncorrelated and that all subnetworks are in the same state such that
aµ = a for all µ, then when Mrecall subnetworks are activated, we arrive at
the following expression for f gen,

f gen = 1 −
Mrecall∏
µ=1

(
1 − f gen

µ

)
(3.13)

= 1 −
(

1 − a
Teff

)Mrecall

,

where we have introduced Teff as some kind of average period given by

1
Teff

≈ 1
Mrecall

∑
µ

1
Tµ

. (3.14)

The only unknown quantity, then, is a , the activity level in the subnet-
works. All else being equal, this determines whether a network will prolifer-
ate; subnetwork states with higher values of a , such as the spin-glass states
described in the next section, are more likely to lead to proliferation. Thus,
given Teff , the threshold for proliferation, f gen

thresh , translates directly into a
minimal condition for the activity levels in the subnetworks: a < athresh .

4 Simulations

In this section, we present the results of some numerical experiments that
demonstrate the existence of parallel Hopfield behavior in these networks.
All simulations were run on a G5 Mac and a Dell Precision 530 desktop run-
ning Linux. Typical run times varied between 10 minutes and more than
12 hours depending on the complexity of the network under consideration.
Networks were set up according to the prescription of section 2. Each mem-
ory had its own distinct period to keep intersubnetwork correlations to a
minimum. Initial conditions were set by choosing the set of memories and
patterns to recall and then presenting one full period of each memory to the
network. Where two CRN memories overlapped and were contradictory
(e.g., memory 1 requiring a spike and memory 2 not), the spike was always
assumed to “win.”

In the experiments presented here, no initial noise was added to the
system, although interference between different memories is effectively a
source of noise for the subnetwork, and informal investigations with small
amounts of noise lead to little noticeable difference in performance. In
all of the experiments, we set the number of neurons, N, equal to 500
and the bias, b, is fixed at 0.1. (Demo code for implementing parallel



Parallel Hopfield Networks 843

Hopfield networks in Matlab can be found on the PHN Web site at
http://www.seas.upenn.edu/∼rcwilson/parallel hopfield/.)

4.1 Order Parameters. Throughout this letter, we find it useful to char-
acterize the behavior of the subnetworks in terms of various order param-
eters. In particular, we find the overlap, m, and the activity, a , to be most
useful.

We define the overlap of pattern p on subnetwork µ with the current
activity in subnetwork µ, xµ

i as

mµp = 1
N(b(1 − b)

∑
i

(
η

µp
i − b

)
xµ

i . (4.1)

Note that mµp takes the value 1 when recall is perfect and zero when the
recalled pattern is uncorrelated with the input pattern. For simplicity, we
report only the overlap with the input pattern for each subnetwork and
hence, drop the superscript p.

The activity, aµ, of each subnetwork was encountered in the previous
section and is defined formally as

aµ = 1
N

∑
i

xµ

i (4.2)

and will take the value b for perfect recall.

4.2 Examples of Behavior Types. If the subnetworks are truly acting as
independent Hopfield networks, then we can expect the network to exhibit
at least four types of behavior. Three of these are characteristic of the isolated
Hopfield networks: extinction, where activity in the network goes to zero; an
associative memory regime, where each subnetwork almost perfectly recalls
one of the stored patterns; and a spin-glass state, where each subnetwork
falls into a stable state that is uncorrelated with any of the stored patterns.
The fourth behavior type, proliferation, is not seen in the isolated networks.

In Figure 4 we present raster plots of the network output in each of the
four regimes. In Figure 4A, we set M = 5, Teff = 50, θ = 0.7, and α = 0.4.
Running the network with these parameters produces a good example
of extinction behavior, where the network is unable to sustain prolonged
activity. In Figure 4B, we have M = 5, Teff = 50, θ = 0.5, and α = 0.05. Such
settings are well within the associative memory regime, and the network
produces sustained activation without proliferating. In Figure 4C, we move
into the spin-glass regime by increasing α to 0.5. Although we have not yet
extracted the subnetwork activity, it is clear that in this case, the level of
sustained activity is higher than in the associative memory case. Finally,
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Figure 4: Experimental results demonstrating the four behavior types. In all
cases, we have b = 0.1, Teff = 50, and M = 5. (A) θ = 0.7 and α = 0.4 produce
extinction behavior with the network unable to sustain activity for very long.
(B) θ = 0.5, α = 0.05 produce an associative memory network, and the network
is able to maintain a fixed level of activity for a long period of time. (C) θ = 0.5,
α = 0.5 give rise to a spin-glass network. The level of activity is constant but
higher than in the associative case. (D) θ = 0.5, α = 0.65 lead to proliferation
where the activity of the network blows up.

in Figure 4D, we increase α to 0.65 to demonstrate proliferation behavior,
where the activity of the network “explodes.”

In Figure 5 we focus on the subnetwork activity in the associative mem-
ory and spin-glass examples. In Figure 5A, we show the activity extracted
at one set of mask points in the associative memory case. Clearly, this sub-
network is able to maintain the same pattern of activity over a large number
of time steps. In Figure 5B, we show the values of the overlap, m, and mean
activity level, a , order parameters computed from the subnetwork activity
for all five subnetworks. In this associative memory network, the subnet-
works maintain high levels (≈1) of overlap with the pattern we are trying
to recall and a ≈ b, as we expect for perfect recall.

In Figure 5C, we show the activity extracted at one set of mask points in
the spin-glass regime. This clearly has higher levels of activity, and when we
compute the order parameters (shown in Figure 5D), a is indeed higher. As
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Figure 5: A closer look at the associative memory and spin-glass examples.
(A) The activity at one set of CRN mask points for the network shown in
Figure 4B. This subnetwork clearly sustains the same pattern over a prolonged
period of time, and the order parameters in this case (B) clearly show that all
of the subnetworks maintain macroscopic overlap, m, with the input pattern.
(C) Activity at one set of CRN mask points for the network shown in Figure
4C. This subnetwork exhibits stable spin-glass ordering characterized by higher
levels of activity and low levels of overlap (D) with any of the stored patterns.

expected for this regime, none of the stored patterns has significant overlap
with the induced network state.

There is one more point to note from Figure 5D: one of the subnetworks in
this simulation falls into the all-zero state—hence, the lines at m and a ≈ 0.
This spontaneous extinction of subnetwork activity is not at all described
by our simple theory and is one of the behaviors that makes a full analysis
so difficult.

4.3 Comparison with Isolated Networks. To gain insight into how
well subnetworks are approximating the activity of the isolated Hopfield
networks, we performed a series of simulations and compared the extracted
order parameter values with those computed for the equivalent, isolated
Hopfield network using the mean field equations developed in Buhmann
et al. (1989). The results of some of these are shown in Figure 6.
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Figure 6: Quantitative comparison with the theory. Values of different order
parameters (m, a , and f sp) as a function of α. The results of the theory are rep-
resented by the black line. For m and a , these are the mean field values of the
equivalent isolated Hopfield networks, while for f sp , they are the fixed-point
solutions to equation 3.11. The black dashed lines in the plots of a are the com-
puted values of athresh as a function of α. The black crosses are the experimental
results. Each column corresponds to a different order parameter—m on the left,
a in the middle, and f sp on the right—and different rows correspond to differ-
ent parameter settings. In all cases, we have θ = 0.5, b = 0.1, and the number of
neurons is 500. Values of M and Teff are given on the left of each row.

The results are arranged on a grid, with different parameter settings for
each row and a different order parameter in each column. In the top row, we
have, M = 10, Teff = 100, and θ = 0.5; in the middle, we increase M to 30
and Teff to 300; and in the bottom row, we keep M = 30, but reduce Teff to 50.

Each plot shows the value of an order parameter (m, a , or f sp) for
different values of α. In the plots of m and a , the black lines denote the
expected order parameter values of the isolated Hopfield subnetworks;
for f sp, the black line denotes the steady-state solution to equation 3.11,
assuming that the initial value of f sp is zero. The black dashed line in the
plots of a is the computed value of athresh as a function of α. In all cases,
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the black crosses represent the experimental results. To compute the order
parameters a and m from the experimental data, we take their mean values
over the previous 10 periods for each subnetwork. For f sp, the mean is
taken over 10Teff time steps.

To present the results, rather than compute the mean value of each order
parameter across all of the subnetworks and repeat experiments, we have
chosen to plot the raw data, as this gives better insight into the failures of
the subnetworks when one might settle into a state that is not expected. In
the first two rows, for values of α < 0.5, there is good quantitative agree-
ment between theory and experiment, not only in the values of the order
parameters but also in the positions of the boundaries between the different
types of behavior. Above α = 0.5, the subnetworks no longer behave like
their isolated counterparts, as the PHN fails by proliferation. Thus a , in par-
ticular, is in strong disagreement with the theory for isolated subnetworks.
However, in both cases, the simple mean field theory for f sp and athresh

correctly predicts the point at which proliferation occurs. Thus, for these
cases, the very simple theory has genuine predictive power.

In the third row, the theory does not correctly predict the onset of pro-
liferation. This is most likely due to fluctuations in a that arise due to finite
size effects in the simulation and that could momentarily raise a above the
threshold required for proliferation. Of course, finite size effects should be
present in all of the simulations, but they are more apparent here for two
reasons. First, we expect the fluctuations to be greater in magnitude since
f gen is six times higher in this case. Second, the difference in slopes at the
intersection between the lines for a and athresh is much smaller in the third
row than in the other two cases. Therefore, small changes in a lead to much
larger changes in the point of intersection, magnifying the effects of the
fluctuations.

5 Biological Plausibility

The main problem with PHNs, as presented here, is that they do not
seem particularly biologically plausible. In this section, we identify some
of the more glaring problems and suggest possible solutions. We empha-
size, however, that the main contribution of this letter is to introduce an
analytically tractable model that illustrates a possible function for pre-
cisely timed spikes in the brain: as a tool that allows computations to be
multiplexed.

First, the network exhibits many of the same problems as the traditional
Hopfield model: neurons with both excitatory and inhibitory character;
ultrahigh connectivity, implied by the full connectivity for each memory;
infinite precision in the weights; and connectivity that satisfies extended
symmetry (Herz et al., 1991) for each memory. These are clearly problem-
atic, but we conjecture that as with the Hopfield network, many of these
constraints will turn out to be unnecessary for the subnetworks to act as
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attractors. For example, Hopfield networks can be made to obey Dale’s law
(Eccles, 1964) by pruning away incompatible connections. Taken further,
more extreme pruning (Derrida et al., 1987) could reduce the connectivity
to more realistic levels and can also remove the constraint of symmetric
connections. Other work (Sompolinsky, 1986) has shown that requiring fi-
nite precision in the weights also does not remove the attractor properties
of the Hopfield network.

Problems more specific to the PHN include the necessity for periodic
memories, the assumption of clocked dynamics, and most important, the
question of how such behavior could be learned. In fact, it is easy to see
that the necessity for periodic memories is not a necessity at all and that the
parallel Hopfield dynamics could easily be implemented in a feedforward
network. The only limitation in this case would be on the maximum number
of iterations available to each Hopfield subnetwork.

The assumption of clocked dynamics is more problematic, as there is no
guarantee that in continuous time, the spikes will remain precisely timed
over long periods. Nevertheless, two examples suggest that this might be
possible: first, for the case of synfire chains, it has been shown that the
synchronous state is an attractor (Diesmann, Gewaltig, & Aertsen, 1999),
although these networks do not have conjunction detector-like elements.
Second, simulations of the original CRN network (Wills, 2004) have shown
that stable patterns of precisely timed spikes can propagate through these
networks in continuous time.

Finally, we consider the need for a local and biologically plausible learn-
ing rule. We suppose that the connectivity of the network is sufficiently
dense that there is a good chance of finding a neuron with a set of inputs
close together on its dendrite firing in synchrony for an arbitrary pattern.
This clearly will not be the case if we require full connectivity for each
subnetwork, but for diluted subnetworks, this might be possible.

When the pattern is presented in the learning phase, synchronous input
to this neuron would cause a dendritic spike. If the activity of the neuron is
clamped so that it is independent of the dendritic spike during this learning
phase, then the dendritic spike can act as a labeling event—tagging all of
the synapses close to the site of the dendritic spike initiation point as being
ready for learning. Note that this will also include synapses that did not fire
to cause the dendritic spike.

The presence or absence of a neuronal spike can then be signaled by a
backpropagating action potential (Stuart, Spruston, Sakmann, & Hausser,
1997), which means that all of the information required to learn the PHN
(tagging of the conjunction detector and the correlation of synaptic activity
with output of neuron) is present locally at the synapse. All that is then
required is for a tagged synapse to alter its strength in the usual Hebbian
fashion.

Clearly, this learning rule pushes the bounds of known biology, but it is
certainly possible given the current knowledge.
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6 Conclusion

We have introduced a new type of neural network, termed the Parallel Hop-
field Network (PHN), that is capable of simultaneously effecting the dynam-
ics of multiple Hopfield networks in the same piece of neural hardware.
The key to the parallel behavior is the presence of conjunction detectors on
the neurons. These elements (which are simplified models of spiking den-
drites) are effective in two ways: first, they reduce interference between the
activities in different subnetworks, and second, they reduce the incidence
of spurious spiking, and hence failure, by the proliferation failure mode.

Outside the proliferation regime, simulations on networks with 500 neu-
rons show that the activity of the subnetworks closely approximates that of
the equivalent isolated Hopfield networks, having the same values for the
order parameters m and a , while the transition to the proliferation regime
is fairly well predicted by a simple mean field theory.
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