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Characterizing and Analyzing Diffusion Tensor Images by Learning their
Underlying Manifold Structure

Abstract
The growing importance of diffusion tensor imaging (DTI) in studying the white matter architecture in
normal and pathologic states necessitates the development of tools for comprehensive analysis of diffusion
tensor data. Operations such as multivariate statistical analysis and hypothesis testing, interpolation and
filtering, must now be performed on tensor data, and must overcome challenges introduced by the non-
linearity and high dimensionality of the tensors. In this paper, we present a novel approach to performing
these computations by modeling the underlying manifold structure of the tensors, using a combination of two
manifold learning techniques, isometric mapping (ISOMAP) and local tangent space alignment (LTSA).
While ISOMAP identifies the dimensionality of the manifold of the tensors and embeds the tensors into a
linear space, facilitating statistical computations therein, operations like interpolation and filtering, integral to
the process of normalization, require the reconstruction of the tensor in the tensor domain. To obtain this
reverse mapping from the linear space to the tensor domain, i.e. to the domain of the original tensor data, we
use LTSA. The modeling of the underlying manifold structure renders our approach better applicable to
tensor data than existing methods that may not always be able to capture the non-linearity present in the
tensors under consideration. In various simulations with known ground truth, we demonstrate the
effectiveness of our framework based on ISOMAP and LTSA in performing a comprehensive analysis of DTI
data.
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On Characterizing and Analyzing Diffusion Tensor Images by Learning their
Underlying Manifold Structure

Parmeshwar Khurd Ragini Verma
Christos Davatzikos

Dept. of Radiology, University of Pennsylvania, Philadelphia, PA 19104
khurdp@uphs.upenn.edu

Abstract

The growing importance of diffusion tensor imaging
(DTI) in studying the white matter architecture in normal
and pathologic states necessitates the development of tools
for comprehensive analysis of diffusion tensor data. Oper-
ations such as multivariate statistical analysis and hypoth-
esis testing, interpolation and filtering, must now be per-
formed on tensor data, and must overcome challenges in-
troduced by the non-linearity and high dimensionality of
the tensors. In this paper, we present a novel approach
to performing these computations by modeling the under-
lying manifold structure of the tensors, using a combina-
tion of two manifold learning techniques, isometric map-
ping (ISOMAP) and local tangent space alignment (LTSA).
While ISOMAP identifies the dimensionality of the manifold
of the tensors and embeds the tensors into a linear space,
facilitating statistical computations therein, operations like
interpolation and filtering, integral to the process of nor-
malization, require the reconstruction of the tensor in the
tensor domain. To obtain this reverse mapping from the lin-
ear space to the tensor domain, i.e. to the domain of the
original tensor data, we use LTSA. The modeling of the un-
derlying manifold structure renders our approach better ap-
plicable to tensor data than existing methods that may not
always be able to capture the non-linearity present in the
tensors under consideration. In various simulations with
known ground truth, we demonstrate the effectiveness of our
framework based on ISOMAP and LTSA in performing a
comprehensive analysis of DTI data.

1. Introduction
Diffusion tensor imaging (DTI) has become an important

modality to study brain white matter architecture in normal
and pathological states, for diseases such as schizophrenia
[9]. Such studies involve a multivariate statistical analysis
of the anatomical structures in diffusion tensor images of

diseased and normal brains. As in the group-wise analysis
of structural MR images [12], studies of this nature need
to employ a multi-faceted analysis paradigm requiring spa-
tial normalization of all DTI images to a brain template
(which in turn requires tensor interpolation and filtering)
and a statistical analysis involving hypothesis testing on ten-
sors. Since diffusion tensors are symmetric positive definite
matrices, the tensor domain is non-linear and conventional
vector space techniques cannot be used to perform opera-
tions such as interpolation, filtering and hypothesis testing
on tensors. Early studies [9] circumvented this problem by
using scalar measures such as fractional anisotropy (FA) to
quantify white matter structure. However, such scalar mea-
sures do not account for the full information present in the
tensors and require a priori knowledge of how pathology
affects these measures. A vector space approach which em-
beds the six components of the diffusion tensor into �6 and
uses linear operations such as principal component analy-
sis (PCA) also gets stymied by the nonlinear nature of ten-
sors. Hence several groups have recently derived methods
using a variety of tensor metrics [7, 10, 2, 1, 13], such as
those based upon Riemannian symmetric spaces [7, 10, 2],
to perform the requisite computations on tensors. But these
approaches may not always be able to capture the specific
non-linearities present in the tensors under consideration.

In this paper, we present a novel approach to performing
these tensor computations by modeling the underlying man-
ifold structure of the tensors using manifold learning tech-
niques [4]. We use a combination of two manifold learning
techniques, isometric mapping (ISOMAP) [11] and local
tangent space alignment (LTSA) [15] to learn the manifold
structure present in the tensors and then use this manifold
structure to perform the desired tensor computations. We
use ISOMAP to determine the dimensionality of the under-
lying manifold structure present in the tensors and to embed
them into a linear space. Most statistical computations can
then be readily performed in this linear space. However,
certain computations such as interpolation and filtering re-
quire us to return to the tensor domain, and hence an in-
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Figure 1. In the top figure, tensors (denoted by ellipses) lie on a
non-linear manifold embedded in �6. The geodesic distance is
shown by a red curve. The green dotted line denotes the linear
distance between tensors treated as Euclidean entities. The linear
distance is not along the manifold and hence not an appropriate
measure of comparison among tensors. In the bottom figure, a
flattened vector-space embedding of the tensors is shown along
with new elements created in the lower dimensional space. This
embedding may be obtained via ISOMAP or LTSA. LTSA needs
the manifold dimensionality d from ISOMAP to obtain the em-
bedding. The dotted arrows indicate that LTSA can also map an
arbitrary point in the embedded space back into the tensor domain.

verse of the mapping found in the embedding operation is
needed. Since ISOMAP does not provide such an inverse
mapping, we use a different manifold learning technique -
LTSA. However, in order to obtain an embedding, LTSA
itself requires the manifold dimensionality, as identified by
ISOMAP, as one of its input parameters. In Sec. 2, we
will discuss the manifold learning techniques, ISOMAP and
LTSA, and in Sec. 3, we will show how they can be used to
comprehensively analyze DTI data.

The modeling of the underlying manifold structure ren-
ders our approach superior to existing methods that employ
various tensor metrics [7, 10, 1, 2]. In Sec. 4, we have
conducted various simulations with known ground truth
through which we demonstrate how ISOMAP and LTSA
can be effectively used to perform a comprehensive analy-
sis of diffusion tensor images. We have also conducted a
limited comparison with the approaches in [7, 10, 1, 2].

2. Tensor Manifold Learning
To motivate our methods, we shall first consider some

simple intuitive examples of how tensor non-linearity can
affect the calculation of tensor distances, tensor averages,

(a) (b)

Figure 2. (a) Collection of tensors whose statistical average is to be
determined (b) The underlying manifold structure of these tensors
is identified as one dimensional (marked M) as these are created
by rotating the principal eigenvector of the tensor A, from 0 to 180
degrees. The ellipse C is the linear average and the ellipse B is the
average on the manifold.

etc. Consider the tensors depicted at the top of Fig. 1. Dis-
tances between tensors have to be measured via geodesic
distances (along the manifold) rather than Euclidean dis-
tances (outside the manifold), as shown in Fig. 1. (The red
curve along the manifold represents the geodesic distance
while the green line represents the Euclidean distance). Fig.
2 shows a synthesized example that emphasizes this aspect.
Although tensor data might appear extremely complex and
randomly oriented (Fig 2(a)), it may have an underlying low
dimensional structure, as can be seen in Fig. 2(b). The
tensors in Fig. 2(a) are actually generated by rotating the
principal eigen vector of tensor A (Fig. 2(b)). These six-
dimensional tensors, therefore, lie on a one dimensional
sub-manifold depicted by the dotted arc M generated by the
variation of angle of rotation of the principal eigen vector.
If we were to form the mean of these tensors via linear av-
eraging, which is effectively based on Euclidean distances,
we would find a mean tensor that lies outside of the man-
ifold generated by the angle of rotation (ellipse C in Fig.
2(b)). The average along the manifold is the tensor B in
Fig. 2(b) which lies along this manifold and is obtained
based on geodesic distances along the manifold. Therefore,
the primary issue here is fitting a manifold to the tensors
and determining its dimensionality.

In subsections 2.1 and 2.2, we shall describe how
ISOMAP and LTSA can be applied to obtain the manifold
structure present in a set of tensors. Fig. 1 graphically il-
lustrates the relationships between the underlying manifold,
ISOMAP and LTSA. In section 3, we later describe how
ISOMAP and LTSA can be used to solve specific problems
that arise in the analysis of diffusion tensor images. We
shall then see that ISOMAP is especially useful in group-
wise analysis of DTI data and that LTSA is especially useful
in interpolation and filtering of DT images.

A brief note on mathematical notation: We shall denote
vectors by bold-faced lower case letters, e.g. x, and matri-
ces by upper-case letters, e.g. A. We use e to denote the
vector of all 1’s and I to denote the identity matrix. We will
use the superscripts T and † to denote the matrix transpose
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and the matrix pseudo-inverse respectively. We denote the
sample mean of a set of vectors {xi, i = 1, · · · ,K} by x̄.

Let Di, i = 1, · · · , N be the dataset of tensors. We rep-
resent each tensor as a six dimensional vector xi, with the
six components being the six upper triangular elements of
Di. The aim is to be able to find the underlying manifold
for the set xi, i = 1, · · · , N and produce the corresponding
embedded set of vectors yi, i = 1, · · · , N .

2.1. ISOMAP
ISOMAP learns the dimensionality and embedding for

the manifold by following three steps:

1. Construction of a tensor neighborhood graph: This
use a tensor-based distance metric to determine neigh-
boring points in the tensor dataset and creates a graph
with the tensors as nodes. By “neighbors” here we
dont mean spatial neighbors, but neighboring samples
in �6. For any two tensors Di and Dj , we use the
Frobenius norm of Di − Dj as the tensor-based dis-
tance between them. (We found that using the Frobe-
nius norm of Di − Dj yields better performance than
using the Euclidean distance between xi and xj .) The
size of the neighborhood at each point is determined
from user-specified parameters.

2. Calculating the geodesic distance and creation of Dis-
tance Matrix: The geodesic distance between two far-
away tensors on the graph is estimated by the graph
based shortest distance between nodes, which is com-
puted using the Floyd-Warshall algorithm or Dijkstra’s
algorithm. A distance matrix relating all tensors is then
readily obtained.

3. Fitting the manifold: Multidimensional scaling (MDS)
is used to extract the manifold fitted to the tensors.
In the eigen decomposition of the distance matrix, let
λi, i = 1, · · · , N be the eigen values of the N × N
distance matrix in descending order of magnitude and
vi, i = 1, · · · , N be the corresponding eigen vectors.
The dimension d of the underlying manifold is equal to
the rank of the centered distance matrix. The d eigen
vectors corresponding to the d largest eigenvalues are
then chosen to obtain the representation of these ten-
sors in the d - dimensional space. Let λp be the p-th
eigen value (in decreasing order) of the distance matrix
and let vi

p be the i-th component of the p-th eigen vec-
tor. Then for the i-th sample point, we set the p-th com-
ponent of the d-dimensional coordinate vector equal to√

λpv
i
p and thus obtain the representation on the fitted

manifold, that is yi = [
√

λ1v
i
1, · · · ,

√
λdv

i
d]

T .

Rather than estimate the dimensionality of the manifold us-
ing the rank of the distance matrix, the following simpler
and more robust method is usually used in conjunction with

ISOMAP: Let the residual variance or the fraction of the
“unexplained residuals” as captured by a set of d eigen vec-

tors is defined as : RV (d) =
∑ N

i=d+1 λi
∑ N

i=1 λi
. This provides a

measure of the information captured by the data. Visually,
the dimension can be found by plotting the number of vec-
tors used to create the flattened manifold versus the residual
variance and identifying the value of d at which the residual
variance levels off. From a visual point of view, this is the
point at which an elbow appears in the graph and this value
of d is the dimensionality of the data. If no elbow is present,
then the manifold dimensionality is equal to 1, as shown in
Fig. 3(d).

While ISOMAP embeds the tensors into a linear space,
on which statistical operations can be performed, some op-
erations like filetring require a way of reconstructing a ten-
sor corresponding to a point in the lower dimensional linear
space, that is, a mapping from the embedding space back to
�6. We use LTSA to provide this capability.

2.2. LTSA
LTSA requires that the dimensionality d of the under-

lying embedding be known in advance. We shall use
ISOMAP to determine the manifold dimensionality, but we
note that it can also be obtained or by a host of other tech-
niques [5]. LTSA obtains the embedding in two steps:

1. Estimating the local tangent spaces: Based on the Eu-
clidean distance between xi and xj , a set of neigh-
boring points is determined around each point xi. Let
this neighborhood be denoted by the matrix Xi =
[xi1 , · · · ,xik

], where as in ISOMAP, the neighbor-
hood size k is determined from user-specified param-
eters. Using local PCA, we may estimate the tangent
space at xi such that

xij
= x̄i + Qizi

j + ζi
j (1)

where the matrix Qi consists of the d left singular
eigenvectors of Xi(I − eeT

k ) corresponding to the d
largest singular values and the local coordinate vectors
zi

j are given by zi
j = QT

i (xij
− x̄i). The term ζi

j ac-
counts for residual error.

2. Aligining the local tangent spaces: In order to align
the tangent spaces, two simplifying assumptions are
now made. First it is assumed that the manifold is a
d− dimensional surface in �6. Therefore, it can be
represented with a 1-1 mapping f : Ω ⊂ �d → �6.
Secondly, it is assumed that the global coordinates yi

in Ω and the local coordinates in the tangent space are
related by an affine mapping:

yij
= ȳi + Lizi

j + εi
j (2)
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where εi
j accounts for residual error. Let Zi =

[zi
1, · · · , zi

k], Yi = [yi1 , · · · ,yik
] and Y =

[y1, · · · ,yN ]. The matrices Li and the global coor-
dinates yi are then determined so as to minimize the
sum of all squared errors

∑
i

∑
j(ε

i
j)

T εi
j , subject to

the constraint Y Y T = Id.

Let Si be a 0− 1 matrix such that Y Si = Yi, let Wi =
(I− eeT

k )(I−Z†
i Zi) and let B =

∑N
i=1 SiWiW

T
i ST

i .
It turns out that the optimal Y is given by the d eigen-
vectors of B corresponding to the 2nd to (d + 1)st
smallest eigenvalues, and that the optimal Li is given
by Li = YiZ

†
i .

Let y be an arbitrary point in the LTSA embedded space.
In order to obtain its representation x in �6, we first deter-
mine the closest point yi in the current embedding. Then
x = x̄i + QiL

−1
i (y − ȳi). We cannot mathematically

prove that the reconstructed tensor D corresponding to x is
positive-definite, but we expect this condition to hold true
since LTSA should be able to learn the non-linearities in-
troduced into the manifold by positive-definiteness.

3. Applications in Analysis of Diffusion Tensor
Images

We shall now describe how the techniques in 2 can be
applied to the problem of group-wise statistical analysis of
tensor images and used to address the issues of interpolation
and filtering of tensor images.

3.1. Group-wise statistical analysis
In doing group wise analysis, images from multiple indi-

viduals are spatially normalized [14] to a template, so that
the subsequent statistical analysis can be performed in the
same coordinate system. (In the spatial normalization ap-
proach in [14], non-rigid registration is performed on the
FA maps and hence issues such as tensor interpolation do
not arise. However, tensor interpolation is an important
problem in more general approaches to registration and we
shall address it in the next subsection.) The template can
be the scan of a different individual or the same individ-
ual at a different time point depending on whether we are
analyzing for group differences or studying the progression
of disease. Once these images are spatially normalized, we
may analyze these images by collecting tensors voxel-wise
or region-wise.

Voxel-wise Analysis: We first describe a voxel-wise
analysis. Let Di, Di ∈ Image(i), i = 1, · · · , N be the
tensors from N individuals at a given voxel location. The
structure of the manifold on which these tensors lie is de-
termined through the procedure of Section 2.1. The appli-
cation of ISOMAP on a voxel-by-voxel basis flattens the
high dimensional non-linear tensor data to a Euclidean sub-
manifold, transforms the tensors to their linear counterparts

and defines a geodesic distance on this submanifold, as
the shortest distance between points on the graph. This
flattened dataset can now be used for statistical analysis.
ISOMAP is therefore applied to capture the manifold struc-
ture on a voxel-by-voxel basis, collected across the whole
population. Multivariate statistics can now be applied to the
tensors embedded in to the Euclidean manifold. We apply
the Hotelling T 2-test for separation and equality of means
of two tensor data sets which are embedded into manifolds
of dimension greater than one. It may be noted that if the
dimension of the lower dimensional manifold is 1, t-test
can be used for significance. The application of this test
requires the entries to be normally distributed, which will
not be the case for the original tensors, which lie on a high
dimensional non linear space. However on flattening to a
Euclidean space, these generally tend to follow a normal
distribution, for the kind of tensor data we work with. In
case ISOMAP finds more than one graph component at a
particular voxel, then we may apply the Hotelling T 2-test
to the 6-d vector formed by the symmetric matrix logarithm
of the tensors at that voxel [1]. Neighborhood information
can also be included for each voxel, to obtain a more robust
manifold structure.

Region-based Analysis: In region-wise analysis, we
start with a Region of Interest (ROI) where we expect to see
significant differences between normal and abnormal sub-
jects. Such an ROI may be known a priori or could be iden-
tified using voxel-wise analysis. Given this ROI, we may
then embed all the tensors in this region across all subjects
into a common ISOMAP embedding. A single Hotelling
T 2 statistic can be computed to quantitatively summarize
the differences between the two groups. In the case when
the dimensionality of the ISOMAP embedding is ≤ 3, we
may visualize whether the tensors belonging to normal and
abnormal subjects form two separate clusters. One advan-
tage of having this common embedding is that given an ad-
ditional normalized DTI of a subject, we may then select
the tensors belonging to the ROI with significant differences
and embed them using ISOMAP. The method in [3] can be
used to efficiently obtain such an out-of-sample ISOMAP
embedding. If all tensors belonging to the subject get em-
bedded into a specific cluster (either from visual inspection,
or as measured, for example, by the Hausdorff distance),
then we can readily classify the new subject as normal or
abnormal. The common lower dimensional ISOMAP em-
bedding could also form the features for a classifier based
upon supervised learning.

3.2. Interpolation and Filtering
We adopt the following approach to interpolation and

smoothing:

1. Find the dimensionality of the manifold structure in all
tensors belonging to the image using ISOMAP.
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2. Find a lower-dimensional vector space embedding for
all tensors using LTSA.

3. Interpolate or filter the representation in the vector
space using a standard technique. For instance, we
may perform trilinear interpolation on each component
of the vector embedding.

4. Return to the tensor domain using the LTSA mapping.

A potential difficulty with this approach is that the manifold
learning approaches will be overwhelmed by the large num-
ber of tensors (tensors from all voxels) presented to them.
However, for methods such as ISOMAP, efficient methods
based on the Nystrom approximation have been devised to
deal with this problem [4, 3, 8]. To our knowledge, such
efficient methods have not been used in conjunction with
LTSA. We plan to investigate their applicability to LTSA in
future work.

One could also adopt an alternative atlas-based approach
in conjunction with manifold learning. We could non-
rigidly register the given tensor image with a segmented
tensor atlas, divide the tensors into classes as per the la-
bels in the atlas, and then separately apply the method de-
scribed in the earlier paragraph to the tensors belonging to
each class. This procedure has three advantages over the
more straightforward approach: (1) It will better maintain
the local structure of the tensors. (2) The manifold learning
techniques will be presented with fewer tensors. (3) Since
the tensors belonging to a particular class may lie on a man-
ifold of lower dimensionality, the interpolation or filtering
in the embedded domain will also be faster.

Having described the methods for applying the manifold
learning techniques in 2 comprehensively analyze DTI data,
we shall now validate these techniques in a series of exper-
iments with simulated and real data in Sec. 4.

4. Results
We shall illustrate a variety of ways in which manifold

learning can be successfully used to analyze diffusion ten-
sor images. In subsection 4.1, we describe some simple
validation experiments where the manifold on which ten-
sors reside is exactly known. In subsection 4.2, we perform
statistical analysis on tensor images with simulated group
differences and validate that our technique, as described in
3.1, agrees with the ground truth. In subsection 4.3, we
compare the quality of our LTSA-based tensor interpolation
approach described in 3.2 with alternative approaches.

4.1. Analysis on Tensors with Known Manifold
Structure

In one experiment, we started with a typical elliptical
diffusion tensor and increased the azimuthal angle corre-
sponding to the principal direction in small increments so
as to generate a set of tensors. (It may be noted that we

present results on 2D tensors here, for the ease of visual-
ization. The experiment has been conducted on 3D tensors
with the same degree of success). Thus the set of tensors re-
side on a known 1-d manifold (curve) as shown in Fig. 3(a).
Through this experiment, we sought to answer the following
questions: (1) Can ISOMAP correctly identify the dimen-
sionality of the underlying manifold ? (2) Do the ISOMAP
and LTSA embeddings agree with the points lying on the
original 1-dimensional manifold, i.e. the various azimuthal
angles ? (3) Can a linear technique such as prinicipal com-
ponent analysis (PCA) learn the underlying manifold struc-
ture ? (4) Can LTSA-based interpolation be used to obtain
a finer sampling of the original manifold ?

We identified the manifold dimensionality using
ISOMAP and obtained lower-dimensional embeddings us-
ing ISOMAP and LTSA. The lack of elbow in the ISOMAP
residual variance versus dimensionality plot in Fig. 3(d)
indicates a dimensionality of 1. This is further evident
in Fig. 3(c) where we plot the angular change against the
1d embedding produced by ISOMAP and LTSA. We see
that both the LTSA and ISOMAP embeddings (they over-
lap with each other in Fig. 3(c)) agree well with the angles
used to generate these tensors. The standard linear approach
of PCA fails to identify the manifold dimensionality, as ev-
idenced in Fig. 3(e) by the fact that more than one PCA
eigen value is significant, and the largest principal compo-
nent does not correlate well with the azimuthal angles.

We sorted the LTSA 1-d embedding in increasing order
and linearly interpolated it. We then mapped the interpo-
lated LTSA embedding back to the tensor domain. Re-
sults are shown in Fig. 3(b). The LTSA interpolation also
reproduces a fairly accurate finely sampled version of the
original manifold. We note that the LTSA interpolation re-
mained unchanged even if we randomly permuted the orig-
inal tensors so that they no longer correspond to increas-
ing azimuthal angles. Straightforward linear approaches to
tensor interpolation or approaches based upon Riemannian
symmetric spaces would yield similar interpolation results
if the tensors are presented in the order of increasing (or de-
creasing) azimuthal angles, but given a random permutation
of the tensors, they produce an incorrect interpolation re-
sult. This indicates that LTSA determines and incorporates
the underlying manifold structure to produce the correct in-
terpolation.

4.2. Groupwise Statistical Analysis
To validate our approach in 3.1, we constructed two sets

of DTIs with known statistical changes in the following
manner: We obtained a set of 256 × 256 × 56 DTI images
of 10 healthy subjects and normalized them to a common
template (chosen as one of the subjects) [14]. We selected
an ROI on the template and mapped it to the original 10
DTI images. We then introduced a known i.i.d. statistical
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Figure 3. (a) The three variable components (t11,t12,t22) of the original tensors are shown as points in �3 (b) The three variable components
of the interpolated tensors are shown as points in the same domain (c)The 1-d PCA (green), LTSA(red) and ISOMAP (blue) embeddings
are compared with the original angles (cyan) used to generate the tensors. LTSA and ISOMAP embeddings overlap almost exactly with
each other and match the original angles quite well, but the largest PCA component does not correlate well with the original angles.(d)
ISOMAP residual variance vs. dimensionality plot indicates a dimensionality of 1 due to absence of an elbow. (e) PCA eigenvalues.

change in each tensor belonging to the 10 ROI’s and then
re-normalized the resulting abnormal DTIs to the template.
We thus end up with a dataset with 20 normalized DTIs,
10 DTIs corresponding to the original healthy subjects and
10 abnormal DTIs. We simulated three types of statistical
changes in the ROI: (1) We changed the three eigen values.
(2) We applied a random rotation to the three eigenvectors.
(3) We changed the three eigen values and also applied ran-
dom rotations to the three eigenvectors.

We analyzed each of three datasets using ISOMAP in
two ways. In the first approach, we analyzed each voxel
point-wise using ISOMAP, i.e. we collected 20 tensors at
each voxel corresponding to each subject, obtained their
low-dimensional embedding using ISOMAP and then ob-
tained a p-value using the Hotelling T 2 test. Fig. 4 shows
the results obtained using this approach. Clearly the results
agree very well with ground truth. In all cases, ISOMAP
identified the dimensionality of the underlying manifold as
3.

In the second approach, we took a smaller ROI than the
one determined using the first approach and embedded all
tensors in that ROI across all images into a common lin-
ear space using ISOMAP. As in the voxel-wise analysis,

ISOMAP identified the dimensionality of the underlying
manifold as 3 in all cases. Fig. 5(a)-(c) shows these 3-
dimensional embeddings. Clearly, the normal and abnor-
mal vectors are well separated in this common space. A
Hotelling T 2 test applied to the two groups of normal and
abnormal tensor embeddings in this linear space then gave
us a single scalar measure to summarize group differences.
Since the embeddings clearly separated the groups in all
cases, the T 2 P-value was close to 0 in all cases. For compu-
tational reasons, we selected only 5 normal and 5 abnormal
DTIs in this second approach to group analysis. We also
validated the concept of using out-of-sample extension on
tensors from the ROI of an additional subject. Of the earlier
5 subjects, we first obtained an ISOMAP embedding for 4
normal and 4 abnormal subjects and then computed out-of-
sample extensions for the remaining normal and abnormal
subject. Results are shown in fig. 5(d). The out-of-sample
tensors from the new normal and abnormal subjects fall into
their respective clusters.

4.3. Interpolation
We used the the first dataset from the validation experi-

ments of Sec. 4.2 to design the following validation exper-
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Figure 5. (a) ISOMAP embedding obtained for eigenvalue changes. (b) ISOMAP embeddding obtained for eigenvector changes. (c)
ISOMAP embedding for eigenvalue+eigenvector changes. (In (a)-(c), the normal tensors are indicated in dark blue and the abnormal
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iment for our approach to tensor interpolation: We selected
an ROI on the FA map as shown in Fig. 6(a) and downsam-
pled the tensors in this ROI by a factor of 2. We then inter-
polated the downsampled tensors back to their original size,
i.e. we identified the dimensionality of the manifold struc-
ture present in the downsampled tensors via ISOMAP, em-
bedded them into a lower dimensional space via LTSA, per-
formed bilinear interpolation in the lower-dimensional em-
bedding, and returned to the tensor domain using the LTSA
mapping. Using the voxel-wise approach described in Sec.
4.2, we performed a group-wise statistical analysis on the
interpolated DTIs. We also performed a similar analysis for
linearly interpolated tensors and tensors interpolated using
the Log-Euclidean (LE) framework [1]. Results are shown
in Fig. 6(b)-(d) and may compare these results with the
“ground truth” in Fig. 4(b). Here, LTSA interpolation does
not perform as well as the other methods (as compared to
the case of simulated tensors shown in Fig. 3). We are cur-
rently investigating the reasons for this.

5. Discussion and Conclusions
We have presented a framework for comprehensive anal-

ysis of DTI data using manifold learning techniques. Since

our approach takes advantage of the underlying manifold
structure present in the tensors, it is superior to conven-
tional analyses based upon scalar measures such as frac-
tional anisotropy and presents an interesting alternative to
approaches based upon Riemannian symmetric spaces and
approaches based upon other tensor metrics. We have
presented numerous simulations through which we have
demonstrated the effectiveness of our approach.

A primary assumption of our work is that the manifold
learning techniques used are successfully able to capture the
manifold structure in the tensor data and are able to find in-
formative vector space embeddings. However, most mani-
fold learning techniques including ISOMAP are guaranteed
to succeed only when certain conditions hold [6]. Although
such conditions are difficult to directly verify in practical
problems, we have found in our simulations that results ob-
tained using manifold learning agree well with ground truth.

In future work, we plan to conduct a more thorough vali-
dation of our approach. We also plan to devise a more com-
putationally efficient approach to tensor interpolation and
plan to investigate the applicability of our approach to other
problems such as PDE-based filtering and regularization of
DT images [10].
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(a) (b)

(c) (d)

Figure 4. (a) The region selected for introducing changes is marked
on the normalized FA map of an abnormal subject. (b) P-values
obtained for eigenvalue changes overlaid on the template FA map.
(c) P-values obtained for eigenvector changes overlaid on the tem-
plate FA map. (d) P-values obtained for eigenvalue+eigenvector
changes overlaid on the template FA map. In all figures, only P-
values < 0.001 are shown in red.

(a) (b)

(c) (d)

Figure 6. (a) The region selected for interpolation is marked on the
template FA map. (b) P-values obtained on the LTSA-interpolated
tensors overlaid on the template FA map. (c) P-values obtained
on the LE-interpolated tensors overlaid on the template FA map.
(d) P-values obtained on the linearly-interpolated tensors overlaid
on the template FA map. (compare P-values with ground truth in
Fig. 4(b)). In all figures, only P-values < 0.001 are shown in red.
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