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A Joint Transformation and Residual Image Descriptor for Morphometric
Image Analysis using an Equivalence Class Formulation

Abstract
Existing computational anatomy methodologies for morphometric analysis of medical images are often based
solely on the shape transformation, typically being a diffeomorphism, that warps these images to a common
template or vice versa. However, anatomical differences as well as changes induced by pathology, prevent the
warping transformation from producing an exact correspondence. The residual image captures information
that is not reflected by the diffeomorphism, and therefore allows us to maintain the entire morphological
profile for analysis. In this paper we present a morphological descriptor which combines the warping
transformation with the residual image in an equivalence class formulation, to characterize morphology of
anatomical structures. Equivalence classes are formed by pairs of transformation and residual, for different
levels of smoothness of the warping transformation. These pairs belong to the same equivalence class, since
they jointly reconstruct the exact same morphology. Moreover, pattern classification methods are trained on
the entire equivalence class, instead of a single pair, in order to become more robust to a variety of factors that
affect the warping transformation, including the anatomy being measured. This joint descriptor is evaluated by
statistical testing and estimation of class separation by classification, initially for 2-D synthetic images with
simulated atrophy and subsequently for a volumetric dataset consisting of schizophrenia patients and healthy
controls. Results of class separation indicate that this joint descriptor produces generally better and more
robust class separation than using each of the components separately.
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Abstract

Existing computational anatomy methodologies for mor-

phometric analysis of medical images are often based solely

on the shape transformation, typically being a diffeomor-

phism, that warps these images to a common template or

vice versa. However, anatomical differences as well as

changes induced by pathology, prevent the warping trans-

formation from producing an exact correspondence. The

residual image captures information that is not reflected

by the diffeomorphism, and therefore allows us to maintain

the entire morphological profile for analysis. In this pa-

per we present a morphological descriptor which combines

the warping transformation with the residual image in an

equivalence class formulation, to characterize morphology

of anatomical structures. Equivalence classes are formed

by pairs of transformation and residual, for different levels

of smoothness of the warping transformation. These pairs

belong to the same equivalence class, since they jointly re-

construct the exact same morphology. Moreover, pattern

classification methods are trained on the entire equivalence

class, instead of a single pair, in order to become more ro-

bust to a variety of factors that affect the warping transfor-

mation, including the anatomy being measured. This joint

descriptor is evaluated by statistical testing and estimation

of class separation by classification, initially for 2-D syn-

thetic images with simulated atrophy and subsequently for a

volumetric dataset consisting of schizophrenia patients and

healthy controls. Results of class separation indicate that

this joint descriptor produces generally better and more ro-

bust class separation than using each of the components

separately.

1. Introduction

Methods falling under the general umbrella of computa-
tional anatomy are used to derive complex spatial maps of
anatomical characteristics in normal and diseased popula-

tions, using high-dimensional spatial transformations, often
desired to be diffeomorphisms, which warp or spatially nor-
malize these images to a common template [16, 13, 5, 17,
10, 1, 2, 3, 12] or vice versa. Measures computed from the
shape transformation are used as image descriptors assum-
ing that a perfect registration has been achieved between
the images and the template, thereby relying on the accu-
racy of the registration algorithm to correctly estimate the
shape. However, due to natural anatomical differences in
human anatomy as well as changes induced by diseases,
a perfect correspondence is hard to achieve via the warp-
ing transformation. Consequently, subsequent morpholog-
ical analysis based solely on the transformation is limited,
since it ignores morphological characteristics not captured
by the transformation. The residual image captures infor-
mation that is not reflected by the warping transformation
hence, in conjunction with the shape transformation, it pro-
vides a means for deriving a complete morphological profile
for analysis.

Herein we examine a morphological descriptor which
combines the information from the warping transformation
with the residual image, in an equivalence class formula-
tion. Equivalence classes are formed by pairs of transfor-
mation and residual for different levels of smoothness of the
warping transformation, and therefore of different residuals.
These pairs belong to the same class as they jointly recon-
struct the same anatomy. In this paper we restrict our at-
tention to volumetric analysis only, hence we use a specific
combination of the transformation and the residual, which
warranties preservation of volumes, according to the work
of [9]. The produced tissue density maps are based on the
mass preservation principle during the warping operation,
according to which the tissue density increases in the areas
of contraction and decreases where extraction occurs. This
can be carried out by combining a local measure of volume
contraction/expansion provided by the Jacobian of the de-
formation field with the difference between the segmented
normalized subject and template, a formulation that is sig-
nificantly different from the Jacobian alone. According to
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this formulation, an integration of the tissue density maps
over any arbitrary anatomical region yields exactly the vol-
ume of this region in the individual under study, regardless
of the warping transformation itself. Accordingly, compar-
isons of anatomical tissue volumes between different indi-
viduals are performed by comparing the respective tissue
density maps. For example, brain atrophy in a particular
brain structure will be reflected by reduced tissue density
in that structure. We note, here, that a tissue density map
has no relation with the physical density of the underlying
tissue, but it is a mathematical construct used for morpho-
logical analysis.

Different transformations yield different tissue densities,
for a given individual’s anatomy. For example, applying
the identity as transformation produces the original seg-
mented image (one label for each tissue class; for the brain
these would be gray matter, white matter and CSF). A com-
pletely conforming transformation corresponds to a tissue
density map that follows exactly the morphology of the
template and has values dependent on the tissue volumes
of the respective individual. Varying levels of smoothness
of the warping transformation are used to generate the ele-
ments of an equivalence class, aiming at rendering the re-
sulting morphological descriptor robust to errors and un-
wanted variability emanating from the transformation pro-
cess. For example, if an individual anatomy resembles the
template, the shape transformation is likely to completely
capture the individual’s morphological subtleties. However,
the opposite is true for an individual that is quite different
from the template, for which trying to enforce correspon-
dence via the shape transformation can introduce errors and
noise. The distance between two anatomical images can
then be defined by the distance of the respective equiva-
lence classes, and could correspond to a distance derived
from shape transformations of different smoothness proper-
ties for the two individuals.

In order to ultimately use these equivalence class de-
scriptors for diagnostic purposes, we train pattern classifica-
tion methods on equivalence classes instead of shape trans-
formations or of single pairs of residual and transformation.
The joint descriptor we propose is evaluated by statistical
testing and estimation of class separation by classification,
for 2-D synthetic images with simulated atrophy, and for a
volumetric dataset consisting of schizophrenia patients and
healthy controls. Results of class separation indicate that
this joint descriptor produces generally better and more ro-
bust class separation than using each of the components sep-
arately.

In the next section the investigated image descriptor and
its multiscale extension are detailed, followed by a brief de-
scription of the testing and validation methodology. Sec-
tion 3 presents and discusses the experimental results on
synthetic 2-D and real volumetric datasets. In the final sec-

tion are reported the contributions and future goals of our
research.

2. Morphometric Analysis Framework
2.1. Joint Representation of Residual and Transfor-

mation using Tissue Density Maps

Let S(.) and T (.) be the subject and template images re-
spectively. In the computational anatomy framework, a spa-
tial normalization process is regularly employed that warps
T (.) to S(.) or vice versa, and the following relation is de-
rived

S(h(w)) = T (w) + D(w),∀w ∈ ΩT , (1)

where h : ΩT → ΩS is a mapping from the template ΩT to
the subject domain ΩS , and D(.) is the residual remaining
after warping. Registration algorithms typically try to deter-
mine the deformation that minimizes some quantity related
to the residual, under certain smoothness constraints. In the
following paragraphs both the deformation and residual in-
formation are incorporated into a morphometric descriptor
that originates from eq. 1. For reference, we compare re-
sults obtained via this morphological representation to those
produced by the determinant of the Jacobian of deformation
field [6], which provides a local measure of expansion or
contraction of the template during the transformation and
can therefore be used to measure the volume of a structure.
The Jacobian-based descriptor performs well when the reg-
istration algorithm produces a sufficiently accurate defor-
mation field.

As briefly described in the Introduction, we use tissue
density maps to derive a morphological representation that
reflects regional volumetrics, and is therefore a restricted
case of a more general framework involving h(.) and D(.).
In this paper, all of our experiments involve brain images,
therefore three tissue density maps are generated: one for
gray matter (GM), one for white matter (WM) and another
one for cerebro-spinal fluid (CSF). The tissue density maps
are calculated by multiplying each segmented and spatially
normalized subject with the Jacobian of the deformation
field. In other words, the binary mask of each tissue type
is deformed and then multiplied by the Jacobian of the de-
formation field. This calculation is expressed by:

Rj(w) = J(w) · Sj(h(w))
= J(w) · [Tj(w) + Dj(w)] (2)

J(w) = det∇h(w)
h : ΩT → ΩS

where Sj(h(.)) denotes the indicator (binary) function of
jth tissue of the spatially normalized image via the trans-
formation h(.), Tj the segmented jth tissue of the template,
Dj(.) the difference image between the previous two and
J(.) the determinant of Jacobian of deformation field h(.).
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The representation of tissue density maps as expressed
by eq. 2 incorporates the contraction/expansion estimate
provided by the determinant of Jacobian of the transforma-
tion J(.), plus the shape residual information Dj(.) that is
calculated from the region labels of the subject and tem-
plate. As a result, although this descriptor cannot capture
the intensity variations, it preserves the volume structure
information that cannot be expressed by the warping trans-
formation only. It is also worth noting that the number of
density maps is equal to the number of tissue types for each
subject, i.e. 3 for our brain experiments, but the overall di-
mensionality of the descriptor is approximately of equal or-
der to that of the Jacobian-based feature, since the different
density maps of a subject are only marginally overlapping.

Furthermore, eq. 2 produces an equivalence class deter-
mined from different pairs of transformations and residuals
for the given representation S(.) of a subject anatomy. The
equivalence class E(S) is defined as:

E(S) = {[h(w), D(w)] : S(h(w)) = T (w) + D(w)} , (3)
h(.) ∈ T , w ∈ ΩT ,

where T is a family of transformations. This equivalence
class representation can be interpreted as follows: in the
feature domain of anatomical representations, which in our
case are the tissue density maps, the registration algorithm
that deforms the template to a subject forms a continuous
curve, the origin of which is the template. This curve lies
inside the hypersurface that is formed by all valid pairs of
transformations and shape residuals that satisfy eq. 3. Dif-
ferent subjects produce different hypersurfaces in this do-
main; inter-subject distances are obtained from distances of
respective hypersurfaces in this context. In principle, the
estimation of a class dissimilarity requires the generation of
all warping transformations and/or to solve an optimization
problem in this domain of very high dimensionality to find
the minimum distance. This represents a computationally
very demanding problem. A more feasible approach is to
generate some representative subsets of those classes and
calculate their distances. These subsets are produced here
by applying deformations of multiple levels of smoothness
to each subject and calculating the tissue density maps.

The inter-subject distance may be readily calculated
by the distances of the generated sub-classes. Our main
premise in this context is that a more accurate estimate of
the distance between different anatomies is determined by
the distances of their respective equivalence classes. Dif-
ferent distance functions may be employed based on mini-
mum, mean, or voting operations that can be incorporated
into a classification scheme as described in the next section.
Figure 1 illustrates the equivalence sub-classes of two sub-
ject images in the continuum of joint warping and resid-
ual representation. The dots correspond to the sub-class
members produced by calculating tissue density maps over

S1

S2

h

D

Figure 1. Example of the equivalence sub-classes produced by
the spatial normalization of two subjects with varying degrees of
smoothness in the representation domain provided by the tissue
density maps.

deformation fields of varying rigidity. Those equivalence
sub-classes are subsequently used for calculating the inter-
individual distances in a statistical analysis framework.

2.2. Testing and Validation

In the following paragraphs we briefly describe the ap-
proaches that we used in order to assess the class separation
capabilities of the presented descriptor.

Statistical t-test-The statistical significance of the image
descriptor was initially evaluated by applying a t-test to the
feature vectors coming from different subject groups [7].
The t-test is employed to estimate the distance between the
mean values of two feature distributions. This was applied
voxel-wise and the calculated p-values were geometrically
averaged over the defined ROI.

Dimensionality Reduction by PCA-As described pre-
viously, the feature vectors may consist of the determi-
nant of the deformation field Jacobian, or the tissue den-
sity maps. The dimensionality of this feature space is very
high, therefore can not be handled efficiently in the subse-
quent stages of statistical analysis and pattern classification,
especially given the limited availability of training data. A
process is thus required to reduce the dimensionality of the
feature vectors.

In this work the Principal Component Analysis algo-
rithm is employed [7], that seeks the linear projections that
represent the data optimally in terms of least-squares ap-
proximation. The dimensionality of data is reduced by
selecting the directions of most extended spreads of the
dataset.

Classification-The separation capabilities of the consid-
ered descriptors are compared in the context of classifica-
tion accuracy. Therefore, pattern classifiers are built upon
the two examined descriptors, to provide a common basis
for comparisons.
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The k Nearest Neighbor (k-NN) scheme [4] is used for
classification of our labeled data. The k-NN rule repre-
sents an extension of the nearest neighbor classification,
where the argument of maximum posterior probability of
the nearest prototype is sought. According to the k-Nearest
Neighbor rule, the k closest samples are selected and a vot-
ing operation is applied next to assign a label to the unla-
beled sample. Two classification rules were compared in the
presented multi-scale context; first was the typical voting
among the k-NNs and secondly a subsequent step was in-
cluded that applies voting among the different samples that
originate from the same subject. The latter rule should yield
improved class separation and classification rates, assuming
that the samples from the same subject form equivalence
classes.

Cross Validation-The cross-validation of our methodol-
ogy is carried out by the leave-one-out approach [8]. This
is generally implemented by iteratively excluding one data
sample from the training process and testing the classifier
on this sample. This process is repeated for all the samples
to assess the classification capabilities of the tested scheme.
The final classification accuracy is calculated by the aver-
age performance of the tested schemes. It is worth noting
that when cross-validating the multi-scale descriptors, all
the members of the tested equivalence class are removed
from the training set.

3. Experimental Results and Discussion
In this section we describe experiments that we con-

ducted in order to assess the performance of the joint
residual and deformation image descriptor, which char-
acterizes the morphological changes in comparison with
using the determinant of Jacobian of the deformation field
that takes into consideration only the deformation. Those
approaches were validated both on 2-D and 3-D datasets.

Synthetic 2-D Dataset-The initial synthetic dataset in-
cludes 20 subjects that represent normal cases and another
20 with simulated atrophy that was produced by the method
proposed in [11]. The two examined image descriptors were
compared in the context of statistical significance and clas-
sification accuracy.

A simple segmentation algorithm is applied to separate
the tissue types. A thresholding with a low value is applied
first to separate the subject from background. The image
is thresholded next by a higher value to segment the white
matter (WM) area. A connected component labeling oper-
ation is applied to the difference of the above two binary
images and yields the gray matter (GM) and cerebro-spinal
fluid (CSF) segmentation masks. Finally the white matter
region is derived from the difference between the complete
subject mask produced by the low threshold and the sum-
mation of WM and CSF masks. The registration part is car-

(a) (b)

(c)
Figure 2. (a) Template, (b) subject that corresponds to a normal
case and (c) subject with simulated atrophy (indicated by the out-
lined area)

ried out by a 2-D energy minimization algorithm that ap-
plies gradient descent optimization on the image intensity
information. The regularization parameter λ controls the
smoothness of deformation field and consequently the reg-
istration accuracy. In particular smaller λs produce more
flexible registrations.

In figure 2 are depicted (a) the template, (b) a subject
image of a normal case, which was selected to have ex-
tended morphological variations from the template, and (c)
a subject image of simulated atrophy. Moreover figure 3
depicts registration results from the subject without simu-
lated atrophy to the template of figure 2 derived from de-
formation fields of varying smoothness i.e. different val-
ues of λ (left column) and the corresponding tissue density
maps for the same parameter values. It becomes obvious
that due to structural differences a perfect correspondence
is difficult to be reached, that is the normalized subjects in
figure 3 are still considerably different than the template in
figure 2 therefore the residual image carries a considerable
amount of information that needs to be included in the mor-
phometric descriptor. The tissue density maps also show
equivalent representations of the same subject at different
scales. When a rigid deformation is applied, the residual
mask Dj(.) between the segmented normalized subject and
the template carries most of the morphological information,
while for more flexible transformations the volumetric fea-
ture of determinant of Jacobian J(.) becomes more substan-
tial.

The statistical significance estimates of the considered
image descriptors were examined using the t-test and calcu-
lating the geometric average of p-values over a pre-defined
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Figure 3. Registration results from one of the simulated shapes
to the template, for multiple levels of smoothness of the defor-
mation field i.e. λ values (left column) and the corresponding
color-coded tissue density maps (right column). In this example
λ = 2, 1/2, 1/8, 1/32 from top to bottom.

ROI that surrounds the area of simulated atrophy as in fig-
ure 2(c). The results produced by the Jacobian and the tis-
sue density map-based descriptors for different λ values are
depicted in figure 4. Due to the presence of noise in the em-
ployed dataset, the p-values were also estimated after ap-
plying Gaussian smoothing of variable standard deviations
σ to the image descriptors. From those figures it becomes
evident that the tissue density map-based descriptor regu-
larly produces higher statistical significance i.e. lower p-
values. It is also worth noting that the smoothing operation
has improved those results since it reduces the noise.

The classification accuracy of the developed schemes
was also examined. Several methodology variations were
implemented and the results were finally compared on a
common class separation basis as described in Section 2.2.

Figure 4. Statistical p-values of Jacobian (top) and tissue density
map features (derived from t-test) (bottom) as a function of reg-
istration rigidity parameter for different standard deviations σ of
Gaussian smoothing.

Figures 5 and 6 display the classification results of Jacobian
and tissue density map descriptors after applying PCA
to those descriptors and cross-validating the k-NN clas-
sification scheme using the leave-one-out approach. The
classification performance is measured by the Classification
Accuracy (CA) measure that is a weighted sum of true
positive and true negative fractions. The main distinction
in this framework is the use of data from one or multiple
scales -i.e. levels of smoothness- of the deformation field.
This level of smoothness is controlled by the λ parameter
here. Two classification rules were also compared in the
multi-scale context to implicitly validate the construction
of equivalence classes as explained in Section 2.1. In figure
5 the classification is calculated for the Jacobian-based
descriptor and separate (figure 5(a)) or combined multiple
scales of smoothness of the transformation (figure 5(b)).
Figure 6 displays the corresponding results from the tissue
density map-based features. The multi-scale framework
was compared to the average classification performance
of the single scale counterparts (figures 5(b) and 6(b))
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(a)

(b)
Figure 5. Classification rates produced by the Jacobian-based de-
scriptor for (a) single and (b) multiple λ values compared to the
average performance of single scale representation vs the number
of nearest neighbors k (bottom).

as well. From figure 5(a) it is inferred that for the case
of Jacobian-based descriptor the classification accuracy
is improved when more flexible deformation fields are
employed, which is normal since this descriptor relies on
the registration accuracy. Besides that, the use of multiple
scales does not improve its classification performance as
depicted in figure (5(b)), because this descriptor doesn’t
generate equivalence classes. On the other hand, the multi-
scale version of the tissue density map-based descriptor
produces better separation than single scale processing, that
is further enhanced when the different samples from the
same subject are grouped in the nearest neighbor finding
process (see second classification rule in figure 6(b)).
Those observations indicate that the tissue density maps
divide the feature space into equivalence classes.

Real 3-D Dataset-The proposed morphometric descrip-
tor was also tested on a volumetric dataset that included 38
normal controls and 23 schizophrenia patients. The seg-

(a)

(b)
Figure 6. Classification rates produced by the tissue density map-
based descriptor for (a) single and (b) multiple λ values compared
to the average performance of single scale representation vs the
number of nearest neighbors k.

mentation into the three tissue types (white matter, gray
matter and cerebro-spinal fluid) was carried out by [14].
The spatial normalization was accomplished by a 3-D high
dimensional and hierarchical deformable registration algo-
rithm [15]. The resulting deformation fields were subse-
quently downsampled by a factor of 4 to reduce the compu-
tational load and the tissue density maps were calculated
next. The multi-scale hierarchy was constructed by im-
posing different levels of smoothness in the image warping
mechanism. The tissue density maps are calculated next at
multiple scales, i.e. levels of smoothness ls, given the de-
formation fields. The feature vector is constructed by mul-
tiplying the tissue density maps with a mask of all voxels
with at least one non-zero tissue density value in our dataset
and concatenating the results from the different tissue types.
The dimensionality of the feature vectors is reduced by PCA
and then they are processed in the k-NN classification con-
text using the leave-one-out approach as described in the
previous sections.
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In figure 7 are displayed (a) the images of a subject, (b)
the template, (c) the final registration result by [15] and
(d) the resulting residual image from the transformation.
A perfect registration cannot be achieved due to extensive
structural differences as shown in figure 7(d), therefore an
exclusively deformation-based descriptor cannot represent
the morphological properties of the subjects with sufficient
accuracy. In addition, figure 8 depicts four generated
deformation fields of varying rigidity and the resulting
tissue density maps. It is obvious that the deformation fields
become more rigid and the tissue density maps smoother
as the number of smoothing iterations -or equivalently
the scale index- increases (from bottom to top). The
classification rates are depicted in figure 9 for single and
multiple scales and by the same classification rules as in
the 2-D experiment. From figure 9 we observe that the
multi-scale representation considerably improves the class
separation especially for smaller values of k. Besides that,
the slightly better performance of the second classification
rule implies the construction of equivalence classes by the
tissue density-based feature (Section 2.1).

Discussion-The results obtained from 2-D and 3-D ex-
periments are in general consistent with each other on the
basis of comparing image descriptors, multiple vs single
scale representations and classification rules. The lower
classification rates of the volumetric data are attributed to
the increased spatial complexity of the real structures and
their higher dimensionality. Nevertheless the main pur-
pose of the employed simple classification scheme is to es-
timate the class separation, validate our results and serve
as a common basis for comparisons between the exam-
ined descriptors. Our assessment of the experimental re-
sults mostly indicated that the tissue density map descriptor
produces better classification rates than the Jacobian fea-
tures overall. Moreover, for the case of tissue density maps,
the use of multiple scales improves the classification accu-
racy, presumably because of the more accurate estimation of
inter-individual distances provided by the equivalence sub-
classes.

4. Conclusions
A volume preserving image descriptor for computational

morphometry was presented in this work. This descriptor
incorporates shape and residual information derived from
a spatial normalization process by calculation of the tissue
density maps. Several degrees of rigidity in the deformation
field were also tested and it was indicated that the use of
multiple levels of smoothness of deformation enhances the
separation between different groups. The validation process
included voxel-wise statistical testing and estimation of the
class separation by classification. This methodology was
tested on synthetic 2-D and real 3-D data as well.

(a) (b)

(c) (d)
Figure 7. (a) One subject, (b) the template, (c) the normalized sub-
ject after the application of the registration algorithm, and (d) the
residual image between (b) and (c).

Our future goals include the introduction of a manifold
modelling approach of the tissue density maps by sub-space
decomposition to learn distances between different brain
anatomies and the investigation of alternate multiresolution
extensions of the proposed descriptor based on a non-linear
scale-space or wavelet decomposition structure.
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