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Sub-cellular trafficking and functionality of 2'-O-methyl and 2'-O-methyl-
phosphorothioate molecular beacons

Abstract
Molecular beacons (MBs) have shown great potential for the imaging of RNAs within single living cells;
however, the ability to perform accurate measurements of RNA expression can be hampered by false-positives
resulting from nonspecific interactions and/or nuclease degradation. These false-positives could potentially be
avoided by introducing chemically modified oligonucleotides into the MB design. In this study, fluorescence
microscopy experiments were performed to elucidate the subcellular trafficking, false-positive signal
generation, and functionality of 2'-O-methyl (2Me) and 2'-O-methyl-phosphorothioate (2MePS) MBs. The
2Me MBs exhibited rapid nuclear sequestration and a gradual increase in fluorescence over time, with nearly
50% of the MBs being opened nonspecifically within 24 h. In contrast, the 2MePS MBs elicited an
instantaneous increase in false-positives, corresponding to ~5–10% of the MBs being open, but little increase
was observed over the next 24 h. Moreover, trafficking to the nucleus was slower. After 24 h, both MBs were
localized in the nucleus and lysosomal compartments, but only the 2MePS MBs were still functional. When
the MBs were retained in the cytoplasm, via conjugation to NeutrAvidin, a significant reduction in false-
positives and improvement in functionality was observed. Overall, these results have significant implications
for the design and applications of MBs for intracellular RNA measurement.
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ABSTRACT

Molecular beacons (MBs) have shown great
potential for the imaging of RNAs within single
living cells; however, the ability to perform
accurate measurements of RNA expression can be
hampered by false-positives resulting from
nonspecific interactions and/or nuclease degrada-
tion. These false-positives could potentially be
avoided by introducing chemically modified
oligonucleotides into the MB design. In this study,
fluorescence microscopy experiments were per-
formed to elucidate the subcellular trafficking,
false-positive signal generation, and functionality
of 20-O-methyl (2Me) and 20-O-methyl-phosphoro-
thioate (2MePS) MBs. The 2Me MBs exhibited
rapid nuclear sequestration and a gradual increase
in fluorescence over time, with nearly 50% of the
MBs being opened nonspecifically within 24 h.
In contrast, the 2MePS MBs elicited an instanta-
neous increase in false-positives, corresponding to
�5–10% of the MBs being open, but little increase
was observed over the next 24 h. Moreover, traffick-
ing to the nucleus was slower. After 24 h, both MBs
were localized in the nucleus and lysosomal
compartments, but only the 2MePS MBs were still
functional. When the MBs were retained in the
cytoplasm, via conjugation to NeutrAvidin, a signif-
icant reduction in false-positives and improvement
in functionality was observed. Overall, these
results have significant implications for the design
and applications of MBs for intracellular RNA
measurement.

INTRODUCTION

It has long been recognized that RNAs play an important
role in the regulation of cell function and behavior.

This has led to the development of numerous techniques
capable of measuring gene expression and/or differences in
gene expression levels between populations of cells.
Commonly used techniques include reverse-transcriptase
polymerase chain reaction (RT-PCR), northern blot-
ting and microarrays. Although the value of these
population-based measurements cannot be disputed, it
has become more and more evident that important infor-
mation could be overlooked. For example, recent evidence
has suggested that genetically identical populations could
exhibit large cell-to-cell variations in gene expression and
this stochasticity can drive phenotypic diversity and cell
fate (1–5). Although methods such a RT-PCR can be
adapted to study RNA expression within single cells,
due to the complexity of this technique, fluorescence
in situ hybridization (FISH) generally remains the
method of choice for the single cell analysis of RNA
expression. Recent advances in FISH have extended the
value of this technique by allowing for the visualization of
individual RNA and miRNA transcripts within single cells
(6–9); however, despite these advances, FISH remains
severely limited in its ability to capture the dynamics of
gene expression.
In order to obtain a more complete spatial-temporal

profile of gene expression, much effort has recently been
devoted to developing probes for imaging RNA in single
living cells. One promising tool is the molecular beacon
(MB), which is an antisense oligonucleotide probe labeled
with a ‘reporter’ fluorophore at one end and a quencher
at the other end (10). In the absence of complementary
nucleic acid targets, the MBs form a hairpin struc-
ture, which brings the fluorophore and quencher into
close proximity, creating a low fluorescent state.
Hybridization with complementary nucleic acids targets
results in the separation of the reporter fluorophore
from the quencher and thus fluorescence is restored.
The unique ability of MBs to convert target recognition
into a detectable fluorescent signal has led to their use in
numerous live cell applications, ranging from monitoring
the transport and distribution of beta-actin mRNAs in

*To whom correspondence should be addressed. Tel: +1 215 898 8167; Fax: +1 215 573 2071; Email: atsourk@seas.upenn.edu

Nucleic Acids Research, 2009, 1–11
doi:10.1093/nar/gkp837

� The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Nucleic Acids Research Advance Access published October 9, 2009



motile fibroblasts to detecting the effect of therapeutics on
oncogene expression in breast cancer cells (11–29).
Although molecular beacons have clearly shown great

promise in the sensitive visualization of RNA in living
cells, considerable efforts are now being devoted to
optimizing the molecular beacon design to eliminate
false-positive signals resulting from nonspecific protein
interactions and/or nuclease degradation. For example,
we recently found that false-positive signals could simply
be avoided by retaining MBs within the cytoplasm, even
when nuclease-sensitive DNA backbones are incorporated
into the MB design (12,13). Cytoplasmic localization was
accomplished through the conjugation of MBs to
quantum dots and macromolecules (e.g. NeutrAvidin).
Presumably, cytoplasmic localization and the associated
elimination of false-positive signals could also be
achieved through the coupling of MBs to tRNA. It has
previously been shown that tRNA can be used to drive the
nuclear export of MBs (15).
As an alternative to retaining MBs in the cytoplasm, it

is possible that MBs could also be synthesized with chem-
ically modified oligonucleotide backbones to confer more
biostability compared with 20-deoxy MBs (30,31).
To this end, MBs composed of 20-O-methyl- (2Me),
locked nucleic acid (LNA)-DNA chimeras, and 20-O-
methyl phosphorothioate (2MePS) backbones have been
utilized for the long term intracellular monitoring of gene
expression (11,15,21,28,29). In one recent study, 2MePS
MBs were used to image viral replication in kidney cells
for up to 12 h. The results were extremely promising and
insightful; however, the subcellular trafficking of the
2MePS MBs and their ability to avoid nonspecific
interactions was not systematically evaluated. A better
understanding of this behavior is expected to be important
in applications where lower copy number RNAs must be
detected. Therefore, in this work, we examined the perfor-
mance of 2MePS MBs in living cells and compared their
behavior with 2Me MBs. In addition, we also evaluated
how the retention of each MB within the cytoplasm, via
conjugation to NeutrAvidin, affected its stability and
functionality. Overall, this study provides insights into
the fate of molecular beacons in the intracellular environ-
ment and is expected to benefit the design of MBs for
more accurate and sensitive intracellular measurements
of RNA.

MATERIALS AND METHODS

MB design

Antisense firefly luciferase 2Me RNA MBs and 2MePS
MBs possessing a TEX 615 fluorophore (Ex: 596 nm,
Em: 615 nm) at the 50-end, an Iowa Black RQ quencher,
IBRQ, at the 30-end and a biotin-dT group incorporated
in the 30 stem was synthesized by Integrated DNA
Technologies, Inc. (Coralville, IA, USA). The antisense
sequence of firefly luciferase (pGL3-Luc 235-252,
Promega, Madison, WI, USA) was chosen because it is
not complementary to any known endogenous RNA
target in MEF/3T3 cells. Specifically, the antisense
2Me RNA MBs and 2’MePS MBs employed were

TEX615-mGmUmCmAmCmCmUmCmAmGmCmGm
UmAmAmGmUmGmAmUmGmUmCmG/iBiodT/mGm
AmC/3IAbRQSp/and TEX615-mG*mU*mC*mA*mC*
mC*mU*mC*mA*mG*mC*mG*mU*mA*mA*mG*mU
*mG*m

A*mU*mG*mU*mC*mG*/iBiodT/*mG*mA*mC/
3IAbRQSp/, respectively. Luciferase target DNA oligo-
nucleotides were also synthesized, with the sequence: GT
CACGACATCACTTACGCTGAGTTT.

Synthesis of fluorescently labeled dextran and
NeutrAvidin-MB conjugates

Aminodextran (MW:10kDa, Invitrogen) was dissolved in
50mM sodium borate buffer (pH 8) at a concentration of
10mg/ml and reacted with 2.5mM Alexa750 NHS ester
(Invitrogen) at a dye to dextran ratio of 2.5:1. The
fluorescently labeled dextrans were purified on NAP-5
gel chromatography columns (Amersham Biosciences) in
phosphate buffer (48mM K2HPO4, 4.5mM KH2PO4,
14mM NaH2PO4), pH 7.2. The concentration of the
Alexa750 fluorophore was determined spectrophoto-
metrically using a Cary100 spectrophotometer (Varian).

NeutrAvidin (Thermo Scientific) was dissolved in
50mM sodium borate buffer, pH 8 at a concentration of
10mg/ml and reacted with 416.7 mM Alexa750-NHS ester
(Invitrogen) at dye to NeutrAvidin molar ratio of 2.5:1.
The fluorescent conjugates were purified on NAP-5 gel
chromatography columns (Amersham Biosciences) in
phosphate Buffer, pH 7.2. The number of fluorophores
per NeutrAvidin was determined spectrophotometrically.
It was determined that here were 1.9 Alexa750 fluoro-
phores per NeutrAvidin. Pegylated NeutrAvidin conju-
gates was synthesized by further reacting fluorescently
labeled NeutrAvidins with Methyl PEOn-NHS ester
(10 kDa MW, Laysan) at the 100:1 PEG to NeutrAvidin
molar ratio, and purified by repeated filtration and
dilution on Microcon YM-50 centrifugal devices (50 000
MW cutoff; Millipore). Initial experiments indicated that
when the pegylated NeutrAvidins were microporated into
MEF/3T3 cells, the 100:1 PEG labeling ratio yielded a
diffuse cytoplasmic distribution of NeutrAvidin as deter-
mined by fluorescence microscopy. Microporation and
fluorescence microscopy protocols are described below.
MB-NeutrAvidin conjugates were synthesized by
reacting MBs with purified, fluorescently labeled and
pegylated NeutrAvidins at a molar ratio of 1.5:1MB to
NeutrAvidin. All conjugation reactions were allowed to
react overnight at room temperature. All conjugates
were purified by repeated filtration and dilution on YM-
50 centrifugal devices. Concentrations were subsequently
determined spectrophotometrically.

Cell culture

MEF/3T3 cells (ATCC, Manassas, VA, USA) were
cultured in Dulbeco’s MEM media supplemented with
1% Penn/Strep, 10% fetal bovine serum and incubated
in 5% CO2 at 37

�C.
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Cellular delivery of MB and MB-conjugates

Microinjection. Microinjection of MEF/3T3 cells was
performed using a Femtojet and Injectman NI 2
(Eppendorf) microinjection system fitted with Femtotips
I (Eppendorf). Prior to use, Femtotips were treated with
Hexamethyldisilazne (Fluka) for 10min, followed by
repeated washes in phosphate buffer. Cells were incubated
in DMEM media, with no phenol red, supplemented with
10% FBS in glass bottom dishes (HBSt-5030, Willco
Wells) for all injection experiments. To deliver MBs and
MB-conjugates in living cells, aqueous samples containing
5 mM antisense luciferase MBs and 10 mM Alexa750-
labeled dextran or equivalent concentrations of MB-
NeutrAvidin conjugates in phosphate buffer were
microinjected into the cells. Following injection of the
probe, fluorescent images were acquired every 5min for
a total of 60min using an Olympus IX81 motorized
inverted fluorescence microscope, as described below.

Microporation. Microporation was performed with an
OneDrop MicroPorator (MP-100, BTX Harvard
Apparatus) as per manufacturer’s protocol. Specifically,
MEF/3T3 cells were seeded in T-25 flasks in DMEM-
FBS with no phenol red and no antibiotics 1 day prior
to microporation. Before microporation, the cells were
trypsinized, pelleted and resuspended in media without
phenol red and antibiotics, pelleted again, washed
with 1� PBS, and resuspended in resuspension buffer R
(BTX Harvard Apparatus) at a concentration of 120 000
cells per 11 ml. To deliver MBs into the cells, 1 ml of sample
containing MBs and Alexa750-labeled dextran were added
to the cells such that the final MB concentration and
Alexa750-labeled dextran were 5 mM and 10 mM, respec-
tively. To deliver MB-NeutrAvidin conjugates into cells,
1 ml of NeutrAvidin-MB conjugates were added to the cells
such that the final concentration of MBs was also 5 mM.
Ten microliters of the cells (i.e. 100 000 cells) incubated in
the presence of the probes were then microporated at
1500V with a 10-ms pulse width and three pulses total.
Following microporation the cells were wash once in 1�
PBS and resuspended in the DMEM (without phenol red
and supplemented with 10% FBS) and then seeded into
the 8-well Lab-Tek Chambered Coverglass (155409, Nalge
Nunc) or Glass bottom Dish (Willco Wells). Fluorescence
images were acquired �10min (i.e. immediately after
seeding cell seeding), 1, 2, 3, 4, 5 and 24 h after
microporation.

Preparation of fluorescent water-in-oil emulsions

Water-in-oil emulsions were prepared as previously
described (32). Briefly, Span 89 (447mg) and Tween-80
(54mg) were added to mineral oil (24 g) and the mixture
was vortexed vigorously. A 3-ml aliquot of this sample
was then added to a glass vial and stirred. An aqueous
sample containing either 5-mM MBs and 10-mM Alexa-
750-labeled dextran or 5-mM MB-NeutrAvidin conjugates
was then added dropwise to form a microemulsion.
An aliquot of the emulsion sample was placed on a
coverslip for microscopic analysis.

Fluorescent microscopy

All microscopy images were performed on an Olympus
IX 81 motorized inverted fluorescence microscope
equipped with a back-illuminated EMCCD camera.
(Andor), an X-cite 120 excitation source (EXFO) and
Sutter excitation and emission filter wheels. Images of
TEX615 Texas Red and Alexa750 were acquired using
the filter sets (HQ560/55, HQ645/75, Q595LP) and
(HQ710/75, HQ810/90, Q750LP) (Chroma), respectively,
with short exposure times to avoid unnecessary
photobleaching of the dyes. A LUC PLAN FLN 40�
objective (NA 0.9) was used for all imaging studies.
Results were analyzed with NIH Image J.

Ratiometric analysis

Water-in-oil emulsions. Emulsions containing MBs and
fluorescently labeled dextrans or MB-NeutrAvidin
conjugates were prepared as described above. For each
water-in-oil bubble, two images were acquired, one corre-
sponding to the Molecular Beacon reporter dye (i.e. Texas
Red) and the other to the reference dye (i.e. Alexa750) on
the dextran or NeutrAvidin. A region of interest (ROI)
was drawn around each bubble, and the total fluorescent
intensity was measured in each image. Similarly, the total
fluorescence intensity from an equal size ROI drawn
around a background region was also measured for each
image. The background subtracted fluorescence measure-
ment for the MB and the reference moiety was then
calculated. The fluorescence ratio, FMB/Fref, was then
calculated by dividing the background subtracted MB flu-
orescence by the background subtracted reference
fluorescence.
Ratiometric analysis was performed on images of

MEF/3T3 cells using a method analogous to that used
for water-in-oil emulsions, with an additional step to
subtract autofluorescence from the cells. For these
studies, the ROI was drawn around individual cells. For
microinjection, autofluorescence was determined by
acquiring images of the cell in the channels corresponding
to the MB and reference signals, respectively, prior to
microinjection. For microporation, the average cellular
autofluorescence was determined at various time points
following microporation of cells without any probes.
At least 10 cells were analyzed for each experiment.

Analysis of MB nonspecific interactions/degradation

When MBs are introduced into living cells, they often emit
a false-positive signal as a result of nonspecific interactions
and/or nuclease degradation. To determine the extent
of this nonspecific opening, the fluorescence ratio, FMB/
Fref, was first determined for individual cells and
microemulsion samples as described above. Then, the
percent of MBs opened could be calculated as the follows:

%MBs opened ¼
RCELL � RBUBBLES,CLOSED

RBUBBLES,OPENED � RBUBBLES,CLOSED

1

where RCELL is the fluorescence ratio, FMB/Fref, in living
cells, and RBUBBLES, MB CLOSED and RBUBBLES, OPENED
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refer to the fluorescent ratio, FMB/Fref, for the unhybri-
dized and fully hybridized MBs in aqueous bubbles
prepared from water-in-oil emulsions, respectively.

Functionality assay

Aqueous samples containing 100-mM synthetic nucleic
acid targets complementary to the MBs in 1� PBS, pH
7.4 were microinjected into MEF/3T3 cells containing
MBs or MB-conjugates. The targets were injected into
cells at 3–5 h and 24 h post-microporation. Fluorescent
images of each cell were acquired immediately before
and shortly after injection.

RESULTS AND DISCUSSION

Subcellular trafficking and nonspecific opening of MBs
and MB-NeutrAvidin conjugates following microinjection

Previously, we have shown that when nonsense DNA-
and 2Me MBs are introduced into living cells by
microinjection they are quickly sequestered into the
nucleus and emit a false-positive signal (12,13). Here we
evaluated whether MBs having stem and loop domains
composed of both 2Me RNA bases and phosphorothioate
internucleotide linkages (2MePS) emit similar false-
positive signals. Results were compared with an analogous
MB composed purely of a 2Me RNA backbone. Since PS

linkages have previously been shown to be highly resistant
to nuclease digestion (29,33), it was hypothesized that
if the nonsense 2MePS MBs exhibited any increase in
fluorescence it would likely reflect nonspecific protein
interactions. It should be noted that although 2Me
oligonucleotides are also known to exhibit improved
nuclease resistance compared with DNA, it has been
shown that they are still susceptible to intracellular
nuclease degradation (34–37).

2Me MBs. In agreement with our previous findings (13),
immediately following the cytoplasmic injection of
nonsense 2Me MBs into MEF-3T3 cells, the majority of
the 2Me MBs were sequestered into the nucleus,
where they seemed to emit a bright fluorescent signal
(Figure 1A). To determine whether the apparent increase
in fluorescence was simply due to the accumulation of
MBs in the nucleus or the emission of a false-positive
signal, the percentage of MBs that were open was
quantified as a function of time. This was accomplished
through the simultaneous injection of reference dyes
(Alexa750-labeled dextran) and 2Me MBs and the subse-
quent determination of the fluorescent ratio (i.e. total
integrated MB fluorescence/total integrated Alexa750 flu-
orescence, FMB/Fref). An important benefit of performing
a ratiometric analysis is that it allows for normalization
against cell-to-cell variations in MB fluorescence that

Figure 1. Fluorescence images of MBs and MB-NeutrAvidin conjugates following microinjection in living MEF/3T3 cells. The representative images
shown were acquired 20min following the injection of (A) 2Me MBs, (B) 2Me MB-NeutrAvidin conjugates, (C) 2MePS MBs and (D), 2MePS MB-
NeutrAvidin conjugates. The MBs used were not complementary to any known endogenous RNA in MEF/3T3 cells.

4 Nucleic Acids Research, 2009



result from differences in the efficiency of probe delivery.
To quantify the percent of MBs that were open, the
intracellular ratio was compared with fluorescence micros-
copy measurements of the same MB-dextran samples
prior to intracellular delivery (Supplementary Figure
S1). Specifically, water-in-oil emulsions were prepared
with the MB-dextran samples in the absence and presence
of target, representing 0% and 100% opening of the MBs,
respectively. Images of the fluorescent bubbles were then
acquired directly on the microscope and the ratio, FMB/
Fref, was calculated. Using these extracellular measure-
ments as standards, the percent of open MBs within
living cells could readily be determined. It should be
noted that this assumes that each MB is either in an open
or closed state, with no intermediate levels of fluorescence.
This is unlikely, but was done for simplification.

It was found that following the intracellular delivery of
2Me MBs, the percent of MBs that were open increased
from 1.06%±0.45% (SE) to 5%±0.84% (SE) over the
course of 60min (Figure 2A). In order to confirm that the
increase in fluorescence was not due to undesirable MB
hybridization or sequence-specific protein interactions,
live cell competitive inhibition studies were performed.
Specifically, an excess of linear 2Me RNAs, with the
same targeting sequence as the MBs, were co-injected
with MBs into the MEF-3T3 cells. It was expected that
if the MB signal were do to target hybridization or
sequence-specific protein interactions, then the 2Me
RNAs would compete for the same binding sites and
reduce/eliminate the fluorescent signal. Despite injections
of 10-fold molar excess of 2Me RNAs, we still observed an
increase in cellular fluorescence. These findings suggest
that the false-positive signals likely result from nuclease
degradation and/or nonspecific protein interactions.

2Me MB-NeutrAvidin conjugates. When 2Me MBs
were conjugated to fluorescently-labeled, pegylated
NeutrAvidin prior to injection into MEF-3T3 cells, fluo-
rescent signals from the MBs were predominantly
observed within the cytoplasm over the course of 60min

(Figure 1B). On average only 0.34%±0.30% were
opened by nonspecific interactions in living cells immedi-
ately following cytoplasmic injection (Figure 2A), which
was not significantly different from no opening (P=0.12,
two-tailed t-test assuming equal variance). Further, no
statistically significant increase in fluorescence was
observed for at least 60min. These results are similar to
those previously observed with DNA MB-Quantum dot
conjugates and suggest that MBs remain intact and in a
quenched hairpin conformation when limited to the
cytoplasmic compartment (12).

2MePS MBs. When 2MePS MBs were injected into the
cytoplasm of living cells, they exhibited behavior that was
distinct from the analogous 2Me MBs. Specifically, the
2MePS MBs exhibited much slower nuclear trafficking,
with little nuclear localization evident even 20min after
microinjection (Figure 1C). However, by 1 h the 2MePS
MBs were also found to reside predominantly in the
nucleus. In addition to the slower nuclear trafficking, it
was also found that a fraction [5.7±0.91% (SE)] of
2MePS MBs opened immediately following injection
into MEF3T3 cells. This immediate increase in fluores-
cence was not observed with 2Me MBs. Little fur-
ther increase in 2MePS MB fluorescence was observed
over the next 60min (Figure 2B). Competitive inhi-
bition experiments, with linear 2MePS RNAs that
target the same sequence as the MBs, were used to
confirm that the false-positive signal was not the result
of RNA hybridization or sequence-dependent protein
interactions.

2MePS MB-NeutrAvidin conjugates. When 2MePS MBs
were coupled to NuetrAvidin prior to injection into living
cells, as expected, MB fluorescence was only observed in
the cytoplasm (Figure 1D); however, there was still an
immediate increase in the fluorescent ratio, FMB/Fref,
which corresponded to 6.70±1.02% of the MBs being
open. There was no further increase in MB opening over
the next 60min (Figure 2B). In general, the addition of

Figure 2. Temporal measurements of nonspecific MB opening, following microinjection into MEF/3T3 cells. Nonsense (A) 2Me MBs (filled
diamonds) and 2Me MB-NeutrAvidin conjugates (open circles) as well as (B) 2MePS MBs (filled diamonds) and 2MePS MB-NeutrAvidin conjugates
(open circles) were microinjected into living cells and fluorescence images were acquired every 5min for 60min. Quantification of MB opening was
calculated as described in the ‘Materials and methods’ section. Each data point represents that mean and standard deviation from three to four cells.

Nucleic Acids Research, 2009 5



NeutrAvidin did not result in any statistically significant
improvement in the prevention of false-positive signals, as
it did with 2Me MBs.

Long-term subcellular trafficking, nonspecific opening and
functionality of MBs and MB-NeutrAvidin conjugates

Although microinjection can be used to deliver MBs and
MB-NeutrAvidin conjugates directly into the cytosol
of living cells, this method is tedious, inefficient and
impractical for the long-term analysis of gene expression
in large numbers of cells. Recently, we found that
microporation offers an efficient alternative (www
.microporator.com) (13). Microporation is a microliter-
volume electroporation process that exhibits a reduction
in the many harmful events often associated with
electroporation, including heat generation, metal ion dis-
solution, pH variation and oxide formation. When used to
deliver MB-NeutrAvidin conjugates into MEF-3T3 cell,
microporation exhibited a transfection efficiency of
>93% (i.e. percent of cells with probes inside) and an
average cell viability of 86% (13). Therefore, micro-
poration was adopted here as a delivery method to facil-
itate the long-term analysis of 2Me and 2MePS MBs, as
well as the corresponding MB-NeutrAvidin conjugates in
living cells.

2Me MBs. When nonsense 2Me MBs were microporated
into MEF-3T3 cells, they were immediately sequestered
into the nucleus (<10min) with only a small fraction
remaining in the cytoplasm (Figure 3A). This was
similar to what was observed following microinjection.
No significant change in the intracellular distribution
was observed over the next 5 h; however, by 24 h after
microporation many bright fluorescent spots could be
observed in the cytoplasm. Co-localization of these
bright spots with the lysosomal labeling dye,
LysoTracker, indicated that these MBs were entrapped
within lysosomes. Nonetheless, a significant number of
MBs could still be observed in the nucleus.
Quantification of the fluorescent images revealed that
�15% of the 2Me MBs were opened nonspecifically
within 10min after microporation (Figure 4A). This was
significantly higher that what was observed at a similar
time after microinjection, where only �2% of the MBs
were open. It is hypothesized that this increase in non-
specific opening may reflect an increase in nuclease
activity following microporation. After the initial jump
in nonspecific opening, the percent of open MBs steadily
increased to �50% over the next 24 h. Although it can be
argued that the increase in false-positive signals reflects the
degradation of MBs in lysosomes, it appears that a signif-
icant degree of false-positive signals are observed even
prior to any significant lysosomal entrapment was
observed.
To determine whether 2Me MBs were still functionally

active at various times after microporation, complemen-
tary RNA targets were injected into individual cells 3 h
and 24 h after microporation (Figure 5A). Fluorescent
measurements were then acquired to determine whether
any increase in fluorescence, corresponding to MB

hybridization, could be detected. After 3 h, functional
MBs were observed in both the cytoplasm and the
nucleus. Conversely, after 24 h no enhancement in fluores-
cence was observed after injection of the nucleic acid
targets. This was quite surprising considering that a rela-
tively diffuse fluorescent signal could be observed in the
nucleus of most cells (and to a lesser extent the cyto-
plasm), giving the appearance that these MBs were avail-
able for hybridization, but in fact they were not.

Based on the above findings, there appear to be several
lines of evidence that suggest nuclease degradation is
responsible for the false-positive MB signals. For
example, there is a significant disparity between the rate
of nuclear sequestration and the rate of false-positive
signal generation. It is expected that there would be a
better correlation between these two events if non-
specific interactions in the nucleus were the cause of the
false-positive signal. Further, it seems unlikely that
nonspecific interactions would only occur in the nucleus
and not the cytoplasm, which is what was observed. The
continual increase in false-positive signals over time also
seems to better match what would be expected for enzy-
matic degradation. Finally, 24 h after microporation
a diffuse fluorescent signal could still be observed in
the cytoplasm and nucleus, but none of these MBs was
functional. This seems consistent with the presence of
degraded MB side-products.

2Me MB-NeutrAvidin conjugates. When 2Me MB-
NeutrAvidin conjugates were microporated into MEF-
3T3 cells, they localized primarily in the cytoplasm of
the cell although a faint fluorescent signal could also be
observed in the nucleus (Figure 3A). Within several hours,
it became clear that some MB-NeutrAvidin conjugates
had indeed passed through the nuclear pores. This was
not observed following microinjection. Presumably,
the passage of MB-NeutrAvidin conjugates into the
nucleus arose from the transient permeablization of
the nuclear membrane during microporation. Within 5 h,
the majority of the 2Me MB-NeutrAvidin conjugates were
determined to be in lysosomes. Only a faint fluorescent
signal remained in the cytosol and nucleus at this time
point. This seems to indicate that the attachment of
NeutrAvidin to MBs encourages nonspecific interactions,
even when heavily pegylated. By 24 h, the majority of the
MBs seemed to be localized within lysosomes.

Taking into consideration the gradual trafficking of
MB-NeutrAvidin conjugates to lysosomes following
microporation, it was not surprising to find that there
was also an increase in the nonspecific opening of MBs.
Quantitative analysis of these fluorescent signals indicated
that the percent of MBs opened over the course of 4 h
increased from 4% to 20%, but then plateaued
(Figure 4A). No further increase in MB fluorescence was
observed even at 24 h. Interestingly, this may indicate that
the false-positive signal arose from nuclear localization,
not lysosomal localization, since there was clearly an
increase in lysosomal entrapment between 5 and 24 h.
Conversely, there was no clear increase in nuclear local-
ization after the initial permeabilization of the nuclear
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Figure 3. Fluorescence images of MBs and MB-NeutrAvidin conjugates in living MEF/3T3 cells at various time points after microporation. Images
of the MB signals are shown for 2Me MBs at (A) 10min, (B) 5 h and (C) 24 h and for 2Me MB-NeutrAvidin conjugates at (D) 10min, (E) 5 h and
(F) 24 h following microporation. Likewise, images of the 2MePS MBs acquired at (G) 10min, (H), 5 h, (I) 24 h and images of the 2MePS MB-
NeutrAvidin conjugates acquired at (J) 10min, (K) 5 h, (L) or 24 h after microporation in MEF/3T3 cells are also shown.
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membrane, likely because the NeutrAvidin prevented
further entry.
Although 2Me MBs and 2Me MB-NeutrAvidin

conjugates were both found to emit false-positive
signals, the presence of NeutrAvidin did seem to reduce
the percent of MBs that were opened nonspecifically at
each of the time points tested. Further, in contrast to
2Me MBs, there were still some 2Me MB-NeutrAvidin
conjugates that remained functionally active after 24 h
(Figure 5B). Specifically, when complementary nucleic
acid targets were injected into the cytoplasm of cells,
24 h after being microporated with 2Me MB-
NeutrAvidin conjugates, an increase in fluorescence was
observed throughout the cytosol and nucleus. These
observations suggest that a fraction of the 2Me MB-
NeutrAvidin conjugates still resided in the cytosol and
could still hybridize to target nucleic acids. If all of the
2Me MB-NeutrAvidin conjugates were entrapped within
lysosomes, they likely would not have had access
to the complementary nucleic acids that were injected.
Therefore, it appears the incorporation of NeutrAvidin
into the MB design also added some benefit on the long-
term functionality of the MBs.

2MePS MBs. When 2MePS MBs were delivered into
MEF-3T3 cells via microporation, they initially
appeared to be distributed uniformly throughout the
cell; however, over time it did become evident that they
were being trafficked to the nucleus (Figure 3B). The rate
at which 2MePS MBs were trafficked to the nucleus was
clearly far slower than the analogous 2Me MBs, taking
hours as opposed to minutes. Interestingly, the 2MePS
MBs that were observed in the nucleus seemed to
localize primarily within the nucleoli (Figure 4B). By 5 h
after microporation, the majority of the 2MePS MB
actually resided in the nucleoli, although some evidence
of lysosomal entrapment also became apparent. By 24 h
the 2MePS MBs were found primarily in lysosomes, with
only a faint fluorescent signal remaining in the cytosol
and nucleus.

Quantification of the fluorescent images revealed that
�10% of the 2MePS MBs were opened immediately fol-
lowing microporation; however, no further increase in
fluorescence was observed over the next 5 h and only a
slight increase in fluorescence was observed after 24 h
(Figure 4B). The initial jump in 2MePS MB fluorescence
is quite distinct from the slow increase in fluorescence
observed with 2Me MBs. These differences may reflect
alternative mechanisms by which the false-positive
signals are generated. It is hypothesized that the 2MePS
MBs are more susceptible to nonspecific protein
interactions, whereas the 2Me MBs are more susceptible
to nuclease degradation. A higher extent of non-specific
interactions may explain why 2MePS MBs exhibited
higher levels of lysosomal entrapment compared with
the 2Me MBs. Interestingly, despite the high degree of
lysosomal entrapment, it was found that some 2MePS
MBs did still reside in the cytoplasm and these MBs
were still functionally active, i.e. they were still capable
of hybridizing complementary nucleic acid targets, 3 h
and 24 h after microporation, respectively (Figure 5C).

2MePS MB-NeutrAvidin conjugates. When 2MePS MBs
were conjugated to NeutrAvidin, they were found to
behave very similar to the 2Me MB-NeutrAvidin
conjugates, following microporation into MEF-3T3 cells.
Specifically, although initially they appeared to be rela-
tively diffused in the cytoplasm, within several hours the
majority of the 2MePS MB-NeutrAvidin conjugates were
found in lysosomes (Figure 3B). Moreover, it appeared
that the microporation procedure also allowed some of
the 2MePS MB-NeutrAvidin conjugates to pass through
the nuclear pores, as some fluorescent signal were
observed in the nucleus. By 24 h, nearly all of the
2MePS MB-NeutrAvidin conjugates were localized
within lysosomes.

While the distribution and trafficking of the 2MePS
MB-NeutrAvidin conjugates mirrored that of the 2Me
MB conjugates, the fluorescent emission was actually
quite different. Specifically, the 2MePS MBs exhibited an

Figure 4. Temporal measurements of non-specific MB opening, following microporation into MEF/3T3 cells. Nonsense (A) 2Me MBs (filled
diamonds) and 2Me MB-NeutrAvidin conjugates (open circles) as well as (B) 2MePS MBs (filled diamonds) and 2MePS MB-NeutrAvidin conjugates
(open circles) were microporated into living cells and fluorescence images were acquired over the course of 24 h. Quantification of MB opening was
calculated as described in the ‘Materials and Methods’ section. Each data point represents that mean and standard deviation from at least 10 cells.
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immediate increase in fluorescence corresponding to �8%
of the MBs being opened nonspecifically, but then no
further increase in fluorescence was observed over the
next 24 h (Figure 4B). This is in sharp contrast to the
time-dependent increase in fluorescence observed with
the 2Me MB-NeutrAvidin conjugates and more closely
resembles the behavior of the unconjugated 2MePS
MBs. These findings seem to further support our hypoth-
esis that phosphorothioate linkages are resistant to
nuclease degradation, but are more susceptible to
nonspecific protein interactions.

Overall, the attachment of NeutrAvidin to 2MePS MBs
did reduce their nuclear sequestration, as expected;
however, it also led to the accelerated trafficking of the
MBs to lysosomes and only provided a marginal reduction
in the false-positive signal. Therefore, the presence of

NeutrAvidin did not seem to yield the same advantages
as it did with 2Me MBs.
To evaluate whether the 2MePS MB-NeutrAvidin

conjugates were still functional 3 h and 24 h following
microporation, complementary nucleic acid targets were
microinjected into single cells at these two time points
(Figure 5D). As expected, at least some MBs were still
functional at both times.

CONCLUSION

Although numerous studies have shown that MBs can be
used to visualize endogenous RNA in living cells, the sus-
ceptibility of MBs to nonspecific interactions and/or
nuclease degradation and the resulting false-positive
signals has limited their use to the study of highly

Figure 5. Evaluation of MB functionality in MEF/3T3 cells at various times after microporation. Excess complementary nucleic acid targets were
injected into MEF/3T3 cells 3 h and 24 h after being microporated with (A) 2Me MBs, (B) 2Me MB-NeutrAvidin conjugates, (C) 2MePS MBs and
(D) 2MePS MB-NeutrAvidin conjugates. Fluorescent images of the cells were acquired immediately before and shortly after microinjection.
Representative fluorescent images are shown.
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overexpressed RNA. This has led to the evaluation of
alternative nucleic acid chemistries that are intended to
confer increased resistance to nuclease degradation and
less susceptibility to nonspecific interactions. In this
study, we systematically analyzed the subcellular traffick-
ing, false-positive signal generation, and functionality of
MBs with 2Me and 2MePS modifications. Interestingly, it
was found that 2Me MBs, which are perhaps the most
widely utilized MB composition, were highly susceptible
to nonspecific interactions and/or nuclease degradation
and emitted a false-positive signal that increased with
time. These false-positive signals, however, could be
completely eliminated simply by attaching the MBs to
NeutrAvidin, which prevented their translocation to the
nucleus; at least when microinjection was used to deliver
the MB-NeutrAvidin conjugates into living cells.
Unfortunately, the absence of false-positive signals did
not carryover to when microporation was used to deliver
the MB-NeutrAvidin conjugates. In addition, false-
positive signals could not be eliminated when 2MePS
MBs were utilized regardless of whether or not they
were conjugated to NeutrAvidin. Therefore, if highly sen-
sitive measurements of RNA expression are required, 2Me
MB-NeutrAvidin conjugates seem to provide the best
option. This was the only strategy tested that did not
result in any detectable false-positive signals. Of course,
one concern with incorporating NeutrAvidin into the MB
design is that it could impede the free diffusion of the MBs
in the cytoplasm, thereby reducing hybridization kinetics.
Alternatively, NeutrAvidin could potentially reduce the
accessibility of MBs to any RNAs associated with
cytosolic proteins. These possible shortcomings must be
taken into consideration when using MB-NeutrAvidin
conjugates.
When a more high-throughput approach to studying

gene expression is required, then 2Me MB-NeutrAvidin
conjugates no longer provide a suitable option for
highly sensitive measurements of RNA due to the high
level of nonspecific MB opening observed following
microporation. Even more problematic was that the
extent of false-positives increased with time. The 2MePS
MBs also opened nonspecifically following microporation,
but to a much lower extent and the false-positive signal
did not vary with time, making it easier to account for.
NeutrAvidin could also be conjugated to 2MePS MBs to
reduce nuclear sequestration, although the addition of
NeutrAvidin did not seem to result in any significant
improvement in reducing the false-positives.
It should be noted that although the results that

were presented here were for MEF-3T3 cells, similar
findings were also obtained with HeLa and MCF-7
cells (data not shown). Therefore, we believe the
behavior observed is true in general and not specific for
MEF-3T3 cells.
Overall, these results suggest that the optimal MB

backbone may be dependent on the mechanism of
delivery. Further, we demonstrate that oligonucleotide
modifications can have a profound impact on the fate of
MBs in the intracellular environment, highlighting the
need to continue evaluating alternative MB designs.
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