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Probabilistic Segmentation of Brain Tumors Based on Multi-Modality
Magnetic Resonance Images

Abstract
In this paper, multi-modal Magnetic Resonance (MR) images are integrated into a tissue profile that aims at
differentiating tumor components, edema and normal tissue. This is achieved by a tissue classification
technique that learns the appearance models of different tissue types based on training samples identified by
an expert and assigns tissue labels to each voxel. These tissue classifiers produce probabilistic tissue maps
reflecting imaging characteristics of tumors and surrounding tissues that may be employed to aid in diagnosis,
tumor boundary delineation, surgery and treatment planning. The main contributions of this work are: 1)
conventional structural MR modalities are combined with diffusion tensor imaging data to create an
integrated multimodality profile for brain tumors, and 2) in addition to the tumor components of enhancing
and non-enhancing tumor types, edema is also characterized as a separate class in our framework.
Classification performance is tested on 22 diverse tumor cases using cross-validation.
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PROBABILISTIC SEGMENTATION OF BRAIN TUMORS BASED ON MULTI-MODALITY 
MAGNETIC RESONANCE IMAGES  

 
Hongmin Cai, Ragini Verma, Yangming Ou, Seung-koo Lee, Elias R. Melhem, Christos Davatzikos  

 
Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania 

 
ABSTRACT 

In this paper, multi-modal Magnetic Resonance (MR) 
images are integrated into a tissue profile that aims at 
differentiating tumor components, edema and normal tissue. 
This is achieved by a tissue classification technique that 
learns the appearance models of different tissue types based 
on training samples identified by an expert and assigns tissue 
labels to each voxel. These tissue classifiers produce 
probabilistic tissue maps reflecting imaging characteristics 
of tumors and surrounding tissues that may be employed to 
aid in diagnosis, tumor boundary delineation, surgery and 
treatment planning. The main contributions of this work are: 
1) conventional structural MR modalities are combined with 
diffusion tensor imaging data to create an integrated 
multimodality profile for brain tumors, and 2) in addition to 
the tumor components of enhancing and non-enhancing 
tumor types, edema is also characterized as a separate class 
in our framework. Classification performance is tested on 22 
diverse tumor cases using cross-validation. 
 
Index Terms—Brain tumors, tissue classification, multi-
modal MRI data, edema. 
    

1. INTRODUCTION 
 

Effective brain tumor treatment ideally calls for an accurate 
identification of boundaries between tumor, edema and 
healthy tissue. This is very challenging mainly owing to the 
fact that high-grade tumors are inherently diffuse and 
infiltrative, they invade the surrounding healthy tissue, and 
are heterogeneous, comprising enhancing and non-enhancing 
tumor tissue types and edema, rendering the transition from 
tumor to healthy tissue gradual. It is therefore challenging, if 
possible at all, to identify a clear transition from healthy 
tissue to edema to tumor by an inspection of the MR images 
alone. Clinically, conservative treatments based primarily on 
clearly visible tumor leave large parts of brain tissue 
untreated, likely leading to faster tumor recurrence and 
spread, and lower chance of survival.  This paper aims at 
creating tissue profiles that identify different tumor 
components, edema and healthy tissue using a combination 
of several structural MR modalities and diffusion tensor 
MRI.   

While clinical decisions on tumor treatments rely, in 
part, on radiological evaluation of structural images, such as 
Fluid Attenuated Inversion Recovery (FLAIR) and T1-
weighted MR images, to obtain estimates of tumor, edema 
and healthy tissue, that may be rater dependent,  several 
automated methods of tumor segmentation [1-4] have 
produced promising results mostly in differentiating tumor 
and normal tissue based on the traditional T1 and/or T2  MR 
modalities.  However, perhaps due to the lack of variability 
in the information captured in the MR modalities that 
provide distinctive appearance signature of each tissue type, 
most of the existing methods have difficulty in 
differentiating tumor components and edema. In addition, 
although diffusion tensor imaging (DTI) has been  
successfully employed to investigate the tumor progress 
along the white matter (WM) tracts [5], it has never been 
integrated with structural modalities.  

In this paper, we seek to address and alleviate these 
issues by combining structural MRI and DTI images into a 
multimodality tissue profile, which paves the way for 
classifying healthy and tumor tissues, followed by a 
categorization of brain tissue into more specific classes of 
enhancing tumor (ET), non-enhancing tumor (NET), edema, 
white matter (WM), gray matter (GM) and cerebrospinal 
fluid (CSF). The proposed brain tissue classification 
framework incorporates intensities from each modality into 
an appearance signature of each voxel and trains appearance 
based classifiers using a combination of pattern 
classification techniques, based on training samples 
identified by a human expert.  In addition to the hard 
segmentation of tumor components, a probability map is also 
generated for each of the six classes that characterize 
potential tumor infiltration and tumor growth prediction. The 
contributions of this work are: 1) creation of a multimodality 
tumor profile by integrating DTI images with conventional 
structural images, using tumor data from several patients; 2) 
investigation of the potential of this multi-modal 
classification in differentiating edema from the tumor 
components. Accurate and consistent tumor classification 
results for several tumor brains illustrate the robustness of 
our framework, and suggest potential applications in 
assessing tumor growth and in computer-guided surgery.  
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2. METHOD 
With the aim of distinguishing between healthy tissue and 
tumor components, our classification strategy defines 6 types 
of tissue classes: tumor (ET and NET), healthy tissues (WM, 
GM and CSF), and edema. Based on expert-defined training 
samples, classifiers were trained for each of the tissue types 
using information from a single patient or by pooling 
training data from several patients leading to intra- and inter- 
patient framework and were applied to new data from the 
same or another patient. Details of our framework are 
provided below.  
 

2.1 Data Acquisition  
For creating our multi-modality profile, we use seven MR 
images: five structural MR acquisition protocols, namely, 
B0, Diffusion Weighted Images (DWI), Fluid-Attenuated 
Inversion Recovery (FLAIR), T1-weighted, and gadolinium-
enhanced T1-weighted (GAD), and two scalar maps 
computed from the DTI, namely, Fractional Anisotropy (FA) 
and Apparent Diffusion Coefficient (ADC).  
 
2.2 Preprocessing 
Prior to creating the intensity features from these images, the 
images are skull stripped and Gaussian smoothed using FSL 
[6]. Then, for each patient, all the modalities are rigidly co-
registered to the T1-weighted image using FSL’s registration 
algorithm, called FLIRT[7]. It may be noted that as the 
feature vectors are created by fusing information across 
modalities from within the same patient, rigid registration 
suffices between the modalities. In order to combine training 
samples from different patients, the images of the same 
modality are histogram matched across all patients. Fig. 1 
shows representative slices from each of the acquisition 
protocols used to define the intensity feature vector for each 
voxel.  
 
2.3 Definition of Training Samples 
In order to train a robust classifier for each tissue class, we 
require samples of ET, NET and edema based on expert 
knowledge. Training samples for each of these classes were 
conservatively identified by a neuro-radiologist (SKL) 
typically using the FLAIR and GAD-T1 images. Edema is 
very difficult, if possible at all, to define with high 
confidence, because it is often mixed with infiltrating tumor. 

In defining edema, our neuro-radiologist selected regions 
that based on the inspection of several MR modalities like 
GAD (for enhancing tumor) and FLAIR (for determining 
tumor boundaries). This was combined with implicit spatial 
knowledge about proximity of abnormal tissue to tumor, 
which would be identified as edema. Training samples for 
the healthy tissue (WM, GM and CSF) classes were defined 
using segmentation. After masking out a large area that 
contains the tumor and possibly, some normal tissue, a k-
means clustering based method, is applied to segment the 
remaining brain regions that are purely normal into WM, 
GM and CSF sub-regions. Furthermore, to avoid bias in the 
training phase, the number of voxels selected in each 
WM/GM/CSF sub-region is set equal to the average number 
of samples in enhancing, non-enhancing and edema classes. 
See Fig. 2 (a – c) for training samples identified in red.  
 
2.4 Design of Features  
The feature vector for each voxel x I∈ , where I is 3D image 
volume, is defined as  
   

(ADC) (B0) (DWI) (FA) (FLAIR) (T1) (GAD) T
v [I ,    I ,   I ,   I ,   I ,   I ,   I ]x x x x x x x x=                       

where (M)
xI  denotes the intensity of image of modality M at 

voxel x . These feature vectors are defined at each voxel in 
the training samples. In order to incorporate the variability 
around a voxel, we extend this voxel-wise feature to 
incorporate neighborhood information by using four of its 
neighbors. 7 dimensional intensity features for these 5 
voxels are stacked into a long vector (35 dimensional), 
which is then used as a feature vector.  
 
2.5 Classifier Construction 
We construct two kinds of classifiers: 1) Intra-patient 
classifier: classifier is built using only half of each patient’s 
expert defined training sample, then tested on the remaining 
half and 2) Inter-patient classifier: the classifier is trained 
and tested on separate datasets. Because our database is 
quite limited at this point, we used leave-one-out cross-
validation mechanism.  At the outset, it may be said that 
intra-patient classification is good in cases for which 
conservative training samples can be identified on the 
patient. Inter-patient classification addresses new cases for 
which no training data is available.  

Fig. 1. A representative slice from each of the seven MR modalities used in creating the multimodality tissue profile. 
These have been rigidly co-registered to the T1 image of the patient. From left to right, the images are GAD, T1, FA, 
FLAIR, ADC, B0 and DWI. We use red arrows to stress tissue differences across the MR modalities. 
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Intra-patient classification: We use the Quadratic 
Discriminant Analysis (QDA) [8] method, to design 
discriminant functions for each of the 6 tissue classes. By 
computing the mean and the covariance matrix over the 
feature vectors of the training samples for the 6 tissue 
classes, we obtain a Quadratic Discriminant function [8] for 
each tissue class, that we refer to as the respective tissue 
class classifier.  This discriminant evaluated at each voxel, 
provides the posterior probability of that voxel belonging to 
one of the 6 classes of ET, NET, edema, WM, GM and CSF.  
This produces a voxel-wise probability map for each brain, 
one pertaining to each of the 6 tissue classes. These 
discriminant values are normalized for visualization 
purposes. In addition, we can obtain hard segmentation by 
assigning the voxel to the class having the highest 
discriminant value, among the six classes.  By assuming 
multivariate Gaussian distribution, the discriminant function 
can be computed efficiently and provides fast and efficient 
classification. The classifiers were trained on half of the 
training regions for that patient and tested on the remaining 
half.  
 
Inter-patient classification: Classification of tumor and 
healthy tissue of a patient has a high accuracy in our 
framework when tested on that same subject. While useful 
for individual patient analysis and for treatment planning, 
such a profile can only be applied to current and perhaps 
future scans of that patient only, owing to the fact that the 
profile will not be able to capture the variability across 
patients. Indeed, these intra-patients classifiers typically fail 
on new patients, owing to the tumor variability. This 
motivated the definition of classifiers for tissue types, using 
training data from many different patients, incorporated into 

an Support Vector Machine (SVM)-based framework. In this 
case, we combine training samples from across subjects, to 
obtain a more generalizable tissue classification. We design 
an SVM based classifier for all the 6 tissue classes by taking 
training samples from all the patients [9]. Due to the high 
variability across individuals, Quadratic Discriminant 
classification with their multinomial assumption does not 
provide adequate classification. We define classifiers, one 
pertaining to each of healthy (WM, GM and CSF 
combined), ET, NET and edema, in a one-versus-all 
framework. As SVM classifiers are tolerant to high 
variability, a single class for healthy tissue suffices and in 
addition, data from several patients can be combined to 
obtain robust classifiers. Responses from the classifiers are 
combined into a voting framework to obtain tissue 
classification.  The classifiers are validated using a leave-
one-out mechanism on the patients, that is, classifiers were 
trained using training samples from all patients except one, 
which was used for testing. We now proceed to apply our 
framework to a dataset of tumor patients.  
 

3. RESULTS AND DISCUSSION 
 
The experiments were conducted with the aim of 
distinguishing between tumor tissue types in patients and 
identifying regions of probable abnormality by using the 
multi-modality tumor profile. We have applied our 1) intra-
patient and 2) inter-patient classification on a dataset 
consisting of twenty-two patients with newly diagnosed 
primary brain tumors who have not received any therapy 
prior to imaging at our institution (Hospital, University of 
Pennsylvania).  All these patients have been diagnosed with 
a high grade (grade 3 or 4) tumor. The MR data for each 
patient was acquired either on a 3T Scanner (Siemens, Trio) 
or on a 1.5T (GE Medical Systems, Genesis Trio) scanner, 
under an IRB approved protocol with informed consent and 
is HIPAA compliant.  
 
3.1. Intra-patient classification 
For each patient in our dataset, we use half of the ground 
truth for training Quadratic Discriminant classifiers and the 
remaining (spatially non-contiguous) half region for testing 
each of the 6 tissue classifiers. The multivariate discriminant 
is computed for each voxel in the brain using Quadratic 
Discriminant classifiers, as explained in Section 2.5, and 
then normalized into a brain tissue probability map.  
     Fig. 2 shows the results of an application of our 
framework on one typical patient – female, age 53, 
diagnosed with a grade 3 tumor: Oligodendroglioma. Figure 
2 shows representative training samples (red) for (a) edema 
overlaid on a GAD slice; (b) enhancing tumor training 
sample overlaid on FLAIR image; and (c) non-enhancing 
tumor overlaid on an FA image slice. Half of such training 
samples are used to create classifiers for these three classes. 
Fig.  2(d) gives the hard segmentation results, in which class 

Fig. 2. Intra-patient segmentation on slice 82 of a typical patient 
with. (a) the edema training samples (red) overlaid on GAD; (b) 
the enhancing tumor training samples overlaid on FLAIR 
image;  (c) the non-enhancing tumor training samples overlaid 
on FA image;  (d) the hard segmentation results, in which class 
memberships are binarized through a threshold (e.g. 50%); (e-g)  
the probability maps for edema, enhancing and non-enhancing 
tumor.  
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Fig.3. Across-patient segmentation on slice 85 of patient, From 
left to right, the images are: (a) the enhancing tumor training 
samples (red) overlaid on GAD; (b) the edema training 
samples overlaid on FLAIR image; (c) FA image;  (d) the hard 
segmentation results, in which class memberships are obtained 
from SVM voting. 

(a) (b) (c) (d) 

memberships are strictly binarized through a threshold.  The 
classification accuracy rates were 98.75% for edema, 
96.53% for ET, and 96.73% for NET, with the healthy tissue 
(GM, WM and CSF) classified with 99.85% accuracy on 
expert defined training regions. After grouping ET, NET and 
ED into an abnormal class, and GM, WM and CSF into a 
normal class, a sensitivity of 97.65% and specificity of 
99.78% is obtained for the patient. Fig. 2(e-g) show the 
probability maps for edema, ET, and NET, respectively. The 
probability maps of the tissue types, generated by their 
respective classifier helps characterize the heterogeneity of 
the tissue, since each voxel gets a vote from all the classes. 
Thus each voxel not only gets characterized as healthy or 

unhealthy but also if it is unhealthy, the extent to which it is 
a voxel from an enhancing or non-enhancing tumor type or 
edema. This is a significant contribution since tumors are 
highly heterogeneous and knowing their composition will 
help target the treatment of these regions better. We obtain 
similar high classification rates for each of the 22 patients.  
 
3.3. Across-patient classification 
We create 6 tissue classifiers using expert defined training 
samples from several patients, as explained in section 2.5. 
Figure 3 shows the classification by combining responses 
from 6 one-versus-all SVM classifiers applied to a tumor 
patient. We obtain classification rates of 98% for the edema 
and 73% for the enhancing-tumor on the training samples 
identified by the expert. Retrospectively examined, some 
likely errors in the gold standard definition seemed to 
explain the relatively low classification rate for enhancing 
tumor. It may be noted that we use training samples from all 
but this patient to produce the classifiers, and test the 
classifier on this left-out patient. In comparison, when 
Quadratic Discriminant classifiers were used to train across-
patient classifiers, this patient gave very low classification 
rate, likely because probability density functions are not uni-
modal Gaussian.  

 
4. CONCLUSIONS 

This study applied a multivariate nonlinear classification 
scheme to the problem of soft tissue segmentation in brain 

tumor patients. It combines conventional structural MRI 
with DTI, and used them to train classifiers for the tumor 
types of enhancing and non-enhancing tumor, edema and 
healthy tissue. The accurate distinction of the tumor tissue 
from healthy tissue as shown in Figs. 2(d) and Fig. 3 
indicates that the framework can be useful in integrating 
multi-modality information into a combined profile and use 
it for classification. The hard segmentation as well as the 
probability maps can potentially provide a better 
understanding of the spatial distribution of healthy tissue, 
tumor and edema, thereby assisting in treatment or surgical 
planning. In the future, we plan to incorporate texture 
information into our features to distinguish between high 
grade and low grade tumors. In addition, we propose to 
build a two stage framework, in which SVM classification is 
combined with Quadratic Discriminant based classification  
to obtain a better tumor profile.  
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