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DRAMMS: deformable registration via attribute matching and mutual-
saliency weighting

Abstract
A general-purpose deformable registration algorithm referred to as ”DRAMMS” is presented in this paper.
DRAMMS adds to the literature of registration methods that bridge between the traditional voxel-wise
methods and landmark/feature-based methods. In particular, DRAMMS extracts Gabor attributes at each
voxel and selects the optimal components, so that they form a highly distinctive morphological signature
reflecting the anatomical context around each voxel in a multi-scale and multi-resolution fashion. Compared
with intensity or mutual-information based methods, the high-dimensional optimal Gabor attributes render
different anatomical regions relatively distinctively identifiable and therefore help establish more accurate and
reliable correspondence. Moreover, the optimal Gabor attribute vector is constructed in a way that generalizes
well, i.e., it can be applied to different registration tasks, regardless of the image contents under registration. A
second characteristic of DRAMMS is that it is based on a cost function that weights different voxel pairs
according to a metric referred to as ”mutual-saliency”, which reflects the uniqueness (reliability) of anatomical
correspondences implied by the tentative transformation. As a result, image voxels do not contribute equally
to the optimization process, as in most voxel-wise methods, or in a binary selection fashion, as in most
landmark/feature-based methods. Instead, they contribute according to a continuously-valued mutual-
saliency map, which is dynamically updated during the algorithm’s evolution. The general applicability and
accuracy of DRAMMS are demonstrated by experiments in simulated images, inter-subject images, single-
/multi-modality images, and longitudinal images, from human and mouse brains, breast, heart, and prostate.
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DRAMMS: Deformable Registration via

Attribute Matching and Mutual-Saliency
Weighting

Yangming Ou and Christos Davatzikos

Section of Biomedical Image Analysis (SBIA),
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{Yangming.Ou,Christos.Davatzikos}@uphs.upenn.edu

Abstract. A general-purpose deformable registration algorithm referred
to as ”DRAMMS” is presented in this paper. DRAMMS adds to the
literature of registration methods that bridge between the traditional
voxel-wise methods and landmark/feature-based methods. In particu-
lar, DRAMMS extracts Gabor attributes at each voxel and selects the
optimal components, so that they form a highly distinctive morpholog-
ical signature reflecting the anatomical context around each voxel in
a multi-scale and multi-resolution fashion. Compared with intensity or
mutual-information based methods, the high-dimensional optimal Ga-
bor attributes render different anatomical regions relatively distinctively
identifiable and therefore help establish more accurate and reliable corre-
spondence. Moreover, the optimal Gabor attribute vector is constructed
in a way that generalizes well, i.e., it can be applied to different reg-
istration tasks, regardless of the image contents under registration. A
second characteristic of DRAMMS is that it is based on a cost function
that weights different voxel pairs according to a metric referred to as
”mutual-saliency”, which reflects the uniqueness (reliability) of anatom-
ical correspondences implied by the tentative transformation. As a result,
image voxels do not contribute equally to the optimization process, as
in most voxel-wise methods, or in a binary selection fashion, as in most
landmark/feature-based methods. Instead, they contribute according to
a continuously-valued mutual-saliency map, which is dynamically up-
dated during the algorithm’s evolution. The general applicability and
accuracy of DRAMMS are demonstrated by experiments in simulated
images, inter-subject images, single-/multi-modality images, and longitu-
dinal images, from human and mouse brains, breast, heart, and prostate.

1 Introduction

Deformable registration is the building block for a variety of medical image analy-
sis tasks, such as multi-modality information fusion, atlas-based image segmen-
tation and computational anatomy. Existing deformable registration methods
can be generally classified into two main categories: voxel-wise methods (e.g.,
[1,2,3,4,5,6,7]) and landmark/feature-based methods (e.g., [8,9,10,11,12,13,14]).

J.L. Prince, D.L. Pham, and K.J. Myers (Eds.): IPMI 2009, LNCS 5636, pp. 50–62, 2009.
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While landmark/feature-based methods are more intuitive (in the sense that they
often explicitly detect and establish correspondence on those anatomically salient
regions), they often suffer from the inevitable errors in the landmark/feature de-
tection and matching processes. Moreover, they only utilize a small subset of
imaging data (e.g., corner, boundary, line intersection), in a way that is often
ad hoc and dependent on the specific image contents under registration. For
those reasons, recent literature on general-purpose registration has mostly fo-
cused on voxel-wise methods, which usually equally utilize all imaging data and
maximize the overall similarity on certain voxel-wise attributes (e.g., intensities,
intensity distributions). However, voxel-wise methods usually have limitations
in the following two respects.

First, the attributes used for characterizing voxels are often not optimal. Since
the matching between a pair of voxels is usually determined by the matching be-
tween their attributes, suboptimal attributes often lead to ambiguities in match-
ing [15,30]. Ideally, an optimal set of attributes should satisfy two conditions: 1)
discriminative, i.e., attributes of voxels from the two images should be similar if
and only if those voxels are anatomically corresponding to each other, therefore
leaving minimum ambiguity in matching; 2) generally applicable, i.e., they can
be extracted from any image while satisfying the first condition, regardless of
the image contents under registration. However, most voxel-wise methods only
use the simple attribute of image intensity, which is generally applicable for di-
verse registration tasks but often not sufficiently discriminative for matching (for
instance, hundreds of thousands of gray matter voxels in a brain image would
have similar intensities; but they may all correspond to different anatomical re-
gions). Other methods attempt to reduce matching ambiguities (e.g., [11,30]) by
using a richer set of attributes, such as sulci, organ boundaries, tissue member-
ship and tensor orientations. Those attributes, although more discriminative for
matching, are often task- and parameter- specific.

Second, equally utilizing all imaging data may undermine the performance of
the optimization process. Actually, different anatomical regions/voxels usually
have different abilities to establish unique correspondence [16,17,18]. An ideal
optimization process should weight more on those regions/voxels having higher
abilities to establish unique correspondences across images. For instance, Fig.
1 shows three similarity maps (Fig. 1(c)(d)(e)) between one specific voxel (red,
blue or orange) in the subject image and all the voxels in the template image. An
ideal optimization process should rely more on the red point, then the blue point,
and lastly the orange point. Unfortunately, most voxel-wise methods treat all
voxels equally, ignoring such differences; other approaches (e.g. [11]) attempted
to address this issue, by driving the registration adaptively/hierarchically using
certain anatomically salient regions, however, in their approaches voxels are often
utilized in a heuristic and binary way, ignoring the potential contributions from
other voxels that are not utilized.

This paper presents a general-purpose image registration framework referred to
as ”DRAMMS” – Deformable Registration via Attribute Matching and Mutual-
Saliency weighting. To overcome the first limitation, DRAMMS extracts a rich set
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Fig. 1. Demonstration of the importance of weighting voxels continuously, as they often
have different abilities to establish unique correspondence. Similarity maps (c-e) are
generated between one specific voxel in image (a) to all voxels in image (b). The red
point should have higher weight than the blue point, then the orange point.

of multi-scale and multi-orientation Gabor attributes at each voxel and automati-
cally selects the optimal attribute components. The optimal Gabor attributes ren-
der it relatively robust in attribute-based image matching and are also constructed
in a way that is generalizable to diverse problems, organs and image modalities. To
overcome the second limitation, DRAMMS continuously weights voxels during the
optimization process, based on a function referred to as ”mutual-saliency”, which
measures the uniqueness (hence reliability) of a tentative correspondence implied
by the transformation. Instead of equally treating voxels or isolating voxels that
have more distinctive attributes, this mutual-saliency based continuous weighting
mechanism utilizes all imaging data with appropriate and dynamically-evolving
weights and leads to a more effective optimization process. DRAMMS is elabo-
rated in Section 2 and demonstrated in Section 3. The whole paper is concluded
in Section 4.

2 Methods

2.1 Formulation

Given two intensity images I1 : Ω1 �→ R and I2 : Ω2 �→ R in the 3D image
domains Ωi(i = 1, 2) ⊂ R

3, DRAMMS seeks a transformation T that maps
every voxel u ∈ Ω1 to its counterpart T (u) ∈ Ω2, by minimizing an overall cost
function E(T ),

min
T

E(T ) =
∫
u∈Ω1

w (u, T (u)) · ‖A�
1(u) − A�

2 (T (u)) ‖2du + λR(T ) (1)

where A�
i (·) (i = 1, 2) is the optimal attribute vector that reflects the geometric

and anatomical context around each voxel. By minimizing ‖A�
1(u)−A�

2 (T (u)) ‖2,
we seek a transformation T that minimizes the dissimilarity between a pair of
voxels u ∈ Ω1 and T (u) ∈ Ω2. The derivation of the optimal attribute vector
A�

i (·) (i = 1, 2) will be discussed in Sections 2.2 and 2.3.
w (u, T (u)) is a continuous weight that is calculated from the mutual-saliency

of u ∈ Ω1 and T (u) ∈ Ω2 – higher uniqueness of their matching in the neighbor-
hood indicates higher mutual-saliency, and hence higher weight in the optimiza-
tion process. In contrast, most traditional voxel-wise methods use equal weights
(w(·) ≡ 1). The definition of mutual-saliency will be discussed in Section 2.4.
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Fig. 2. The components of DRAMMS

R(T ) is a smoothness/regularization term usually corresponding to the Lapla-
cian operator, or the bending energy[19], of the deformation field T , whereas λ
is a balancing parameter that controls the extent of smoothness.

Fig. 2 illustrates the components of DRAMMS. Details for each component
are elaborated in the subsequent sections.

2.2 Attribute Extraction

DRAMMS extracts Gabor attributes at each voxel by convolving the images
under registration with Gabor filter banks. The use of Gabor attributes is mainly
motivated by the following three properties of Gabor filter banks:

1) General applicability and successful application in numerous tasks. As a
general-purpose registration framework, DRAMMS must extract attributes that
are generally applicable to different registration tasks, regardless of the image
contents. Fortunately, almost all anatomical images have texture information, at
some scale and orientation, reflecting the underlying geometric and anatomical
characteristics. This texture can be effectively captured by Gabor attributes, as
demonstrated in a variety of studies, including texture segmentation [21], im-
age retrieval [23], cancer detection [22] and prostate tissue differentiation [24].
Recently, Gabor attributes have been successfully used in [25][26][27] to regis-
ter different images, showing their promise for diverse image registration tasks.
These methods have also noted the high computational cost required by the
high-dimensional Gabor attributes and the need for optimally using Gabor at-
tributes. These challenges are dealt with in DRAMMS by an attribute selection
method, as discussed in Section 2.3.

2) Suitability for single- and multi-modality registration tasks. The multi-scale
Gabor filter banks often cover a wide range of frequencies, where low frequency
filters often serve as local image smoothers, and high frequency filters often serve
as edge-detectors. The detected edge information is, to some extent, independent
from the underlying intensity distributions, and is therefore suitable for multi-
modality registration tasks, even when intensity distributions in the two images
no longer follow consistent relationship, in which case mutual-information [7]
based methods may fail [25];

3) Multi-scale and multi-orientation nature. As scale and orientation are
closely related to the distinctiveness of attributes [28], the multi-scale and
multi-orientation attributes are more likely to render each voxel distinctively
identifiable, therefore reducing ambiguities in attribute-based voxel matching.
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Following the work in [24], the 3D Gabor attributes at each voxel are ap-
proximated by convolving the 3D image with two 2D Gabor filter banks in two
orthogonal planes (x-y and y-z), so as to save computational cost. Mathemati-
cally, the two 2D Gabor filter banks in two orthogonal planes are

gm,n(x, y) = a−mg
(
a−mx

′
g, a

−my
′
g

)
, hm,n(y, z) = a−mh

(
a−my

′
h, a−mz

′
h

)
(2)

where a is the scale factor, m = 1, 2, . . . , M is the scale index, with M being
the total number of scales; x

′
g = x cos

(
nπ
N

)
+ y sin

(
nπ
N

)
, y

′
g = −x sin

(
nπ
N

)
+

y cos
(

nπ
N

)
], y

′
h = y cos

(
nπ
N

)
+ z sin

(
nπ
N

)
and z

′
h = −y sin

(
nπ
N

)
+ z cos

(
nπ
N

)
are

rotated coordinates, where n = 1, 2, . . . , N is the orientation index, with N
being the total number of orientations. g(x, y) and h(y, z), known as the ”mother
Gabor filters”, are complex-valued functions in the spatial domain and are each
obtained by modulating a Gaussian envelope with a complex exponential,

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)

︸ ︷︷ ︸
Gaussian Envelope

+ j2πfx

]
; (3)

h(y, z) =
1

2πσyσz
exp

[
−1

2

(
y2

σ2
y

+
z2

σ2
z

)

︸ ︷︷ ︸
Gaussian Envelope

+ j2πfy

]
(4)

where σx, σy and σz are the semi-axes lengths of the Gaussian envelope in the
spatial domain; fx and fy are modulating (shifting) factors in the frequency
domain (often known as ”central frequencies”). Therefore, at each voxel (x, y, z)
in the image Ii(i = 1, 2), the approximated 3D Gabor attributes are assembled
into a D = M × N × 4 dimensional attribute vector Ãi(x, y, z), from which we
can select the optimal components.

Ãi(x, y, z) =
[

(Ii ∗ gm,n)Re(x, y), (Ii ∗ gm,n)Im(x, y), (5)

(Ii ∗ hm,n)Re(y, z), (Ii ∗ hm,n)Im(y, z)
]
m=1,2,...,M ; n=1,2,...,N.

2.3 Attribute Selection

A disadvantage of Gabor attributes is the redundancy among attributes, which
is caused by the non-orthogonality among Gabor filters at different scales and
orientations. This redundancy not only increases computational cost, but more
importantly, it may reduce the distinctiveness of attribute representation, caus-
ing ambiguities in the attribute matching [23]. It is therefore important to design
a learning-based method to select a set of optimal Gabor attributes so that voxels
from the two images can be accurately and reliably matched.

To design such a learning-based attribute selection method, we would ideally
need some a priori knowledge of a number of anatomically corresponding voxel
pairs to serve as ground-truth, or training voxel pairs. However, in the context
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of a general-purpose algorithm, this kind of a priori knowledge is often absent.
Therefore, DRAMMS first automatically selects training voxel pairs, then based
on them selects the optimal attributes. These two steps are respectively described
below.

Fig. 3. Illustration of the selec-
tion of representative training
voxel pairs. Please refer to text
for details.

Selecting Representative Training Voxel Pairs
The training voxel pairs should 1) be represen-
tative of all other voxels in the entire image
domain; and 2) offer examples of good correspon-
dence. Accordingly, DRAMMS regularly parti-
tions the subject image into a number of J

regions Ω
(j)
1 (j = 1, 2, . . . , J) and selects from

each region a voxel pair (p�
j ∈ Ω

(j)
1 ,q�

j ∈ Ω2)
that is most reliably matched to each other, as il-
lustrated in Fig. 3 and mathematically described
in Eqn. 6. Here regular partition is used instead
of more complicated organ/tissue segmentation,
in order to keep DRAMMS as a general-purpose
registration method that can be applied to different registration tasks with-
out assumptions on segmentation. Note also that the template image I2 is not
partitioned because at this stage, no transformation is performed and no corre-
sponding regions should be assumed.

(
p∗

j ,q
∗
j

)
= arg max

p∈Ω
(j)
1 ⊂Ω1,

q∈Ω2

[
w(p,q)︸ ︷︷ ︸

Reliability

· sim
(
Ã1(p), Ã2(q)

)
︸ ︷︷ ︸

Similarity

]
(6)

In Eqn. 6, sim
(
Ã1(p), Ã2(q)

)
= 1

1+ 1
D ‖Ã1(p)−Ã2(q)‖2 ∈ [0, 1] reflects the attribute-

wise similarity between the two points, with D being the number of attributes.
w(p,q), the mutual-saliency, is elaborated in Section 2.4. For now, the bottom
line is that w(p,q) reflects the uniqueness (hence reliability) of the matching
between p ∈ Ω1 and q ∈ Ω2.

Selecting Optimal Attributes. DRAMMS selects a subset of optimal at-
tributes, A�

1 and A�
2, such that they maximize the overall reliability and similarity

of the matching on those selected training voxel pairs,

max
A1⊂Ã1, A2⊂Ã2

J∑
j=1

[
w(p�

j ,q
�
j )︸ ︷︷ ︸

Reliability

· sim (
A1(p�

j ), A2(q�
j )

)
︸ ︷︷ ︸

Similarity

]
(7)

In implementation, DRAMMS adopts an iterative backward elimination and
forward inclusion strategy for attribute selection, which are commonly used for
attribute/variable selection in the machine learning community [29]. Note that,
in order to make the quantity in Eqn. 7 comparable for different numbers of
attributes, the difference between two attribute vectors ||A1(p�) − A2(q�)||2 in
the definition of sim

(
A1(p�

j ), A2(q�
j )

)
is normalized by the number of attributes.



56 Y. Ou and C. Davatzikos

Fig. 4. Role of attribute selection in reducing matching ambiguities, as illustrated on
special voxels (red crosses) and ordinary voxels (blue crosses) in brain and cardiac
images of different individuals. Similarity maps are generated between a voxel (red or
blue) in the subject image and all voxels in the template image. ”GLCM”, gray-level
co-occurrence matrix [20], is another commonly used texture attribute descriptor.

Role of Optimized Gabor Attributes. Fig. 4 shows that the optimized Ga-
bor attributes lead to highly distinctive attribute similarity maps between the
subject and the template brain and cardiac images, for two voxels in each case.
This reduces the computational cost and the ambiguities in matching. In partic-
ular, since the similarity function for a given voxel now looks more like a delta
function, the optimal Gabor attributes are likely to reduce local minima and
therefore assist the optimization process to converge to the global minimum.

2.4 Using Mutual-Saliency Map to Modulate Registration

As addressed in the introduction, an ideal optimization process should utilize all
voxels but assign a continuously-valued weight to each voxel, based on whether
a reliable correspondence could be established at this voxel.

Previous work [30][31] assumed that more salient regions could establish more
reliable correspondence and hence should be assigned with higher weights. They
have reported improved registration accuracies. However, this assumption does
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not always hold, as regions that are salient in one image are not necessarily
salient in the other image, or do not necessarily have unique correspondence
across images, especially in convoluted and complex structures such as the hu-
man brain cortex. In other words, saliency in one image does not necessarily
indicate matching reliability between two images.

Fig. 5. Illustration of the defi-
nition of mutual-saliency func-
tion. Refer to text for details.

To measure matching reliability (uniqueness)
between two images, DRAMMS extends the con-
cept of saliency, which is often observed in one
image, to the concept of mutual-saliency, which,
as manifested in Fig. 5, is directly defined on
a pair of voxels in the two images under regis-
tration. In particular, a pair of voxels u ∈ Ω1

and T (u) ∈ Ω2 is defined to have high mutual-
saliency ms (A1(u), A2(T (u))) and hence should
be assigned with high weight w (u, T (u)), if u
has high similarity to voxels in the core neigh-
borhood of T (u) and low similarity to voxels far
away from T (u),

w (u, T (u))=ms
(
A1(u), A2(T (u))

)
=

MEANv∈CN(T (u))

[
sim

(
A1(u), A2(v)

)]
MEANv∈PN(T (u))

[
sim

(
A1(u), A2(v)

)]
(8)

where sim(·, ·) is defined in the same way as in Eqns. 6 and 7. Note that voxels in
between the core and peripheral neighborhoods of T (u) are ignored because there
is typically a smooth transition from high to low similarities, especially for coarse-
scale Gabor attributes. For the same reason, the radii of those neighborhoods
are adaptive to the scale in which Gabor attributes are extracted.

Roles of Mutual-Saliency Maps. 1) Missing data: the mutual-saliency map
effectively identifies regions in which no good correspondence can be found and
reduces their negative impact. In Fig. 6, motivated by our work on matching his-
tological sections with MRI, we have simulated cross-shaped tears in the subject
image, which are typical when sections are stitched together. Mutual-saliency

Fig. 6. Role of mutual-saliency map in accounting for partial loss of correspondence.
(a) Subject image, with simulated deformation and tears from (b) template image. (c,
d) Registered images without and with using mutual-saliency map; (e) Mutual-saliency
map associated with (d). Red points denote the same spatial locations in all sub-figures.
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Fig. 7. Role of mutual-saliency map in reducing the negative impact of matching am-
biguities. (a) Subject image; (b) Template image; (c,d) Registered images, without and
with using mutual-saliency map; (e) Mutual-saliency map associated with (d).

map assigns low weights to the tears, therefore reducing their negative impacts
towards the registration process. On the contrary, registration process without
using mutual-saliency map tends to fill in the tears by aggressively pulling other
regions, causing inaccurate results, as pointed out by the arrows in Fig. 6(c);
2) Matching ambiguities: even without loss of correspondences, mutual-saliency
map can accurately identify regions having matching ambiguities and reduce
their negative impact. In Fig. 7, the mutual saliency map assigns highest weights
to those regions that have minimum ambiguity in matching (e.g., the center, the
left, right and bottom edge of the circular plate in Fig. 7(a)). Meanwhile, regions
that have considerable ambiguity in matching (e.g., the top edge of the circular
plate) are correctly assigned with low weights; therefore their negative impact is
minimized and a desirable registration result is obtained, as shown in Fig. 7(d).

2.5 Numerical Optimization

DRAMMS was optimized using free form deformation (FFD) model, which has
been widely used in deformable registration community, and was implemented
using gradient descent and line search strategies in a multi-resolution fashion, so
as to reduce the risk of being trapped at local minima. Following standard FFD
model, the transformation field is regularized by its ”bending energy” [6,19], and
the distance between the control points is chosen at 7 voxels in x − y directions
and 2 voxels in z direction. All experiments were operated in C code on a 2.8

Fig. 8. Quantitative evaluation of the registration accuracies of inter-subject brain and
cardiac images, in terms of MSD and CC between registered and template images. Each
of DRAMMS’ components provides additive improvement over MI-based FFD.
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G Intel Xeon processor with UNIX operation system. Registering two 2D slices
(256 × 256) typically costs about 80 seconds and registering two 3D images
(256 × 256 × 30) typically costs about 25 minutes.

3 Results

As a general-purpose registration method, DRAMMS has been tested extensively
in diverse registration tasks and on different organs, and has been compared with
mutual information (MI)-based FFD, another commonly used general-purpose
registration method. Note that, the default set of parameters is used for MI-
based FFD as provided in MIPAV, a public software package [32]. To be fair,
DRAMMS also used a single set of parameters throughout the comparisons.

3.1 Simulated Images. Registration results for simulated images have already
been shown in Figs. 6 and 7. Largely due to the mutual-saliency component,
DRAMMS outperforms MI-based FFD in both experiments.

3.2 Inter-Subject Registration. Brain and cardiac images of different indi-
viduals (the ones shown in the left column of Fig. 4) have been registered by
different methods. Registration results are quantitatively compared in terms of
mean squared difference (MSD) and correlation coefficient (CC) between the reg-
istered and the template images. Since the images under registration are of the
same modality, high registration accuracy normally corresponds to decreased
MSD and increased CC. As shown in Fig. 8, each of DRAMMS’ components
provides additive improvement of registration accuracy over MI-based FFD.

3.3 Multi-modality Registration. In Fig. 9, histological images of mouse
brain and human prostate are registered to MR images of the same subject
in order to map histologically-defined tumor ground truth onto MR space. Due

Fig. 9. Multi-modality registration on mouse brain and human prostate between (a)
histological and (b) MR images, by (c) MI-based FFD and (d) DRAMMS. In each case
(row), crosses of the same color denote the same spatial locations in all images.
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Fig. 10. Longitudinal registration of breast images, between (a) subject (baseline) and
(b) template (follow-up) images, with results generated by (c) MI-based FFD and (d)
DRAMMS. Crosses of the same color denote the same locations in all images

to the greatly different imaging characteristics between the two modalities, their
intensity distributions do not follow consistent relationship, violating the un-
derlying assumption of MI-based methods, so theoretically it is not surprising
that MI-based methods tend to fail. To make things worse, registration is also
challenged by the partial loss of correspondence caused by the stitching effects
in the histology (as in the prostate case). For the same reasons, registration
accuracy could no longer be evaluated by MSD or CC. Instead, crosses of the
same colors have been placed at the same spatial locations in each sub-figure, in
order to visually reveal whether the anatomical structures have been successfully
aligned. Compared with MI-based FFD, DRAMMS is able to align tumor and
other complicated structures.

3.4 Longitudinal Registration. In Fig. 10, a baseline MR image is registered
to a follow-up MR image of the same breast to study the tumor change. Even
though the two images are of the same modality, it is not difficult to observe
that their intensity distributions, to some extent, no longer follow a consistent
relationship, largely due to the unpredictable changes of tumor in size and shape,
and the projection differences caused by changes in positioning of the subject
during image acquisition. Consequently, it is also not surprising that, in this
case, MI-based method is severely challenged or even tends to fail. In contrast,
DRAMMS captures tumor changes, although still not perfectly.

4 Conclusions

We have presented a general-purpose deformable registration method referred to
as ”DRAMMS”, which makes primarily two contributions. First, DRAMMS at-
taches a Gabor attribute vector to each image voxel, which serves as a morpholog-
ical signature of the anatomy around that voxel. By optimizing these attributes
using an automated attribute selection method, it produces highly unique (hence
reliable) matching, which potentially helps reduce local minima that are preva-
lent in intensity-based matching methods. Second, DRAMMS modulates the
optimization process by a continuously-valued weighting function derived from
”mutual-saliency”. Mutual-saliency maps assign lower weights to regions having
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difficulties establishing reliable correspondences, therefore reducing the negative
impacts caused by the matching ambiguities and/or the partial loss of corre-
spondence. The general applicability and accuracy of DRAMMS are demon-
strated in diverse registration tasks, including simulated images, inter-subject
images, single- and multi-modality images and longitudinal images, on human
and mouse brains, heart, breast and prostate. In images that the traditional
mutual information-based free form deformation (MI-based FFD) method could
register, DRAMMS has obtained slightly higher registration accuracy; while in
images where the MI-based FFD method tended to fail, DRAMMS has provided
significant improvement.
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