
University of Pennsylvania
ScholarlyCommons

Departmental Papers (BE) Department of Bioengineering

August 2008

The Bad Truth about Laplace's Transform
Charles L. Epstein
University of Pennsylvania, cle@math.upenn.edu

John C. Schotland
University of Pennsylvania, schotland@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/be_papers

Copyright SIAM 2008. Reprinted from Siam Review, Volume 50, Issue 3, pp. 504–520.
Publisher URL: http://dx.doi.org/10.1137/060657273

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/be_papers/123
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Epstein, C. L., & Schotland, J. C. (2008). The Bad Truth about Laplace's Transform. Retrieved from http://repository.upenn.edu/
be_papers/123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be_papers?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be_papers?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be_papers/123?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be_papers/123?utm_source=repository.upenn.edu%2Fbe_papers%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/be_papers/123
mailto:libraryrepository@pobox.upenn.edu


The Bad Truth about Laplace's Transform

Abstract
Inverting the Laplace transform is a paradigm for exponentially ill-posed problems. For a class of operators,
including the Laplace transform, we give forward and inverse formulae that have fast implementations using
the fast Fourier transform. These formulae lead easily to regularized inverses whose effects on noise and
filtered data can be precisely described. Our results give cogent reasons for the general sense of dread most
mathematicians feel about inverting the Laplace transform.
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Abstract. Inverting the Laplace transform is a paradigm for exponentially ill-posed problems. For a
class of operators, including the Laplace transform, we give forward and inverse formulae
that have fast implementations using the fast Fourier transform. These formulae lead easily
to regularized inverses whose effects on noise and filtered data can be precisely described.
Our results give cogent reasons for the general sense of dread most mathematicians feel
about inverting the Laplace transform.
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1. Introduction. Inversion of the Laplace transform is the paradigmatic exponen-
tially ill-posed problem. In many inverse scattering problems, the Laplace transform
is, at least implicitly, a part of the forward model, and so the solution of the inverse
scattering problem entails inverting the Laplace transform; see [12, 13, 9, 6]. While
it is well understood that this inversion is problematic, to the best of our knowledge,
no one has yet spelled out the details of why, where, and how things go wrong. In
this note we introduce the harmonic analysis appropriate to this problem. On one
hand, this leads to fast numerical forward and inverse algorithms for data which is
log-uniformly sampled. On the other hand, we apply it to study regularized inverses
of the Laplace transform. We analyze the consequences of passing noisy, filtered mea-
surements through the approximate inverse. The picture that emerges is probably
much worse than most people imagine.

We begin by considering a class of integral transforms that includes the Laplace
transform. Suppose that f and k are functions defined on [0,∞). We define the
transform Kf by

(1.1) Kf(x) =
∫ ∞

0
k(xy)f(y)dy.

Here the kernel function k(t) is typically a smooth and rapidly decaying function.
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The Laplace transform is defined by k(t) = e−t. A comprehensive exposition of the
classical theory of the Laplace transform is given in [1]. Fast algorithms for the forward
transform are given in [11] and [8]. In this note we present a method for the rapid
computation of both the forward and inverse transforms for linear operators of this
type. Our approach is essentially that of a “twisted” eigenfunction expansion. The
underlying unitary transformation from L2([0,∞); dx) to L2((−∞,∞); ds2π ) is defined
by

(1.2) f̃(s) =
∫ ∞

0
f(x)x−

1
2−isdx.

This transform is of course nothing but a slight reparametrization of the Mellin trans-
form. The application of this transform to study operators of the type in (1.1) appears
in [7].

It is easy to see the connection between the transform, f �→ f̃ , and operators
whose kernels are functions of xy. An elementary change of variables shows that, for
Reα > −1,

(1.3) Kxα =
�
k(α)x−1−α,

where, provisionally, we set

(1.4)
�
k(α) =

∫ ∞
0

k(t)tαdt.

Hence, for any real s the subspace generated by {x− 1
2 +is, x−

1
2−is} is an invariant

subspace under the action of K. The mapping properties of K and K−1 are determined
by the behavior of the function

�
k(− 1

2 − is) = k̃(s) for s ∈ R. For the classical Laplace
transform, k(t) = e−t and

(1.5) k̃(s) = Γ
(
1
2
− is

)
.

The well-known difficulties of inverting the Laplace transform stem from the fact that

(1.6)
∣∣∣∣Γ(

1
2
− is

)∣∣∣∣ = √
π

coshπs
.

We study the harmonic analysis and sampling theory relevant to the transform
f �→ f̃ and then explain how to use it to approximate K and K−1. We then consider
how the regularized inverse affects noisy measurements, and we show that transla-
tional stationarity of the noise process interacts in a nasty way with the multiplicative
group structure underlying the inversion process. We also investigate how the choices
of low-pass filter and cut-off function, used in signal acquisition, affect the recon-
structed signal; an unfortunate choice here can induce a surprisingly severe distortion
of the reconstructed signal. The paper concludes with numerical experiments.

2. Harmonic Analysis. The basic observation is that the transform f �→ f̃ is
simply related to the Fourier transform. This gives the Parseval theorem and inversion
formulae for smooth data with compact support. For such data the map f �→ f̃ and
its inverse are defined by absolutely convergent integrals.
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Theorem 2.1. If f is a smooth function with compact support in (0,∞), then

(2.1)
∫ ∞

0
|f(x)|2dx =

1
2π

∫ ∞
−∞
|f̃(s)|2ds

and

(2.2) f(x) =
1
2π

∫ ∞
−∞

f̃(s)x−
1
2 +isds.

Proof. We use a simple change of dependent and independent variables, setting
f(x) = g(x)√

x
and x = et. With these changes of variables we see that

(2.3) f̃(s) =
∫ ∞
−∞

g(et)e−itsdt.

Both statements in the theorem now follow from the change-of-variables formula,
the standard Parseval theorem, and the Fourier inversion formula applied to G(t) =
g(et).

There is a natural notion of convolution connected to this transform: we define
f � g(x) by

(2.4) f � g(x) =
∫ ∞

0
f

(
x

y

)
g(y)

dy

y
.

Note that this is not the usual convolution associated to the Laplace transform, which
is defined by

(2.5) f ∗ g(x) =
∫ x

0
f(y)g(x− y)dy

and satisfies L(f ∗ g) = Lf · Lg. There is a formula for f̃ ∗ g in terms of f̃ and g̃,
but it is complicated and requires analytic continuation. On the other hand, a simple
calculation proves the following proposition.

Proposition 2.2. With f � g defined in (2.4), we have

(2.6) f̃ � g(s) = f̃(s)g̃(s).

Using a standard density argument we obtain an extension of f �→ f̃ as a unitary
operator from L2([0,∞); dx) to L2((−∞,∞); ds2π ), and the inversion formula holds in
the “limit-in-the-mean” sense. The analogue of the Nyquist sampling theorem follows
easily, given the intimate connection with the Fourier transform.

Proposition 2.3. If f(x) is supported in the interval [L−1, L] for an L > 1,
then f is determined by any set of samples of f̃ of the form

(2.7) {f̃(s0 + j∆s) : j ∈ Z},

provided that ∆s ≤ π
logL . On the other hand, if f̃ is supported in an interval [−B,B],

then f is determined by the samples

(2.8) {f(λ0λ
j) : j ∈ Z}

for any λ0 ∈ (0,∞), provided λ < e
π
B .

Recalling that g(t) = G(et), these statements follow easily from the fact that
f̃(s) = Ĝ(s); see (2.3). We also have natural discrete and finite analogues of this
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transform. From the identity

(2.9)
∫ ∞

0
f(x)x−

1
2−isdx =

∫ ∞
−∞

f(et)e
t
2 e−itsdt,

we see that the correct finite sum approximation, given the evenly spaced data in (2.8),
is

(2.10) f̃(s) ≈ λ
1
2−is
0

∞∑
j=−∞

λ
j
2 f(λ0λ

j)λ−isj log λ.

With the samples in (2.7) we get an approximate inversion formula

(2.11) f(x) ≈ x−
1
2 +s0

2π

∞∑
j=−∞

f̃(s0 + j∆s)xij∆s∆s.

The right-hand side in (2.11) is a log-periodic function, with log-period 2π
∆s . If N is

a power of two, then the finite versions of these transforms, using N -samples, can be
computed using order of N log2 N operations. Indeed the difference between the finite
Fourier transform and the finite versions of the transforms in (2.10)–(2.11) involves
multiplication by diagonal matrices.

3. Analysis of K. To analyze the operator K we use the inversion formula (2.2).
Applying K to both sides gives

Kf(x) = 1
2π

∫ ∞
−∞

f̃(s)K(x− 1
2 +is)ds

=
1
2π

∫ ∞
−∞

f̃(s)k̃(−s)x− 1
2−isds.

(3.1)

This proves the following formula:

(3.2) K̃f(s) = k̃(s)f̃(−s).

Using the finite version of f �→ f̃ and its inverse, we can use (3.2) to obtain a fast
(O(N log2 N)) algorithm for approximately computing Kf(x), provided samples of f
are collected on a log-uniformly spaced sample set, as in (2.8). Both Rokhlin and
Strain have given O(N) algorithms for the forward Laplace transform with samples
on essentially arbitrary sets; see [8, 11]. The O(N log2 N) bound assumes that the
necessary values of {k̃(sj)} have been computed and stored.

The Parseval formula implies that the transform f �→ Kf is bounded as a map
from L2([0,∞)) to itself if and only if ‖k̃(s)‖L∞(R) < ∞. This formalism extends to
tempered kernels k for which k̃(s) is defined distributionally. If k̃(−s) is a bounded
measurable function, then K is boundedly invertible if the essential infimum of |k̃(−s)|
is positive. In this case we have the following formula for the inverse:

(3.3) K−1g(x) =
1
2π

∫ ∞
−∞

g̃(−s)
k̃(−s)

x−
1
2 +isds.

More generally we obtain a regularized inverse by choosing a measurable cut-off func-
tion ψ̃ such that ψ̃(t) = 1 for t sufficiently large and ψ̃(t) = 0 in a neighborhood of
t = 0. The regularized inverse defined by ψ̃ is given by

(3.4) K−1
ψ g(x) d=

1
2π

∫ ∞
−∞

g̃(−s)ψ̃
(
|k̃(−s)|

)
k̃(−s)

x−
1
2 +isds.
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The cut-off function can be smooth or sharp. Depending upon the data, a function
that approaches zero sufficiently rapidly as t → 0, and one as t → ∞, for example,
e−

1
t2 , could also be used.
The adjoint operator K∗ to K is defined by the kernel function k̄(t). It is a simple

calculation to show that the multiplier defined by the self-adjoint operator K∗K is
|k(−s)|2. This shows that the generalized singular values of K are simply the values
of |k(−s)| for s ∈ R. Thus the regularized inverse in (3.4) is very close in spirit to
that given by truncating a singular value decomposition, but without the necessity of
finding the exact singular vectors. A Tikhonov-type regularized inverse is given by

(3.5) K−1
λ g(x) d=

1
2π

∫ ∞
−∞

g̃(−s)k̃(−s)
|k̃(−s)|2 + λ2

x−
1
2 +isds.

As the spectral formulae for K−1
ψ and K−1

λ involve the transforms f ↔ f̃ and
simple multiplication operators for N = 2n, these operators can be implemented in
O(N logN) operations using the fast discrete versions of these transforms. As before,
this assumes that the needed samples of the multiplier {k̃(−sj)} have been computed
in advanced and stored.

Remark 1 (some history). Much of the analysis presented in this section, includ-
ing the inversion formula (3.3), appears in a 1978 paper of McWhirter and Pike [7].
In this paper, ideas from information theory are applied to quantify the information
content in the Laplace transform of a function. A detailed spectral analysis of the
Laplace transform, building on the work of McWhirter and Pike, appears in a 1998
paper of Boumenir and Al-Shuaibi [3]. The work of McWhirter and Pike was, in
turn, preceded by a 1959 paper of Gardner, Gardner, and Meinke [5], which contains
a similar, though not identical, formula for the case of the Laplace transform. A com-
parative review of numerical techniques for inverting the Laplace transform is given
in the 1979 paper of Davies and Martin [4]. In [2], Bertero and Grunbaum consider
similar questions for the Laplace transform of compactly supported data. It seems
that the horror of the inverse Laplace transform is something each generation must
discover for itself.

Remark 2 (a little operator algebra). Operators with kernels of the form k(xy)
are not quite an algebra. If we compose two such kernels, then we get a kernel of
“convolution type,” h(xy )y

−1 :

h

(
x

y

)
1
y
=

∫ ∞
0

k1(xz)k2(zy)dz

=
1
y

∫ ∞
0

k1

(
t
x

y

)
k2(t)dt.

(3.6)

Composing a kernel of convolution type with a function of xy again leads to a kernel
which is a function of xy. Composing two kernels of convolution type gives a kernel
of convolution type. If we let A0 be the operators of convolution type and A1 those
with kernels depending on xy, then we see that A0 ⊕A1 is a Z2-graded algebra. The
subalgebra A0 is commutative, though A1 is not.

4. The Classical Laplace Transform. The approach in section 3 applies to the
analysis of the classical Laplace transform. In this case k(t) = e−t, so that

(4.1) k̃(−s) = Γ
(
1
2
+ is

)
.
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The Laplace transform is a self-adjoint operator and the invariant subspaces

{x− 1
2 +is, x−

1
2−is}

can be further split into generalized eigenspaces. In fact, there is a smooth, real-valued
function φ(s) so that the eigenspaces are spanned by

(4.2) ϕ+(s;x) = Re(eiφ(s)x−
1
2 +is), ϕ−(s;x) = Im(eiφ(s)x−

1
2 +is).

The corresponding eigenvalues are given by

(4.3) λ±(s) = ±
√

π

coshπs
.

The completeness of the generalized eigenbasis follows easily from Theorem 2.1 and
implies the following result.

Proposition 4.1. The Laplace transform

(4.4) Lf(x) =
∫ ∞

0
e−xyf(y)dy

is a bounded self-adjoint operator on L2([0,∞)), with purely absolutely continuous
spectrum, of multiplicity one, lying in the interval [−

√
π,
√
π].

This result appears in [3]. From (4.3) it follows that the information in the Laplace
transform decays very rapidly with increasing oscillation. It gives a quantitative
explanation of the notorious difficulty of retaining significant detail when inverting
the Laplace transform. If ψ̃ is a function tending to zero sufficiently rapidly, as
|s| → ∞, then a regularized inverse for the Laplace transform is given by

(4.5) L−1
ψ g(x) d=

1
2π

∫ ∞
−∞

g̃(−s)ψ̃(s)
Γ( 1

2 + is)
x−

1
2 +isds.

Note that we use a slightly simplified notation for this special case.
From (4.5) we can derive a bound on the resolution available in L−1

ψ F, given the
accuracy of our measurements of F = Lf and the desired accuracy in the reconstruc-
tion. The singular values of L corresponding to the frequencies ±s have magnitude
about

√
2πe−

π|s|
2 . If the uncertainty in our measurements is ε and we are willing to

tolerate an uncertainty of η > ε in our output, then this approximation for |Γ( 1
2 + is)|

shows that the essential support of ψ̃ should lie in the interval [−smax, smax], where

(4.6) smax ≤
2
π
log

[√
2π

η

ε

]
.

Measured on a logarithmic scale, the maximum spatial resolution of L−1
ψ F is therefore

roughly π/smax. As an example, suppose that ε = 10−10 and η = 10−1; then smax ≈
24. Thus, close to x = 1, we get a spatial resolution of about .1 and an accuracy of
about 10−1, provided the data is measured with 10 significant digits! On the bright
side, not many terms are required to do the inversion. This estimate is consistent
with equation (19) in [10].

The generalized eigenbasis {x− 1
2 +is} can also be profitably used to analyze an-

other ill-conditioned operator of general interest: the continuous Hilbert matrix, H.
This follows because the kernel function of L2 is given by

(4.7)
1

x+ y
=

∫ ∞
0

e−xze−zydz.
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Indeed, it is elementary to see that

(4.8) H(x− 1
2 +is) =

π

coshπs
x−

1
2 +is for s ∈ R.

This gives a different proof that the spectrum of H is precisely [0, π] with multiplicity
two. Moreover, at least for log-uniformly spaced samples, we can rapidly compute
Hf and a regularized inverse for H. A regularized inverse is given by

(4.9) H−1
ψ g(x) =

1
2π

∫ ∞
−∞

ψ̃(s)
coshπs

π
g̃(s)x−

1
2 +isds.

5. Noise and Filtration Analysis. In many different experimental contexts one
measures samples of the Laplace transform of a function f, which are inevitably filtered
and contaminated by noise. In this section we examine how regularized inverses, of
the type given in (4.5), affect the noise variance. We consider the case that the
measurement process operates in continuous time; the noise is modeled as a white
noise process n(t) with mean zero and covariance

(5.1) 〈n(t)n(s)〉 = σ2δ(t− s).

We then turn to the interaction of the regularized inverse with a variety of standard
filtering operations.

Our model for the measured data is

M(t) =
∫ ∞

0
f(x)e−xtdx+ n(t)

= m(t) + n(t).
(5.2)

Suppose that ψ̃(s) is a cut-off function, and set

(5.3) gψ(x) =
1
2π

∫ ∞
−∞

g̃(−s)ψ̃(s)
Γ( 1

2 + is)
x−

1
2 +isds.

The function reconstructed from the measurements using (5.3) is mψ+nψ, where, by
virtue of (2.6), we can express the terms as

(5.4) mψ(x) = f � ψ(x)

and

nψ(x) =
1
2π

∫ ∞
−∞

Ψ̃(s)
∫ ∞

0
n(y)(xy)−

1
2 +isdyds

=
∫ ∞

0
n(y)Ψ(xy)dy.

(5.5)

Here Ψ is the inverse transform of

(5.6) Ψ̃(s) =
ψ̃(s)

Γ( 1
2 + is)

.

We assume that Ψ is a square integrable function. As

(5.7)
∣∣∣∣Γ(

1
2
+ is

)∣∣∣∣ = √
π

coshπs
,

this means that ψ̃ is rapidly decreasing and therefore that ψ must be smooth.
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As nψ(x) is a linear combination of mean zero random variables, it follows that
〈nψ(x)〉 = 0 for all x > 0. Using (5.1), we now compute the covariance:

〈
nψ(x)nψ(y)

〉
=

〈∫ ∞
0

∫ ∈fty
0

Ψ(xu)n(u)Ψ(yv)n(v)dudv

〉

= σ2
∫ ∞

0
Ψ(xu)Ψ(yu)du.

(5.8)

Letting τ = xu in the last integral, we obtain

(5.9)
〈
nψ(x)nψ(y)

〉
=

σ2

x

∫ ∞
0

Ψ(τ)Ψ
(y

x
τ
)
dτ.

Using the Parseval relation, this becomes

(5.10)
〈
nψ(x)nψ(y)

〉
=

σ2

√
xy

∫ ∞
−∞
|Ψ̃(s)|2

(y

x

)−is
ds.

In the natural complete metric, dxx , of R×+, the distance from x to y is

d×(x, y) =
∣∣∣log y

x

∣∣∣ .
Hence, if Ψ̃ is smooth, then the correlations are rapidly decreasing as d×(x, y) diverges.
On the other hand, we see that the covariance diverges as xy tends to zero. This
would seem to be a result of the interaction between the translational symmetry of
the noise process and the multiplicative symmetry of the Laplace transform. The
noise process is, in other words, “unaware” of the underlying group structure implicit
in the measured signal and the inversion process. Evaluating at x = y, we get

(5.11)
〈
|nψ(x)|2

〉
=

σ2

x

∫ ∞
−∞
|Ψ̃(s)|2ds.

Thus without filtration the white noise causes the variance in Mψ(x) to diverge as
x→ 0. In the next section, we see this prediction strikingly confirmed.

A realistic measurement process involves low-pass filtering, which we model as
(ordinary) convolution with a compactly supported function ϕ, i.e.,

Mϕ(t) =
∫ ∞
−∞

[∫ ∞
0

f(x)e−xτdx+ n(τ)
]
ϕ(t− τ)dτ

= mϕ(t) + nϕ(t).
(5.12)

As the Laplace transform is only defined for t > 0, one might want to restrict ϕ to be
supported in (−∞, 0]. A straightforward calculation shows that the formula for the
covariance is replaced by

(5.13)
〈
nϕψ(x)nϕψ(y)

〉
= σ2

∫ ∞
0

∫ ∞
0

Ψ(xu)Ψ(yv)Φ(u− v)dudv,

where

(5.14) Φ(z) =
∫ ∞
−∞

ϕ(t)ϕ(z + t)dt.
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This formula makes it clear that the final answer results from a combination of the
additive and multiplicative group structures on R and R+, respectively.

Even if Φ is smooth and with compact support, the variance 〈|nϕψ(x)|2〉 typically
diverges as x tends to zero. To see this we observe that if we change variables, letting
a = xu and b = xv, then

(5.15)
〈
|nϕψ(x)|2

〉
= σ2

∫ ∞
0

∫ ∞
0

Φ
(
a− b

x

)
Ψ(a)Ψ(b)dadb

x2 .

If Ψ and Φ are nonnegative and Φ is bounded from below in the interval [−α, α], then
the variance is bounded below by a constant multiple of

(5.16)
1
x2

∫∫
|a−b|<αx

|Ψ(a)Ψ(b)|dadb.

It is not difficult to see that the integral in (5.16) behaves like O(x) as x tends to
zero. Hence, the covariance still diverges like x−1. That the covariance should still
diverge as x → 0 is not that surprising, as nϕ(t) does not decay as t → ∞ and so
it cannot be the Laplace transform of a bounded function. If noise is present in the
measurements (or even numerical noise caused by round-off error in an approximate
inversion formula), then these formulae indicate the difficulty of using measurements
of Lf to reliably determine values of f(x) for small values of x.

It is interesting to further investigate the signal part mϕ of Mϕ in (5.12). A
simple change of variables shows that, ignoring the noise, we actually measure the
following Laplace transform:

(5.17)
∫ ∞

0
f(x)ϕL(x)e−xtdx,

where

(5.18) ϕL(x) =
∫ ∞
−∞

exwϕ(w)dw.

The regularized inverse then gives

(5.19) fϕψ(x) =
∫ ∞

0
ψ

(
x

y

)
f(y)ϕL(y)

dy

y
.

Hence, we obtain a smeared version of fϕL.
If, for example, ϕ(x) = (ε)−1χ[0,ε](x), then

(5.20) ϕL(x) =
eεx − 1

εx
.

This shows that the signal filtration process may have the effect of exponentially
amplifying the values of f as x→∞. If we instead use ϕ(x) = ε−1χ[−ε,0](x), then

(5.21) ϕL(x) =
1− e−εx

εx
,

which does not exponentially amplify values of f, but rather linearly attenuates them,
as x → ∞. As noted above, this suggests that one should use an anticausal filter to
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avoid exponential growth of the reconstructed signal. This can be thought of as
essentially a labeling question: Suppose that the jth sample is a weighted average of
values of Lf over an interval [tj , tj+1]. For the purposes of inversion, this should be
interpreted as the measured value of Lf at the time tj .

Windowing is one final type of filtering often done in acquisition of signals. When
the measured signal has an interpretation as a Laplace transform, then it is usually a
rapidly decaying function of time. The first few samples may be unreliable, and so we
replace the measured data (see (5.12)) with X(t)M(t); here X is a function vanishing
at zero and rapidly rising to 1. If X = L(χ), then it follows from the remarks in
section 2 that

(5.22) L−1(XM) = χ ∗ L−1(M).

In light of the extraordinary instability of L−1, it’s difficult to say definitively whether
or not such windowing will have a dramatic effect on the result of applying L−1

ψ . In
numerical experiments this sort of windowing does not have important effects for some
choices of window function and can dramatically degrade the reconstruction for other
choices.

To see why this might be the case, we write X(t) = 1 − ξ(t/δ), where ξ(0) = 1
and ξ decays rapidly to zero as t→∞. Now suppose that there is a smooth function
η so that ξ = L(η). The behavior of ξ(t) as t → ∞ is, in general, determined by the
behavior of η(x) near to x = 0. In particular, if ξ(t) = O(t−(1+k)) at infinity for a
k > −1, then η(x) = O(xk) near x = 0. A simple calculation shows that ξ(t/δ) is the
Laplace transform of ηδ(x) = δη(δx). Thus, assuming that η(x) = O(xk), we see that
the error incurred by multiplying the measurements by X(t) can be expressed as

ηδ ∗ fψK(x) = δ

∫ x

0
η(yδ)fψ(x− y)dy

∝ δ

∫ x

0
(yδ)kfψ(x− y)dy.

(5.23)

Under the assumptions above, this evidently is a very modest source of error.
If the measured data is contaminated with noise, then it may be advisable to cut

off, as t → ∞, as well. A collection of functions, useful for this purpose, is provided
by the functions

(5.24) χk(x) =
xke−x

(k + 1)!
,

with Laplace transforms

(5.25) L(χk) = 1
(1 + t)k+1 , k ∈ N.

The functions χkε (x) = ε−1χk(ε−1x) are easily seen to define an approximate identity
for the ∗-convolution, with

(5.26) L(χkε )(t) =
1

(1 + εt)k+1 .

Replacing the noise with nϕ(t)(1+εt)−(k+1) has the effect of controlling the divergence
of the noise variance, as x → 0, in the reconstructed function. It should also be



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

514 CHARLES L. EPSTEIN AND JOHN SCHOTLAND

noted that ∗-convolution with χkε has the effect of shifting peaks to the right by
approximately εk. Of course, a slightly different choice of windowing function can
produce dramatically different results. Indeed using the functions (1+t2)−k instead of
(1+t)−2k leads to much worse artifacts. It should be noted that (1+t2)−1 = L(sinx).

Remark 3. The Laplace transform can be applied to a large class of measures
supported on (0,∞). Above we consider the case of absolutely continuous measures
with reasonably smooth densities. In many applications one encounters atomic mea-
sures of the form

(5.27) f(x) =
N∑
j=1

ajδ(x−Rj), with 0 < R1 < R2 < · · · < RN ,

with the coefficients {aj} positive. This case arises frequently in NMR applications,
where Rj = T−1

2j are spin-spin decay rates for different chemical species within a
sample. The measurements are samples of

(5.28) Lf(t) =
N∑
j=1

aje
−tRj ,

usually taken at equally spaced points, and contaminated with noise. The methods
introduced in the continuum case are not likely to work well in the present case, as

(5.29) L̃f(s) = Γ
(
1
2
− is

) N∑
j=1

ajR
− 1

2 +is
j ,

and therefore L̃f(−s)[Γ( 1
2 + is)]−1 does not decay as |s| → ∞. Multiplying such data

in the time domain by (1+εt)−(k+1) considerably stabilizes the reconstruction process.
This approach will be explored in a subsequent publication. Many algorithms have been
introduced to handle this important case. Interesting examples are given in [5]. Suffice
it to say that this inversion problem is also exponentially ill-posed. See Example 4.

6. Numerical Examples. We present examples to illustrate the behavior of the
regularized inverse to the Laplace transform and the effects of noise on the recon-
struction. The data we collect consists of log-uniformly equally spaced samples of the
form

(6.1) {F (ekd) : −(k0 +N) ≤ k ≤ N − k0 − 1}.

In our experiments the choice of sample spacing d and offset k0 has a very significant
effect on the quality of the reconstruction. To implement the algorithm we use the
fast Fourier transform (FFT) to compute approximations for the samples {F̃ (sj)}.
The frequencies are

(6.2)
{
sj =

2πj
2Nd

: j = −N, . . . , N − 1
}
.

To employ the FFT we need to scale as indicated in Theorem 2.1, setting

(6.3) gk = e
(k0+k)d

2 F (e(k0+k)d).

We let {ĝk} denote the 2N -point discrete Fourier transform of this sequence.
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The values {Γ( 1
2 + isj)} are computed and a cut-off function ψ̃ is selected. If

F = L(f), then a computation shows that

(6.4) fψ(e(m−k0)d) ≈ e−
(m−k0)d

2

2N

N∑
l=1−N

ĝ−lψ̃
( 2πilm

2N

)
e

2πilm
2N

Γ
( 1

2 + 2πil
2Nd

) .

The change in the sample offset from k + k0 to m − k0 is a consequence of the fact
that F̃ is evaluated at −s in (4.5). The postmultiplication by exponential weights
in (6.4) means that, with floating point arithmetic, the meaningful dynamical range
of the computed values can vary dramatically from sample to sample. For our filter
function we use

ψ̃(s) = exp
(
−eπ|s|

B

)
.

If B = 10k, then the locus of points where

(6.5)
ψ̃(s)

|Γ( 1
2 + is)|

= 10−15

is given,

(6.6) s ≈ 0.733(k + 2.71);

hence, the theoretical logarithmic resolution grows in proportion to logB.
For our numerical experiments we use two Laplace transform pairs:

(6.7) L(xe−x) = 1
(1 + t)2

and L(sinx) = 1
1 + t2

.

We use the function 1
(1+t)2 as an example of a “good” Laplace transform, which is

“easy” to invert, whereas the very similar function, 1
1+t2 , is a “bad” Laplace transform,

which is very hard to invert.
Example 1. For our first experiments we sample L(xe−x) and L(sinx) at the

points

(6.8) {ejd : −210 − 29 ≤ j ≤ 210 − 29 − 1},

where d = 0.0488. Note that the sample set is asymmetric about 1. The quality of
the reconstruction depends sensitively on this choice of sample points. The choice of
log-sample spacing, d, also dramatically affects the quality of the approximate inverse.
In our cut-off function we set B = 1020. These parameters have been chosen to give
an “optimal” result for the function 1/(1 + t)2. Figure 6.1(a) shows the computed
approximation to L−1

ψ (1/(1+ t)2), with a linear scale on the x-axis, and Figure 6.1(b)
shows the same function with a log2-scale on the x-axis. Figures 6.1(c) and (d) show
the same results for L−1

ψ (1/(1 + t2)). The very large filter bandwidth used in these
examples is needed to get a “reasonable” reconstruction of sinx over even the few
cycles shown in Figure 6.1(c). One can get a good reconstruction of xe−x with a
much smaller bandwidth. In (c) we show the exact function as a dashed line. In (a)
and (b) the reconstruction is indistinguishable from the exact result.

Example 2. Before considering the effects of noise, per se, we show how the re-
constructions are altered if we change some of the parameters above. In Figures 6.2(a)
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(a) The approximate Laplace inverse for
the “good” function, with no noise.
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(b) The approximate Laplace inverse for
the “good” function, with no noise and
a log scale.
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(c) The approximate Laplace inverse
for the “bad” function, with no noise.

−500 0 500 1000 1500

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) The approximate Laplace inverse for
the “bad” function, with no noise and a
log scale.

Fig. 6.1 Approximate inverse with well-chosen parameters and noise-free data. In (c) the exact
result is shown as a dashed line.

and (b) we use samples of 1
(1+t)2 at the points in (6.8), with d = 0.15 or d = 0.02,

and all other parameters the same as above. For Figure 6.2(c) we used the more
symmetric set of sample points,

(6.9) {ejd : −210 − 25 ≤ j ≤ 210 − 25 − 1},

with all other parameters “optimal.” In Figure 6.2(d) we show the result of using the
sample set in (6.9) and d = 0.15. The x-axes in these plots are shown in a log2-scale.
The errors are growing rapidly as x tends to zero, in good accord with the analysis
in the previous section. In Figure 6.2(a) the maximum error is about 2.5 × 108 and
in Figure 6.2(d) about 5 × 1023! Despite this, the reconstruction of xe−x near to
x = 1 (not shown) is quite accurate. This is possible because, as noted above, our
reconstruction algorithm involves postmultiplication by exponential weights. Hence a
reconstructed function can have a very large, x-dependent, but meaningful dynamic
range. In these examples, the only sources of noise are round-off error and numerical
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(a) The approximate Laplace inverse for
the “good” function, with no noise and
d = 0.15; y-max = 2.5× 108.
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(b) The approximate Laplace inverse for
the “good” function, with no noise and
d = 0.02; y-max = 200.
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(c) The approximate Laplace inverse for
the “good” function, with no noise and
a more symmetric sample set; y-max =
8× 106.
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(d) The approximate Laplace inverse for
the “good” function, with no noise, a
more symmetric sample set, and d =
0.15; y-max = 5× 1023

Fig. 6.2 Details of the approximate inverse near x = 0, with poorly chosen parameters and noise-free
data. The x-axes are shown with a log2-scale; note the rapid divergence as x→ 0.

errors resulting from using a finite sum approximation to the Fourier transform. These
produce the blow-up apparent in Figure 6.2 as x→ 0.

Example 3. We next examine what happens if the data is contaminated by
noise. We consider only the good function 1

(1+t)2 and reduce the bandwidth B to
104. We evaluate this function on the sample set in (6.8), with d = 0.0488. To these
samples we add σ times a vector of random data, uniformly distributed in [−1, 1]. In
Figure 6.3(a), we show the detail near 0, on the log2-scale, with σ = 10−4. While the
reconstruction error is extremely large near x = 0, ( 1.5× 107), the reconstruction of
xe−x still looks fine near x = 1. In Figure 6.3(b) we show the detail near 0, on the
log2-scale, with σ = 10−2. The maximum error is about 1.5×109; Figure 6.3(c) shows
the reconstruction of xe−x with this data, which is clearly no longer usable. The
bandwidth used in this example is very small (the cut-off function is less than 10−15

for |s| a little larger than 4) and would probably not be usable for most realistic input
data. For purposes of comparison, in Figure 6.3(d), we show the approximate inverse,
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(a) The approximate Laplace inverse for
the “good” function, with σ2 = 10−8,
log2-scale on the x-axis; y-max = 107.
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(b) The approximate Laplace inverse
for the “good” function, with noise level
σ2 = 10−4, log2-scale on the x-axis; y-
max = 3× 108.
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(c) The approximate Laplace inverse
for the “good” function, with noise
level σ2 = 10−4. The range in the y-
direction is truncated.
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(d) The approximate Laplace inverse
for the “bad” function, with no noise
and B = 104.

Fig. 6.3 The effects of noise in the approximate Laplace inverse. In (c) and (d) the exact result is
shown as a dashed line.

with B = 104, applied to samples of 1
1+t2 . In (c) and (d) we show the exact function

as a dashed line, which now differs markedly from the reconstructions in both cases.
Example 4. For our last example we consider a type of function that arises in

many practical contexts, e.g., in NMR:

(6.10) F (t) = e−t + e−2t + e−4t = L(δ(x− 1) + δ(x− 2) + δ(x− 4)).

We use the sample set in (6.8) and d = 0.0488. As noted above, our algorithm is not
especially well suited to this type of data; in order to obtain any information about the
locations of the δ-functions on the right-hand side of (6.10) we need to use a very large
filter bandwidth. For Figure 6.4(a) we use B = 1030; for (b) we use B = 1020; and
for (c) we use B = 1010. While the graphs in (a) and (b) have peaks in approximately
the correct locations x = 1, 2, and 4, they also have many artifactual peaks and
assume negative values. The graph in (c) has no useful, accurate information. As
shown in Figure 6.4(d), with the bandwidth B = 1020, an extremely small level of
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(a) The approximate Laplace inverse
for a sum of decaying exponentials.
The filter bandwidth is set to B =
1030. The range in the y-direction is
truncated.
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(b) The approximate Laplace inverse
for a sum of decaying exponentials.
The filter bandwidth is set to B =
1020.
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(c) The approximate Laplace inverse
for a sum of decaying exponentials.
The filter bandwidth is set to B =
1010.
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(d) The approximate Laplace inverse
for a sum of decaying exponentials with
noisy measurements. The filter band-
width is set to B = 1020, and σ2 =
10−20. The range in the y-direction is
truncated.

Fig. 6.4 The approximate Laplace inverse acting on a finite sum of decaying exponentials, F (t) =
e−t + e−2t + e−4t. The heights and exact locations of impulses are indicated by the dashed
line.

noise (σ = 10−10) completely destroys the useful information in Figure 6.4(b). The
location and heights of the impulses are shown with a dashed line.

7. Conclusion. We have obtained fast, FFT-based, forward and inverse algo-
rithms for Laplace-like transforms. For the case of the Laplace transform, we used
the harmonic analysis of the transform f �→ f̃ to analyze the effects on the recon-
structed function of noise in the measurements and various filtering operations. The
noise variance is shown to diverge as x goes to zero, even under realistic assumptions
about the nature of the measured data. In the discretely sampled case, there is a
trade-off, determined by the cut-off filter bandwidth, between the point where this
divergence becomes apparent in the reconstructed signal and the resolution available
in the reconstruction. Whether a usable reconstruction can be obtained depends on
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both the level of noise in the data and the location of the support of the signal. On one
hand, our results make precise the difficulties entailed in inverting the Laplace trans-
form, but on the other hand they also provide flexible tools for analyzing approximate
inverses to operators in this class.
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