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Size, charge and concentration dependent uptake of iron oxide particles by
non-phagocytic cells

Abstract
A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the
migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large
number of cell labeling studies that have been performed with SPIO particles of differing size and surface
charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is
largely because contradictory findings have stemmed from the variability and imprecise control over surface
charge, the general need and complexity of transfection and/or targeting agents, and the limited number of
particle configurations examined in any given study. In the present study, we systematically evaluated the
cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to
nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO
labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry.
SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate
at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300 nm,
however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic
particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO
(<50 >nm).
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a b s t r a c t

A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking
the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite
the large number of cell labeling studies that have been performed with SPIO particles of differing size
and surface charge, it remains unclear in which SPIO configuration provides optimal contrast in non-
phagocytic cells. This is largely because contradictory findings have stemmed from the variability and
imprecise control over surface charge, the general need and complexity of transfection and/or targeting
agents, and the limited number of particle configurations examined in any given study. In the present
study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum
of particle sizes ranging from 33 nm to nearly 1.5 mm, with precisely controlled surface properties, and
without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and
contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited
sigmoidal charge dependence, which was shown to saturate at different levels of functionalization.
Efficient labeling of cells was observed for particles up to 300 nm, however, micron-sized particle uptake
was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm
maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm).

� 2008 Published by Elsevier Ltd.

1. Introduction

Continuing advancements in cell-based therapies have recently
led to the emergence of cellular imaging as a strategy to track the
migration and biodistribution of target cells in living organisms.
Pre-clinical studies have already shown that cellular imaging can be
used to evaluate stem cell distribution and homing in cell-based
regenerative therapies [1,2]. Recently, cellular imaging has also
allowed for improved assessment of functional efficacy and appli-
cability of immunotherapeutic treatments in disease models for
cancer [3–5] and AIDS [6].

In addition to evaluating cell-based therapies, cellular imaging
also promises to provide a great deal of insight into diverse physio-
and pathological phenomena. Interesting applications include the
observation of monocyte recruitment to atherosclerotic lesions for
the mapping of disease development and therapeutic intervention
[7], imaging embryonic stem cell movement during embryonic [8]
and organ development [9] and monitoring the dynamics of met-
astatic cellular extravasation and tissue invasion [10,11].

Tracking of labeled cells has been accomplished with a variety of
imaging modalities including optical methods, positron emission

tomography (PET), single photon emission computed tomography
(SPECT), and magnetic resonance (MR) imaging [12–14]. MR im-
aging presents a particularly promising approach because of its
high spatial resolution in three dimensions and exquisite soft tissue
contrast, which can be acquired concomitantly with the contrast-
enhanced cellular distribution. MR detection of cells in vivo is often
accomplished following labeling with superparamagnetic iron ox-
ide (SPIO) particles. SPIO is negative contrast agents that are typi-
cally composed of an iron oxide crystal core surrounded by
a polymer or polysaccharide shell [15]. A variety of manifestations
of SPIO have been used to track cells, which can be broadly cate-
gorized as (1) ultrasmall SPIO (USPIO) with an overall diameter of
30–50 nm [16], (2) standard SPIO (SSPIO) with a diameter of 50–
150 nm and (3) micron-sized paramagnetic iron oxide (MPIO)
having a diameter approaching or greater than 1 mm [17].

To date, USPIO has perhaps been the most widely utilized SPIO
configuration for cell labeling. Although they provide less contrast
enhancement per particle compared with SSPIO and MPIO, large
numbers of particles can be loaded into each cell [18,19]. As cationic
surfaces have been shown to facilitate cellular internalization
[20,21], USPIO is often modified with polycationic cell permeating
peptides (CPPs) such as HIV transactivator (TAT) [22] or protamine
[23]. Other transfection techniques, sometimes in concert with
CPPs, are also used [24,25].

* Corresponding author. Tel.: þ1 (215)898 8167; fax: þ1 (215)573 2071.
E-mail address: atsourk@seas.upenn.edu (AndrQ1 ew Tsourkas).
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An exciting new direction for cell tracking involves labeling cells
with MPIO [26]. The large iron oxide cores present in these particles
provide enough contrast for single cells to be imaged by MR.
However, work with such large particles generally confines appli-
cation of iron oxide labeling to phenotypes such as macrophages
[18], dendritic cells [27] or hepatocytes that actively internalize
foreign material. MPIO uptake in non-phagocytic cells has been
accomplished, but is limited by the additional conjugation work
and cost of using an antibody-mediated approach [28], which must
be species specific and may induce adverse cellular events.

Recently, several studies have attempted to define an optimized
particle configuration for iron oxide labeling of both phagocytic and
non-phagocytic cell types. Although MPIO was excluded from all of
these studies, it was found that phagocytic monocytes are more
effectively labeled with SSPIO (150 nm) compared with USPIO
(30 nm) [18,29]. Further, it was found that ionic carboxydextran-
coated SSPIO (i.e. ferucarbotran) performed better than non-ionic
dextran-coated SSPIO (i.e. ferumoxide) [18]. It remains unclear how
MPIO compares with these agents; however, single cell detection
has been achieved in phagocytic cells with both SPIO configurations
[30,31].

The optimal SPIO configuration for labeling non-phagocytic cells
has been much more elusive and findings have been contradictory.
For example, in one study it was found that the delivery of car-
boxydextran USPIO and dextran-labeled SSPIO into non-phagocytic
cancer cells and leukocytes (with the assistance of lipofection
agents) was similar in terms of iron uptake [21]. Both particles led
to higher iron uptake than USPIO. This indirectly suggests that
larger particles with ionic coatings are superior to non-ionic USPIO.
However, in a different study it was found that, in the presence of
poly-L-lysine, ionQ2 ic (aminated) USPIO exhibited significantly higher
iron uptake in non-phagocytic cells compared with SSPIO. These
data suggest that smaller ionic particles are internalized into non-
phagocytic cells more efficiently [32]. These contradictory findings
likely stem from the variability and imprecise control over surface
charge and the limited number of particle configurations examined,
particularly with respect to diameter (ranging only from w17 nm to
150 nm).

In the present study we systematically evaluated the cellular
uptake of SPIO in non-phagocytic T cells over a continuum of par-
ticle sizes ranging from 33 nm to nearly 1.5 mm and with precisely
controlled surface properties. T cells were selected as a model non-
phagocytic phenotype since visualization of their distribution is
expected to be of importance for adoptive T cell therapy for cancer
and T cell homing in autoimmune diseases. Extremely fine control
was exerted on the surface properties of SPIO by direct chemical
modification of particle surfaces rather than attempting to modu-
late the density of supplemental transfection agents. Concentration
effects and incubation times were also tested in the interest of
isolating the role particle size exerts on individual cell uptake and
overall contrast enhancement. Our work shows that in a space
between USPIO and MPIO exist configurations of relatively small
particles (w100 nm) that efficiently label non-adherent, non-
phagocytic T cells and generate higher relaxivity (per cell) relative
to particles of other sizes.

2. Materials and methods

2.1. Nanoparticle synthesis

Three different formulations of dextran-coated superparamagnetic iron oxide
nanoparticles were prepared using the co-precipitation method [33]. All three for-
mulations were prepared following the same procedure, as described below, with
the only difference being the amount of FeCl2 and FeCl3 added. Specifically, 25 g of
dextran T10 (GE Healthcare, Piscataway, NJ) was dissolved in 50 mL of dH2O and
heated to 80 �C for 1 h. The solution was allowed to return to room temperature
and continued to mix overnight. Subsequently, the dextran was cooled to 4 �C on ice
and degassed with N2 for 1 h. FeCl2 (0.7313 g, 1.5 g, or 2.2 g) and FeCl3 (1.97 g, 4 g, or

6 g, respectively) were each rapidly dissolved in 12.5 mL of degassed dH2O and kept
on ice for approximately 10 min. The iron solutions were added to the dextran
simultaneously and allowed to mix for 30 min. Keeping this mixing solution at 4 �C,
15 mL of ammonium hydroxide was added. The resulting black viscous solution was
then heated to 90 �C for 1 h then cooled overnight, followed by ultracentrifugation
at 20 k rcf for 30 min. Pellets were discarded and the supernatant was continually
diafiltrated using a 100-kDa MWCO cartridge (GE Healthcare) on a peristaltic pump
(E323, Watson Marlow Bredel, Wilmingt Q3on, MA). The particles were exchanged into
0.02 M citrate, 0.15 M sodium chloride buffer until all unreacted products had been
removed. Aminated silica-coated iron oxide micro-particles were purchased from
Bioclone Inc. (San Diego, CA). Amine functionalized styrene copolymer-coated iron
oxide particles (Adembeads) were purchased from Ademtech SA (Pessac, France).

2.2. Amination of particles

Amination and crosslinking of the coating on the dextran–SPIO were accom-
plished through reaction of the SPIO with 25% 10 M NaOH and 33% epichlorohydrin
[34]. After mixing for 24 h, additional ammonium hydroxide was added to the so-
lution, bringing the volume fraction to 25% ammonium hydroxide, and the reaction
was allowed to proceed for another 24 h. The particles were then exhaustively pu-
rified via diafiltration. The resulting particles were amine functionalized crosslinked
iron oxide.

2.3. FITC labeling and amine-blocking of particles

All SPIO particles were labeled with FITC at a FITC-to-iron molar ratio of 19.2:1.
FITC was reacted with particles for 4 h followed by two rounds of gel purification,
once on a NAP-5 column and then on a PD10 column (GE Healthcare), both equili-
brated with PBS. The FITC-labeled SPIO was subsequently reacted with various
volumes of glycidol (0.01–50%) to produce populations of particles with different
amine content. The particles were cleaned off excess glycidol through repeated
precipitation in isopropanol and resuspension in PBS. Amine-blocking was also
attempted with particles of 200 nm and greater, but this modification impelled
immediate particle insolubility.

2.4. Measurement of particle size

The hydrodynamic diameter of the dextran-coated and commercial iron oxide
particles was measured using a Zetasizer Nano-z (Malvern Instruments, Malvern,
UK) through dynamic light scattering (DLS). The dextran-coated SPIO particles were
diluted in PBS to a concentration of approximately 0.5 mg/mL and read in triplicate.
The commercial particle diameters were read in the same manner, but only after
undergoing three washes by precipitation in the presence of a strong magnet and
resuspension in PBS. The values reported for all samples are the intensity peak
values.

2.5. Measurement of particle cores

Transmission electron micrographs of all iron oxide particles were taken using
a JEOL 2010 at 200 kV. Samples were prepared for imaging by evaporating the
particles onto a carbon-coated copper grid (Holey carbon – mesh 200, Structure
Probe Inc., West Chester, PA). Salt was removed from all of the samples prior to
evaporation by exchanging the particles into dH2O. Images of particle cores were
analyzed using ImageJ (National Institutes of Health, Bethesda, MD). Since many of
the particles were found to be composed of a cluster of multiple iron oxide cores, the
average diameter of each core and the average number of cores per particle were
determined. Assuming each core to be spherical, the amount of iron per particle type
was determined from the aggregate core volume.

2.6. Measurement of particle relaxivity (R1 and R2)

The longitudinal (R1) and transverse (R2) relaxivity of each particle was calcu-
lated as the slope of the curves 1/T1 and 1/T2 against iron concentration, respectively.
T1 and T2 relaxation times were determined using a Bruker mq60 MR relaxometer
operating at 1.41 T (60 MHz). T1 measurements were performed by collecting 12
data points from 5.0 ms to 1000 ms with a total measurement duration of 1.49 min.
T2 measurements were made using s¼ 1.5 ms and two dummy echoes, and fitted
assuming monoexponential decay.

2.7. Measurement of number of amines per particle

The number of amines per particle was determined following the general pro-
cedure described by Zhao et al. [35]. Briefly, iron oxide particles at a concentration of
2 mg/mL Fe were reacted with excess N-succinimidyl 3-(2-pyridyldithio) propionate
(SPDP, Calbiochem, San Diego, CA) for 4 h. SPIO was washed off excess SPDP through
repeated precipitation in isopropanol and resuspension in PBS. The particles were
then run through a 50-kDa MWCO centrifugal filter (YM-50, Millipore, Billerica, MA)
either with or without the addition of disulfide cleavage agent TCEP. The difference
of the absorbance of these two samples at 343 nm was used to determine the
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concentration of SPDP in the filter flow. Adjusting for dilution, the number of amines
per particle was determined.

2.8. Cell culture and labeling

Immortalized human T cells, Jurkat Clone E6-1 (ATCC), were maintained at 37 �C
in 5% CO2 in RPMI 1640 (Mediatech, Manassas, VA) media supplemented with 10%
FBS (Hyclone, Logan, UT) and penicillin/streptomycin (Mediatech). T cells were la-
beled with iron oxide particles by incubating the commercial and lab-made particles
with 2�106 cells in 400 mL of fully supplemented media for 1 h or 4 h, at 37 �C in 5%
CO2. Cells were washed off non-internalized particles through two methods. Syn-
thesized dextran-coated particles were washed from cells using centrifugation.
Specifically, cells were pelleted at 0.5 rcf for 5 min and resuspended in PBS. This was
repeated three times. The dextran-coated particles are highly soluble in aqueous
solvents and do not precipitate at these centrifugation speeds. Removal of non-
internalized commercial particles was accomplished through a density gradient. The
cells and particles were diluted to 1 mL with PBS and overlayed on 4 mL of room
temperature Ficoll-Paque PLUS (GE Healthcare). The sample was centrifuged at
0.4 rcf for 40 min. Cells loaded with particles were retrieved from the interface layer.
To determine if particles were internalized or merely adsorbed on the cell exterior,
surface receptor cleavage enzyme trypsin was used. Following particle incubation, as
described above, cells were exposed to 0.025% trypsin–EDTA (Invitrogen) for 5 min.
Purification of non-internalized particles was carried out as detailed. No statistical
difference was seen in either flow cytometry or relaxometry between groups
washed with or without enzyme.

2.9. Flow cytometry and relaxation measurements

Immediately after non-internalized iron oxide particles were removed from T
cell samples, flow cytometry was performed on a Guava Easycyte (Guava Technol-
ogies, Hayward, CA). For labeling and viability experiments, forward and side scat-
terings were used to identify the entire population of cells. Data analysis of flow
cytometry data was accomplished with FlowJo (TreeStar, Ashland, OR). Viability of T
cells was determined using the LIVE/DEAD cytotoxicity kit for mammalian cells
(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. In order to
evaluate the decrease in T2 relaxation time of iron oxide internalized T cells, purified
cells were lysed for 30 min in 0.1% SDS in PBS at 37 �C. Samples were diluted to
0.5�106 cells/mL in 300 uL and T2 relaxation times were measured using the
benchtop relaxometer. All flow and magnetic resonance measurements were made
in triplicate on at least two separate occasions.

3. Results and discussion

3.1. Particle synthesis and characterization

Three different formulations of dextran-coated super-
paramagnetic iron oxide nanoparticles were prepared via co-pre-
cipitation. All three syntheses utilized a ratio of approximately
three ferrous to ferric iron chloride; however, the total amount of
iron was increased by whole numbers, i.e. 2� and 3� irons, re-
spectively. This deviation in the amount of iron present during
synthesis allowed for the manufacture of SPIO with a range of
different sizes and properties. Specifically, DLS of the SPIO, fol-
lowing crosslinking and amination of the dextran coating, indicated
average hydrodynamic radii of 33.4 nm, 53.5 nm and 107 nm, re-
spectively, with the larger nanoparticles corresponding to synthe-
ses that utilized more iron. When the total amount of iron was
increased further, the co-precipitation solution became extremely
viscous and yielded highly dispersed aggregates that precipitated
out of solution. Therefore, nanoparticles ranging from 200 nm to
1 mm in diameter were acquired from commercial sources. Specif-
ically, superparamagnetic iron oxide particles of 200 nm and
300 nm diameter with an amine functionalized styrene copolymer
coating (Amino–Adembeads) were purchased from Ademtech,
while amine functionalized silica-coated 1 mm diameter particles
were purchased from Bioclone. This allowed particle sizes across
nearly three orders of magnitude to be compared.

The particle sizes as determined by DLS, peak intensity values,
are compared in Fig. 1. The 33.4 nm, 53.5 nm and 107 nm dextran-
coated SPIO samples were fully soluble at physiological conditions.
Conversely, it was found that the large size of the 289 nm and
1430 nm particles led to rapid precipitation. Settling was also

a concern for the 207 nm particles; however, full precipitation
generally took several hours.

Analysis of the iron oxide core size and structure of the magnetic
particles was conducted using TEM. Representative micrographs
are shown in Fig. 2. Aggregation of particles in salt free solution was
a problem during TEM sample preparation; however, reduction in
sample concentration allowed for imaging of discretely distributed
particles. Iron cores were easily distinguished from carbon-coated
copper grids, while dextran and styrene copolymer were not visible
because of their low electron density.

An interesting feature of the dextran-coated nanoparticles is
that each particle consists of a cluster of one or more iron oxide
cores, with each core being approximately equal in size. Specifi-
cally, the distribution of cores is centered at approximately 6 nm for
all three dextran-coated nanoparticles (Fig. 3); however, the aver-
age number of cores per particle increases with overall hydrody-
namic diameter. In contrast, the larger 207 nm and 289 nm styrene
copolymer-coated particles exhibited a single large spherical iron
oxide core, while the 1.43 mm silica-coated particles exhibited an
amorphous iron oxide core of no discrete size or shape. A summary
of the properties of each SPIO is provided in Table 1.

The R1 and R2 data (Figs. 4 and 5), also summarized in Table 1,
indicate that there is a trend of increasing R2 and decreasing R1 with
size up to the 107 nm particles. For particles of greater size, the
single large core of the 207 nm and 289 nm particles does not
translate into proportionately higher R2. This likely reflects lower
crystallinity of the larger single iron oxide cores in comparison to
smaller crystals [36]. Furthermore, according to the Solomon–
Bloembergen theory, which relates the relaxation rate to particle
properties, the total size of the particle is not critical to the mag-
nitude of R2 as the susceptibility effect falls off from the surface
with an exponential (r6) dependence [37,38]. It should be noted
that the R1 values reported for particles greater than 200 nm are
likely underestimates due to precipitation of the particles during T1

measurements. For instance, determining T1 relaxation times re-
quired more than 100 s per sample, which was an ample time for
the micrometer-sized particles to precipitate out of solution.

3.2. Cell loading

The extent to which T cells internalize iron oxide particles is not
only dependent on particle size but also various other particle
characteristics and cell loading conditions, including surface
charge, particle concentration, and incubation time. Thus, before it

Fig. 1. Hydrodynamic diameter of SPIO. The hydrodynamic diameter of SPIO particles
was determined by DLS. Intensity measurements are reported and the peak intensity is
provided for each distribution.
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could be determined which particle size led to the highest relax-
ivity per cell, it was first necessary to identify conditions whereby
cell loading was independent of these other parameters. The use of
fluorescently labeled iron oxide particles combined with flow
cytometry provided a facile method by which particle uptake could
be systematically assessed in a high-throughput manner. In the
current study, all SPIO samples were fluorescently labeled with an
equivalent amount of FITC/iron.

3.2.1. ConcentratiQ4 on
In order to confirm that iron oxide particles were present in

sufficient quantity for maximum cellular uptake, T cells were in-
cubated with increasing iron concentrations until a saturating level
was reached. As shown in Fig. 6, dextran-coated particles were
efficiently internalized, all reaching a plateau at iron concentrations
below 50 mg/mL. Greater than 100 mg/mL was required to saturate
the loading of the 207 nm, 289 nm and 1430 nm particles. The
necessity for these higher iron concentrations may be attributed to
the fact that the number of particles per unit of iron is far less than
the smaller agents. Further, there is likely less contact between the
larger particles and the suspended cells because of their continual
sedimentation. This was perhaps most evident with MPIO, where
cell labeling was poor across all particle concentrations. Even at
1000 mg/mL (data not shown) labeling with MPIO did not reach the
levels achieved by the dextran-coated USPIO and SPIO.

3.2.2. Surface properties
Surface charge is important for intracellular delivery of exoge-

nous material. This principle has been described for a variety of
nanoparticle (examples include gold [39], polymer [40,41] and
silica [42]) and biological (for example, delivery of DNA with

cationic proteins, lipids and polymers [43]) contexts. The aminated
surfaces of the particles used in this study provide an inherent
surface charge, facilitating cellular interaction. However, in order to
study the role this property has in the intracellular delivery of iron
oxide contrast agent, it is necessary to manipulate the magnitude of
the surface charge. To do so we have applied glycidol, a hydroxyl
terminating epoxide, to generate subsets of particles with a gradi-
ent of surface amines. Glycidol has been used previously in den-
drimer chemistry to reduce the chemotoxicity of highly-positively
charged dendrimers [44]. The tight control of surface properties
produced by consuming amines with glycidol allows for isolated
examination and evaluation of the role of surface charge on SPIO.

The summary of particle uptake on a per cell basis is shown in
Fig. 7(A–C). Each data point represents the normalized mean
fluorescence intensity (MFI) of T cells that were incubated with iron
oxide particles at a saturating concentration (previously de-
termined) for 4 h. Under these incubation conditions, it was found
that particles in their natural (fully aminated) state are maximally
internalized. Any further increase in the positive surface charge will
not further augment SPIO loading. In other words, the efficiency of
cell labeling has become independent of surface charge. In all cases,
uptake and internalization of the particles were rapid. Represen-
tative uptake of the 107 nm particles as a function of time is shown
in Fig. 7(D).

3.2.3. Viability
The impact and potential cytotoxicity of each iron oxide particle

on T cells were measured using a two-color fluorescent cell viability
kit. Negligible to low levels of cell death were observed (Fig. 8) for
all particles at diminished and saturating concentrations of iron
oxide (10 mg/mL and 50 mg/mL, respectively). The exception was for

Fig. 2. TEM of SPIO cores. High magnification transmission electron microscopy images of the iron oxide particles were obtained with a JEOL 2010 operating at 200 kV. Structure
analysis revealed the multiple core nature of the (A) 33.4 nm, (B) 53.5 nm and (C) 107 nm dextran-coated SPIO. Larger particles were composed of single cores; (D) 207 nm, (E)
289 nm and (F) 1430 nm. All scale bars are 50 nm, excluding (F) 1 mm.
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the 107 nm SPIO, which exhibited some adverse cell influence even
at 10 mg/mL. This effect was exacerbated at increased concentra-
tions. When the amines on the 107 nm particle were completely
blocked, cell death was reduced to negligible levels; however, in-
ternalization was also reduced to negligible levels (Fig. 7C). T cell
death is likely attributable to the high positive surface charge
possessed by the SPIO. Similar results have been seen with amine-
terminated poly(amidoamine) dendrimers [45]. The extremely
high driving force for cell internalization imparted by positive SPIO
surface charge can lead to cell death.

In order to minimize the toxicity of the 107 nm particles, the
incubation time with T cells was decreased to 1 h. As shown in
Fig. 7D, particle uptake is still saturated within this time frame,
therefore exposing T cells to excess SPIO for longer periods of time
was deemed unnecessary. No toxicity was observed with the
107 nm particles after just 1 h of incubation.

3.2.4. Magnetic contrast enhancement
Flow cytometry was utilized to determine the saturating con-

ditions for each SPIO; however, these single cell measurements
were conducted with some variation between the number of
fluorescent labels per particle making it difficult to accurately
quantify the number of particles per cell. Also, after labeling cells
with superparamagnetic tracking agents the critical assessment of
ability to track cells is their relaxivity. Therefore, a benchtop NMR
minispectrometer, near the clinical field strength of 1.5 T, was uti-
lized for evaluating in vitro loading. As shown in Fig. 9, T cells
loaded with particles showed a dose-dependent, negative contrast
enhancement.

As befits their widespread application in the literature, the
USPIO proved effective at lowering the spin–spin relaxation time
(T2). Despite delivering only a small payload of iron per particle, the
large numbers of 33.4 nm and 53.5 nm particles that accumulate in

Fig. 3. Size distribution of SPIO core diameters. TEM measurements of the SPIO core diameter for (A) 33.4 nm, (B) 53.5 nm, (C) 107 nm and (D) all cores. The cores diameters were
analyzed assuming that they were spherical and the frequency and cumulative distributions are plotted. Particle size appears to be determined by the number of cores per particle
rather than the size of those constituent cores.

Table 1
Physical and magnetic properties of SPIO

Hydrodynamic diameter (nm) Core diameter (nm) Number of cores R2 (/mM/s) R1 (/mM/s)a R2/R1 NH2/particle Fe (atoms)/particleb Coating material

33 6.067 1.9 71.00 13.56 5.24 185 8924 Dextran
53 5.603 5.3 82.25 9.97 8.25 631 20,065 Dextran
107 6.534 11.2 381.00 7.24 52.66 1024 66,729 Dextran
207 175.4 1 176.58 0.51 344.48 6.0� 105 6.3� 107 Styrene copolymer
289 289.6 1 115.20 0.34 337.43 2.2� 106 2.6� 108 Styrene copolymer
1430 – 1 64.32 0.41 156.49 8.5� 108 1.3� 107 Silica

a R1 values for 207 nm, 289 nm and 1430 nm particles may be underestimated due to precipitation during measurements.
b Measurement of Fe (atoms)/particle for the commercial particles was made using the company provided relative iron mass per particle data, rather than the core size

determination from TEM.
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the cells allow for a strong aggregate effect, producing an average T2

signal of 126.05 ms and 51.5 ms under saturating conditions, re-
spectively. These reduced signal values correlate to an 8.04 and
19.68 times reduction in signal from T cells without any contrast
agent (T2¼1013 ms).

Performance of particles greater than 200 nm was ranked in-
versely with diameter. Greater concentrations of large particles

continued to reduce the T2 signal; however, when the iron con-
centration was increased above 500 mg/mL the methods used to
distinctly separate loaded-cells from free particles became less re-
liable. It should be noted that this drawback does not exist for the
flow cytometry measurements, as the particles themselves could be
excluded from the cells based on forward and side scatter. At
150 mg/mL Fe, the spin–spin relaxation signal from the 207 nm,

Fig. 6. Dependence of SPIO loading on particle concentration. Fluorescently labeled SPIO of various sizes and across a range of concentrations was incubated with 2�106 T cells/mL
at 37 �C for 4 h (excluding the 107 nm particle as indicated). SPIO uptake was then measured by flow cytometry. Each experiment was conducted in triplicate on at least two
separate occasions and each data point represents the average value for the mean fluorescent intensity (MFI). Note the difference in x- and y-axes for (A) and (B).

Fig. 4. T1 relaxivity (R1) measurements of SPIO. SPIO of various sizes were diluted in PBS to iron concentrations between (A) 0.1 mM and 2 mM or (B) 1 mM and 6 mM. T1 values were
then obtained using the minimum time sequence required to get reproducible values, because of precipitation issues. The inverse of the T1 time, in seconds, was linearly fit against
concentration to yield the particle R1.

Fig. 5. T2 relaxivity (R2) measurements of SPIO. SPIO of various sizes were diluted in PBS to iron concentrations between (A) 0.1 mM and 2 mM or (B) 0.01 mM and 0.5 mM. The T2

values were then obtained using a monoexponential curve fit. The inverse of these values, plotted against concentration, gives the R2. Precipitation of the 1430 nm particles resulted
in nonlinearity.
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289 nm and 1430 nm particles was 149.75 ms, 224.3 ms and
398 ms. These findings suggest that despite their high R2 values and
large iron content, particles greater than 200 nm seem to have
limited applicability in labeling non-phagocytic cells.

The highly-aminated SPIO with a diameter of 107 nm produced
the greatest contrast enhancement. These particles combined the

high degree of internalization of the USPIO with the superior
relaxivity of larger particles. At the 1 h loading time, to avoid any
longer term cytotoxic events, these SSPIO were able to reduce
signal approximately two orders of magnitude, providing T2 signal
of only 12.25 ms, or an 82.74 times reduction in signal from control.
This reduction in signal was approximately five and 10 times
greater than that produced by the 53.5 nm and 33.4 nm SPIO (for
the same concentration).

Fig. 7. Dependence of SPIO loading on surface charge. T cell uptake of fluorescently labeled SPIO as a function of surface charge was examined by modulating the number of amines
per particle for the (A) 33.4 nm, (B) 53.5 nm and (C) 107 nm particles. A gradient in the degree of functionalization was produced by glycidol blocking of amines. SPIO was incubated
with T cells at saturating concentrations, 50 mg/mL, under identical conditions. Flow cytometry was then performed to assess the relative uptake of each SPIO. Each data point
represents the mean fluorescent intensity (MFI). The loading of SPIO was rapid; Fig. 7(D) shows the representative uptake of fully-aminated 107 nm particles.

Fig. 8. Viability of T cells incubated with SPIO. SPIO was incubated with T cells at
various iron concentrations: 10 mg/mL [black], 50 mg/mL [white] and 100 mg/mL [grey].
After 4 h (unless otherwise noted), viability was measured and normalized to cells
grown in the absence of any particles (blank). All SPIO exhibited negligible impact on
cell survival after 4 h, excluding the 107 nm diameter particles. Reducing incubation
time of these particles to 1 h eliminated adverse effects at both low and saturating
concentrations.

Fig. 9. T2 relaxation times of T cells labeled with SPIO. T cells were labeled with SPIO of
various sizes and across a range of concentrations. The T2 relaxivity of 0.5�106 SPIO-
loaded T cells/mL in 300 mL was measured on a Bruker mq60 MR relaxometer oper-
ating at 1.41 T (60 MHz). The signal decrease observed following internalization of SPIO
is dose-dependent and saturation correlates well with values determined by flow
cytometry. The 107 nm SSPIO produced maximum signal decrease.
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4. Conclusions

In this work, efficient iron oxide labeling, without the use of cell
penetrating peptides or transfection agents, was accomplished in
a clinically relevant non-phagocytic cellular system. The level of
SPIO loading in T cells was determined by flow cytometry and
verified through evaluation of MR contrast enhancement. Using
conditions under which cell loading was independent of particle
concentration, chemical surface modification, and incubation time,
particle size was isolated as an attribute to affect nano- and
microparticle loading. Large particles, over 200 nm in diameter,
possess much greater amounts of iron per particle, and thus theo-
retically require few particles or single particle per cell in order to
be used. However, they suffered from gravitational sedimentation,
decreased efficiency of cell labeling, and in some cases free particles
were incompletely removed from labeled cells. This may not be
a problem with adherent and/or phagocytic cell systems, but
significantly hampered their efficacy as magnetic labeling probes
for non-phagocytic suspended cells. The vastly greater number of
USPIO that accumulate within the cells made up for their weaker R2

values. While a general trend correlating increased or decreased
particle size with labeling was not observed, it was clear that the
107 nm SPIO manifestation led to the largest T2 signal decrease.
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