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Geometrical optics limit of stochastic electromagnetic fields

Abstract
A method is described which elucidates propagation of an electromagnetic field generated by a stochastic,
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A method is described which elucidates propagation of an electromagnetic field generated by a stochastic,
electromagnetic source within the short wavelength limit. The results can be used to determine statistical
properties of fields using ray tracing methods.
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I. INTRODUCTION

The behavior of monochromatic sources and fields at
short wavelengths can be described, in many cases, by geo-
metrical optics. The foundations of geometrical optics of sca-
lar wave fields have been discussed by Sommerfeld and
Runge in a classic paper �1�, and their analysis has been
generalized by Rytov �2� �see also �3�, Chap. 3� to mono-
chromatic electromagnetic fields.

A generalization of the results of Sommerfeld, Runge, and
Rytov to broader classes of fields presents some difficulties,
especially when these fields are stochastic. However, a solu-
tion for stochastic scalar fields was obtained �4� via the so-
called coherent mode representation of scalar wave fields of
any state of coherence �see �5� or �6�, Sec. 4.1�. In the
present paper, that analysis is extended to stochastic, planar,
secondary electromagnetic sources and to the fields that they
generate.

In the high-frequency limit of electrodynamics, the vector
fields are often approximated by scalar waves or by rays,
depending on the application. The second-order correlations
of fields in the scalar approximation have been extensively
studied �6�. The average second-order correlation properties
of electromagnetic fields can be described by correlation ma-
trices in either the temporal or in the spectral domain. The
time domain representation is often employed because detec-
tors necessarily time integrate any signal received. The spec-
tral domain representation, however, offers certain advan-
tages, especially in connection with propagation in
dispersive and absorptive media.

The electromagnetic cross-spectral density matrix of a
planar source, which describes the spatial correlations in the
spectral domain, may be expressed in terms of so-called co-
herent modes �7�. These modes are orthogonal and also mu-
tually uncorrelated. The modes may be propagated, and

though not necessarily mutually orthogonal, are also uncor-
related and thus the propagated cross-spectral density matrix
can be reconstituted by adding the matrices formed by taking
the outer product of each propagated mode with itself and
multiplying by the appropriate weight. Propagation of elec-
tromagnetic fields can be described using dyadic Green func-
tion methods. However, the implementation of such methods
may be prohibitively numerically intensive. Thus it is desir-
able to describe the propagation by approximate asymptotic
methods. It will be shown that for certain systems, the propa-
gation can be adequately carried out within the framework of
geometrical optics, thus greatly reducing the computational
complexity of the analysis and making available a wealth of
computational tools for ray-tracing. The main part of this
paper is organized as follows: In Sec. II, the scalar decom-
position of planar, stochastic, electromagnetic sources is re-
viewed; in Sec. III, the propagation of the modes is consid-
ered within the high-frequency limit; finally, in Sec. IV, two
examples are given to illustrate this geometrical method for
computing the degree of polarization.

II. MODAL DECOMPOSITION

Consider a random, statistically stationary, secondary
electromagnetic planar source represented by the mutual co-
herence matrix

�J��1,�2,�� � ��ij��1,�2,��� �1�

=��Ei
���1,0�Ej��2,���� , �2�

where the �k �k=1,2�, are position vectors of a point in the
transverse plane, � is a time delay, i and j label the x or y
components, the asterisk denotes complex conjugation and
the brackets denote an ensemble average over the fluctuating
electric field. The Fourier transform of the mutual coherence
matrix is the cross-spectral density matrix,

WJ ��1,�2,�� � � d��J��1,�2,��ei��. �3�
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A random, planar, stochastic electromagnetic source con-
sidered in the space-frequency domain can be described by
two sets of scalar modes �7�. The cross-spectral density at
every point in the source plane can be written in terms of
these modes. Propagation of the modes may be expressed by
the method of dyadic Green functions. However, the imple-
mentation of this approach may be quite complicated in prac-
tice. In many cases of interest, methods of geometrical optics
may be applied to each of the coherent modes which sim-
plify the calculation. It is the purpose of this paper to de-
velop such an approach.

Modal expansions have previously been expressed in
terms of the solutions to two- or three-dimensional coupled
Fredholm integral equations �8,9�. However, solving these
integral equations is not often tractable. Instead, a different
modal representation has been introduced in which the diag-
onal elements of the cross-spectral density are expressed in
terms of two sets of independent coherent modes 	�n
 and
	�n
 which are solutions of uncoupled integral equations:

Wxx��1,�2,�� = �
n=0

�

�n����n
���1,���n��2,�� , �4�

Wyy��1,�2,�� = �
n=0

�

	n����n
���1,���n��2,�� . �5�

Here �n and �n are the eigenfunctions and the eigenvalues,
respectively, of Wxx, and �n and 	n are the eigenfunctions
and the eigenvalues of Wyy. The off-diagonal elements of the
cross-spectral density matrix may be expressed in the form

Wxy��1,�2,�� = �
n=0

�

�
m=0

�


nm����n
���1,���m��2,�� , �6�

Wyx��1,�2,�� = �
n=0

�

�
m=0

�


nm
� ����m

� ��1,���n��2,�� . �7�

In these two equations, the off-diagonal expansion coeffi-
cients 
nm are given by


nm��� = �
�

d2�1�
�

d2�2�n��1,��Wxy��1,�2,���m
� ��2,�� ,

�8�

where � is the source plane. As shown in the Appendix,
when the modal expansion coefficients satisfy the equation
�
nm�2=�n	mnm, where nm is the Kronecker  symbol, the
scalar mode expansion can be recast as an electromagnetic
coherent mode expansion identical to the expansion previ-
ously introduced �8,9�.

III. GEOMETRICAL OPTICS

It has been shown �4� that for scalar waves an eikonal
approach to propagating the coherent modes of a field can be
applied to certain classes of sources. In the electromagnetic
case, the propagated modes are given by the expression

�n�r,�� = − �
�

d2���n���,��ŷ · �� � GJ���,r� , �9�

�n�r,�� = �
�

d2���n���,��x̂ · �� � GJ���,r� , �10�

where GJ�r ,r�� is the dyadic Green function for the wave
equation in the half-space �10�. This method of propagating
the modes has been previously discussed �11� and the propa-
gation of the correlation matrices using an approximation of
the dyadic Green function has been treated elsewhere �12�.
For sources that give rise to beams, the z component of the
field can be neglected and the cross-spectral density matrix
remains a 2�2 matrix. In general, though, the cross-spectral
density matrix cannot be reduced to a 2�2 representation.

It is assumed that the propagated modes may be expanded
in a series by asymptotic evaluation of the integrals in Eqs.
�9� and �10� for sufficiently large values of the wave number
k=� /c. The leading order term may be well approximated
by the expression

�n�r,�� = �E,n�r�eikSn
�x��r�, �11�

where �E,n�r� and Sn
�x��r� are the frequency-independent am-

plitude and the eikonal of �n�r ,��, respectively, and the
superscript x refers to a Cartesian component of the electric
field. Upon substituting this expression into Maxwell’s equa-
tions, one obtains three coupled first-order equations of dif-
ferent power in k �see �3�, Chap. 3�. The first is the eikonal
equation, which takes the form

��Sn
�x��r��2 = n2�r� , �12�

where n�r� is the refractive index. The second equation is the
so-called transport equation for the field amplitudes,

��Sn
�x��r� · ���E,n�r� +

1

2
	�2Sn

�x��r�

− ��Sn
�x��r� · ��ln ��r�
�E,n�r�

+ ��E,n�r� · � ln n�r�� � Sn
�x��r� = 0, �13�

where � is the magnetic permeability of the medium. The
third equation may be disregarded at sufficiently high fre-
quency. There is a similar set of equations involving �E,n�r�
and Sn

�y��r�.
In the half-space into which the field propagates, the

cross-spectral density matrix can be expressed in the form

WJ �r1,r2,�� = �
n

�n����E,n
� �r1� � �E,n�r2�eik�Sn

�x��r1,r2�

+ �
m

	m����E,m
� �r1� � �E,m�r2�eik�Sm

�y��r1,r2�

+ �
m

�
n


nm����E,n
� �r1�

� �E,m�r2�eik�Sm
�y��r2�−Sn

�x��r1��

+ �
m

�
n


nm
� ����E,m

� �r1�
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� �E,n�r2�eik�Sn
�x��r2�−Sm

�y��r1��, �14�

where �Sm
�i��r1 ,r2�=Sm

�i��r2�−Sm
�i��r1�. The cross-spectral den-

sity matrix for the propagated field is thus the sum of matri-
ces, each of which represents a coherent field. In the source
plane, this decomposition has a scalar form. However, upon
propagation, the modes must be described vectorially. Each
coherent mode is made up of two factors: An outer product
of vectors and a relative phase, both of which depend on two
points.

IV. DEGREE OF POLARIZATION

Electromagnetic beams and electromagnetic plane waves
make up special subsets of electromagnetic fields in which
the field has a dominant direction of propagation, taken to be
the z direction. In such a case, both the electric and the
magnetic fields oscillate perpendicular to the propagation di-
rection. The spectral degree of polarization of the field is
given by the expression �13�

P��r� �1 −
4 det WJ �r,r,��

�Tr WJ �r,r,���2
=

�1�r,�� − �2�r,��
�1�r,�� + �2�r,��

,

�15�

where �1��2 are the eigenvalues of the cross-spectral den-
sity matrix when both its arguments are evaluated at r.

To illustrate the previous analysis, consider a laser beam
incident on a ring cavity as shown in Fig. 1. Suppose that the

mirror R� has reflection coefficients rte� �k̂� and rtm� �k̂� and

transmission coefficients tte� �k̂� and ttm� �k̂� for the transverse
electric and magnetic fields, respectively. There are likewise
reflection and transmission coefficients for the mirror R. The
other two mirrors are assumed to be perfectly reflecting.

Consider the case when the cross-spectral density matrix
of the incident light has the form

WJ �r1,r2,�� = �Wxx�r1,r2,�� 0

0 Wyy�r1,r2,�� � . �16�

In the geometrical limit, the modal decomposition takes the
form

Wxx�r1,r2,�� = �
n

�n����E,n
� ��1�e−ikz1�E,n��2�eikz2,

�17�

Wyy�r1,r2,�� = �
n

	n����E,n
� ��1�e−ikz1�E,n��2�eikz2,

�18�

Wxy�r1,r2,�� = 0. �19�

Each mode can be represented by a set of rays that propagate
in the z direction. At the two mirrors R and R�, every incident
ray creates two outgoing rays: One that continues on the
straight line path with an amplitude tte �ttm� times the original
amplitude and one that continues in a direction governed by
the law of reflection with amplitude rte �rtm�. Hence, the field
at the detector is comprised of a series of collections of rays
for each mode: A collection of rays that did not reflect at
either R or R�, a collection that reflected once at each of
these mirrors, etc. In the detection plane, the effect of the
series of reflections and transmissions can be described by
the formulas

�E,n
�D���� = Tte�kl��E,n��� , �20�

�E,n
�D���� = Ttm�kl��E,n��� , �21�

where �E,n
�D� and �E,n

�D� are the propagated coherent modes at
the detector and

Tte�kl� =
ttette� eikd

1 − rterte� eikl , �22�

Ttm�kl� =
ttmttm� eikd

1 − rtmrtm� eikl . �23�

Here d is the single pass length around the cavity to the
detector, and l is the length of the cavity. Note that the total
transmission coefficients are independent of the mode index.
For this reason, the cross-spectral density matrix elements
are proportional to the original cross-spectral density matrix.

In the detection plane, the cross-spectral density takes the
form

WJ ��1,�2,�� = �Wxx
�D���1,�2,�� 0

0 Wyy
�D���1,�2,��

� , �24�

where

Wxx
�D���1,�2,�� = Wxx��1,�2,���Tte�2, �25�

Wyy
�D���1,�2,�� = Wyy��1,�2,���Ttm�2. �26�

Because the TE and TM coefficients for reflection and trans-
mission are, in general, different, the degree of polarization

FIG. 1. A diagram of an external ring cavity. A ray that is only
transmitted through the mirrors R and R� �not reflected� and travels
a distance d=2s1+s2+s3+s4. The perimeter of the cavity is
l=2s1+2s2.
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at the output can be altered by changing the path length
around the cavity, i.e., changing the eikonal of the output
field. In Fig. 2, the degree of polarization at the detector is
plotted against the size of the cavity. As the cavity size be-
comes larger, the degree of polarization changes periodically.
In panel �a�, the degree of polarization falls off rapidly from
the initial value of P=0.5. In panel �b�, the degree of polar-
ization increases well above the initial value. The specific
choices of mirror parameters make the cavity preferentially
favor the TM polarization. Mirrors can be designed with dif-
ferent parameters to favor the TE polarization or to lessen the
change in the state of polarization.

As another example, consider a planar source with a uni-
form cross-spectral density for all pairs of points. The cross-
spectral density matrix takes the form

WJ ��1,�2,�� = � ���� 
���

���� 	��� � . �27�

This source generates a z-directed plane wave. Suppose the
propagated field is incident upon a biaxial medium having
the fast axis in the x direction and slow axis in the y direc-
tion. The eikonal along the fast axis is S�x�=nfz and the ei-
konal along the slow axis is S�y�=nsz. From Eq. �14�, the
cross-spectral density of the field in the media takes the form
�up to a nonessential prefactor�

WJ �r1,r2,�� = � ����eik0nf�z2−z1� 
���eik0�nsz2−nfz1�


����eik0�nfz2−nsz1� 	���eik0ns�z2−z1� � ,

�28�

where k0=� /c, and ns and nf are the refractive indices along
the slow axis and fast axis, respectively.

Assume that the source is broadband with ����=	���
=
���=exp�−

��−�c�2

2��
2 �. It is clear that at any point in the half-

space, the spectral degree of polarization P�=1. For broad-
band light, it is appropriate to define the degree of polariza-
tion in terms of the mutual coherence matrix ��14�, pp. 174ff�
rather than in terms of the cross-spectral density matrix as

P�r� =1 −
4 det �J�r,r,0�

�Tr �J�r,r,0��2
. �29�

For any plane z=zp in the crystal, the equal-time mutual
coherence matrix takes the form

�J�zp,zp,0� = � �̃�0� 
̃�nf − ns

c
zp�


̃��− nf + ns

c
zp� 	̃�0� � , �30�

where tilde denotes Fourier transform. It is apparent that the
degree of polarization of the field in the crystal changes as a
function of propagation distance, viz.,

P�z� = exp�−
��

2 ndif
2 z2

2c2 � , �31�

where ndif=ns−nf and the approximation �c /���1 has
been used.

In Fig. 3, the degree of polarization as a function of axial
distance z is shown. The values for bandwidth and difference
in refractive index are typical of those in a polarization sen-
sitive optical coherence tomography imaging experiment

�� �� �� ��
�

���

���

���

���

���

���

��	

�� �� �� ��
����

���

����

���

����

��	

��	�

��


��
�

���

P(z)P(z)

klkl

a b

FIG. 2. �Color online� The degree of polarization, calculated by the geometrical optics model, at the output as a function of cavity size
parameter kl. In panel �a�, the incident field is more TE polarized, that is, the spectral density for the TE component of the field is 3 times
larger than the spectral density for the TM component of the field, and the incident field has degree of polarization P=0.5. In panel �b�, the
incident field is more TM polarized, that is, the spectral density for the TM component of the field is 3 times larger than the spectral density
for the TE component of the field, and the incident field has degree of polarization P=0.5. The mirrors R and R� are identical dielectric
mirrors with thickness t=31�, �=11.34�0, and �=�0.
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�15�. After the beam travels a distance 4 mm through the
biaxial medium, its degree of polarization changes from the
initial value of 1 to a value of 0.1.

Although in the preceding case the spectral degree of po-
larization is invariant on propagation, it is clear that the tem-
poral degree of polarization changes drastically. The change
is a consequence of the different phase that each spectral
component accumulates on propagation.

V. CONCLUSION

Modal decomposition of planar electromagnetic, second-
ary, partially coherent sources has been developed and the
propagation from such sources has been considered in the
short wavelength limit. The electric cross-spectral density
matrix of the propagated field has also been studied; specifi-
cally, a geometrical interpretation of changes in the degree of
polarization due to propagation has been considered. The
examples make it clear that a geometrical model can be use-
ful for analysis in either the space-time or in the space-
frequency domains.
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APPENDIX

In this appendix, it is shown that under certain circum-
stances, the two kinds of coherent mode decompositions

�7,8� may be expressed into the same form. The electromag-
netic coherent mode decomposition developed previously
�8,9� is expressed in terms of solutions to the matrix integral
equation

� d2��WJ ��,��,�� · en
����,�� = �n���en

���,�� . �A1�

The en and �n��� are the right eigenvectors and eigenvalues

of WJ �� ,�� ,��. When the off-diagonal elements of WJ are
nonzero, Eq. �A1� represents a set of coupled equations.
When the off-diagonal elements are identically zero, the two
equations become uncoupled. The cross-spectral density ma-
trix may then be expressed in the form

WJ ��1,�2,�� = �
n

�n���en
���1,�� � en��2,�� . �A2�

The recently introduced scalar mode decomposition of a
stochastic source �7� can be expressed in terms of solutions
to two uncoupled scalar equations,

� d2�Wxx��,��,���n
����,�� = �n����n

���,�� , �A3�

� d2�Wyy��,��,���n
����,�� = 	n����n

���,�� . �A4�

The diagonal elements of the cross-spectral density matrix
are then expressed as in the form of Eqs. �4� and �5�, and the
expansion of the off-diagonal elements is given by Eqs.
�6�–�8�. When the expansion coefficients take the form


mn��� = �n���	m���ei�n���nm, �A5�

a set of vector modes En�� ,�� can be constructed as follows:

En��,�� = �n����n��,��x̂ + 	n���ei�n����n��,��ŷ .

�A6�

Unlike the vectors in Eq. �A1�, these vectors, although or-
thogonal, are not normalized. Their normalized form is

En���,�� =
En��,��
�n���

, �A7�

where

�n��� =� d2�En
���,�� · En��,�� . �A8�

It is then not difficult to show that the expression

WJ ��1,�2,�� = �
n

�n���En�
���1,�� � En���2,�� �A9�

represents the original cross-spectral density matrix and is
also in the form of Eq. �A2�.

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Distance [mm]

P(z)

FIG. 3. �Color online� The degree of polarization, P�z�, calcu-
lated from the present theory, as a function of distance traversed
through the biaxial media with ndif=0.0019 and ��=8.37
�1013 rad /s. The centerline frequency is �c=1.45�1015 rad /s.
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