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Computational Study of the Force Dependence of Phosphoryl Transfer
during DNA Synthesis by a High Fidelity Polymerase

Abstract

High fidelity polymerases are efficient catalysts of phosphodiester bond formation during DNA replication or
repair. We interpret molecular dynamics simulations of a polymerase bound to its substrate DNA and
incoming nucleotide using a quasiharmonic model to study the effect of external forces applied to the bound
DNA on the kinetics of phosphoryl transfer. The origin of the force dependence is shown to be an intriguing
coupling between slow, delocalized polymerase-DNA modes and fast catalytic site motions. Using
noncognate DNA substrates we show that the force dependence is context specific.
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High fidelity polymerases are efficient catalysts of phosphodiester bond formation during DNA
replication or repair. We interpret molecular dynamics simulations of a polymerase bound to its substrate
DNA and incoming nucleotide using a quasiharmonic model to study the effect of external forces applied
to the bound DNA on the kinetics of phosphoryl transfer. The origin of the force dependence is shown to
be an intriguing coupling between slow, delocalized polymerase-DNA modes and fast catalytic site
motions. Using noncognate DNA substrates we show that the force dependence is context specific.
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The tremendous catalytic power of high fidelity DNA
polymerases, which enables them to perform DNA base
pair synthesis (BPS) with high efficiency as well as high
specificity (error rate of 1 per 10°~10% base pairs synthe-
sized) is a subject of intense experimental [1] and theoreti-
cal [2,3] investigations. During BPS a complementary
nucleotide triphosphate (ANTP) is incorporated into one
of the strands (denoted as primer) of a double stranded
DNA molecule, opposite an unpaired base in the other
strand (denoted template). The basic reaction (chemical
step) is the formation of a covalent phosphodiester bond
between the incoming ANTP and the terminal primer base
(Fig. 1), prior to which the enzyme has to switch to an
“active” state through a large scale conformational re-
arrangement of the fingers (or thumb) domain [1].
Subsequently, the enzyme switches back to an ‘“‘inactive”
state and the cycle repeats. Based on a large body of
structural and biochemical data, it is known that the iden-
tity of the rate-limiting step in the BPS cycle depends not
only on the type of polymerase, but also the base pairs
involved in the synthesis [1]. During correct incorporation,
either the conformational change preceding the chemical
step (E. coli pol I) or the chemical step itself (pol B) can be
rate limiting, while for incorrect incorporation indirect
evidence suggests that for several polymerases the chemi-
cal step is rate limiting. Using novel tools for single
molecule experimentation [4—7] pioneering studies of pol-
ymerases replicating DNA stretched under differing ten-
sions [8,9] show that the replication rate is highly sensitive
to forces exerted on the template strand (replication rate
increases with forces less than 4—7 pN and decreases for
higher values of the force); this implies that the applied
force affects the rate-limiting step. Theoretical models
parameterized by experimental data [8,9] and atomistic
simulations [10] suggest that the rate-limiting step in this
case involves the rearrangement of more than one base
pair. While such models are instructive the force depen-
dence is explained purely in terms of DNA elasticity
neglecting the coupling between the complex cooperative
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motion of polymerase and DNA degrees of freedom at the
catalytic site. In this Letter, we show that such a coupling
leads to a new paradigm of force dependence of the ki-
netics of the chemical step in these systems. This is par-
ticularly useful for extending the experimental studies to
systems with mispaired DNA substrates where the chemi-
cal step is indeed believed to be rate limiting. Through a
correlation analysis of molecular dynamics (MD) simula-
tion data, we suggest that the external force on the DNA
template strand impacts the chemical step due to a cou-
pling between the primary reactive distance for phosphoryl
transfer (the O3'-P,, distance in Fig. 1) and slow delocal-
ized enzyme-DNA motions [11]. The presence of such a
coupling adds to accumulating evidence of a prechemistry
phase during catalysis, in which delocalized (global), and
local motions of the enzyme-substrate complex driven by
thermal fluctuations synergistically orchestrate the assem-
bly of an optimal catalytic site [12,13]. We also show that
the coupling is disrupted to varying extents when the
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FIG. 1 (color online). (Right) Solvated BF pol/DNA/ANTP
ternary complex. (Left) Catalytic site showing key elements of
the phosphoryl transfer reaction. A covalent bond is formed
between a-phosphorous of the incoming nucleotide and the
03’ oxygen of the terminal primer base.
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inserted nucleotide is not complementary to the template
base or when the template base is oxidatively damaged. We
combine our correlation analysis with a quasiharmonic
approximation to derive the context-specific force depen-
dence of the phosphoryl transfer step for four polymerase-
DNA complexes.

In this study, we have chosen to work with the large
fragment from Bacillus stearothermophilus (Bacillus frag-
ment or BF) even though previous single molecule data are
available for the highly homologous (49% sequence iden-
tity) Klenow fragment (or KF) because BF allows us to
explore four systems: correct dCTP or incorrect dATP
insertion opposite an undamaged or oxidatively damaged
guanine (G) template base. We denote the systems as
(HG:C,2)G: A, (3) 80x0G : C, and (4) 8ox0G : A.
For KF, (3) and (4) are not physical because unlike BF, KF
is not known to bypass the 80xoG lesion; see Sec. S.1 and
Fig. S1 in [14] for a sequence and structural comparison of
BF with KF and T7 polymerases. Four fully solvated model
complexes of BF pol [15] with DNA + dNTP substrate are
prepared for G : C, G : A, 80ox0G : C, and 8ox0G : A
systems. In the 8oxoG models G is replaced with 8-
hydroxoguanine (80xoG), one of the most prominent le-
sion generated by oxidative damage. We perform all atom
MD simulations of fully solvated complexes using the
CHARMM force field [16] and the NAMD [17] simulation
package. Following standard equilibration protocol (see
[14] for details on methods and analyses), 10 ns constant
volume and temperature MD trajectories are obtained for
the four model systems and data from the last 5 ns are
utilized in the subsequent analysis.

In the single molecule experiments, a force applied to
the template strand of the DNA fragment alters the repli-
cation rate. Here, using a minimal model, we specifically
discuss the effect of the force on the chemical step during
BPS. If A and B denote the ground and transition states for
catalysis, then according to transition state theory the
“equilibrium constant” for the system to switch from state
A to B in the absence of any external force is (see Fig. 2):
Kcq(0) > exp(—AG/kpT), where, AG is the free energy
difference between A and B [18]. A comparison of equili-
brated structures (Fig. 1) with ‘‘ideal” transition state
structures in similar systems [19,20] shows that the pri-
mary reactive distance, X (signifying nucleophilic attack)
for catalysis is the distance between the terminal primer
adenine (A) O3’ atom and the P, atom of the incoming
dNTP. We assume that the passage from state A to B is
approximated purely by a change in the coordinate X,
which is harmonic (to a first approximation) close to the
catalytic ground state with a spring constant k, and equi-
librium value X, (Fig. 2). Then, in the absence of an
external force the total (free) energy cost to drive the
system from state A to B is: W(0) = 0.5k, [Xz(0) —
X, (0)T?. Within the linear response limit, the applied force
will shift the ground state equilibrium position X4 (F) and
the position of the transition state Xz(F) [18]. Thus, the
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FIG. 2. The potential surface along the catalytic reactive dis-
tance X is given by V, = 0.5k, [X — X4(0)]>. An external force
F shifts the equilibrium position of the ground state A from
X,(0) to X4(F) and that of the transition state B from X(0) to
X3 (F) to alter the barrier for catalysis. The new potential surface
for X is Vg = 0.5k,[X — X,(F)> — [F,/(2k,)], where F, is the
force alone X.

change in the total (free) energy cost to transition from
state A to state B, i.e., AW = W(0) — W(F), under an
applied force F acting along X is AW(F) = W(0) —
0.5k, [X5(F) — X,(F)]* and the K, under force F can be
written as [18] Kq(F) = exp(—[AG — AW(F)]/kpT).

A force applied on the template strand (as in the single
molecule studies) will change X only if a coupling exists
between X and the DNA template strand. We explore this
coupling by carrying out a principal component analysis
(PCA) [21] on an “‘active-site region”’, including the cata-
lytic site (Fig. 1) and comprising nonhydrogen atoms of the
incoming dNTP, six residues of the DNA template strand,
four residues of the DNA primer strand, the two Mg?"
ions, two polymerase aspartate residues D830 and D653
critical for catalysis, and bound waters at the catalytic site
(see Sec. S.2 in [14] for a discussion on this choice for the
subset). The plot of the variance-covariance matrix (o, see
Sec S.1.4 in [14]) quantifies the correlations in atomic
motions in the active-site, (see Figs. 3 and S8-SI1 in
[14]) and the PCA of ¢ results in & = (£}, &5, ..., E3n—¢)
orthogonal eigenvectors (PCs) with eigenvalues A =
(A5, Ay, ..., Asy_g) sorted in descending order, i.e., A; >
Ay ..., A3y—7 > A3y—¢; visualization of the PCs suggests
how the polymerase utilizes the dynamical coupling to
possibly drive the reaction (see movie S6 in [14]).
Intriguingly, we find that the correlations in o and hence
the dynamical coupling of the PCs with X are both context-
specific, see Figs. 3, S8-S11 and Table 1. For the G : C
system, we find that PCs that significantly influence X
(Table I) are also among the top (10) PCs which account
for most (>70%) of the atomic fluctuations in the MD
trajectories. Such a strong coupling is disrupted to varying
degrees for the three noncognate systems (Table I). The
contrast in correlations in Fig. 3 (between G : C and G :
A) and more generally in Figs. S8-S11 (among the four
systems) determines the context-specific dynamical cou-
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FIG. 3 (color online). Correlations between vector displace-
ments (r — (r)) of atoms for the G : C and G : A systems; vector
r is from origin to the atom of interest, and (r) its average.
Enlarged views for all 4 systems are provided in Figs. S8-S11 in
[14].

pling in Table I, wherein the catalytic site reactive dis-
tances are coupled to global motions of the BE/DNA/ANTP
complex.

Next, we discuss how the context-specific dynamic cou-
pling relates to the force applied to the DNA template
strand to influence catalysis. Each eigenvector &, repre-
sents a collective mode of motion in the active-site region
of the ternary complex, with spring constant k,, =
kgT/A,,, (the equality stems from the quasiharmonic ap-
proximation [21]). A force F applied along the DNA helix
axis as in the case of the single molecule experiments will
displace each &, by, a,, = |F| cos@,,/k,,, where, 6,, is the
projection angle of F along &,,. Since the force is applied at
the ends of the DNA template strand we project only the
motions of template strand backbone (phosphate) atoms
along the helix axis in calculating 6,, for each PC, see
section S.3 in [14] for further discussion. The resultant
change in the active-site geometry due to the applied force
F along the DNA duplex axis is then R(F) — R(0) =
> wam€m, Where, R = (X, X, ... X3y) is the vector repre-
senting the geometry of the active-site region of N atoms.
Here, R(0) is the ground state active-site geometry at zero
force (MD simulation average), for which X = X,4(0), and
R(F) is the new active state geometry due to F for which

TABLE I. The 5 modes showing the strongest correlation with
X, measured by the coefficient 7, defined for two independent

variables x, y as 1, = Covariance(x,)) with —1 < <1.
xy My Jvariance(x)\/variance(y) My

G:C G:A 8ox0G : C 8oxoG : A

Mode n Mode n Mode n Mode n
1 0.34 105 027 10 0.33 1 =023

3 —-032 112 -0.22 9 032 20 0.21
2 0.31 54 0.21 4 027 47 0.18
8 024 115 0.19 6 —022 23 —0.17
5 —-0.18 106 -0.19 15 022 71 —0.16

X = X,(F). The force along X which causes a displace-
ment, AX4(F) = X,(F) — X4(0)is: F.(F) = —k,AX,(F).
The spring constants k, can be obtained (Table II) from
the distribution (histogram) of X values P, in our ground
state MD trajectories by fitting a harmonic function
to the energy of the distribution E(X) = (1/2)k,X> =
—kgT In(P,). Since the free energy surface projected along
the reaction coordinate has a maximum at the transition
state, its the negative curvature is approximated as k, =
—u(wy)? = —2.77 X 10° pN/A, where u is the reduced
mass of the O3'-P,, virtual bond = 16 X 32/48 AMU and
w 18 the passage time in transition state theory, wy =
—kpT/h. Assuming that the same force acts on X through-
out the systems’ passage from ground to transition state
(the dynamic coupling is unaltered), the displacement of
the transition state value of X, AX(F) = X3(F) — X;3(0)
is given as
F(F) ky

Note that the displacements AX,(F) and AXy(F) have
opposite signs due to positive (negative) curvatures of the
free energy for ground (transition) states. In our calcula-
tions X3(0) = 1.7 A, the average value of the O3'-P,
distance seen in structures of post-catalytic (product) com-
plexes. We have used the full set of 3N-6 PC modes to
calculate the displacements AX,(F) and AXy(F) for all
four models and obtained the ratio K.4(F)/K.(0) =
exp[AW(F)/kpT] of phosphoryl transfer rates in the pres-
ence of an external force relative to that in the zero force
limit. The phosphoryl transfer rate increases with force
(ratio > 1) if AW is positive, i.e., if the force reduces X
from its average value and decreases (ratio < 1) for nega-
tive AW. In Fig. 4, we plot K.(F)/K.4(0) versus force in
the range |F| = 1-6 pN for all four models. We consider
two cases (that represent extreme limits and the correct
scenario is likely in-between): (a) no TSS: F does not
change Xj3(0) i.e. that the dynamic coupling present in
state A is absent (completely disrupted) in state B and
(b) with TSS: F changes X3(0) to X(F) and the dynamical
coupling is retained throughout the systems passage from
state A to B. Based on Fig. 4, our predictions are that for
three systems G : C, 80xoG : C, and 80oxoG : A the ap-
plied force induces a net reduction in X, and hence an
increase in the phosphoryl transfer rate with increasing
applied force. For G : C incorporation in KF this trend
matches the experiments although experimental evidence
also shows that the chemical step is not rate limiting for
G : C. For the G : A system, the opposite is true, i.e., with

TABLE II.  Spring constants (X 10° pN/A) for all four models
estimated from MD simulation data.

Model G:A G:A 8ox0G : C 80x0G : A
ky 2.24 0.62 0.21 2.55
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FIG. 4 (color online). Relative catalytic rate vs force on the
DNA template strand. TSS: Transition state shift.

force, X increases causing a net decrease in the phosphoryl
transfer rate. Thus, the increase or decrease of the relative
replication rate with force is context-specific and is gov-
erned both by the dynamic coupling of the PCs with X
(Table I) and the projection of the PCs along F (see also
section S.3 of [14]). These predictions, especially for the
noncognate substrates where phosphoryl transfer is indeed
rate limiting (and hence governs the overall replication
rate), are new and can be directly tested by carrying out
single molecule studies of DNA replication in response to
weak applied forces. The dynamic coupling itself is stron-
gest for the G : C system;, i.e., the slow modes have a
strong correlation with X (Table I). For the noncognate
substrates (G : A, 80oxoG : C, and 80x0G : A models) the
dynamic coupling appears to be disrupted to differing
extents and the most significant correlations of the
03'-P, distance fluctuations shift to be with higher fre-
quency (stiffer) modes (Table I). The stiffer modes by
definition tend to induce smaller displacements of X and
smaller shifts of the transition state [Eq. (1)]; in our PCA,
the stiffer modes also show weaker projections along the
applied force. The cumulative effect is a weaker (G : A,
80x0G : A) or insignificant (80ox0G : C) dependence of
the relative phosphoryl transfer rate on the applied force
for the systems with noncognate substrates (Fig. 4). PCA
calculations performed using extended active-site frag-
ments show identical phosphoryl transfer rate versus force
curves as reported in Fig. 4 (Sec. S.2 of [14]), which
establishes that our predictions are insensitive to our choice
of the active site.

To summarize, subject to the well-appreciated approx-
imations (these include imperfections in biomolecular
force-fields, limited sampling in MD simulations, the lin-
ear response as well as quasiharmonic assumptions; in
particular, our analysis would break down for strong forces
due to anharmonicities, force induced mode mixing, and

the coupling of the force to reactive distances other than
X), we have identified a dynamic coupling between slow
delocalized polymerase-DNA modes and the O3'-P, re-
active distance for catalysis which is optimal only for the
G : C system and is disrupted in systems with noncognate
DNA + dNTP substrates. The emerging theme from our
studies is that the dynamical coupling alters the free energy
landscape for phosphoryl transfer; i.e., its context-specific
manifestation impacts the kinetics of phosphoryl transfer
differently for different substrates. Thus the optimization
of the dynamic coupling machinery through evolution can
be a possible additional mechanism in the polymerase to
achieve error control during DNA replication.
Computational resources were provided in part by the
National Partnership for Advanced Computational
Infrastructure under Grant No. MCB060006.
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