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RGDS peptides immobilized on titanium alloy stimulate bone cell
attachment, differentiation and confer resistance to apoptosis

Abstract
A major cause of implant failure in skeletal tissues is failure of osseointegration, often due to lack of adhesion
of cells to the titanium (Ti) alloy interface. Since arginine- glycine-aspartic acid (RGD)-containing peptides
have been shown to regulate osteoblast adhesion, we tested the hypothesis that, bound to a Ti surface, these
peptides would promote osteoblasts differentiation, while at the same time inhibit apoptosis. RGDS and
RGES (control) peptides were covalently linked to Ti discs using an APTS linker. While the grafting of both
RGDS and RGES significantly increased Ti surface roughness, contact angle analysis showed that APTS
significantly increased the surface hydrophobicity; when the peptides were tethered to Ti, this was reduced.
To evaluate attachment, MC3T3-E1 osteoblast cells were grown on these discs. Significantly more cells
attached to the Ti-grafted RGDS then the Ti-grafted RGES control. Furthermore, expression of the
osteoblasts phenotype was significantly enhanced on the Ti-grafted RGDS surface. When cells attached to the
Ti-grafted RGDS were challenged with staurosporine, an apoptogen, there was significant inhibition of
apoptosis; in contrast, osteoblasts adherent to the Ti-grafted RGES were killed. It is concluded that RGD-
containing peptides covalently bonded to Ti promotes osteoblasts attachment and survival with minimal
changes to the surface of the alloy. Therefore, such modifications to Ti would have the potential to promote
osseointegration in vivo.
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Abstract: A major cause of implant failure in skeletal tis-
sues is failure of osseointegration, often due to lack of adhe-
sion of cells to the titanium (Ti) alloy interface. Since argi-
nine-glycine-aspartic acid (RGD)-containing peptides have
been shown to regulate osteoblast adhesion, we tested the
hypothesis that, bound to a Ti surface, these peptides would
promote osteoblasts differentiation, while at the same time
inhibit apoptosis. RGDS and RGES (control) peptides were
covalently linked to Ti discs using an APTS linker. While the
grafting of both RGDS and RGES significantly increased Ti
surface roughness, contact angle analysis showed that APTS
significantly increased the surface hydrophobicity; when the
peptides were tethered to Ti, this was reduced. To evaluate
attachment, MC3T3-E1 osteoblast cells were grown on these
discs. Significantly more cells attached to the Ti-grafted

RGDS then the Ti-grafted RGES control. Furthermore, ex-
pression of the osteoblasts phenotype was significantly en-
hanced on the Ti-grafted RGDS surface. When cells attached
to the Ti-grafted RGDS were challenged with staurosporine,
an apoptogen, there was significant inhibition of apoptosis;
in contrast, osteoblasts adherent to the Ti-grafted RGES were
killed. It is concluded that RGD-containing peptides cova-
lently bonded to Ti promotes osteoblasts attachment and
survival with minimal changes to the surface of the alloy.
Therefore, such modifications to Ti would have the potential
to promote osseointegration in vivo. � 2006 Wiley Periodi-
cals, Inc. J Biomed Mater Res 80A: 000–000, 2006

Key words: titanium; RGD peptides; apoptosis; osteoblast;
APTS

INTRODUCTION

Titanium alloy (Ti) is recognized as a superior
metal for joint prostheses, fracture fixation devices,
and dental implants. Despite widespread use, recent
surveys indicate that a small percentage of implants
fail due to lack of osseointegration. Surgeries to revise
the failed implant carry a substantial risk of further
failure, and adds significantly to the cost of these
very expensive operative procedures.

Because biological tissues interact with the outermost
atomic layers of the implant,1 it is logical to assume that
surface modifications would serve to influence the ac-
tivity of adherent cells. Indeed, changes in surface
energy, charge, and composition increase tissue adhe-
sion 2,3 and integration,4,5 and alterations in surface geo-
metry and roughness enhance osteoblastic function 6,7

and response to hormones.8 Moreover, deposition of a
calcium phosphate layer on the Ti surface increases
implant integration into surrounding tissues.9–13

A recent development has been to engineer the Ti
surface with bioactive molecules, in particular, the
arginine-glycine-aspartic acid (RGD) peptide.14 This
peptide, the ligand for cell surface integrin receptors,15

is found in many extracellular matrix proteins, includ-
ing bone sialoprotein,16 osteopontin (OPN),17 fibrino-
gen,18 thrombospondin,19 and vitronectin.20 In a previ-
ous investigation, we reported that when grafted onto
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a silicone surface, RGD peptides can induce osteoblast
differentiation and mineral deposition.21 Similar re-
sults were found when RGD peptides were linked to
quartz surfaces22,23 or incorporated in hydrogels.24

Ferris et al.25 showed that a thicker shell of new bone
was seen around rat femoral implants when RGD-con-
taining peptides were tethered to gold-plated Ti im-
plants. Importantly, the shear strength of the implants
was almost 40% greater then that of the control.

While it is clear that RGD–integrin binding enhan-
ces osseointegration, it is not known if the RGD pep-
tide directly tethered to the Ti surface influences cell
function. The goal of this study is to explore this
interaction by assessing whether the attachment trig-
gers differentiation of the osteoblast phenotype, while
at the same time inhibiting apoptosis and promoting
expression of survival pathways.

MATERIALS AND METHODS

Design of the study

The initial goal of this study was to chemically bond the
bioactive peptide RGDS to a Ti implant surface and to evalu-
ate whether the hybrid structure influences bone cell attach-
ment, differentiation, and survival. A three-step chemical
procedure was used to covalently link RGDS and RGES
(peptide control23,26) to the surface of Ti discs. The disc sur-
face was characterized by goniometry measurements, scan-
ning electron microscopy (SEM), and atomic force micros-
copy (AFM). Bone cells were cultured on Ti-RGDS, Ti-RGES,
and Ti surfaces. Cell attachment was measured. Following
staining with phalloidin, cell spreading and cytoskeletal orga-
nization was evaluated by confocal microscopy. Development
of the mature phenotype was determined by measurement of
alkaline phosphatase activity and expression of alkaline phos-
phatase, osteocalcin (OCL), OPN, and collagen type I (COL I).
To evaluate cell survival, cells were challenged with low lev-
els of apoptogens and osteoblast cell death evaluated.

Cell culture

MC3T3-E1 cells were maintained in 10 mL of complete
medium consisting of Dulbecco minimum essential medium
supplemented with 10% fetal bovine serum, 2 mM L-gluta-
mine and 50 mg/mL penicillin/streptomycin, pH 7.0. After
the cells had reached confluence, they were released with
5 mL of 0.1% collagenase in Hanks buffered saline solution
(Sigma Chemicals, St Louis, MO). The cells were then re-
plated on the surface of highly polished Ti discs (6 mm thick,
11 mm in diameter) in a 24-well culture dish (Corning Glass
Works, Corning, NY). Cultures were fed every other day
with complete medium, supplemented with 50 mg/mL as-
corbic acid and 5 mM b-glycerophosphate. To evaluate cell
adhesion and viability, osteoblast-like cells were plated on
the Ti-RGDS surfaces at a density of 70,000/well. Cells were
cultured for 1–12 days in complete media and harvested ev-
ery 3 days for phenotype analysis.

Preparation of the RGD-titanium implant surface

Highly polished commercial purity Ti discs (6 mm thick
and 12 mm in diameter) (kindly provided by Stryker
Osteonics, Mahwah, NJ) were used for all the experiments.
The Ti discs were incubated in a solution of 1:1 (v/v) of
methanol/HCl at room temperature. They were rinsed
5 times with dH2O and treated with 40% sulfuric acid at
room temperature for 15 min. The discs were rinsed exten-
sively with dH2O, then boiled in dH2O for 10 min. Finally,
the discs were washed 5 times with dH2O, rinsed with ace-
tone, and dried under vacuum for 12 h. The disc surface was
then incubated with 2.15 mM 3-aminopropyltriethoxysilane
(APTES) (A3648; Sigma Chemicals) in 30 mL of dry toluene
for 180 min at room temperature to generate an aminated
surface. The Ti discs were sonicated in chloroform 5 times,
acetone twice, methanol 5 times, and washed extensively
with water. The aminated Ti discs were incubated for 3 h in
0.2 mM RGDS peptide (Sigma Chemicals) in 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide and n-ethyl morpho-
line (Sigma Chemicals). The discs were rinsed with N,N-
dimethylformamide and distilled water. Nonbound peptides
were removed by sonication in N,N-dimethylformamide for
15 min. Finally, the discs were stored in desiccators under
vacuum for 24 h to remove the N,N-dimethylformamide.

Surface characterization of the disc

Static contact angles were measured using the sessile drop
method with a goniometer. A 10-mL droplet of distilled water
was suspended from the tip of a microliter syringe supported
above the sample stage (Rame-Hart 100-00). The syringe tip
was advanced towards the disc until the droplet made contact
with the disc surface. The syringe then was retracted, leaving
the droplet on the surface. The image of the droplet was cap-
tured with a CCD camera (Zoom 7000 Navitar TV Zoom) and
the contact angle was measured using an ATI Multimedia
Player and Scion Image program (Microsoft). SEM images
were acquired with a Joel 6300FV microscope equipped with
a field emission gun. The emission gun provides outstanding
resolution at accelerating voltages as low as 0.5 keV. Thus, it
was possible to image nonconducting materials such as cells
without the need for coating. The point-to-point resolution at
1 keV is 7 nm and decreases to 1.5 nm at 30 keV. Roughness
analysis of the Ti discs surface was performed using a Dimen-
sion 3000 Atomic Force Microscope (Digital Instruments,
Santa Barbara, CA) under ambient conditions, i.e., in air, using
a 80 mm � 80 mm scanner. The mean roughness of etched sur-
faces (area, 10 mm � 10 mm), aminated surfaces with APTS,
and surfaces with covalently bound peptides was measured.
Topographic images were acquired in a tapping mode using
silicon tips on integral cantilevers with a nominal spring con-
stant of 20–100 N/m. Images were obtained from at least two
different samples prepared on different days and at least three
macroscopically separate areas on each sample.

Evaluation of cell attachment to RGDS-treated
Ti surfaces

All Ti discs were first sterilized in 75% ethanol for
30 min, then washed with phosphate-buffered saline (PBS).
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To block nonintegrin receptors, the discs were treated with
BSA (1 mg/mL) for 30 min at 378C. Osteoblasts were plated
on the discs at a concentration of 70,000 per well. After 15,
30, and 60 min at 378C, cells were fixed with formalin solu-
tion (10% in PBS) for 5 min and stained with a solution of
1% toluidine blue in 10% formalin. After 12 h, the cell prep-
aration was washed with copious amount of dH2O, and
allowed to air dry. Cells were lysed with 2% SDS for 10 min
and the absorbances were read at 590 nm in a plate reader.

Characterization of bone cell phenotype

Alkaline phosphatase determination

After 12 days in culture, cells were extracted with 0.1 %
Triton-X 100 in distilled water. Fifty microliters of each
sample was diluted in 950 mL reagent mixture containing
Sigma 104 Phosphatase substrate in Tris Buffer (1.5 M Tris-
HCl, pH 9.0, containing 7.5 mM p-nitrophenylphosphate,
1 mM ZnCl2, and 1 mM MgCl2). Hydrolysis of p-nitrophe-
nylphosphate was monitored as the change in absorbance
at 410 nm over time. Alkaline phosphatase activity was ex-
pressed as nmol of product/min/106 cells; 1 absorbance
unit change equals 64 nmol of product.

RT-PCR analysis of bone cells mRNA

Osteoblast-like cells were grown in 60-mm tissue culture
dishes (Corning Glass Works). RNA was extracted from the
cells using Trizol reagent (GibcoBRL, Grand Island, NY).
The PCR products were analyzed by electrophoresis using a
2% agarose gel. Primers for the following genes were used:
alkaline phosphatase, OCL, COL I, OPN, and b actin. PCR
conditions used as given in previously published work.27

Cytoskeletal analysis of cells attached
to RGDS-treated Ti surfaces

Actin filaments were visualized by treatment with Alexa
Fluor conjugate-phalloidin (Molecular Probes, Eugene, OR).
The medium was removed from each sample and the cell
layer was washed twice with PBS. Cells were fixed with
1.5% formalin in PBS for 5 min. Triton X-100 (0.1%) in PBS
and 1% BSA was added to permeabilize the cells. After
20 min, the cell layer was washed twice with PBS and then
incubated with Alexa Fluor -labeled phalloidin (1:100) in
PBS with 0.1% Tween 20 and 1% BSA overnight at 48C. Cells
were then analyzed with the Olympus Fluoview inverted
confocal microscope (Olympus, Melville, NY) with a long-
working distance lens. To permit quantification, the plane of
maximum fluorescence was determined and the photomulti-
plier tube voltage set at that point for the control well.

Apoptotic sensitivity of osteoblasts on
RGDS-treated Ti surfaces

Cells were plated onto prepared surfaces as described
earlier. After 3 days in culture, cells were incubated for 24 h

with 0.1 and 0.5 mM staurosporine. Untreated cells were
used as controls. Cell death was measured using the MTT
procedure.27 This assay is based on the ability of mitochon-
drial dehydrogenases to oxidize thiazolyl blue (MTT), a tet-
razolium salt (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltera-
zolium bromide), to an insoluble blue formazan product.
Cells were incubated with MTT stain (120 mg/mL) at 378C
for 2 h. After the supernatant was removed, 400 mL of
0.04 mol/L HCl in isopropanol was added to each well and
the optical density of the solution was read at 590 nm in an
enzyme-linked immunoassay plate reader. As the genera-
tion of the blue product is proportional to the dehydrogen-
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Figure 1. SEM characterization of the Ti surface. A: Pol-
ished Ti alloy. B: Ti alloy surface following passivation with
methanol/HCl and sulfuric acid. C: Ti surface treated with
APTS. Note the decrease in surface texture following passi-
vation and APTS treatment (�1000).
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ase activity, a decrease in the absorbance at 590 nm pro-
vides a direct measurement of the number of viable cells.

Statistical analysis

Experiments were repeated 3–5 times. Data were ana-
lyzed using a one-way or two-way analysis of variance
(ANOVA), The Student–Newman–Keuls post hoc test for a
contrast of individual means was used. p < 0.05 was con-
sidered statistically significant.

RESULTS

Characterization of Ti-RGDS surfaces

Scanning electron microscopy

Initial characterization of the Ti surfaces was per-
formed using SEM to identify gross changes in surface
morphology (Fig.F1 1). Despite being polished to a mirror

finish, untreated Ti exhibits a grooved appearance [Fig.
1(A)]. However, following passivation with methanol/
HCl and sulfuric acid, the uneven morphology is lost
[Fig. 1(B)]. Covalent bonding of APTS to the surface
further reduces the texture of the surface [Fig. 1(C)].

Atomic force microscopy

Roughness analysis of the Ti-treated surfaces was
conducted using AFM (Fig. F22). For each surface treat-
ment, passivated Ti, APTS covalently bound to Ti, or
Ti with grafted RGDS or RGES (areas of 10 mm �
10 mm) were subjected to analysis. The scale was set
from 0.0 to 30.0 nm (Fig. 2, see inset). The roughness of
the etched Ti is 1.3 nm [Fig. 2(A)]. After the treatment
with APTES, the surfaces exhibit a small increase in
roughness to 2.0 nm [Fig. 2(B)]. However, after RGDS
and RGES peptides were chemically bonded to the Ti
surface, the roughness increases to 2.6 and 3.5 nm,
respectively [Fig. 2(C,D)].
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Figure 2. AFM characteristics of the chemically modified Ti alloy surface. A: Ti alone. B: Ti surface treated with APTS. C:
Ti surface grafted with RGDS. D: Ti surface grafted with RGES. Each square represents 10 mm2. Note: while APTS caused
only a small change in surface roughness, there was a significant increase when RGDS and RGES were tethered to the alloy.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Contact angle analysis

Changes in the surface energy of the Ti surface, at
each of the treatment steps, were determined by con-
tact angle analysis. FigureF3 3 shows that the average
contact angle for untreated Ti is 49.788. After the sur-
face was etched, the contact angle is significantly
reduced to *408. However, with formation of the
APTES layer, the surface became significantly more
hydrophobic, with the angle increasing from *408 to
65.068. Measurement of the contact angle of RGDS or
RGES peptides linked to the APTES surfaces indicates
that there is a statistically significant decrease from
65.068 to *528; there is no significant difference be-
tween the contact angles for grafted RGDS (52.988)
and RGES (51.828).

Evaluation of cell attachment to the Ti
surfaces with tethered RGDS

Osteoblasts, adherent to the surface with tethered
RGDS and RGES, were evaluated using Scanning
Electron Micrscopy (SEM). We noted that after 24 h
on the RGDS surface [Fig. F44(A)], osteoblasts are some-
what more tightly packed and more numerous then
those found on the RGES surface [Fig. 4(B)]. How-
ever, the cell attachment assay performed with newly
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Figure 3. Changes in surface characteristics as determined
by Contact Angle Analysis. A 10-mL droplet of distilled
water was deposited on the Ti alloy surface and an image of
the droplet was captured with a CCD camera. The contact
angle was calculated from this image using the Scion Image
program. Note: etching caused a significant reduction in the
contact angle, while APTS treatment significantly increased
the contact angle. There is no significant difference between
the contact angles of RGDS (52.988) and RGES (51.828). Val-
ues indicated are means and standard errors. *p < 0.05 in
comparison with control, þ p < 0.05 in comparison with pas-
sivated Ti, # p < 0.05 in comparison with APTS-grafted Ti.

Figure 4. Analysis of cellular attachment on the RGDS- and
RGES-grafted surfaces. MC3T3-E1 osteoblast-like cells were
plated onto Ti discs grafted with either RGDS (A) or RGES (B)
for 1 day. Cellular morphology and distribution were eval-
uated by SEM. Note that after 1 day, compared with RGES,
cells plated on the RGDS-grafted surface are somewhat more
numerous and closely packed. Initial attachment was eval-
uated using a cell attachment assay. Cells were plated on the
two grafted surfaces, as well as passivated Ti, for 15, 30, and
60 min, and then fixed and stained. Cell stain was quantified
and all values normalized by the cell number on passivated
Ti at 15 min (C). Note the significant increase in attached cells
on the RGDS-grafted surface in comparison with the RGES-
grafted surface at 15 and 30 min. No significant differences
are observable at 60 min.

RGD-GRAFTED Ti SURFACES PROMOTE OSTEOBLAST DIFFERENTIATION AND SURVIVAL 5
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attaching cells clearly shows significant differences in
attachment [Fig. 4(C)]. Osteoblast number increases
with time on all surfaces. Statistical analysis deter-
mined that both the RGDS-grafted surface and the
passivated Ti surface enhance cell attachment in com-
parison with the RGES-grafted surface.

Characterization of bone cell phenotype

The alkaline phosphatase activity of osteoblasts cul-
tured for 12 days on Ti grafted with RGDS, Ti grafted
with RGES, or Ti alone was determined enzymati-
cally. FigureF5 5(A) shows that the alkaline phosphatase
activity of osteoblasts cultured on Ti grafted with
RGDS was greater when compared with cells main-
tained on Ti grafted with RGES. While the mean alka-
line phosphatase activity is higher on the Ti grafted
with RGDS then on the Ti alone, this difference was
not statistically significant.

The osteoblastic phenotype of the cells grown on Ti
grafted with RGDS, Ti grafted with RGES, or Ti alone
was evaluated by RT-PCR after 3 days in culture. Gene
expression of phenotypic markers (alkaline phospha-
tase, OCL, OPN, and COL I) is elevated in cells cul-
tured on Ti grafted with RGDS surface when com-
pared with cells cultured on Ti grafted with RGES. It is
similar to expression levels of cells maintained on Ti
alone [Fig. 5(B)].

Apoptotic sensitivity of osteoblasts
on RGDS-treated Ti surfaces

We examined the impact of surface treatment on the
apoptotic sensitivity of the bound osteoblasts. At a
concentration of 0.1 mM, staurosporine caused a small
but significant increase in death of osteoblasts cultured
on Ti grafted with RGES and Ti alone; cells cultured
on Ti grafted with RGDS survive the staurosporine
challenge (Fig. F66).

DISCUSSION

The goal of this study was to learn if RGD-contain-
ing peptides could be grafted to a Ti surface and to
test the hypothesis that the peptide-modified surface
enhances osteoblast attachment, differentiation, and
survival. Surprisingly, we observed that cell attach-
ment to the Ti-grafted RGDS surface was not signifi-
cantly different from Ti alone. Analysis of the osteo-
blastic phenotype confirmed this observation. How-
ever, when the osteoblasts were challenged with an
apoptogen, the presence of the attachment peptides
promoted cell survival. Based on these results, we con-
clude that the grafted RGDS peptides confer a func-
tional advantage to Ti in that it protects adherent cells
from the effects of local apoptogens. Furthermore, the
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Figure 5. Analysis of the osteoblast phenotype on the RGDS- and RGES-grafted surfaces. A: Alkaline phosphatase activity
was evaluated in MC3T3-E1 osteoblast-like cells plated on both RGDS- and RGES-grafted surfaces, as well as the passivated
Ti. Note the high level of activity for cells plated on the RGDS-grafted surface, as well as the passivated Ti. B: RT-PCR analy-
sis of MC3T3-E1 cells plated on the RGDS- and RGES-grafted surfaces, as well as the passivated Ti. Note that expression of
all phenotypic markers are upregulated on both the RGDS-grafted surface and the passivated Ti.
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grafting procedure itself does not alter the excellent
biocompatibility properties of the Ti alloy.28

One advantage of the chemistry employed in this
study was that it minimally changed the physical
characteristics of the Ti surface. Contact angle meas-
urements showed that treatment with APTES and the
acquisition of amino groups increased the hydropho-
bicity of the surface. When RGDS and RGES peptides
were tethered to the surface, the small decrease in the
contact angle, due to the presence of multiple polar
functional groups, was recorded. Ti surfaces grafted
with both the RGDS and RGES peptides displayed the
same contact angle measurement. The importance of
surface charges and its influence on cell attachment
and function has been emphasized by other workers.29

From this perspective, the observation that a Ti surface
grafted with peptide exhibited a limited decrease in
hydrophobicity supports the hypothesis that chemical
modification minimally influences cell attachment and
function.

Surface roughness has been indicated as an impor-
tant factor that could influence the way osteoblasts
attach onto Ti.30 Thus, cell attachment increases as the
surfaces become rougher.31 We used AFM to analyze,
quantitatively, the roughness of each sample at three
different stages of treatment. Analysis of the Ti surface

modified with APTS, as well as the Ti alone, indicated
similar and very low indices of roughness, 1.3 and
2.0 nm, respectively. These results confirmed the SEM
analysis that showed a smooth surface of the Ti fol-
lowing the initial passivation with methanol/HCl and
sulfuric acid; a smoothness maintained through the
APTS step. These results suggested a uniform APTS
layer was present on the Ti surface. After grafting
RGDS and RGES peptides to the Ti surface, the rough-
ness indices increased by a factor of 3.5 and 3, respec-
tively, further confirming that there was an even pep-
tide distribution on the Ti surface. This result con-
firmed an earlier study of RGD attachment chemistry
to the surface of silicone wafers.32 Since the topogra-
phy, as well as the charge density, of the RGDS-Ti and
RGES-Ti surfaces are similar, it must be concluded
that differences in cell attachment and function reflects
differences in the peptide sequences rather than physi-
cal alteration in the surface properties of the Ti.

Since the Ti surface optimally promotes osteoblast
attachment and differentiation,28 it was critical that
we demonstrate that the Ti grafted with RGDS does
not interfere with these critical determinants of cell
behavior. Surprisingly, at early time periods (15 and
30 min), more cells attached to the Ti-grafted RGDS
than to the Ti-grafted RGES. Although not statisti-
cally significant, more cells were adherent to the
RGDS surface than the Ti alone. These data lend sup-
port to the hypothesis that the attachment chemistry
permits cells to attach to the RGDS-treated surfaces
without adversely affecting the biocompatibility of Ti
itself, resulting from its tenacious oxide.

In terms of development of the osteoblast pheno-
type, we measured the alkaline phosphatase activity
of osteoblasts plated on the three different Ti surfaces
for 12 days. Both Ti-grafted RGDS and Ti alone exhib-
ited similar increases in alkaline phosphatase activity,
compared with Ti-grafted RGES. RT-PCR analysis of
the confluent cell layer indicated that cells plated on
all three surfaces expressed a bone cell phenotype.
Alkaline phosphatase, OCL, OPN, and COL I33 tran-
scripts were all expressed. Consistent with previous
results, cells on both Ti-grafted RGDS and Ti alone ex-
pressed higher levels of the three transcripts than cells
plated on the Ti-grafted RGES. Predictably, there was
also a small increase in the mRNA of OCL, alkaline
phosphatase, and COL I on the Ti-grafted RGDS when
compared with Ti alone. As Wang et al.34 and Ruo-
slahti15 have reported, the interaction of the RGDS-
ligand and integrin receptors is characterized by an in-
creased level of gene transcription and the triggering
of cytodifferentiation pathways.

Previous studies have conclusively shown that cell–
matrix interactions are critical for promoting sur-
vival.35–38 Ligand–integrin binding blocks apoptosis
caused by extrinsic factors39,40 and induces expression
of anti-apoptotic proteins.41 In line with our earlier
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Figure 6. The effect of surface chemistry on apoptotic sen-
sitivity. MC3T3-E1 osteoblast-like cells were plated on pas-
sivated Ti, RGDS-, and RGES-grafted Ti. Cells were
exposed to 0.1 mM staurosporine treatment for 24 h. The re-
sultant cell death was measured using an MTT assay. Note
that while cells plated on the passivated Ti and RGES-
grafted Ti showed significant sensitivity to the apoptogenic
activity of staurosporine, cells plated on the RGDS-grafted
surface were completely refractory to the induction of apo-
ptosis. Values indicated are means and standard errors
graphed as a percentage of the control cells cultured in se-
rum free media. *p < 0.05.
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studies, which demonstrated that an RGD-grafted sur-
face produces an anti-apoptotic signal,42 the current
investigation demonstrates a similar response when
cells are attached to the Ti-grafted RGDS.21,32 Thus
attachment to the Ti-RGDS surface protected cells from
low doses of the apoptogen, staurosporine (0.1 mM). In
contrast, the Ti alone delivered no anti-apoptotic signal
to osteoblasts when compared with the Ti-grafted
RGES. Consequently, despite the biocompatibility of
Ti, as a surface, it renders no significant survival sig-
nals. These results emphasize that bioactive peptides
can be grafted to a Ti surface without the loss of critical
cell binding and functional characteristics.
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