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Transient Cervical Nerve Root Compression Modulates Pain: Load
Thresholds for Allodynia and Sustained Changes in Spinal Neuropeptide
Expression

Abstract
Nerve root compression produces chronic pain and altered spinal neuropeptide expression. This study utilized
controlled transient loading in a rat model of painful cervical nerve root compression to investigate the
dependence of mechanical allodynia on load magnitude. Injury loads (0–110 mN) were applied
quasistatically using a customized loading device, and load thresholds to produce maintained mechanical
allodynia were defined. Bilateral spinal expression of substance P (SP) and calcitonin gene-related peptide
(CGRP) was assessed 7 days following compression using immunohistochemistry to determine relationships
between these neuropeptides and compression load. A three-segment change point model was implemented
to model allodynia responses and their relationship to load. Load thresholds were defined at which ipsilateral
and contralateral allodynia were produced and sustained. The threshold for increased allodynia was lowest for
acute (day 1) ipsilateral responses (26.29 mN), while thresholds for allodynia on day 7 were similar for the
ipsilateral (38.16 mN) and contralateral forepaw (38.26 mN). CGRP, but not SP, significantly decreased with
load; the thresholds for ipsilateral and contralateral CGRP decreases corresponded to 19.52 and 24.03 mN,
respectively. These thresholds suggest bilateral allodynia may be mediated by spinal mechanisms, and that
these mechanisms depend on the magnitude of load.
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 Thresholds for Painful Cervical Root Compression 

Abstract 

Nerve root compression produces chronic pain and altered spinal neuropeptide 

expression.  This study utilized controlled transient loading in a rat model of painful cervical 

nerve root compression to investigate the dependence of mechanical allodynia on load 

magnitude.  Injury loads (0-110mN) were applied quasistatically using a customized loading 

device, and load thresholds to produce maintained mechanical allodynia were defined.  Bilateral 

spinal expression of substance P (SP) and calcitonin gene-related peptide (CGRP) was assessed 7 

days following compression using immunohistochemistry to determine relationships between 

these neuropeptides and compression load.  A three-segment change point model was 

implemented to model allodynia responses and their relationship to load.  Load thresholds were 

defined at which ipsilateral and contralateral allodynia were produced and sustained.  The 

threshold for increased allodynia was lowest for acute (day 1) ipsilateral responses (26.29mN), 

while thresholds for allodynia on day 7 were similar for the ipsilateral (38.16mN) and 

contralateral forepaw (38.26mN).  CGRP, but not SP, significantly decreased with load; the 

thresholds for ipsilateral and contralateral CGRP decreases corresponded to 19.52mN and 

24.03mN, respectively.  These thresholds suggest bilateral allodynia may be mediated by spinal 

mechanisms, and that these mechanisms depend on the magnitude of load. 

 

Keywords:  nerve root, cervical, load, neck pain, threshold  
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Introduction 

The annual incidence of neck pain among adults ranges from 14-50% (Côté et al., 2004; 

Fejer et al., 2005) affecting up to 71% of people in their lifetime (Côté et al., 1998, 2000).  

Individuals may suffer from chronic pain throughout their lives, resulting in large societal costs 

(Rempel et al., 1992; Côté et al., 2004).  Cervical spine motions decrease the intervertebral 

foramen (Nuckley et al., 2002) causing transient impingement of the nerve roots and radicular 

pain when motions exceed the normal range, as can occur in accidents and sports injuries 

(Krivickas and Wilbourn, 2000; Torg et al., 2002).   

Nerve root compression can produce tissue damage, edema, membrane leakage, and 

Wallerian degeneration, as well as changes in neuropeptide expression and spinal glial activation 

(Olmarker et al., 1989; Pedowitz et al., 1992; Colburn et al., 1997, 1999; Hashizume et al., 2000; 

Winkelstein et al., 2001a; Kobayashi et al., 2005a,b).  These responses result in bilateral 

sensitivity (Hubbard and Winkelstein, 2005) and central sensitization: a heightened 

responsiveness and reduced threshold for afferent inputs to the central nervous system (Woolf 

and Walters, 1991; Ji et al., 2003).  Canine lumbar root compression for 1 hour produces 

endoneurial edema but only for loads above 15gf (147.2mN) (Kobayashi et al., 1993, 2002), 

suggesting a load threshold for producing neural pathology.  While those studies provide insight 

into physiologic responses for nerve root loading and their dependence on biomechanics, injury 

mechanics and cellular/molecular outcomes have not been investigated in the context of pain.  

Models of persistent pain from root compression have not used controlled loading mechanics 

(Winkelstein et al., 2001b, 2002; Winkelstein and DeLeo, 2002, 2004; Sekiguchi et al., 2003, 

2004).  Previous work in our lab has shown that transient compression of the rat cervical nerve 

root with 10gf (98.1mN) produces persistent mechanical allodynia, and suggested that 10gf is 
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above the load threshold for producing bilateral behavioral hypersensitivity in rats (Hubbard and 

Winkelstein, 2005).  Currently, there is an incomplete understanding of the role of compression 

severity in transient nerve root loading for producing either acute or persistent mechanical 

allodynia, and no study has identified tissue loading thresholds for behavioral outcomes in the 

cervical spine. 

The neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) have 

been studied extensively for their contributions to nociception (Oku et al., 1987; Cridland and 

Henry, 1989; Kawamura et al., 1989; Levine et al., 1993; Bennett et al., 2000; Kobayashi et al., 

2004, 2005a,b; Aoki et al., 2005).  SP is released from axon terminals upon C-fiber stimulation 

(Malcangio et al., 2000), and its expression in the superficial laminae of the spinal cord decreases 

after lumbar neural injuries (Munglani et al., 1996; Malmberg and Basbaum, 1998; Allen et al., 

1999).  CGRP affects nociception by promoting the release, and slowing the metabolism, of SP 

(Allen et al., 1999; Meert et al., 2003).  Allodynia increases following intrathecal CGRP 

administration and decreases after administration of a CGRP antagonist (Oku et al., 1987; 

Cridland and Henry, 1989; Bennett et al., 2000).  Despite studies characterizing the temporal 

expression of spinal SP and CGRP (Cahill and Coderre, 2002; Jang et al., 2004), the dependence 

of these neuropeptides on nerve root compression load and persistent behavioral hypersensitivity 

is not fully understood. 

In this study, a statistical model is used to identify load thresholds governing allodynia 

and spinal neuropeptide responses.  To quantify changes in behavioral outcomes, mechanical 

allodynia (response to a stimulus which is not normally painful) is measured, which has clinical 

relevance as a pain outcome and is a sensitive measure in rodent models (Colburn et al., 1999; 

Tabo et al., 1999; Bennett et al., 2000). It is hypothesized that bilateral mechanical allodynia will 
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depend on load magnitude above a defined threshold.  We further hypothesize that altered spinal 

SP and CGRP expression can be modeled by similar load thresholds, which will match the 

thresholds for mechanical allodynia.   

 

Materials and Methods 

Experiments were performed using male Holtzman rats (250-350 grams; Harlan Sprague-

Dawley, Indianapolis, IN) housed with a 12-12 hour light-dark cycle and free access to food and 

water.  All experimental procedures were approved by an Institutional Animal Care and Use 

Committee. 

 

Surgical Procedures.   

Surgical procedures were performed under halothane inhalation anesthesia (4% 

induction, 2% maintenance) and were adapted from published methods (Hubbard and 

Winkelstein, 2005; Rothman et al., 2005).  After the spinal cord and right roots were exposed, a 

customized loading device with microcompression platens (0.7mm width) applied compression 

to the C7 dorsal root proximal to the dorsal root ganglion (DRG) (Figure 1A).  Platen 

displacement was measured by an LVDT (5mm travel distance, 0.25% sensitivity; RDP, 

Pottstown, PA), and the applied load was recorded by a load cell (490mN, 0.15mN resolution; 

Omega, Stamford, CT).  Mechanical data were recorded at 10Hz using LabVIEW (National 

Instruments, Austin, TX).  Digital video (Qimaging, Burnaby, British Columbia) monitored the 

nerve root during compression. 

The right C7 dorsal root was compressed transversely through its diameter to prescribed 

loads ranging between 0-110mN (n=25), with loads distributed across that range.  Due to 
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considerable stress relaxation for dynamic compression of neural tissue (Miller et al., 2000; 

Gefen and Margulies, 2004; Coats and Margulies, 2006; Cheng and Bilston, 2007), quasistatic 

loading (0.004mm/s) was implemented. Upon reaching a predetermined peak load, platen 

displacement was held for 15 minutes.  The load relaxed approximately 20% within the first 5 

minutes of the hold period (Figure 1B).  Steady state load was reported as the average load 

measured between 5 and 15 minutes during compression.  Sham procedures were performed with 

the same surgical technique but without tissue compression (n=4).  Wounds were closed using 3-

0 polyester suture and surgical staples. 

 

Mechanical Allodynia.   

All rats were evaluated for bilateral forepaw mechanical allodynia on days 1, 3, 5, and 7 

following surgical procedures (Ramer et al., 2000; Lee et al., 2004; Hubbard and Winkelstein, 

2005; Rothman et al., 2005).  Prior to surgery, baseline measurements were recorded for two 

consecutive days.  A single tester performed all allodynia testing and was blinded to the applied 

compression load.   

For each session, following 20 minutes of acclimation to the testing environment, rats 

were stimulated on the plantar surface of each forepaw using three von Frey filaments (13.7mN, 

19.6mN, 39.2mN) (Stoelting, Wood Dale, IL).  Each testing session consisted of three rounds of 

10 stimulations on each forepaw, separated by 10 minutes.  The total number of paw withdrawals 

was summed for each forepaw with each filament. 

 

Spinal Cord Tissue Preparation & Immunohistochemistry. 
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 Rats were euthanized on day 7 by an overdose of sodium pentobarbital (40mg/kg) and 

transcardially perfused with 200ml of phosphate buffered saline (PBS) followed by 200ml of 4% 

paraformaldehyde in PBS.  Spinal cord tissue was harvested and placed in 4% paraformaldehyde 

for 1 hour, then in 30% sucrose for 5 days before freeze-mounting in OCT (Fisher, Fairlawn, NJ) 

and storage at -80°C.  Axial sections (20μm) immediately rostral to the C7 root insertion were 

sectioned for free-floating immunohistochemistry.  Sections were blocked in 2% normal goat or 

donkey serum.  Polyclonal antibodies against CGRP (1:4000; Bachem, San Carlos, CA) and SP 

(1:2000; Chemicon, Temecula, CA) were applied to tissue sections in PBS-T (0.3% triton).  Goat 

anti-rabbit (1:1000; Vector, Burlingame, CA) or donkey anti-rabbit (1:1250; Chemicon, 

Temecula, CA) secondary antibodies were applied for CGRP or SP immunostaining, 

respectively.  All antibody dilutions were previously optimized (Rothman et al., 2005).  Sections 

were exposed to 3,3-diaminobenzidine for color development (Vector Labs, Burlingame, CA). 

 Representative bilateral tissue sections for SP and CGRP from each rat were imaged at 

50X to quantify immunostaining.  Within a 350x750 pixel area including the superficial laminae, 

pixels with a staining intensity above a predetermined mean threshold for positive 

immunoreactivity in normal tissue were quantified (Abbadie et al., 1996; Malmberg and 

Basbaum, 1998; Rothman et al., 2005).  For densitometry, reactive pixels were only detected in 

laminae I and II.  The number of pixels above threshold was reported as a percentage of the total 

in the region and averaged for the sections analyzed for each rat. 

 

Data & Statistical Analyses. 

Mechanical allodynia was analyzed by groups defined by average steady state 

compression loads.  Rats were divided into four groups (n=6 or 7 per group) in addition to shams 
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(n=4), based on average steady state load (±SD) (Table 1).  Allodynia responses were averaged 

for each group to provide mean ipsilateral and contralateral responses and analyzed by a two-

way analysis of variance (ANOVA) with repeated measures to determine significant effects of 

load over time. A one-way ANOVA with post-hoc Bonferroni correction compared means at 

each time point.  These statistical analyses were performed using SYSTAT v10.2 (Richmond, 

CA).  Allodynia data are presented as mean (±SEM), with significance at p<0.05. 

Thresholds to initiate and sustain allodynia were determined using injury load as a 

continuous variable.  Applied load for shams was defined as 0mN.  Ipsilateral and contralateral 

allodynia on days 1 and 7 and over the entire postoperative period (total allodynia) were 

specifically analyzed with respect to load.  For each behavioral data set, a Bayesian three-

segment change point model was fit to the load-allodynia relationship (Muggeo, 2003) because 

of its utility to fit the apparent segmented response of allodynia and load, with flat responses for 

the low-load and higher-load ranges.  Such a model enables the identification of the change 

points between the segments, providing load thresholds for allodynia.  The three segments 

included minimum and maximum allodynia responses, and a linear segment between the 

extremes.  The first change point corresponded to the load above which allodynia was elevated 

over sham, representing a threshold to produce allodynia.  The second change point indicated the 

load above which allodynia reached a maximum.  Additional details of this model are in 

supplementary Appendix A.   

Bilateral spinal SP and CGRP immunoreactivity were also analyzed with respect to load.  

This approach tested if the relationship between neuropeptide expression and load also followed 

the three-segment model.  Further, if that model did fit the neuropeptide data, change points were 

determined for altered neuropeptide expression at day 7.  Compressive load was compared to the 
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average percent immunoreactivity for each neuropeptide in the ipsilateral and contralateral dorsal 

horns, separately.  Thresholds are reported as a mean followed by the 95% credible interval in 

parentheses, with significance determined by the exclusion of 0 from the credible interval.   

 

Results 

Mechanical Allodynia.   

 Average loads for the compression groups [10.89mN (±6.49), 37.18mN (±7.28), 

66.71mN (±7.45), 98.10mN (±6.96)] were significantly different from each other (p<0.0001, 

Table 1).  Qualitative trends in allodynia between groups were similar for testing with all 

filaments.  Responses elicited by the 39.2mN filament were the most robust and are presented in 

detail here.  Compression by 10.89 or 37.18mN did not produce ipsilateral allodynia significantly 

greater than sham; sham surgeries did not produce allodynia different from baseline on any day 

(Figure 2A).  Following a 66.71mN load, ipsilateral allodynia was significantly elevated over 

sham on day 1 (p<0.023) and did not decrease between days 3 and 7.  Compression with 

98.10mN produced ipsilateral allodynia that was significantly increased over sham on days 1, 3, 

and 5 (p<0.02) and was not significantly different than that following a 66.71mN load on any 

day (Figure 2A).  Ipsilateral mechanical allodynia produced by 66.71 and 98.10mN loads was 

significantly greater than that for the 10.89mN load group on days 1 and 5 (p<0.03).   

 Contralateral mechanical allodynia was significantly elevated over sham only for 

98.10mN compression, on days 5 and 7 (p<0.03; Figure 2B).  Contralateral allodynia for a 

98.10mN load was also significantly greater than that for 37.18 and 10.89mN compressions on 

days 5 (p<0.05) and 7 (p<0.005), respectively.  Sham procedures did not produce any 

contralateral allodynia.   
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 While bilateral allodynia was graded according to load group (Figure 2), a three-segment 

change point model quantified the relationship between allodynia and load (Table 2).  Ipsilateral 

allodynia at day 1 demonstrated a robust increase between the first and third segments (Figure 

3A).  Ipsilateral allodynia was produced above a load of 26.29mN (1.57, 65.43) at day 1 (Table 

2, Figure 3A).  The second change point was identified at 48.95mN (22.66, 92.12), indicating the 

load above which allodynia was maximum.  The corresponding increase in allodynia between the 

first and third segments [3.73 paw withdrawals, (2.01, 5.39)] was statistically significant (Table 

2).  Similarly, for ipsilateral paw withdrawals on day 7 and for total allodynia (Figure 3B & 3C), 

the corresponding first and second change point loads were 38.16mN (2.75, 92.70) and 54.35mN 

(6.57, 104.38) for day 7, and 22.86mN (1.18, 65.04) and 76.32mN (47.48, 106.14) for total 

allodynia (Table 2).  While the increase in ipsilateral allodynia between the two change points 

was not significant at day 7, the increase in total allodynia was significant.  Contralateral 

allodynia at day 1 did not vary with load (Table 2, Figure 3D); however, both day 7 and total 

allodynia were well fit (i.e. a significant increase in allodynia between change points) by the 

three-segment model and significantly increased with load (Table 2, Figure 3E & 3F).  At day 7, 

contralateral allodynia greater than sham (0mN) was produced above 38.26mN (2.55,85.45) and 

plateaued for loads over 66.02mN (26.78, 103.30) (Figure 3E).  The analogous thresholds for 

total allodynia were slightly higher than those for day 7: 52.09mN (5.89, 73.97) and 76.81mN 

(49.64, 102.12) (Table 2, Figure 3F).   

 

Spinal Neuropeptides.   

 Bilateral dorsal horn SP and CGRP immunostaining generally decreased with increases 

in applied root load (Figure 4).  Sham surgeries did not alter either neuropeptide relative to 
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uninjured, naïve rats.  Also, immunostaining in the deeper laminae was unchanged for all 

procedures.  While the three-segment model did capture the minor decrease in SP 

immunoreactivity with load, this decrease was neither robust nor significant (Table 2, Figure 4A-

C).  However, bilateral changes in CGRP immunoreactivity did depend significantly on load, 

with a response to low loads similar to sham, followed by a linear decrease as load increased, 

reaching a lower plateau.  The change points for ipsilateral and contralateral decreases in CGRP 

immunoreactivity were 19.52mN (2.16, 46.21) and 24.03mN (3.14, 46.40), respectively (Table 

2).   

 

Discussion 

 This is the first study to quantify the effect of transient nerve root compression magnitude 

on modulating behavioral outcomes, or to establish load thresholds for persistent mechanical 

allodynia and sustained changes in spinal neuropeptides.  In general, loads to initiate ipsilateral 

allodynia (i.e. day 1) were less than those to produce maintained allodynia (i.e. day 7, total 

allodynia) (Table 2, Figure 3A-C).  Differences in these thresholds for acute and maintained 

allodynia indicate that some loads may be sufficient only to transiently affect sensitivity while 

greater loads may initiate mechanisms that lead to persistent hypersensitivity.  The dependence 

of allodynia on load at day 7 was not significant primarily due to the relative variability in 

responses observed at that time point.  Considering results from the entire testing period, a 

significant increase in total allodynia was determined using the model (Table 2).  From both the 

day 7 and total allodynia relationships to load, nerve root compression as low as 22.86mN can 

lead to persistent allodynia.  Above 76.32mN, allodynia is not further modulated by applied load 

(Table 2, Figure 3A-C), corroborating previous work showing no difference in allodynia for 10gf 
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(98.10mN) or 60gf (588.60mN) compression loads (Hubbard and Winkelstein, 2005).  

Contralateral allodynia exhibited a late onset, consistent with previous studies (Tabo et al., 1999; 

Hunt et al., 2001; Rutkowski et al., 2002; Araujo et al., 2003; Hubbard and Winkelstein, 2005).  

The load threshold for contralateral allodynia at day 7 (38.26mN) matched that to produce 

ipsilateral allodynia (38.16mN) (Table 2).  The load of 38.26mN required to produce bilateral 

allodynia at day 7 after compression implies that persistent pain may not be maintained for 

loading below this threshold.  Further, the manifestation of contralateral allodynia at day 7 

suggests that a central, spinal mechanism may contribute to the maintenance of pain. 

The three-segment model is supported for use with the current application based on both 

experimental and statistical evidence (Spiegelhalter et al., 2002).  A previous study applying 

compression loads above 100mN suggested that a non-linear relationship may exist between 

nerve root load and resulting allodynia (Hubbard and Winkelstein, 2005).  This implied that a 

critical load for establishing allodynia may exist, beyond which behavioral sensitivity is not 

modulated by load.  Using a statistical measure for model appropriateness (deviance information 

criterion), it was found that for all cases relating allodynia to load, a linear regression model was 

not superior to the change point model.  Moreover, the change points defined by this model 

identify potential load thresholds at which compression of the nerve root can produce and 

maximize mechanical allodynia (Table 2).  It must be noted that for cases in which loads are 

applied only within the linear region between the change points, a linear regression would be a 

simpler, and possibly more appropriate, model. 

 Spinal SP and CGRP demonstrated differences at day 7 following transient nerve root 

compression.  The thresholds for decreased ipsilateral CGRP immunoreactivity were less than 

those for contralateral changes at day 7 (Table 2).  Additionally, bilateral CGRP thresholds were 
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below those thresholds for producing allodynia on day 7 (Table 2), suggesting that additional 

spinal responses likely contribute to pain maintenance.  Spinal SP did not significantly depend 

on load but did correspond closely with thresholds for allodynia at day 7 (Table 2), and may 

indicate different mechanistic roles for SP and CGRP in pain.  Nonetheless, the dependence of 

CGRP immunoreactivity on load strongly implicates a decrease in this neuropeptide in the 

superficial laminae as contributing, at least partially, to sustained allodynia. 

Previous investigations of spinal SP or CGRP provide conflicting evidence for their 

involvement in the onset and maintenance of pain.  Although our findings corroborate reports of 

decreases in SP or CGRP in the superficial laminae following neural injury (Munglani et al., 

1996; Malmberg and Basbaum, 1998; Swamydas et al., 2004; Kobayashi et al., 2005a,b), 

increased CGRP has also been implicated in mediating elevated behavioral sensitivity (Oku et 

al., 1987; Cridland and Henry, 1989; Christensen and Hulsebosch, 1997; Bennett et al., 2000).  

Decreases in spinal neuropeptides may result from increased peptide utilization in the spinal 

cord, increased receptor internalization, decreased synthesis in the DRG, or breakdown of 

anterograde axonal transport at the injury site (Kobayashi et al., 2005a,b; Allen et al., 1999; 

Cahill and Coderre, 2002).  In our study, damage to unmyelinated afferents may have reduced 

axonal transport in the dorsal root, leading to a depletion of CGRP in the superficial laminae.  

Alternatively, axonal damage may have affected production of SP and CGRP in the DRG as a 

result of neuronal dysfunction or diminished neurotrophic transport (Kirita et al., 2007).  With 

previous studies suggesting neuropeptide expression in the dorsal horn is unchanged or increased 

as early as 1 day after nerve root compression (Kobayashi et al., 2005a; Rothman et al., 2005), 

the depletion of CGRP in the superficial laminae at day 7 may reflect a spinal accommodation 

following an initial increase in spinal CGRP.  Assessment of temporal expression of 
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neuropeptides in the dorsal horns is necessary to define their roles following painful injury.  

Axonal damage assessment in the compressed nerve root and local neuropeptide and 

neurotrophin localization following transient compression are also needed to understand the 

mechanistic relationship between these injury pathways.  Lastly, studies are needed to quantify 

early expression of these and other regulatory proteins in the spinal cord and DRG in order to 

elucidate the specific mechanisms dependent on load for painful nerve root injury.  

The compression device used in this study applied displacements that produced loads 

across the range of 0-110mN via quasistatic motor-controlled displacement.  These measured 

loads were smaller and more repeatable than those imposed by prefabricated clips or forceps 

used previously in lumbar radiculopathy models (Kobayashi et al., 1993, 2002; Sekiguchi et al., 

2003).  Two-second forceps compression in a rat model produced ipsilateral allodynia for at least 

one week, but without contralateral allodynia (Sekiguchi et al., 2003).  The lack of contralateral 

hypersensitivity in that model emphasizes the role of mechanics in producing varied behavioral 

outcomes.  In models of chronic nerve root ligation, a linear relationship between allodynia and 

tissue strain was suggested, providing a strain-threshold for persistent allodynia (Winkelstein et 

al., 2001b, 2002; Winkelstein and DeLeo, 2002, 2004).  However, those studies assumed that the 

ligation applied constant strain over the post-operative period.  The present study utilized platen 

displacement to apply desired compression loads; tissue strains were not calculated here. 

However, the strain threshold for persistent mechanical allodynia following chronic lumbar root 

ligation (Winkelstein and DeLeo, 2004) was determined to be much lower (22.2% tissue 

compression) than the tissue deformations through the diameter of the root estimated in the 

present model (~90%), suggesting that the load threshold for painful transient root compression 

is higher than that for chronic compression.  Moreover, allodynia at day 7 after transient 
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compression indicates that behavioral hypersensitivity persists even after the removal of the 

painful stimulus.  Maintened allodynia has also been demonstrated previously in a model of 

transient compression, with behavioral hypersensitivity lasting at least two weeks after injury 

(Rothman et al., 2007). 

 In summary, this injury model enables examination of the in vivo mechanics for painful 

nerve root compression and defines predictive load thresholds governing behavioral 

hypersensitivity and sustained cellular responses.  Further, this model offers potential utility for 

identifying specific thresholds to activate other pathways responding to persistent pain (e.g. 

macrophage recruitment, cytokine release, neurotrophin release), both locally and in the central 

nervous system.  Results for ipsilateral mechanical allodynia support a higher threshold for 

maintenance of pain compared to its onset (Table 2, Figure 3A-C).  The similarity in thresholds 

for ipsilateral and contralateral allodynia at day 7 further supports central mechanisms as 

contributing to persistent pain.  This was substantiated by bilateral decreases in spinal CGRP at 

day 7 for loads above 24.03mN.  By defining pain symptoms and spinal neuropeptide expression 

in the context of injury mechanics, these findings define potential factors contributing to cervical 

radiculopathy and supply evidence for a direct role of mechanics in modulating painful outcomes 

for transient cervical nerve root compression. 
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Appendix A: Supplemental Methods  

Creation and Implementation of a Three-Segment Change Point Model 

A Bayesian three-segment model was selected for this study because of its utility to fit 

the apparent segmented response of mechanical allodynia and applied load, with flat responses 

for the low-load and higher-load ranges.  The three segments included minimum and maximum 

allodynia responses, and a linear segment between the extremes.  The first change point 

corresponded to the load above which allodynia was elevated over sham responses, representing 

a threshold to produce allodynia.  The second change point indicated the load above which 

allodynia reached a maximum.  A Bayesian approach was developed to fit the three-segment 

model with two unknown change points (Bacon and Watts, 1971).  Specifically, Markov Chain 

Monte Carlo procedures were implemented to obtain random samples from the posterior 

distributions of the model parameters (the two change points, first segment value, and second 

segment slope) (Gelfand and Smith, 1990; Cowles and Carlin, 1996).  Change points were 

determined by minimizing the mean squared distance between the data and the model fit while 

optimizing the change point load values under the constraint that the first change point not be 

greater than the second one.  For the two change points, uniform distributions were used on the 

interval defined by the injury load.  For the remaining parameters, normal distributions were 

used with a mean of 0 and variance of 1000.   
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Table 1: Applied Nerve Root Compression Load 

Rat 
I.D. 

Peak Load 
(mN) 

Average 
Peak Load 

(mN)* 

Steady State 
Load (mN) 

Average 
Steady State 
Load (mN)* 

195 31.20 5.30 
217 26.87 22.07 
219 16.88 9.22 
220 14.24 7.06 
221 19.82 15.11 
222 21.76 

21.80 ± 6.31 

6.77 

10.89 ± 6.49 

175 89.37 32.86 
176 54.35 37.96 
198 54.35 37.08 
200 61.41 38.55 
201 62.36 51.31 
218 34.08 33.65 
223 45.56 

57.35 ± 17.15

28.55 

37.18 ± 7.28 

178 87.70 74.26 
194 98.79 71.32 
196 88.28 72.10 
197 90.64 58.76 
199 74.97 56.41 
214 71.26 

85.27 ± 10.29

67.36 

66.71 ± 7.45 

177 114.09 108.99 
212 106.07 97.90 
213 108.75 92.31 
215 105.19 90.64 
216 101.61 95.65 
224 112.51 

108.04 ± 4.70

103.20 

98.10 ± 6.96 

* average loads ± standard deviation 
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Table 2: Change Point Model Parameters 

Outcome Measure 
First 

Change 
Point (mN)

Second 
Change 

Point (mN)

Change in Outcome 
Measure (paw withdrawals,

% positive pixels) 
ipsilateral – day 1 26.29 48.95   3.73† 
ipsilateral – day 7 38.16 54.36 1.73 
ipsilateral – total 22.86 76.32    13.60† 
contralateral – day 1 48.36 57.98 0.96 
contralateral – day 7 38.26 66.02   2.94† 

Allodynia 

contralateral – total 52.09 76.81   6.85† 
SP – ipsilateral 36.00 46.11  -2.32 
SP – contralateral 41.01 50.03  -1.53 
CGRP – ipsilateral 19.52 28.35    -3.04† 

Spinal 
Neuropeptide 

Reactivity 
CGRP – contralateral 24.03 34.53    -3.37† 

SP = substance P; CGRP = calcitonin gene-related peptide 
† significant change in outcome measure between first and second change points 
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Figure Legends 

Figure 1. (A) Surgical exposure of right C7 dorsal root showing anatomy and compression 

platens inserted prior to load application.  (B) Mechanical data (load & displacement) during 

compression of the C7 nerve root (rat #194).  Steady state load (71.32mN) was defined as the 

average load measured between 5 and 15 minutes after the peak load was reached. 

 

Figure 2. Ipsilateral (A) and contralateral (B) mechanical allodynia assessed with a 39.2mN von 

Frey filament, reported as frequency of paw withdrawals.  Data are grouped into four average 

load groups according to steady state compression load.  Similar trends were observed with the 

other filaments.  A significant increase relative to sham is indicated by (*) for the 98.10mN 

group and (**) for the 66.71mN group.  A significant increase relative to the 10.89mN group is 

indicated by (+) for the 98.10mN group and (‡) for the 66.71mN group.  The 98.10mN group 

significantly elevated above the 37.18mN group is indicated by (§). 

 

Figure 3.  Mechanical allodynia on days 1 (A, D) and 7 (B, E) after compression, and total 

allodynia (C, F) as a function of applied nerve root load magnitude.  Ipsilateral (A-C) and 

contralateral (D-F) mechanical allodynia are shown for stimulation with a 39.2mN von Frey 

filament.  Superimposed on each plot is the corresponding three-segment change point model 

with the segments having no difference from sham, a linear increase in allodynia with load, and 

the maximum allodynia responses.  The first and second change points are indicated by arrows in 

panel (A). 
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Figure 4.  Representative images for the ipsilateral spinal cord dorsal horns (laminae I-IV) 

labeled for substance P (A-C) or calcitonin gene-related peptide (D-F) immunoreactivity at day 7 

after nerve root compression: sham (A, D), 10.89mN (B, E), and 98.10mN (C, F).  Positive 

immunolabeling assessed by densitometry was confined primarily to laminae I and II.  Individual 

densitometry measures for these images are indicated in each panel.  A slight decrease in 

substance P staining after compression with a high load is apparent (C), and a more robust 

decrease is evident for CGRP immunoreactivity (F).  Contralateral immunostaining followed 

similar trends for all groups.  Scale bar in (A) = 200μm. 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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