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Principal Component Analysis of Temporal and Spatial Information for
Human Gait Recognition

Abstract
Principal component analysis was applied to human gait patterns to investigate the role and relative
importance of temporal versus spatial features. Datasets consisted of various limb and body angles sampled
over increasingly long time intervals. We find that spatial and temporal cues may be useful for different aspects
of recognition. Temporal cues contain information that can distinguish the phase of the gait cycle; spatial cues
are useful for distinguishing running from walking. PCA and related techniques may be useful for identifying
features used by the visual system for recognizing biological motion.
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 Abstract�Principal component analysis was applied to

human gait patterns to investigate the role and relative

importance of temporal versus spatial features.  Datasets

consisted of various limb and body angles sampled over

increasingly long time intervals.  We find that spatial and

temporal cues may be useful for different aspects of

recognition.  Temporal cues contain information that can

distinguish the phase of the gait cycle; spatial cues are useful

for distinguishing running from walking.  PCA and related

techniques may be useful for identifying features used by the

visual system for recognizing biological motion.

Keywords� spatiotemporal pattern recognition, point-

light figures, gait analysis,

I.  INTRODUCTION

Biological motion--the characteristic movements of

humans and animals�provides an intriguing paradigm for

understanding spatiotemporal pattern recognition.  A human

gait, for example, is characterized by a pattern of relative

motions of the articulated parts of the body, each of which

has a defined relative position and range of motion.  For

categorical discrimination, e.g., walking vs. running, many

details of these motions do not seem to matter, rather it is

the general aspects of relative angles, directions, phases and

timings that affect categorization [1-3].  Hochstein and

Ahissar [4] have observed that the use of more abstract,

relative, and categorical-type descriptors�as opposed to

detailed, precise parameter values�may be the hallmark of

computation in higher sensory centers, and they propose

such categorical descriptions are employed in rapid

recognition, with the details filled in later.

A great deal has been learned about the neural pathways

involved in biological  motion recognit ion.

Electrophysiological studies [5], lesion studies [6], and

fMRI investigations [7] indicate involvement of higher

visual centers in the superior temporal sulcus (STS) and

elsewhere.  These higher centers receive inputs from both

motion and spatial centers in extrastriate cortex [8].  Giese

and Poggio [9] have proposed an elegant model of gait

recognition, based on evidence (reviewed therein) that

spatial and temporal information arrive via separate streams

to STS, and are each separately capable of inducing

biological motion perception.

However, much remains to be understood concerning

the relative roles and importance of spatial versus temporal

information  in  gait  recognition.    This  question  was  first

addressed by Johannson [10] who introduced the study of

point-light walkers.  Small lights are attached to selected

body parts (shoulders, elbows, hands, hips, knees, feet,

and head) and the motion of these lights is the only

stimulus seen (the walker wears a black outfit against a

black background), in addition to whatever randomly

moving dots are introduced as noise.  Ostensibly, spatial

information is minimized in a point-light video�in a

single static frame, no form is recognizable.  Nevertheless,

observers are able to detect a walker or runner in such

videos within a small fraction of the gait cycle [11].

Psychophysical studies document our ability to rapidly

discriminate different gaits (walking, strutting, limping,

running), direction of gait, gender of the walker, and

sometimes even the identity of the walker simply from the

motion of the point-lights.  Yet, even point-light walkers

contain some spatial/structural information.  For example,

the point-lights on the feet always remain below those for

the hips.

Several psychophysical studies have attempted to

dissect what information is most useful for various

recognition tasks, e.g., gender identification [12], or

direction of motion [13].  We used principal component

analysis (PCA) on point-light walker datasets containing

varying amounts of temporal information (from 0 to 600

ms of data) in order to determine the relative contributions

of spatial versus temporal information in several gait

discrimination tasks.

II.  METHODOLOGY

Gait data was obtained using the ReActor motion

capture system with markers at 13 joints of 4 human

subjects. 3D spatial positions of markers were acquired at

33 frames/s with a spatial resolution of 3 mm. The

orientation of limb segments with respect to the absolute

vertical axis was calculated from the marker coordinates.

Each data point for PCA consisted of a vector of nxm

dimensions, where n is the number of angle variables

considered, and m is the number of time frames spanned

by the data. A sliding time window of length m (frames) is

used for every walk or run data sequence in the database to

generate the data point as described above�so that each

sequence of frame length p generates (p - m +1) data

points.

We obtained a total of 66 walking and 45 running

sequences from the 4 subjects.   Principal components

were found using 75% of the data; then the remaining 25%
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of the data sequences were projected onto the principal

component axes.  The projected coordinates of the

validation data points were then used as input to a linear

classifier to differentiate walking and running.

III.  RESULTS

PCA was performed on the limb orientation angles of

subjects.  Three sets of angles were tested - upper limb angles,

lower limb angles and both upper and lower limb angles.

Each datapoint contained data from a time window (TW)

which was varied from 1 (single frame) to 20 frames.  All

gaits were recorded in pure profile view with subjects moving

from left to right across the visual field.

Figure 1 shows the first 10 principal components obtained

when lower limb data spanning 20 consecutive frames was

used, so that there were 20 frames x 4 angles = 80 dimensions

for each input datapoint. The amplitudes of many of the

principal components vary with time (vertical dimension in

fig. 1).  This reflects the time evolution of the limb angles as

the gait cycle proceeds.

Figure 2 shows the 4 principal components obtained when

Fig. 1.  First ten principal components obtained with a time window of 20 frames.  Each column represents a different principal component (4 angles

and 20 frames).  Rows represent consecutive frames.  Changes in greyscale shading within a block of 20 rows indicates the principal component is time-
dependent.

Fig. 2. Principal components obtained with a time window of 1 frame.

Each column represents the coefficients of a principal component along

each of the four dimensions (limb angles) of the input data.



lower limb data spanning single time frames was used.  Here,

time evolution of the angles within the gait cycle cannot be

captured because each datapoint (1 frame x 4 angles = 4

dimensional) spans a single point in time (see discussion).

Once the principal components were determined, datasets

not previously used were projected onto the axes defined by

various principal components. Figure 3 shows the amplitude

of these �validation� data points projected onto the first and

second principal components (lower limb angles over 20

frames).  The shade of gray indicates the phase of the gait

cycle from which the datapoint originated.  It can be seen that

the projection of a data point onto the first two principal

components encodes information about the phase of the gait.

However, the first two components do not preserve

information about the type of gait (walk or run) as can be seen

in Figure 4a.  Data points coming from walking (black stars)

and running (gray stars) are not separable.  In Figure 4b, the

data are projected onto the 3
rd

 and 4
th

 principal components.

One can clearly use a linear classifier to distinguish run

from walk on the basis of these projection amplitudes. The

classification error rates (for walking vs. running) under

different time window lengths and angle variables are given

in Table 1.  Table entries marked by an asterisk (*) indicated

cases in which the first two principal components captured

information regarding the phase of the gate (as in fig. 3).

The lower limbs apparently provide phase information in

shorter time windows, thus are more useful for determining

phase.

DISCUSSION and CONSCLUSIONS

We used PCA to determine the relative role of temporal and

spatial information in discriminating walking from running in

visual displays.  We report four main findings: (1) When

temporal information is explicitly provided in each datapoint,

principal components are obtained that differentially weight

inputs over time.  The temporal structure of these components

is somewhat reminiscent of the components obtained from

independent component analysis of spatial or chromatic

images [14] in that some components contain Gabor-like

structures.  (2) Some components, in particular the first two

components, appear to capture the phase of the gait.  These

first two components together account for ~70% of the

variance in the data.  However, the first two components are

TABLE I

Error Rates (%) in Classifying Walk vs. Run

                               Length of Time Window (TW)

TW=1 TW=10 TW=20

Upper limbs   3.68+0.24 1.96+0.21 4.71+0.90*

Lower limbs 26.37+1.04 14.16+0.51* 4.09+0.36*

Both upper &

lower limbs
  5.22+0.43 3.05+0.30* 1.80+0.20*

*Phase of gait captured by first two principal components

Fig. 3.  Projection of all data points onto the plane defined by the first

two principal components.  Shades of gray indicate the phase of the gait

cycle from which the datapoint was obtained.  Shows that phase

information is captured by first two principal components.

Fig. 4.  Projection of all data points onto  different pairs of principal

components. Black points are data from a walking sequence and gray

points from a running sequence. (top) Projections onto the first and

second principal components. These components do not contain

information about the type of gait. (bottom) Projections onto the third

and fourth principal components. Walking and running data are

linearly separable. (black marker = walk; gray marker = run)



not useful for discriminating between gaits, as shown by our

run vs. walk discrimination results.  (3) Other components,

particularly the third component, are useful in discriminating

between gaits.  Using a simple linear discriminator and just

the third and fourth components, discrimination accuracy of

over 98% is obtained.  No attempt was made to further

improve these results.  It is interesting that the third

component, which provides nearly all of the gait

discrimination, is the least time-dependent of the first 10

components.   (4) The lower limbs are more useful for

determining the phase of the gait, the upper limbs are more

useful for distinguishing running vs. walking, use of both

upper and lower limbs yields better gait discrimination than

either alone.

Troje [15] has used PCA to analyze human gait, and

reported that a series of �eigen postures� are obtained which

allow accurate reconstruction of the gait when the component

amplitudes are sequenced sinusoidally in time.  These basis

functions correspond to various static poses along the gait

sequence.  Our findings complement Troje�s in that our first

two principal components tend to describe the phase of the

gait.  Our approach differs in the introduction of  temporal

information, and the finding that higher order components

emerge that are critical in discriminating different gaits.

Use of PCA and related techniques only address what

information is available in the stimulus�psychophysical

studies are required to determine whether the visual system

makes use of such information.  Many recent studies have

found visual function is close to that of an ideal Bayesian

observer [16], thus our findings may have direct implications

for human biological recognition.
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