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Abstract

We present a derivation of the optical theorem that makes it possible to obtain expressions for the
extinguished power in a very general class of problems not previously treated. The results are applied to the
analysis of the extinction of power by a scatterer in the presence of a lossless half space. Applications to
microscopy and tomography are discussed.

Comments

Copyright American Physical Society. Reprinted from Physical Review E, Volume 70, Issue 3, Article 036611,
September 2004, 7 pages.

Publisher URL: http://dx.doi.org/10.1103/PhysRevE.70.036611

This journal article is available at ScholarlyCommons: http://repositoryupenn.edu/be_papers/54


http://repository.upenn.edu/be_papers/54?utm_source=repository.upenn.edu%2Fbe_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages

PHYSICAL REVIEW E 70, 036611(2004

Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields

P. Scott Carney
Department of Electrical and Computer Engineering and The Beckman Institute for Advanced Science and Technology,
University of lllinois at Urbana-Champaign, Urbana, lllinois, USA

John C. Schotland
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Emil Wolf
Department of Physics and Astronomy and The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
and The School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 15 March 2004; published 22 September 004

We present a derivation of the optical theorem that makes it possible to obtain expressions for the extin-
guished power in a very general class of problems not previously treated. The results are applied to the analysis
of the extinction of power by a scatterer in the presence of a lossless half space. Applications to microscopy
and tomography are discussed.
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I. INTRODUCTION ture of the scattering object and even to reconstruct the spa-

) ) tial structure of the scatterer from the data obtained from
The conservation of energy for electromagnetic or acoUSpoyer extinction experiments,d].

tic waves, or conservation of probability in quantum me-" |, gec || we derive an expression for extinguished power
chanics, leads to a remarkable identity known as the optical,4t js the progenitor of the generalized optical theorem. An
theorem. The optical theorem relates the power extinguished, yression is obtained that relates the extinguished power to
from a plane wave incident on an object to the scattering, \,olyme integral over the domain of the scatterer. Unlike
amphtude in the direction of the incident field. Explicitly, the gihar forms of the optical theorem, this result is obtained
optical theorem may be expressed by the fornjateb] without invoking the asymptotic behavior of the scattered
field. Furthermore, this formulation allows for the case that
o= Am Im A(K,K) (1) the scattering object is embedded in an arbitrary background
¢ Y with inhomogeneous optical properties. In Sec. Ill, scattering
from an object in free space is reconsidered and the equiva-
whereo, is the extinction cross sectioky is the wave num- lence of our result and the generalized optical theofé/m
ber of the field,k is the wave vector of the incident plane is established. In Sec. IV, the problem of scattering from an
wave, andA(k,k) is the amplitude of the field scattered in object in a half space is addressed. It is found that the extin-
the forward direction, i.e., in the direction of the incident guished power is related to the field that is scattered in the
field. The extinction cross section is the total extinguisheddirections of the components of the incident field in both half
power(i.e., the power lost to scattering and absorption of thespaces. The half-space problem is of practical importance in
incident field normalized by the power per unit area incidentimaging and tomography when the sample is supported on a
on the scatterer. This theorem implies that the total poweslide or other flat platform.
extinguished from the incident field is removed from the
incident field by means of interference between the incident
field and the forward scattered field. Il. GENERAL RESULTS
The optical theorem, expressed b , may be seen to . .
be a spepcial case of a mopre generaﬁ It?eoren)wl that applies to Qon3|der th? feduc?ﬂ,t wave equation for a monochro-
the scattering of an arbitrary incident field and relates thdnatic, _scalar_ f|eldz,b(r)e_ , w=cky, in the_ p_resence of a
extinguished power to a weighted integral of the scattering'Cattering object described by a susceptibility), embed-
amplitude[6,7]. This result accounts for the contribution not déd in a non-absorbing background medium, characterized
only of the homogeneous components but also of the evaneBY the spatially dependent wave numikér),

cent components of the incident field which have to be taken 2 2 - 2
into account when the source of illumination is in the near VA + KA ) A n(nYn). 2
zone of the scatterer. Equation(2) is ubiquitous in physics. It is encountered, for

The generalized optical theorem also applies to the scakxample, as the linear, single particle, time independent, non-
tering of partially coherent fields and scattering from randonrelativistic Schrodinger equatidiil0], Sec. 1%. It is also the
objects. It has been shown that the generalized optical the@overning equation for the propagation of sound way&s|,
rem may be used to relate extinguished power to the strucsec. 6.2.
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Assuming that the background is nonabsorbjk() is
real], the reduced wave equati@®) then implies that

¥ (DV2r) = () V2 ()
== 4ark(r)*{n(r) = 77 (1)}(r)|?. (3

By integrating both sides of Eq3) over any volumeV
which is bounded by a closed surfaewith unit outward
normaln, and applying Green'’s theoreffl2], Sec. 1.8, itis
readily found that

f d?r {y () V () = (r) V ¢/ (1)} - ndS
S

- f dBraak()Xn(r) -7 (OHe(O2. (4
Vv
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By analogy with Eq.(5), the flux density vector of the
scattered field is defined as

1 * *
Fs(r) = ﬂo{(/fs(r) v 'ps(r) - d/s(r) Vv lr/’s(r)}
The power carried by the scattered field is then given by the
expression

(10

Ps=f d’r F4(r) -n, (12
S

whereSis any closed surface which completely encloses the
scattering volume. It may be seen that

Pe(DV2(r) = 1) V24 (r)
= = 8aik2(r)Im{7(r) s (1) (1)} (12

In the classical wave theory, the expression in the curly

brackets{ } on the left hand side of Eq4) is usually iden-
tified with the energy flux density of the fie[d11], p. 199;

Making use of Eqs(9) and (12), the power carried by the
scattered field, Eq11), may also be expressed in terms of

in quantum mechanics such an expression is identified witthe volume integral as

the probability current densityf10], Sec. 17. The flux den-

sity vector[[5], Appendix 11, with normalization taken so
that a unit amplitude plane wave has a unit magnitude flux

density vector, is thus defined as

1, .
F() =4 () Vilr)—g(r) Vi (n}.

2ikg )

The absorbed power is given by the net flux passing through

any surface enclosing the scattefeut not enclosing the
sources of the incident field

Pa:—f d’r F(r) -n, (6)
s

whereP, is the power absorbed by the scattering medium. It
can be seen from E@4) that P, is also given by the expres-

sion

Pz 2T im | dr k20| dr) (),
\Y

)

where Im denotes the imaginary part. Whenis real, the
scatterer is nonabsorbing afiy is identically zero.

Pe=——"Im (13)

ko Jv

The absorbed power and the scattered power are supplied
by the incident field. The sum of the absorbed and the scat-
tered power, referred to as the extinguished power

P.=P,+P,,

B K2(r) g () () (r).

(14)

represents the power depleted from the incident field because
of the presence of the scattering body. From E@s. (13),
and(14) it can be seen that the extinguished power is given
in terms of the incident and the scattered fields by the ex-
pression

pe:AiTImf kXY ). (19
ko Jv

Formula(15) is our main result. It gives the power depleted
from the incident beam as a consequence of interference be-
tween the incident and the scattered fields in the domain of
the object.

A distinction between the background medium and the

scattering object is made on physical grounds, although the
effect of the scatterer itself might also be included in the
functionk(r). The distinction is physically important because
the field is taken to be composed of two parts, a scattere

field ¢ and an incident fieldy, with i+ (s=¢. The incident

field may be identified as the field which is present in the
absence of the scattering object. The incident field evidentl

obeys the Helmoltz equation

V2(r) + k() (r) = 0, (8

except in the region occupied by the source, and it is a
sumed that the source is located outside the domain occupi

by the scatterer. From Eq62) and (8) it is seen that the
scattered field)s obeys the equation

V2(r) + K(r) (1) = = 4ark(r)2(r ) g ). 9)

Ill. FREE SPACE

We will now show that, when the scatterer is located in
free space, the general result expressed in(Es).reduces to
esults derived previously in Reffs,7]. Moreover, the dis-
cussion will provide a template for the calculations of the
subsequent section where the more difficult problem of scat-

¥ering in a half space will be considered.

Let us choose a coordinate system such that the scattering
object is located in the half spaze=0 and the sources of the
incident field are located in the half spaze 0. The most

Sé; neral case, where sources may be located anywhere out-

e of the object, may be treated by an obvious extension
the analysis presented here.

The incident field may be expressed in the form of an
angular spectrum of plane wavfg43], Sec. 3.2,

036611-2
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. 1Ak, K2) acyr
() = f d’k a(k)e ", (16) “omks, %
AN
wherek, is a vector parallel to the plane=0 andk=k, ... S e
+27k,, with Z being the unit vector in the increasimgdirec-
tion and
k= Vk§ — K. (17)
When the modulugk,| exceeds the free-space wave number, gkt

k, becomes purely imaginary. Such valueskpftorrespond
to modes of the incident field that decay exponentially on FIG. 1. lllustrating the notation for scattering in free space. The
propagation and are known as evanescent waves. Since timsident field, here taken to be a single plane wave, is represented

System under consideration is linear in the fields] the totapy a solid line in the direction of the wave vector of the plane wave.
field is given by the expression A plane wave component of the scattered field is represented by a

dashed line and is labeled with the appropriate amplitude.
r)=| d?k ak)(r;k), 18
W) f 84T k) (18 vectors which are relevant in the near field for evanescent
plane wave modes. An explicit form féx may be found by
considering the field in any plare=z, (see Fig. 1 such that
the scatterer lies entirely in the regiar< z,,

where ¢(r ,k) is the total field produced at a pointdue to
scattering of a plane wave of unit amplitupsk)=1] with
wave vectork. The total field$ may be separated into inci-
dent and scattered fields, Ko,

. Ak, kp) = f dr e72" hy(r:ky). (25)
B(r;k) =€ + ¢(r;k), (19 211 ) =7,

¢4 ;k) being the scattered field produced at a pairtn  Substitution of the expression fef; given in Eq.(20) in the
scattering of a plane wave of unit amplitude with wave vec-fight hand side of Eq(25) and use of Eq(22) yields the

tor k, satisfying the integral equation relation
¢s(r;k)=k§f d®r'G(r,r)n(r)p(r';k).  (20) A(kl.k2)=k§f d®r e 2" (r) (1 ;ky). (26)
\%
In Eq. (20) G is the retardedoutgoing Green’s function, We now return to the extinguished power. Substituting
which satisfies the equation Egs.(16) and(18) in Eq. (15) we find that

V2G(r,r') +KG(r,r") == 4ms®(r —r7), (21)

5 denoting the three-dimensional Dirac delta function. The
Green’s function may be represented as a superposition of

Pe: 47k Im f dzkludzkzu a(kl)a*(kz)

plane wave modes, xf ddr ek 7(r)p(kq,r). (27
i [ % Y
ry — | H ’ 1 !
G(r,r')= zf o SXHiky - (r-r+ ikjz=2Z'[]. Thus, making use of Eq26), the results originally presented
z in Refs.[6,7] are recovered:
(22
The scatterer lies entirely in the regiarc z, as shown in Pe= T im dky 0%k alk)a’ (ko) Ak, ks).  (28)
Fig. 1. The field¢, in the regionz>z,, may be represented Ko
in the form of an angular spectrum of plane waves The case of illumination by a single plane wave of amplitude
i [ g . amay be recovered by takirgk)=a&?(k,—kg). One finds
d)s(r;kl):—f A(kq,ky)e 2", (23)  that
2’77 kZZ
2
whereA is the usual scattering amplitude between states of Pe= 4mal’ Im A(Kg,Kp). (29
real momenta, as it may be seen that in the far zone of the ko
?catterer, foz>0, the scattered fielgs takes the asymptotic s expression was originally derived for rdalby Feen-
orm

berg[1] in the context of quantum mechanics, with the re-
gkor strictions thatP,=0 and with implied cylindrical symmetry.
@1 ;kq) ~ TA(kl,kof), F=rir. (24)  An heuristic argument was given by van de Hiitfor the
theorem in the context of electromagnetic scattering. A rig-
It should be noted that, whil& gives the asymptotic behav- orous derivation for the electromagnetic case was given by
ior of the field, it is not defined only by the asymptotic be- Jones[3]. When the incident field is a plane wave of ampli-
havior of the field. It is also well defined for complex wave tudea, it is common practice to normalize the power by the
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intensity of the incident field. This normalized quantity, de- iAi(kl,k’l,kz,ka)eik,.,
fined by the expression,=P./|al?, and Eq.(1), is referred 27y, %

to as the extinction cross sectigf#] Sec. 1.3. For realk, AN

Eq. (1) is theoptical (cross section) theorem

IV. HALF SPACE

We now consider the problem of scattering from an object
in the presence of a planar interface separating two homoge
neous half spaces. It is assumed that the scatterer is of finit
extent and is located entirely in the regiagp=z=2z, as
shown in Fig. 2. The half space>0 is assumed to be
vacuum. The other half spa@e<0 is taken to consist of a
material whose index of refraction s> 1. The fields satisfy
Egs.(2) and(9), with

k(r)={k0 forz=0, (30)

nky forz<o0.

(a)

iks-r

The Green’s functiorG(r,r’) for this situation satisfies A7 (1, K}, ka, kb)
the equation 2nks, ¢
x w

V2G(r,r') +n?(2K2G(r,r") = - 4789 -r')  (31)

and obeys the boundary conditions

G(r,r")| =g+ = G(l’,l")|z=o-: (32
Z-VGIr,r'")|pzg=2-VG(r,r')|=c- (33 (b)
G(r,r’) admits the plane wave decomposition
[ d%k, _
G(r,r)y=— | — exdik,-(r -r")]{ ©(20(Z)
2 k,

x{exp(ikjz—-Z'|) + R(k,k"exdik,(z' +2)]}
+0(-20(2)T(k,k"exdikz' - ik,z]

k
+0((206(- z’)—fT’(k,k’)exr:[ikZz— ik,z'] FIG. 2. lllustrating the notation for the half-space problem. In
Ky (@, an incident mode; (r,ky,k}) associated with sources in the
k lower half space is represented by a solid line indicating the wave
+0(-2)0(-2') = {explik,|z-2')) vector of the three planewave components of the mode. A mode of
Ky the scattered field is represented by a dashed line. The two plane

wave components of the scattered field in the upper half space
+R'(k,k")exd - ik,(z' + z)]}), (34)  combine to produce an outgoing plane wave with wave vecor
and amplitude proportional té;(k,k1,kz,k5). The plane wave
where O is the Heaviside step function, i.eQ(x)=1 for component of the scattered mode in the lower half space is propor-

x>0 and ©(x)=0 for x<0. The factorsR and T are the tional to Aﬁ(k%,ki,k?,ké). In (b), the no_tat!on is_similarly iII,us-
reflection and transmission coefficients, respectively, trated, here with a different mode of the incident figfd(r, ks ky),
’ ’ generated by sources in the upper half space.
k,—k, 2k,

R(k,k'):ﬁ, T(k,k") =
Z Z

- (35)  flection and transmission coefficients is somewhat redundant
kK, and not as compact as it might be. However, this expanded
notation will prove useful shortly.
The source of the field is assumed to be entirely outside
the region of the scatterer, that is, outside the regionz
=7,. In the region of the scatterer the incident field obeys
with the wave vectors, in the upper and lower half spacesgq. (8) and may be represented as a superposition of modes
respectively, given by Eq17), and of this equation analogous to the angular spectrum represen-
' Ny r_ 2212 tation for the free-space problem. We will exclude from our
K=k + 2k, andk; = vl — k. (37 consideration the case that sources are located in the region
The validity of Eq.(34) may be verified by direct substitu- z,>z>z,. Writing r =pp+2z, the reflection of the point
tion. It might be noted that the chosen notation for the rethrough thez=0 plane is given byf=pp-2z2. The modes

R'(k,k")=-R(k,k"), andT'(k,k") = t—éT(k,k'), (36)

036611-4
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incident from the lower half space may be expressed as  and A%(kq,K},k,,k5) is the amplitude for the scattering of
o s the incident modeg;(r;kq,k;) into the outgoing(in the
¢ (rik,k) ={0(= [ " + R (k. k)" '] lower half spacgplane wave exfik,-T). Then in the upper
+02)T'(k,k")ex} (38)  half space the scattered mode may be expressed as
d’ky
k22

and in the lower half-space,

and the modes incident from the upper half space are
¢ (rk,k) ={O)[*T + Rk k' )e*"]
+0(- Z)T(k,k,)eik/'?}_ (39)

H 2
It may be verified that these modes are orthogonal and that de(r;ky,kp) = L J d—lfz”Af(kl,ki,kz,ké)eiké'F (46)
they satisfy the reduced wave equation K@) and the 2m ko,

boundary conditiong32) and (33). Moreover, the Green's The normalization has been chosen so that in the upper half
function for the case that the pointsandr lie, respectively, space
inside and outside the domaip> z> z,, may be represented

as a superposition of these incident modes. This set of modes

is thus complete on the space of allowed incident fields. The
incident field may then be expressed as

+ ! I + ’ ’ iKo
¢g(r ; klikl) = ZT f A:—(kl!klikZ!kZ)elkz ' (45)

iKor

B2 1Ky, k) ~ eTAf(kl,k;,kz,kg), kot — o0, (47)

wherek, is parallel tor. In the lower half space,

— 2| + +00. ’ - —(n. ’ inkor
l//l(l') _J d kH[a (k)¢| (r,k,k )+a (k)¢| (r,k,k )]: (b:(r;kl,ki) — eTAf(kllkj,_vkzl ké)u kor — o0, (48)
(40) ~
wherek,|IT.
or, more compactly, The scattering amplitudes may be determined by consid-
ering, for the upper half space, the scattered field in some
Yi(r) = E f deH a"(k)'(r;k,k’). (42 planez=z, wherez, is chosen so that the susceptibility of the
n=+ scatterer is zero for>z,. Then
For convenienceg*(r ;k, k') will denote the total field gen- | ) L — ik e ke e )
erated at a point by scattering of an incident mode A+(KuKiKzKz)= 2;77 f dre e girikky).
#*(r;k,k’). As before, the total field modes are given in =
terms of their incident and scattered parts ¢sis= ¢ + ;. (49)

The total field may be represented in terms of the total fieldrp,o scattering amplitude in the lower half space may be
modes by the expression determined by considering the scattered field in some plane

z=2,<0,
()= | d%k, a"(k)e"(r;k,k’) (42 L ko
=+ | .
" Af(kq, kKo k)) = Z;J dr e k2T pE(r;kqy,k]).
and the scattered field by 2m =2,
(50
— 2 n ne.. ’
¥s= E g k) gs(r 1k k7). 43 The scattered field satisfies the integral equation
The extinguished powdEqg. (15)] may thus be expressed as Bk, K') = k(z)f &G )t ) (kK. (51)
S 1T 1 [RAS] .
Pe=4nkim f o f oy d%ke Making use of Eqs(49—(51), one finds that
X > a™(kpa (k) ¢ (r;ka k) (ke k) 7(r). AL(kq ki ko ks) = K2 f dr [e7%2T + R(k,, ky)e k2]
m,n=+
(44) X(r) (k. k), (52)

The scattered field modeg; may be expressed in the and
form of angular spectra as in E@3). The situation is some-

what more complicated now, and some explanation of the A K Ko KD) = Zk—ézfd3rT k. ko)eikaT
notation is appropiate. The amplitudeis now a function of (kukpkaka) kokzz (karkz)

the wave vectors corresponding to the transverse wave vector i ,

of the incident mode and the plane wave into which that Xapr) - (r ke ky). (53)

mode is scattered. That i8;(kq,k},k,,k5) is the amplitude The integrals in Eq(44) may be identified with the scat-
for the scattering of the incident mod# (r ;k,k1) into the  tering amplitude in certain directions. It is useful to note that
outgoing (in the upper half spageplane wave ex@k,-r), in the region of the scatterer, i.&,>0,

036611-5



CARNEY, SCHOTLAND, AND WOLF PHYSICAL REVIEW E70, 036611(2004

(k) =T (ke T+ RIC k)] + R*(kz,ké)AE(kl,kl,k!,k{)]}- (58)
+ R (kKT (K k' ek T (54)
and
67 (koK) = RO (KO + RIC K )&k 7] V. DISCUSSION
+T’*(k,k’)T(k*,k’*)e‘”‘*‘?, (55) The results presented here provide insight into the inter-

ference mechanisms that ensure energy conservation in the
where we have made use of the identity tHat(k,k’) scattering of scalar waves. Equati¢ib) provides a frame-
=T(k*,k'"), and similar expressions f@&® andR’. By sub-  work in which to obtain a relationship between the scattering
stituting these expressions into E¢52) and(53) and com- amplitude and the extinguished power in problems with an
paring to Eq.(15), the power extinguished from an incident arbitrary background medium. We have obtained such a re-

field ¢/ (k,k’,r) is seen to be given by the expression lationship for the case that the background medium consists
4 of a lossless half space of index different from the vacuum.
Pe= i) Im[T"* (k, kALK, K’ K" k") This problem is relevant to the scattering of a single evanes-
cent plane wave. Such a field can be generated only in the
+ R (K, KDAT KK K K™ (56) half-space geometry. In free space, evanescent modes may be

present in superposition with other modes of the field if the
This result has a clear physical interpretation: In the absencsource is placed near the scatterer, but a single evanescent
of the scatterer, the incident field imparts a certain amount ofnode is never present in isolatigid]. The results have a
power to the far zone via the outgoing plane waves reflectedlear physical meaning, namely, that the extinguished power
from and transmitted through the boundary of the halfis simply related to the scattering amplitude of the scattered
spaces. The scatterer depletes, or extinguishes, some of tfield in the direction of the outgoing plane wave components
power from the incident field. In order to properly accountof the incident field.
for the total power, the field produced on scattering must To lowest order in the susceptibility, when the scatterer is
interfere coherently with the incident field in order to extin- in vacuum, the extinguished power is the projection of the
guish that field. Thus the incident mogé(r ;k,k;) delivers  incident intensity on the imaginary part of the susceptibility,

power to the far zone through the plane waae™ and
ek1’, and the extinguished power is directly related to the Pe=4quof dr[gi(r)|2 Im 7(r) + O(2?). (59
amplitude of the scattered plane waves in those same direc- v

tions as may be seen in expresskiib). The situation is This formula suggests a manner in which object structure

illustrated in Fig. 2. In the event that the incident mode Con'may be investigated. If the intensity of the incident field
sists of a wave totally internally reflected in tize<0 half forms the kernel of é transformation that can be inverted
space, the extinguished power is related to the amplitude Shen the object structure, as described byzr), may be !
the modes of the field coupled back into the 0 half space, found from power extinciion measurements. I;1 R&&:9)

ﬁ]rtcé e; g(]:aetlng in the direction of the beam reflected from thethe incident field was taken to consist of two plane waves
: Lo I .. and consequently the extinguished power was related to a
The power extinguished from the incident field Fouri f 8 Fourier-Laol f
&-(r Kk k') is given by the expression ourier tr_ans orm(8] or to a Fourier-Laplace trans o'r|[19]'
[ of the object. The present result shows that the extinguished

4 . a . power is a meaningful measure of object structure for certain
Pe= E Im[T" (k,kDAZ(k, K"k k™) forms of the incident field. Two tomographic modalities cur-
X o rently in practice may also be understood as variants of this
+R (kK )ALK K" k" k")]. (57)  approach. Computed tomography with x rdgd] is accom-

rplished with measurements of the field attenuation along rays
Rassing through the sample under investigation. That situa-
tion is described by Eq59) when the incident field is as-
sumed to be localized to the ray path. The technique of trans-
mission mode confocal imagirfd5] may also be understood

This expression may also be interpreted as relating the exti
guished power to the amplitude of the scattered waves whic
are coincident with the outgoing parts of the incident field. In
general, with an incident field given by E@l1),

_x Am o 0L -n " in the context of Eq(59). There the field intensity is much
Pe= g Ko Im{f dkydhy a'(ky)a™ (ko) higher at the focus than at any other point in the medium,
i L and, as is well known, the data represent a convolution of the
X[T"7 (ko kp)Al(kq, kg, ko k) object structure with the intensity in the focus. Because the

transmitted field is collected in a confocal arrangement, the

’* AV XL [V PR
TR (ko ko)A kg ko kz )] signal is simply related to the extinguished power.

o o e Results analogous to those presented here may be obtain
+ | dkydky a'ky)a (ko) for the vector(electromagneticfield and will be presented in
. another paper. Layer structures and waveguide geometries
X [T* (ko kp)Al(ky, kg, ko ky) will also be studied in future work.
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