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Dubstep, Darwin, and the Prehistoric Invention of Music

Abstract
Where did music come from, and why are we so drawn to it? Though various scholars have offered a diverse
set of hypotheses, none of these existing theories can fully encapsulate the complexity of music. They
generally treat music holistically, but music is not monolithic. Musical ability encompasses myriad component
parts, such as pitch perception and beat synchronization. These various musical elements are processed in
different parts of the brain. Thus, it is unlikely that music arose in one place, at one time, in response to one
evolutionary pressure. While existing theories can explain pitch-related aspects of music, such as melody and
harmony, they fail to encapsulate rhythm. I explore rhythm’s connection with motion, social function, and the
brain in order to investigate how and why it may have evolved. In order to do so, I use diverse lines of
evidence, such as my own ethnomusicological fieldwork, autism studies, and brain scans of monkeys. I
hypothesize that the mirror neuron system, a mechanism in the brain that allows cognitive and physical
synchronization, may be behind the connection between rhythm, movement, and social cognition. When
eventually rhythm was joined with pitch manipulation activities, music as we know it was born.
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Abstract: 
 

 Where did music come from, and why are we so drawn to it?  Though various 
scholars have offered a diverse set of hypotheses, none of these existing theories can fully 
encapsulate the complexity of music.  They generally treat music holistically, but music 
is not monolithic.  Musical ability encompasses myriad component parts, such as pitch 
perception and beat synchronization.  These various musical elements are processed in 
different parts of the brain.  Thus, it is unlikely that music arose in one place, at one time, 
in response to one evolutionary pressure. 
 While existing theories can explain pitch-related aspects of music, such as melody 
and harmony, they fail to encapsulate rhythm.  I explore rhythm’s connection with 
motion, social function, and the brain in order to investigate how and why it may have 
evolved.  In order to do so, I use diverse lines of evidence, such as my own 
ethnomusicological fieldwork, autism studies, and brain scans of monkeys.  I hypothesize 
that the mirror neuron system, a mechanism in the brain that allows cognitive and 
physical synchronization, may be behind the connection between rhythm, movement, and 
social cognition.  When eventually rhythm was joined with pitch manipulation activities, 
music as we know it was born.
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In a study published in 2006, psychologists Josh McDermott and Marc Hauser set 

out to determine what kind of music a group of monkeys preferred.  After carefully 

testing marmosets and tamarins, the duo arrived at the conclusion that monkeys don’t 

care for music at all.  Though the primates demonstrated some differential preference for 

slow rather than fast-paced music, they consistently chose silence over either (1).  A 

number of other studies have demonstrated that music is simply lost on our furry cousins.  

Experiments with cebus monkeys prompted one researcher to conclude: “‘Why monkeys 

can’t hum a tune’ must be clear: Because they don’t hear them” (D’Amato 478).  Non-

human primates simply lack the neural mechanisms necessary to process musical input as 

something distinguishable from more general sound.  To the primates, there is little 

difference between music and noise. 

It may be useful to consider a popular philosophical query: If a tree falls in a 

forest and nobody is there to hear it, does it make a sound?  This classic conundrum has 

been pondered and argued by philosophers and laypeople alike for over a hundred years.  

Though from most perspectives the answer is subjective, dependent on individual 

opinions of reality and experience, the scientific response should be unequivocal: No.  

The falling tree will cause vibrations in the air regardless of whatever animal or human is 

standing nearby, but these vibrations can only manifest as sound once processed by a 

brain.  According to music psychologist Daniel Levitin, “Sound is a mental image created 

by the brain in response to vibrating molecules” (This Is Your Brain on Music 22). 

Now, a slight adjustment: If a boombox plays in a forest, and no humans are there 

to hear it, does it make music?  If there are bears, monkeys, and deer in this forest, the 

boombox does make a sound, since there are ears and brains present to receive and 
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process the air vibrations.  However, in the absence of a human brain, there is no music.  

Just as sound is a mental image created by the brain in response to vibrating molecules, 

music is a mental image that can be created only in a human brain in response to 

molecules vibrating in a very particular way.  The monkey perceives sound, but not 

music; that is why monkeys cannot hum a tune and why they choose silence over music. 

 If non-human primates’ aversion – or indifference – to music seems surprising, it 

should be enlightening to step back and think about how much more remarkable is the 

human affinity for it.  Every known human society, extant or extinct, has partaken in the 

creation and consumption of music (Nettl).  We spend billions of dollars each year to 

hear it, and it accompanies or underlies every ritual, from prayer to a stroll through the 

shopping mall (“Recording Industry by Numbers”).  A particular organization of pitches 

can move us to tears, whereas another can make our hairs stand on end in chilling 

discomfort, and another can galvanize us to the practice of frenzied arm-flailing and leg-

stomping that we call dance.  As a species, we take our organized sound seriously.  To us, 

music is much more than noise. 

 Given the great discrepancy between the abilities to perceive musical sound in 

humans and our closest phylogenetic relatives, it’s clear that something important 

happened in the 5-7 million years since humans split evolutionarily from the rest of the 

primate pack (Stringer 242).  To search for the origins of music, we cannot simply dig for 

early bone flutes and percussion instruments.  This pursuit would be akin to looking at 

the archaeological record of shoes and roller skates to investigate the origins of 

bipedalism.  Musical instruments are tools to facilitate the creation of music, but long 

before we felt it necessary to build such tools, our neurology had to evolve to allow 
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music in the first place.  How and why our brains underwent this change is not 

immediately clear.  This is not as easy a conundrum to sort out as the evolution of traits 

like bipedalism and the preference for sugary foods.  Those traits have clear adaptive 

value, and thus Darwinists can easily explain their appearance and proliferation.  Music 

does not have such a clear function.  Numerous scholars, however, have presented 

hypotheses. 

EXISTING HYPOTHESES OF MUSICAL EVOLUTION 

The sexual selection theory 

Darwin himself touches on the subject in his work The Descent of Man, and 

Selection in Relation to Sex, boldly claiming that the faculties of music creation and 

perception “must be ranked among the most mysterious with which we are endowed” 

(878).  Documenting numerous examples of animal sounds, he points out that many of 

these sounds are produced only by males, and exclusively during the mating season.  

Animal vocalizations have no clear survival value; some birds even sing until they die of 

exhaustion.  With this evidence, Darwin posits that animal sounds persist in evolution as 

mating signals.  He argues that human music presents a similar reproductive advantage, 

suggesting that early humans “endeavored to charm each other with musical notes and 

rhythm;” the most successful charmers are the evolutionary winners, leaving the most 

offspring (880). 

Evolutionary psychologist Geoffrey Miller has extended this sexual selection 

hypothesis.  According to Miller, music “has costs but no identifiable survival benefits.  

Therefore, it is most likely to have evolved due to its reproductive benefits” (337).  To 

illustrate this discrepancy, he offers the case study of Jimi Hendrix; the guitar icon’s 
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sexual prowess and promiscuity were perhaps as legendary as his musical skill, but his 

survival skills were less adept, as he overdosed at age 27.  Hendrix was able to increase 

the frequency of his musical genes in the next generation not by any survival advantage 

but because of his access to mates.  Perhaps more convincing evidence is the fact that 

musical skill and reproductive potential peak around the same time in development, 

during adolescence (337).   

The sexual selection model relies on biologist Amotz Zahavi’s handicap theory, 

which is best demonstrated by the example of peacock tails (205).  A large and colorful 

tail is energetically expensive to grow and maintain, and it makes a peacock more 

conspicuous to predators as well as less able to outrun them; it presents a clear survival 

disadvantage.  However, peahens prefer such tails, because they signal that the peacock 

and his ancestors have had access to so much energy and were so fast that they were able 

to survive and procreate despite the handicap.  Thus, sexual selection places pressure on 

the evolution of the handicap (207).  Music, because it demands the adept use of myriad 

cognitive functions and even physical stamina, signals to potential mates that the 

performer has plenty of brainpower and energy to spare. 

The social bonding theory 

 Another faction of scholars has posited that music evolved as a social adhesive, 

allowing groups to flourish by enhancing cooperation and sociability.  Neuroscientist 

Walter Freeman invokes music as a way for humans to transcend the gulf of 

“epistemological solipsism” (411).  Freeman’s research has demonstrated that each brain 

constructs knowledge in unique patterns, and as knowledge increases, this neurological 

individualism – or more formally, epistemological solipsism – compounds so that brains 
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become more distinct.  During human evolution, group size increased as our species 

developed social and cooperative tendencies; manners of bridging the solipsistic gap 

between individuals became necessary in order to engender allegiance and trust.  The 

same neurochemicals that bind together sexual partners in trust – and possibly even that 

elusive phenomenon sometimes referred to as “love” – could be triggered by 

synchronized, cooperative behaviors such as singing, chanting, and dancing.   

“What is at issue is the extent to which feelings of bonding and formation 

of a neural basis for social cooperation might be engendered by the same 

neurochemical mechanisms that evolved to support sexual reproduction in 

altricial species like ourselves, and that might mediate religious, political, 

and social conversions, involving commitment of the self to a person as in 

transference, fraternity, military group, sports team, corporation, nation, or 

new deity.  The common feature is formation of allegiance and trust.” 

(420) 

Freeman clearly believes the social and societal implications of the creation of trust, 

allegiance, and cooperation are enormous, and any behavior that achieves this effect 

would be evolutionarily advantageous.  This, he claims, is the origin of music, although 

as a neuroscientist rather than an evolutionist, he leaves the exact mechanisms of the 

trait’s nascence unclear. 

Scientists have demonstrated a compelling double dissociation relating to 

sociability and musical ability.  Sufferers of Williams syndrome (WS), a rare genetic 

disorder caused by a missing portion of genes on the seventh chromosome, experience 

significant cognitive impairment in nearly all domains of intelligence and functioning 
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(“Musical Behavior in a Neurogenetic Developmental Disorder” 326).  However, skills 

relating to language, face recognition, music, and sociability remain intact or enhanced.  

Musical ability and interest are higher in WS sufferers than in people of normal cognitive 

development.  They develop musical interests earlier, listen to more music, play more 

music, and experience more music-evoked emotion than control subjects (327). 

Furthermore, brain scans have shown that individuals with WS have left auditory cortices 

that are more than twice as large as those of controls; enlarged left auditory cortices are 

present in professional musicians as well (Wengenroth et al. 2).  In parallel, WS sufferers 

are extremely social and notoriously trusting of others, demonstrating “uninhibited and 

often inappropriate friendliness,” often hugging strangers.  They make frequent eye 

contact, a trait uncommon in non-WS individuals with similar IQs. 

On the other hand, sufferers of Autism Spectrum Disorder (ASD) display 

impairment in both musical and social realms.  A team of Scottish scientists have 

demonstrated that a lack of rhythm and synchrony is an early warning sign for autism 

(Trevarthen and Daniel S25).  In addition, autistic individuals have difficulty 

understanding the emotional expressivity of music as well as speech (Bhatara et al. 220).	  

Social impairment is the defining feature of ASD.  Individuals with ASD demonstrate 

difficulties understanding normal social interaction, non-verbal communicative clues, and 

the emotions of others.  An inability to socialize is an early flag-raiser for ASD.  Thus, 

the double dissociation is this: Sufferers of WS are highly social and highly musical, 

where as sufferers of ASD are antisocial and amusic (exhibiting deficiencies in musical 

faculties).  These results suggest that social functioning and musical functioning are 

related. 
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The auditory cheesecake theory 

 A few thinkers have played devil’s advocate to the adaptationists, most notably 

the prominent psychologist Stephen Pinker.  In How the Mind Works, he proposes that 

music is simply a by-product of the evolution of language and other traits (a spandrel, in 

more technical terms), commandeering the neurological structures developed specifically 

for those traits and using them for an activity that confers no adaptive benefit (534).  He 

used the now-infamous analogy “auditory cheesecake” to describe music in this 

evolutionary context (534).  Just like cheesecake takes advantage of our evolutionary 

preference for fats and sugars but itself is too concentrated to offer nutritional benefit, 

music takes advantage of our abilities to hear the pitch and prosody that language uses 

more subtly.  Although language is the main ingredient in Pinker’s cheesecake, he also 

invokes auditory scene analysis, emotional calls, habitat selection, and motor control as 

precursors to music, as well as “something else… that explains how the whole is more 

than the sum of the parts” (538). 

 Though the music and language connection has been explored by a host of 

scholars, Pinker’s attribution of musical elements to the abilities of auditory scene 

analysis merits further consideration.  Though only humans have language, some non-

human animals possess certain abilities that we consider musical, such as simple octave 

generalization (Wright et al. 1) and, to some degree, consonance perception (Izumi 3073).  

These traits cannot be explained by the evolution language if their possessors do not also 

have language.  However, auditory scene analysis could account for very basic pitch-

relation processing.  Some animals emit low-frequency sounds in order to appear larger 

as a defense strategy; this behavior indicates that the ability to process lower and higher 
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pitches must be common in non-human animals (Cross and Woodruff 4).  Of course, 

pitch is much more complex in music, but this evidence indicates that at least some basic 

aspects did not arise as byproducts of the evolution of language. 

Language from music 

 Some scholars, most notably Robin Dunbar, have posited theories that are 

somewhat antithetical to that of Pinker.  Music didn’t spring from language; it was the 

other way around.  Much of Dunbar’s primatological research concerns grooming, or the 

practice of mutual cleaning, usually involving an individual removing nits, dirt, and dead 

skin from another.  Though hygiene is certainly at stake, the practice seems to be most 

important in the formation and maintenance of social bonds.  Grooming facilitates the 

release of endogenous opioids and endocrines such as oxytocin, which serve to reinforce 

affiliative social interaction, creating mutual trust and intimacy (Dunbar 257).  The 

amount of time a primate engages in grooming with another is proportional to its 

willingness to provide “coalitionary support” for that partner (258).  Because of the 

centrality of grooming in the maintenance of social bonds, primates that live in larger 

groups spend more time each day grooming.  During the course of human evolution, 

human groups grew to exceed the group sizes of any other primate.  Such sizes would 

demand a quantity of grooming time that would leave insufficient time for other 

necessary activities, such as searching for food.  Dunbar proposes that language evolved 

to replace grooming as a more efficient method for achieving these bonding effects.  

Whereas grooming demands full attention and monopolizes the hands, humans can chat 

while engaged in other activities, they can do so at a distance, and they can talk to many 
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people at once.  Thus, they could maintain social bonds efficiently and still find time to 

mate, sleep, and forage for food. 

 According to his estimates, hominid group sizes must have surpassed the limit for 

which traditional social grooming is feasible around two million years ago.  However, the 

earliest estimates for the emergence of speech and language are in the realm of half a 

million years ago (262).  There was a long transitional period, during which anatomical 

evidence suggests no abrupt change in cranial volume (a metric for intelligence); the 

emergence of language was not a sudden epiphany. 

Dunbar offers music as an intermediary step between grooming and language.  

When group size initially approached the upper limit for grooming, an increase in 

“contact calling,” a secondary social exchange in Old World primates, would have helped 

mitigate the time pressures.  This upsurge in the frequency and importance of contact 

calling could have developed into musical chorusing.  Music could be an effective 

prelinguistic bonding agent because it activates emotions and its performance in a 

communal context releases the same endorphins that allow grooming to reinforce social 

bonds (263).  Speech would have eventually developed as a result of the diversification 

of preexisting vocal communication modes. 

The musilanguage theory 

 Perhaps neither music nor language can claim primacy.  The musilanguage theory 

suggests that music and language share a common ancestor, which Steven Brown calls 

musilanguage, which eventually split into the two systems as we recognize them.  Brown 

argues that those basic components that are shared by music and language – namely 

lexical tone, combinatorial formation of small phrases, and expressive phrasing principles 
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– must have characterized musilanguage (279).  Musilanguage itself, he suggests, may 

have evolved from preexisting primate vocal communications (291).  The divergence of 

the two modes encompasses both analogous features, which would have developed from 

shared ancestral features, and distinct features, which arose independently.  Distinct 

features include language’s propositional syntax (questions) and music’s isometric 

rhythms (292).   

Brown remains mum about the reasons for the divergence and increased 

specialization of the two realms.  Archaeologist and evolutionary psychologist Steven 

Mithen, however, hypothesizes that as language acquired the ability to convey specific 

meaning, music remained to communicate wordless emotion.  Further specialization 

would have occurred in order to reinforce these distinct roles, evidenced by music’s 

important place in religion and ritual (Mithen 273). 

SHORTCOMINGS OF EXISTING THEORIES AND NEW DIRECTIONS 

Initial origins: Where is the clay? 

 Though the aforementioned scholars have offered compelling insights, it seems 

unlikely that any of these existing hypotheses could fully explain the evolution of music.  

Although the sexual selection and social bonding theories describe different reasons why 

music would have been sustained as an adaptation to evolutionary pressures, they fail to 

offer any perspective on the initial origins of music.  Evolution needs something to act 

on, and so the sexual selection and social bonding models necessitate at least a primitive 

form of music in order to spur further development.  Geoffrey Miller flaunts his refusal to 

consider music’s initial conception: 
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Identifying an adaptation and its function does not require telling the 

phylogenetic story of how it first arose at a particular time and place in 

prehistory, and how it underwent structural transformation through a series 

of intermediate stages.  Even for morphological adaptations, biologists 

often have no idea when the adaptations that they study arose or exactly 

how they reached their current form.  For most psychological adaptations 

that leave no fossil record, it is not even possible to reconstruct phylogeny 

in this sense.  Nor is it necessary.  Adaptationist analysis does not worry 

very much about origins, precursors, or stages of evolutionary 

development; it worries much more about current design features of a 

biological trait, its fitness costs and benefits, and its manifest biological 

function.  This is good news for theories of music evolution.  It is just not 

very important whether music evolved 200,000 years ago or 2 million 

years ago, or whether language evolved as a precursor to music.  The 

adaptationist’s job is to look at the adaptation as it is now, to document its 

features and distribution within and across species, and to test hypotheses 

concerning its biological function against this evidence. (336-337) 

 Considering his article was published in a volume called The Origins of Music, 

Miller seems stubborn in this staunch refusal to contemplate music’s origins.  He is 

correct that this is no easy mystery to solve, but he is not correct in his assertion that it 

should not matter.  Many if not most analyses of adapted traits do consider the nascence 

of those traits, even though it is often the most difficult component to sort out. 
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 Because evolution needs something to act on, it does seem likely that certain 

aspects of musical behavior would have sprung from other behaviors that either already 

existed or were evolving for more definitive purposes.  This is especially true given the 

unclear adaptive benefits of music.  In order for the pressures of social bonding or mate-

seeking to artfully sculpt music into the phenomenon we now know and love, they need 

an initial lump of clay.  Where is the clay?  The theories that posit the coevolution of 

music and language (in any order) do address origins, and language is a good jumping-off 

point, since the evolutionary benefits of language are clear and definite.  Such theories, 

therefore, account for the emergence of proto-musical elements, in that they arose with 

language, in response to these clear pressures that created language. 

Music is not monolithic 

A crucial shortcoming of these theories (as well as the social bonding and sexual 

selection theories), however, is that they generally treat music holistically.  They discuss 

when music evolved, how music evolved, and why music evolved.  However, music is 

not monolithic.  The phenomenon of music represents the sum total of myriad component 

parts, from octave generalization to polyrhythm perception.  Many of these components 

are very different from each other, and they can exist independently.  No melody or 

harmony exists in drum circles; no pulse or meter can be discerned in Hindustani alap. 

 Furthermore, the processing of these disparate components of music is similarly 

decentralized in the brain.  Musical behavior activates cortical structures as diverse as the 

amygdala and Broca’s area.  Isabelle Peretz, Anne Sophie Champod, and Krista Hyde 

have performed tests on adults who could be considered variously amusic, or lacking in 

the ability to create and perceive music.  However, their findings indicate a complex 
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variety of deficiencies that are independent and dissociable (Peretz, Champod, and Hyde 

1).  A subject lacking in the ability to discern the difference between pitches might be 

able to tap in time to a rhythm as well as a control.  Essentially, there is no particular 

music structure in the brain that is either functioning or non-functioning.  This 

complexity makes it highly unlikely that music emerged as a unified element, in one 

place and at one time, in response to one set of evolutionary pressures.  This is another 

blow to the hypotheses that offer a single adaptive function for music.  Scholars who 

offer imagery of proto-human hominids or early humans singing and dancing around a 

campfire as support for a sexual selection or social bonding hypothesis fail to capture the 

cognitive and behavioral complexity of music.  If these theories are true – which they 

may be, at least partly – these functions could have taken hold only after many separate 

elements of music evolved independently and were eventually joined; pitch perception 

alone would be an ineffective mating call.  Thus, these theories explain not adaptive 

functions of music but exaptive ones, gaining relevance only after music’s primordial 

clay began to take shape. 

 In order to sort out the more complex and nuanced evolution of musical elements 

rather than the holistic evolution of music, it is useful to make certain distinctions.  

Overall, the elements of musical behavior can be grouped relatively effectively into the 

pitch-based and the temporal.  Pitch-based aspects of music involve the manipulation or 

perception of different vibration frequencies, which the brain allows us to understand as 

pitches.  Pitch-based aspects of music include melody, harmony, scale structure, octave 

generalization, and interval perception.  Temporal aspects of music, such as rhythm and 

meter, involve the organization of sounds into patterns of time. 
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 This broad dichotomous categorization is not arbitrary.  Scientific studies 

corroborate the fact that rhythmic and melodic elements are separate not only in music 

but also in our cognitive perception of music.  In their amusia studies, Peretz and Hyde 

found that subjects’ deficiencies in melodic and harmonic aspects of music exist 

independently of whatever rhythmic ability he or she retains, and vice versa (Hyde and 

Peretz 1).  With practice, subjects who were melody-deficient were able to improve their 

rhythm but unable to improve their pitch perception.  Lesion studies have reinforced this 

dichotomy of pitch and rhythm.  Patients who have impairments in melody perception 

generally have lesions in the right hemisphere, whereas rhythm-deficient patients often 

have injuries in the left hemisphere, although other areas are involved (Sacks 106). 

 As explained above, elements of music can exist independently not only in the 

brain but also in the music itself.  However, broadly speaking, rhythm and pitch-based 

elements are the most dissociable.  It is easy to create melodic non-rhythmic music (such 

as Hindustani alap) and rhythmic non-melodic music (percussion ensembles).  However, 

it is more difficult to separate from each other those elements that fall under the same 

broader category.  Harmony is inconceivable without scale structure, which in turn is 

inconceivable without octave generalization.  It is difficult to conceive of meter without a 

regular rhythmic pulse.  The analytical division of music into pitch-based/melodic and 

temporal/rhythmic elements is clearly articulated in music, both perceptually and 

cognitively. 

Rhythm and language 

McDermott and Hauser as well as Justus and Hustler have posited that if an 

element of music can be shown to be innate and cannot be explained as a byproduct of 
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another more clearly adaptable phenomenon such as language or auditory scene analysis, 

support emerges for an adaptationist theory of musical evolution.  If such an element 

cannot be found, there is no reason to reject the hypothesis that music came to be as a 

byproduct of other practices like language.  The authors could find no such element.  

However, neuroscientist Aniruddh Patel criticizes these analyses, and rightfully so, for 

their narrow focus on pitch perception (“Musical Rhythm, Linguistic Rhythm, and 

Human Evolution” 99).  Rhythm was largely ignored. 

Keeping in mind the multiplicity of musical elements, a reexamination of the 

music-language coevolution theories reveals a crucial lapse.  The evolution of language 

simply cannot account for musical rhythm.  Language does have some semblance of 

rhythm, and these overlap somewhat with rhythmic aspects of music.  Patel has explored 

the connections between linguistic rhythm and musical rhythm comprehensively.  A 

prominent overlap is what he calls “perceptual grouping, the mental clustering of events 

into units (e.g., phrases) at different hierarchical levels” (99).  Such grouping exists in 

both music and language.  Both mark boundaries in similar ways and distinguish between 

levels; the brain seems to process this grouping in the same place for both practices.  

However, there is a crucial difference between musical and linguistic meters: 

“Turning from grouping to meter, the story is quite different.  In every 

culture there is some form of music with a regular beat, a periodic pulse 

that affords temporal coordination between performers and elicits a 

synchronized motor response from listeners (Nettl, 2000).  Although early 

theories of speech rhythm proposed an underlying isochronous pulse 

based on stresses or syllables (Abercrombie, 1967; Pike, 1945), empirical 
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data have not supported this idea (Bertinetto, 1989; Dauer, 1983), and 

contemporary studies of speech rhythm have largely abandoned the 

isochrony issue (e.g., Grabe & Low, 2002; Ramus, Nespor, & Mehler, 

1999).” (100) 

 Language has something like meter; it builds hierarchies based on the prominence 

or stress on certain syllables.  However, it does not have this regular pulse – the beat – 

that defines musical rhythm.  A regular pulse is central to rhythmic synchronization.  

Patel emphasizes that beat perception and synchronization – or BPS, in his terms – is 

unique to music and cannot be explained as a byproduct of the evolution of language.   

 Brown, the principal proponent of the musilanguage theory, argues that although 

he believes that music and language coevolved, a regular rhythmic pulse was 

incorporated into music after the schism of the two forms:  

“Finally, at the rhythmic level, music acquires the distinct feature of 

isometric time keeping, so much a hallmark in Western culture.  This 

metric-pulse function is based on a human-specific capacity to both keep 

time and to entrain oneself rhythmically to an external beat.” (293) 

Perhaps melody and harmony piggybacked on language and auditory scene analysis, but 

the beat – that regular rhythmic pulse that serves as music’s backbone – came from 

somewhere else. 

Rhythm and movement 

Another factor that separates rhythm from language and other such functions – 

and one that also offers clues to its origins – is its intimate connection with movement.  

Anecdotally, I know this connection is strong; in the presence of music, I find it simply 
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impossible not to tap or snap along.  Others are compelled to clap and dance.  This 

clapping, snapping, stepping, and other similar musical movements may today generally 

accompany recorded music.  However, it also is music.  Rhythm is produced by 

movement, and it in turn incites movement.   

Rhythm is inherently physical, and this connection between movement and 

rhythm is apparent in the brain.  Numerous studies (Grahn and Brett; Zatorre, Chen, and 

Penhune) have demonstrated that in the creation, perception, and even imagination of 

rhythm and beats, motor areas of the brain are activated.  These areas include the dorsal 

premotor cortex, the cerebellum, the basal ganglia, and the supplementary motor area.  It 

is remarkable to consider that merely listening to a beat can saturate those motor areas to 

such an extent that an often irresistible urge to move is created.  Rhythm is the 

communication of movement at a distance; it is musical mind control.   

Language elicits nothing comparable to this physical response; it is unique to 

music.  Legendary ethnomusicologist John Blacking argues for the centrality of 

embodiment in music, the inseparability of music and movement (241).  Music as a 

concept has involved both movement and sound for all societies across time and space.  

We have structured and cultivated the motor response to music as dance, and we take it 

seriously.   

Some proponents of the preexisting theories of musical evolution have 

acknowledged the connection between movement and rhythm.  Mithen posits that rhythm 

stemmed from the evolution of bipedalism: 

Rhythm, sometimes described as the most central feature of music, is 

essential to efficient walking, running and, indeed, any complex 
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coordination of our peculiar bipedal bodies.  Without rhythm we couldn’t 

use these effectively: just as important as the evolution of knee joints and 

narrow hips, bipedalism required the evolution of knee joints and narrow 

hips.  (150) 

 Pinker’s account implicates motor coordination more broadly, not only that which 

is specific to bipedalism: 

Repetitive actions like walking, running, chopping, scraping, and digging 

have an optimal rhythm (usually an optimal pattern of rhythms within 

rhythms), which is determined by the impedances of the body and of the 

tools or surfaces it is working with.  A constant rhythmic pattern is an 

optimal way to time these motions, and we get moderate pleasure from 

being able to stick to it, which athletes call getting in a groove or feeling 

the flow.  Music and dance may be a concentrated dose of that stimulus to 

pleasure.  (537) 

 Some elements of motor coordination and rhythm certainly coevolved, but these 

hypotheses cannot account for rhythm sufficiently.  Humans are not the only animals that 

walk, run, and exhibit complex motor actions; why do we alone have rhythm?  These 

scholars ignore a crucial aspect of rhythm.  Music in general, but especially its rhythmic 

aspects, is a strongly interpersonal practice.  It is typically created and consumed in 

groups, and synchronization among members of the group is key to the function of 

rhythm.  Musical rhythm involves not only keeping a steady pulse but also the ability to 

synchronize with an external stimulus; we need our pulses to synchronize with the pulses 

of other individuals if we are to collectively engage in rhythmic practice.  
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Synchronization to an external pulse is rare in the animal world.  Though crickets, frogs, 

and fireflies seem to produce synchronous periodic signals, Patel argues that these 

practices do not meet the criteria for genuine beat processing and synchronization: 

Yet such displays differ from BPS in important ways. Notably, humans 

can synchronize to complex rhythmic stimuli (not just simple pulse trains), 

can sync across a wide range of tempi, and show cross-modal 

synchronization, with an auditory stimulus driving the motor system in 

periodic behavior that is not (necessarily) aimed at sound production. 

Synchronous animal displays do not show these features. (“Investigating 

the Human-Specificity of Synchronization to Music” 1) 

 Entomological research suggests that the signals of crickets and katydids result not 

from attempts at synchronization but rather from the efforts of each male insect to call 

before the others; females are attracted to “leading calls” (“Music, Language, and the 

Brain” 408).  Rather than matching their calls to a common pulse, these male insects 

adjust their calls each cycle in attempts to emit the leading call, and the overall result 

resembles synchronization. 

 A particularly striking example of the inability of non-human animals to 

synchronize with external beats and with each other comes from the Thai Elephant 

Orchestra.  Studies of this all-pachyderm musical group have showed that although each 

elephant can keep a remarkably steady beat, they cannot synch up their beats (408).  Beat 

synchronization does not extend to these supposedly musical animals.  The “rhythm” that 

the elephants do have is merely a solitary timekeeping mechanism; it lacks the central 

interpersonal (or inter-elephantine) element that musical rhythm necessitates. 
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 The ability to collectively synchronize to a regular pulse, coupled with the strong 

physical reaction to rhythm, leads to the unique human behavior of dancing, which is as 

universal as music itself.  Blacking’s writings emphasize the inseparability of music and 

movement.  According to Blacking, some cultures do not even distinguish between sonic 

music and dance (241).  This connection could offer clues about the social aspect of 

music as well, since dance is a strongly communal and social phenomenon.  I undertook 

extensive ethnomusicological into the nature of music, rhythm, dance, musical 

embodiment, and social function.  After a detour to describe this research, I will return to 

evolutionary implications. 

RHYTHM IN THE REAL WORLD: ETHNOMUSICOLOGICAL FIELDWORK 

A Survey of the Ethnomusicology 

 With generous financial support provided by an Andrew W. Mellon 

Undergraduate Research Fellowship and an Anthropology Undergraduate Summer 

Research Fellowship, in the late spring and summer of 2011 I embarked upon a national 

tour of music festivals and concerts.  In order to investigate how social, biological, and 

musical factors influence listeners, I attempted to maximize the variety of events I 

attended.  These ranged from formal classical music performances with a seated audience 

to outdoor punk rock concerts with violent mosh pits (from which one friend emerged 

with a fat lip and another emerged without his camera).  I observed performances of 

diverse genres including Brazilian forró, orchestral interpretations of the Beatles, Syrian 

electronic music, dubstep, hip-hop, salsa, jazz, informal drum circles, reggae, 

ambiguously musical spoken word poetry, folk, and New Orleans second-line.  

Performance times spanned from shortly after dawn to well after four in the morning.  I 
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attended a concert in Manhattan’s iconic Carnegie Hall as well as a music festival in the 

woods of rural West Virginia, a considerable distance from urban civilization.  I 

attempted to account for variables like genre, audience size, time of day, musical 

particulars, and setting in order to figure out what really mediates audience engagement – 

what factors most strongly activate those cognitive mechanisms that allow the perception 

of music and their connections with observable phenomena like movement and social 

interaction. 

 Cultural context certainly mediates audience engagement.  At certain venues and 

in performances of certain genres, social rules are codified about what behavior is 

appropriate and what behavior is inappropriate.  For example, classical music 

concertgoers are expected to sit politely, silent and still, throughout the duration of the 

performance, clapping only between pieces.  At venues associated with classical music, 

such as Carnegie Hall, architecture recapitulates this code of etiquette; a floor covered 

with seats, with no space for dancing, emphasizes that sitting is the only option during the 

performances there.  One particular anecdote captivates the rigidity of this etiquette code.  

I saw the Beninoise singer Angélique Kidjo perform danceable pop and soul music at 

Carnegie Hall; when she implored the audience to dance, the tension between the 

rhythmic, high-energy musical style and the perceived etiquette of the venue was clearly 

visible.  Only a few concertgoers rose out of their seats and danced, while most of the 

audience nervously looked around, one by one sheepishly standing up and dancing 

hesitantly.  The vast majority of the audience remained seated throughout. 

 Another factor mediating audience engagement was the engagement of others.  

Put simply, dancing begets dancing.  The All Good Music Festival in West Virginia 
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afforded me a unique opportunity to view this phenomenon from a vantage point that was 

raised above the audience.  Two stages were located at the front of the outdoor space, 

with a large field in front of the stages.  Framing the field was a tall hill; sitting on this 

hill gave me a bird’s-eye view of the field, where the crowd congregated in front of the 

stages.  First and foremost, large audiences were conducive to a strongly engaged 

audience.  In the presence of dancing, others dance.  Just as a large, densely packed 

crowd would facilitate the spread of an infectious disease, so it facilitated the spread of 

dancing.  The infectious disease metaphor was indeed apt for describing the geography of 

audience engagement.  From my hill, I could see that dancing spread from particular 

epicenters, around which concertgoers danced with intensity that gradually decreased 

with an increase in distance from the epicenter. 

 By far the most important factor determining the degree of physical engagement 

with music was rhythm, and especially a regular beat.  The stronger and clearer the beat, 

the more the audience responded physically.  Even though classical music has only a 

limited and un-emphasized percussive element, its failure to incite dance in listeners 

could be explained away by the aforementioned code of etiquette.  However, even at the 

Bonnaroo Festival in Tennessee, where some of the approximately 80,000 attendees often 

chose to forego social conventions such as clothing, audiences sat, stood still, or only 

gently swayed during performances by Iron and Wine, and Explosions in the Sky 

(Kavner 1).  The former is a folk musician who emphasizes lyrics and delicate harmonies, 

whereas the latter is an instrumental post-rock band with a focus on lush textures rather 

than rhythm.  If rhythms became too complex to discern a clear beat, people simply 

stopped dancing, as was the case during many occasions at the West Oak Lane Jazz 
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Festival in Philadelphia, where performers sometimes aimed to display their virtuosic 

command of their instruments by modulating time signatures and playing jumbled, 

complicated rhythms.  When the beat was simple and clear, people resumed dancing. 

 I found that physical response is not mediated at all by pitch-related aspects of 

music.  Change in harmony and melody did not influence the bodies of concertgoers 

whatsoever.  The melodic aspects of music could simply stop, and as long as the beat 

continued, listeners would simply keep dancing, with no indication of a change.  If there 

was a strong, simple, discernable beat, the music on top could feature any instrument or 

lyrics in any language, and the dancing impulse would be the same.  On the contrary, any 

change in the beat of the music generated a direct physical response.  If a beat slowed 

down or sped up, people would adjust their dancing accordingly.  On some occasions, 

especially during electronic music performances, a beat would temporarily stop while the 

harmony and melody continued.  During these instances, concertgoers would cease 

dancing, anticipating the resumption of the beat.  Upon the return of the beat, dancing 

would resume as it was before.  Even a deaf observer could watch the audience and get a 

good sense of the music’s beat and emphasis on rhythm.  However, this hypothetical 

observer would have no clues about the pitch-related aspects of the music. 

 I have witnessed this same phenomenon in experiences with my own musical 

groups.  I am a member of two samba groups, a Middle Eastern percussion group, and a 

rock band.  From the stage, I can see that people dance the most enthusiastically when 

there is a clearly elaborated rhythmic pulse.  In samba music, higher-pitched drums called 

repiniques, tamborims, and caixas often play fast, complex, and syncopated rhythms 

while large bass drums called surdos keep a regular pulse.  When the surdos cut out 
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temporarily, people generally stop dancing; as soon as they come back in, reinforcing the 

pulse, dancing resumes. 

 These findings corroborate and enhance the connection between rhythm and 

movement.  The fact that rhythm is processed in motor areas of the brain is no mere trifle; 

it has real, observable effects, as manifested by patterns of dance. 

Dubstepping in Time 

 Of all the performances I observed during my ethnomusicological tour, none 

produced audience responses comparable to those of a genre called dubstep.  In fact, the 

physical engagement, overall energy level, and dancing of the audience at this summer’s 

dubstep concerts far surpassed anything that I had ever witnessed in my 21 years of life.  

In colloquial terms, the kids go wild for dubstep. 

 Developed in the late 1990s, dubstep is characterized by a relatively slow pulse 

and extremely prominent rhythmic basslines, known somewhat onomatopoetically as 

“wobble” bass.  The basslines often have no discernible melody, foregoing pitch-related 

elements in favor of a strong emphasis on rhythm.  In 2010, dubstep broke through to the 

mainstream, bootstrapped by extremely popular performers such as Skrillex and Skream.  

A testament to his meteoric rise to popularity, Skrillex was nominated for five awards 

and won three at the 54th Annual Grammy Awards in February 2012 (“Nominees and 

Winners”).  The summer of 2011 represented the culmination of a year or so of a rapid 

and consistent increase in the genre’s notoriety, to the degree that Skrillex and other DJs 

including Bassnectar, Deadmau5, and Pretty Lights performed to the largest and most 

enthusiastic audiences at music festivals like Lollapalooza and Bonnaroo. 
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 The “wobble bass” and its strong emphasis on rhythm was certainly a central 

factor in dubstep’s galvanization of its audience to dance.  Dubstep artists made a point to 

make the rhythmic basslines as loud as possible; at his set at Bonnaroo, Pretty Lights 

blew a speaker.  In other words, the bass was too powerful even for the gigangtic state-of-

the art speaker system, and the equipment broke. 

Have you seen Molly? 

 There is, however, another very important factor mediating the physical response 

incited by dubstep in its audience: drug use.  The genre is strongly associated with the 

drug MDMA (3,4-methylenedioxymethamphetamine), the active ingredient in the 

substance commonly known as ecstasy.  More recently, MDMA has acquired the street 

name “Molly,” and those under its influence are said to be “rolling.” 

The exact effects of MDMA on human physiology and cognition are not precisely 

understood.  Because of the drug’s restricted legal status, it cannot be studied using the 

standard scientific double-blind methodology (Parrot and Lasky 261).  The available 

sources of information are anecdotal studies of users, medical case studies following 

serious complications, and animal studies (261).  Anecdotal descriptions can provide 

insightful accounts of MDMA’s effects on mood and behavior, but they have limited 

potential in an investigation of the neural mechanisms behind those effects.  Medical case 

studies do little to elucidate the normal effects of the substance, since the complications 

that lead to situations requiring medical interference are rare and often the consequence 

of a combination of factors beyond the drug itself.  Animal studies are useful in studying 

the neurology of the drug, but since monkey and especially rat brains are very different 

from human brains, they cannot paint the complete picture. 
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 Scientists do have a general if imprecise understanding of MDMA’s neurological 

effects.  The drug increases extracellular levels of serotonin (5HT) and to a lesser extent 

dopamine (DA), both neurotransmitters associated with positive emotions and reward, in 

the nucleus accumbens (White et al. 473).  Beyond this fact, our understanding of the 

neurology gets muddled: 

However, the potential ways in which this increased extracellular DA and 

5HT might interact with presynaptic and postsynaptic receptors to alter 

neurotransmission in the nucleus accumbens and in brain regions that 

project to the nucleus accumbens are exceedingly complex.  As a further 

complexity, the projection neurons from the nucleus accumbens do not 

seem to act as a functional unit, but rather constitute numerous 

input/output “neuronal ensembles” that are functionally distinct (Pennartz 

et al., 1994).  Almost nothing is known to date about whether MDMA 

may affect differentially distinct ensembles within the nucleus 

accumbens… The ability of MDMA to alter neurotransmission in the 

brain is not restricted to brain regions that are implicated in the rewarding 

effects of abused drugs.  MDMA produces the facilitation of somatic 

motoneuron excitability that would be expected of a drug that increased 

extracellular levels of 5HT, DA and NE.  It is very likely that MDMA 

increases extracellular levels of monoamines in every brain region that 

contains substantial numbers of monoaminergic terminals, and so can 

mimic most of the neurophysical effects of monoamines. (473) 
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In layman’s terms, we understand that the increased serotonin and dopamine mediate 

most of the drug’s effects, but we are not sure how, and we also have a limited 

understanding of the effects beyond the increased extracellular levels of these 

neurotransmitters. 

MDMA was initially synthesized by Merck and patented in 1914 as an appetite 

suppressant, although it never enjoyed popularity as such (Burgess, O’Donohue, and Gill 

287).  In the 1950s, the United States Army ran a series of tests to investigate its use in 

espionage and counter-espionage endeavors (Grob and Poland 374).  During the late 

1960s and early 1970s, when a number of psychotropic drugs experienced upsurges in 

popularity, it MDMA enjoyed a brief renaissance under the name “love drug” (374). 

Later in the 1970s, the drug came to the attention of Alexander Shulgin, a 

Berkeley biochemist, who recommended it to psychologists and psychiatrists due to its 

apparent stimulation of heightened empathy (374).  Especially on the West Coast of the 

United States, MDMA became extremely popular as an aid to psychotherapy.  

Pyschologists called the substance “Adam” for its induction of “the condition of primal 

innocence and unity with all life” (374). Around this same time, it experienced another 

uptake in recreational use, especially on college campuses in California and Texas.  The 

story of the arrival at its more popular and enduring street name is particularly 

interesting: 

Indeed, the transformation of MDMA as “Adam” into MDMA as 

“ecstasy” appears to have been a marketing decision reached by an 

enterprising distributor searching for an alternative code name, who 

concluded that it would not be profitable to take advantage of the drug’s 
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most salient features. “Ecstasy was chosen for obvious reasons,” this 

individual later reported, “because it would sell better than calling it 

‘Empathy.’ ‘Empathy would be more appropriate, but how many people 

know what it means?” (375) 

The steady increase in the drug’s recreational popularity led to a comprehensive 

investigation by the United States Drug Enforcement Administration in the mid-1980s.  

The end result of the relevant hearings was the DEA judge’s 1986 recommendation that 

MDMA be classified as a Schedule III controlled substance, meaning that it was safe for 

use under medical supervision (375).  The DEA director, however, overruled the 

recommendation and instead placed MDMA into Schedule I, the most restricted category 

of drugs under the Controlled Substances Act. 

Following these highly publicized legal debates, recreational use among youth 

skyrocketed.  By the late 1980s, MDMA was the drug of choice at large-scale dance 

parties called “raves” in both North America and Europe (375).  These raves generally 

featured techno music and dancing for audiences of up to 10,000 (375).  In a review of 

MDMA and its association with dance club culture, scientists Richard Schwartz and 

Norman Miller described the spectacle as “Ravers engaged in marathon, vigorous group 

dancing with expensive laser light displays illuminating the darkened building (706).” 

Ecstasy became strongly associated with techno, dance, and rave cultures on both sides of 

the Atlantic.  Most survey respondents indicated that they mostly took ecstasy at “dance 

clubs;” and it is this rave culture to which ecstasy’s rise in popularity can be attributed 

(Grob and Poland 375).  In this era’s techno music, rhythm reigned: 



	  

29	  

“The most important thing about the electronic revolution was the 

unremitting, ineluctable repetitive drum and bass…. Rhythm has always 

been an important quality of pop music, but with its precision and 

monotony, and played at high volume, it became almost hypnotizing in 

character.” (Ter Bogt et al. 160) 

When the popularity of raves dwindled in the late 1990s, so did recreational MDMA use, 

although evidence suggests it remained relatively level in Europe, and particularly the 

United Kingdom (Grob and Poland 375). 

 What I witnessed this summer was a dramatic resurgence in the popularity of 

MDMA, known this time around as Molly, coincident with the ascent of dubstep.  At any 

given dubstep performance, the ubiquity of Molly was clear.  Concertgoers passed around 

small plastic bags filled with white powder, dipping their fingers and rubbing them on 

their tongues.  Some members of the audience hawked the drug, while others sought it, 

furtively asking questions such as “Have you seen my friend Molly?”  At one point 

during the Pretty Lights performance at Bonnaroo, a crowdsurfing dubstepper yelled 

emphatically to the rest of the audience, “Who loves Molly?!”  Equally enthusiastic 

cheers constituted a collective response. 

 The ubiquity of luminescent accessories at dubstep performances was also 

astounding.  Nearly all concertgoers adorned themselves with glow-in-the-dark 

necklaces, bracelets, and facepaint.  Attendees swung flashing luminescent hula hoops 

around their hips, wore light-up gloves, and even waved around strobing plastic swords.  

Some dubsteppers erected glow totems, large sculptures held and swayed above the head 

that ranged in scope from “glow maces” made of glowsticks stuck in foam pool noodles 
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to a giant multi-person Chinese-style dragon costume fashioned partly out of LED lights.  

The omnipresent luminescence recalls a similar emphasis on lasers and glow sticks from 

the earlier rave period; it is likely that these related phenomena stem from MDMA’s 

supposed ability to create light trails – a lingering of light such that a glow stick waved in 

a circle might be perceived as a full circle of light – in the vision of those under its 

influence (Greer and Tolbert 376). 

 As a musical form, dubstep’s connection with MDMA almost certainly stems 

from its strong emphasis on rhythm.  As described, dubstep emphasizes a steady 

percussive pulse with basslines that reinforce the rhythm, such that the bass is more of an 

auxiliary drum than a melodic instrument.  Melody and harmony can be present as well, 

but some dubstep artists, such as Bassnectar, Excision, and Datsik, barely feature any 

pitch-related musical elements at all.  Anecdotal accounts elucidate that MDMA use 

strengthens a connection with music but especially with rhythm, and it incites a strong 

urge to dance. 

 I conducted a series of informal surveys of MDMA users, and the majority of 

respondents indicated that they mostly took Molly or “rolled” at electronic music 

concerts, specifically those of dubstep.  The following excerpts elucidate the subjective 

feelings of the interaction of MDMA, music, and dancing. 

 

“It really makes you feel the music, in a more literal way, which in turn makes you feel it 

in a figurative way as well. Depending on the kind of music, there are different things 

that stand out, but rhythm is probably the most significant. And since you are typically 

around a bunch of people dancing together, it makes you feel connected to them through 
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the music...  There's something to the idea of really feeling music in your body, and all 

you want to do is dance.” – 22 year old female 

 

“It definitely allows you to feel music, particularly the rhythm of it.  I don’t think it’s 

necessarily a deeper intellectual connection… It definitely makes me want to dance.  It’s 

a special kind of dancing: slower, more grounded, more connected.” – 20-year-old female 

 

“MDMA absolutely allows the user to feel a deeper connection with music.  The beat, 

especially in electronic music, feels as though it is pulsing through you, almost as a 

second heartbeat… Dancing appears to take no effort or thought at all.  Very rarely am I 

conscious of any dance moves that I want to perform; rather, I tend to move my body and 

arms in ways that feel the most natural in the context of the music.  I would describe it as 

feeling like a highly sophisticated marionette, with specific elements of the music acting 

as individual strings controlling the body.  Many times I have actually caught myself 

moving without being consciously aware of the movements I was making, but finding 

them to work well with the music and finding that I was moving in a much more skilled 

way than I previously thought I could.” – 22-year-old male 

 

“It feels really great to dance around, especially if there’s good loud music playing.  Your 

body just sort of does its own thing, which can be really cool if you’re typically not a 

good dancer.” – 20-year-old male 
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“I feel like [the music] is almost connected to my body in some way… I feel like the 

whole electro scene is dedicated to making rhythms that sound good when you’re on 

MDMA.  I love the rhythm of electronic music.  When I hear the music, like I said, it 

feels almost like it’s taking me over.  I’m so in with the song that it just kind of moves 

my body.  It’s just like, it becomes a part of me.  It just comes almost connected with the 

elation I have of being on the drug.  It moves you like a puppet.” – 20-year-old male 

 

 The anecdotal evidence suggests that MDMA’s connection with dance music is 

not merely circumstantial; the drug itself seems to create an active engagement with the 

music.  The metaphors of feeling the music and especially acting as a puppet to the music 

suggest that the reaction is strongly physical, representing the embodiment of the 

rhythms, which act to control the movements of the listener on a subconscious level.  

MDMA allows music to exert somatosensory control over its subjects.  

 As attested by the psychologists of the mid-20th century and the recreational users 

of its “love drug” phase, MDMA certainly has the non-musical effect of increasing 

feelings of empathy and sensations of connectedness with others: 

 

“I felt the need to talk to everyone I met and find out who they were.” – 22-year-old male   

 

“It really makes you feel connected to people as well – much more compassionate and 

even sometimes in awe of the people around you…  It's not going to make you suddenly 

trust the creepy dude in the unmarked van or anything dangerous like that, but there is 
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definitely a sense of deeper empathy and acceptance of the people around you.” – 22-

year-old female 

 

“One of the strongest emotions that MDMA brings out in people is a feeling of closeness 

and empathy with those around you.” – 22-year-old male 

 

 This dual effect of MDMA to increase both connection to rhythm and social 

connections to others strengthens the idea that rhythm and social function have mutual 

underlying mechanisms.  This neural bundling suggests an intimate evolutionary 

connection between the two realms, social and rhythmic.  But what is the nature of these 

mechanisms?  Recent scholarship from the disciplines of neuroscience and psychology 

may offer some telling clues. 

MIRROR NEURONS: MINDS READING MINDS 

 In 1992, a team of Italian scientists led by Giacomo Rizzolati published a paper 

called “Understanding Motor Events: A Neurophysiological Study” in the journal 

Experimental Brain Research, after it had been rejected by Nature for “lack of general 

interest” (Rizzolati and Fabri-Destro 223).  They reported that they had observed certain 

neurons in the ventral premotor cortex of a monkey which fired both when the monkey 

performed an action and when the monkey observed the performance of that same action, 

either by another monkey or a human (223).  Though the initial findings were met with 

relative apathy, since then, the scientific community has taken the idea and run with it.  

These neurons have acquired the name “mirror neurons” for the ability of their possessor 

to mimic the brain activity of an observed actor.  In 1996, reports were published of 
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indirect evidence of an analogous mirror system in humans (Rizzolati et al.; Grafton et 

al.).  Direct evidence of mirror neurons in humans was not offered until 2010 (“Social 

Neuroscience: Mirror Neurons recorded in Humans” 1).  Although initially recorded in 

one particular cortical area of monkeys, the present literature suggests that mirror 

properties are distributed widely throughout the cortex (Rizzolati and Craighero). 

 What do these mirror neurons do?  As mentioned, they activate upon both the 

performance and the observation of an action.  The brain essentially creates a micro-

representation of the cognitive activity of the individual it is observing.  This allows for 

easier imitation of such an observed action, since the brain prepares for the performance 

of this action through the micro-representation of the mirror neurons.  Arguably more 

importantly, however, mirror neurons allow an understanding of the intentionality of an 

action.  Rizzolati and Fabri-Destro offer the following illustration of this phenomenon: 

  Social life is based on our capacity to understand the behavior of 

others.  Let us imagine this situation.  John and Mary are in a pub and 

John’s hand comes into contact with a mug of beer; Mary immediately 

understands whether he is grasping it or not.  Moreover, according to how 

he grasped it, she can also understand why he is doing it (e.g., for drinking 

or for giving the mug to a friend).  How does Mary understand the goal of 

the John’s motor act and the intention behind it? 

One possibility is that she is using an inferential reasoning 

elaborating the acquired visual information through some cognitive 

mechanism (see Frith and Frith 1999; Csibra and Gergely 2007).  Another 

possibility is that this is not necessary in this simple situation, and the 
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understanding of what John is doing and why he is doing it, is acquired 

through a mechanism that directly transforms visual information into a 

motor format.  The proprieties of mirror neurons support the existence of 

such a mechanism. (229) 

 The roles and implications of mirror neurons extend far beyond the realm of 

motor activity.  Studies have shown that in addition to offering a co-representation of 

motor experience, mirror neurons provide a similar co-representation of emotions and 

sensations (“Towards a Unifying Neural Theory of Social Cognition”).  When we see 

another individual experiencing pain, we flinch.  Borrowing neuroscientist Christian 

Keysers’s example, “If we see a spider crawling on James Bond’s chest in the movie Dr. 

No, we literally shiver, as if the spider crawled on our own skin” (385).  If we see a peer 

experiencing disgust, fear, or sadness, our mirror neurons take cues from facial 

expressions to create a neural representation of those emotions so that we understand the 

experiences of the observed individual.  This is the neuroscience of putting oneself in 

another’s shoes, although it happens automatically.  Mirror neurons, thus, play a central 

role in empathy and social cognition. 

 The implications for imitation, understanding of intentionality, and co-

representation of emotion and sensation are enormous.  V.S. Ramachandran, a 

neuroscientist who has championed the importance of the mirror neuron system and 

contributed significantly to the mirror neuron literature, argues that this neural 

mechanism could underlie the “great leap forward” in human evolution.  Though other 

primates – and even birds – have mirror neuron systems, humans likely have the most 

developed mirror mechanism (Prather et al.).  Around 250,000 years ago, hominid brains 
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reached their current sizes, but it was not until about 40,000 years ago that the 

archaeological record shows a relatively sudden explosion of productivity after hundreds 

of thousands of years of cultural stagnation.  Around this time and shortly after, we see 

archaeological evidence of cave art, clothing, a marked increase in the diversity and 

complexity of tools, and other hallmarks of human culture (1).  Ramachandran implicates 

the abilities of imitation and understanding of intentionality as afforded by mirror 

neurons in the rapid spread of such ideas, and since technology compounds, this 

constituted a “great leap.” 

 Although the connection between mirror neurons and music has been little explored 

in formal studies, the emerging scholarship is compelling.  Neuroscientist Istvan Molnar-

Szakacs and musician/neuroscientist Katie Overy published a paper exploring the role of 

the mirror neuron system in the processing of music: 

Until the recent advance of recorded music and synthesized sounds 

(relative to human evolution), music has always been associated with 

motor activity. From drumming to singing to virtuosic sitar playing, the 

production of music involves well- coordinated motor actions that produce 

the physical vibrations of sound. The experience of music thus involves 

the perception of purposeful, intentional and organized sequences of motor 

acts as the cause of temporally synchronous auditory information. Thus, 

according to the simulation mechanism implemented by the human mirror 

neuron system, a similar or equivalent motor network is engaged by 

someone listening to singing/drumming as the motor network engaged by 

the actual singer/drummer; from the large-scale movements of different 
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notes to the tiny, subtle movements of different timbres. This allows for 

co-representation of the musical experience, emerging out of the shared 

and temporally synchronous recruitment of similar neural mechanisms in 

the sender and the perceiver of the musical message. (236) 

Molnar-Szakacs and Overy posit that mirror neurons underlie the human ability to 

understand individual actions as component parts of larger hierarchically organized 

sequences of actions, which is central to music production and processing (236). 

But what of recorded music, where there are no visual cues as to the motor actions 

behind the music?  Studies show that the activation of mirror neurons does not require a 

visual stimulus; mere sound can serve to activate the mechanism.  FMRI analyses 

performed by Valeria Gazzola, Lisa Aziz-Zadeh, and Christian Keysers demonstrate that 

a “left hemispheric temporo-parieto-premotor circuit” responds both to the execution of 

an action and to the sound of the execution of that action (1824).  The team compared the 

degrees of the subjects’ mirror neuron activity with their scores on an empathy scale and 

recorded a correlation between the two properties (1824).  This correlation indicates that 

those mirror neurons that correspond to different functions – in this case, social empathy 

and the auditory system – are not independent.  The mirror neuron system is at least 

somewhat unified. 

Electronic music is generally created with software rather than tangible 

instruments; there is little motor action behind it, besides the typing of computer keys.  

Likely, however, this has little bearing on the brain’s ability to extrapolate a motor signal 

behind a sound; mirror neurons respond to both human and robotic actions.  Gazzola and 

her team have demonstrated through fMRI scans that the mirror neuron system activates 
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as strongly to a robotic arm and claw performing simple motor tasks as it does to a real 

human arm and hand performing those same actions (1674).  Thus, it is likely that in the 

case of electronic music, a listener’s mirror neuron system infers the kind of motor 

activity that might underlie a similar auditory signal, as if the synthetic drums were their 

tangible three-dimensional analogs, struck by human hands. 

I propose that the mirror neuron system is more important for rhythmic processing 

than for the processing of pitch-related aspects of music.  No formal studies have parsed 

the different components of music and analyzed the mirror neuron activity related to 

each, but I can offer significant indirect evidence.  I have thoroughly expounded upon the 

connection between motor systems and rhythm, both in the brain and in responsive 

behavior.  Additionally, with the percussive and rhythmic behaviors of drumming, 

clapping, and dancing, the brain has a clearly elaborated motor signal on which to base a 

mirror neuron response.  Activities like singing, likely the first pitch-related musical 

activity, do provide motor cues and certainly a basis for mirror neuron activity, but not as 

strongly as rhythmic behavior.  The vigorous bowing of a violin or slide action of a 

trombone would offer a strong motor stimulus, but complex harmonic instruments would 

not have been constructed until musical structures (and tool-making abilities) in human 

cognition were established enough to spur these innovations.  Once again, we would not 

have invented roller skates before evolving bipedalism.  Clapping, stomping, and 

percussive beating on solid objects would have always provided the mirror neuron-

activating motor stimulus, but they do not require such a degree of technological 

innovation.  Furthermore, the auditory mirror neurons found by Gazzola, Aziz-Zadeh, 
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and Keysers are concentrated in the left hemisphere, where rhythm processing is more 

prevalent than pitch processing (Sacks 106). 

The concept of synchronization, so central to musical rhythm (and importantly 

absent from elephant “rhythm”), absolutely necessitates a co-representation of a musical 

experience, and understanding of intentionality, and the ability to place an action in a 

larger hierarchical sequence.  It involves an intimate cognitive and physical connection 

between the sender of a signal and the receiver of a signal, and it in turn creates this 

connection mutually among multiple senders and receivers.  Mirror neurons must be 

behind beat synchronization, the central concept of musical rhythm.  Mirror neurons, 

then, are also undoubtedly behind the related concepts of dance and differential 

engagement with rhythmic versus non-rhythmic music.  Rhythm conveys an auditory 

(and, if performed live, visual) signal that includes information about the motor actions 

behind the sound, even if, in the case of electronic music, there is no actual motor action.  

A strong, clear beat engages the mirror neuron system strongly, as the signal is clear and 

easily decipherable.  When a beat gets exceedingly complex and a pulse is difficult to 

discern, this engagement likely wanes, as the signal becomes more difficult to encode, 

and listeners stop dancing.  Dancing begets dancing, and physical engagement spreads 

interpersonally, because in the presence of others being similarly engaged, a 

concertgoer’s mirror neuron system is stimulated not only by the music but also by 

surrounding individuals. 

A wealth of recent scholarship associates autism spectrum disorders with a 

deficiency in the functioning of the mirror neuron system.  Autism is characterized by a 

lack of empathy, the inability to understand the emotional states of others, and a 
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diminished ability to socialize (“The Simulating Social Mind” 311), which are the exact 

functions mediated by the mirror neuron system.  This connection is more than 

speculation; neuroscience has offered much hard evidence to back up these claims 

(Oberman, Ramachandran, and Pineda; Oberman et al.).  Recall the autism-Williams 

syndrome double-dissociation that has been offered as evidence of a common neural 

substrate of music and social function.  Sufferers of Williams syndrome are highly social 

and highly musical despite overall cognitive impairment, whereas sufferers of autism are 

generally anti-social and amusical.  Mirror neurons could underlie this discrepancy, since 

autism has been associated with a dysfunctional mirror neuron system, and the mirror 

neuron system underlies both music and social cognition.  Unfortunately, no studies have 

been performed to test mirror neuron function in sufferers of Williams syndrome, but it is 

likely that they would have highly sensitive mirror neuron systems.   

As is consistent with my ideas, I can connect the aforementioned phenomena 

more specifically to rhythm, rather than music in general.  It is often said that autistic 

people are highly amusic, but a more thorough investigation of these claims reveals that 

the musical dysfunctions of ASD suffers generally lie within the realm of rhythm rather 

than music’s pitch-related aspects.  It is established that autistic people exhibit a lack of 

rhythm and synchrony (Trevarthen and Daniel S25).  However, autistic amusia does not 

extend to the realm of pitch; in fact, people with autism and ASD have a significantly 

higher incidence of absolute pitch, the exceedingly rare ability to identify a pitch without 

any referential pitches for context (Brown et al. 163).  The proportion of musical savants 

with autism is also strikingly high, which would seem to attest to overall musical ability 

(Heaton et al. 291). However, although strong senses of pitch-related musical elements 
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would be required for, say, virtuosic solo piano performances, these solo performances 

would not require synchronization with any external beat; such savants rarely perform in 

ensembles.  Therefore, while sufferers of ASD have dysfunctional rhythm and 

synchronization, their pitch-related abilities seem to be intact or even enhanced.  Suffers 

of Williams syndrome are highly social and seem to have a particular propensity for 

rhythm (Levitin and Bellugi 357), although the comparison of their rhythmic and melodic 

abilities is somewhat contentious.  This evidence is further support for a strong link 

between rhythm and social function, mediated by the functioning of the mirror neuron 

system.  In a discussion of hypothetical autism treatments, Oberman and Ramachandran 

offer one final striking piece of evidence to tie together some of the seemingly disjointed 

accounts I have offered: 

Another novel therapeutic approach might rely on correcting chemical 

imbalances that disable the mirror neurons in individuals with autism.  Our 

group (including students Mikhi Horvath and Mary Vertinski) has 

suggested that specialized neuromodulators may enhance the activity of 

the mirror neurons involved in emotional responses.  According to this 

hypothesis, the partial depletion of such chemicals could explain the lack 

of emotional empathy seen in autism, and therefore researchers should 

look for compounds that stimulate the release of the neuromodulators or 

mimic their effects on mirror neurons.  One candidate for investigation is 

MDMA, better known as ecstasy, which has been shown to foster 

emotional closeness and communication.  It is possible that researchers 

may be able to modify the compound to develop a safe, effective treatment 
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that could alleviate at least some of autism’s symptoms. (“Broken Mirrors: 

A Theory of Autism” 68) 

 Oberman and Ramachandran suggest, based on its reputation for inducing 

empathetic feelings, that MDMA bolsters mirror neuron activity.  My musical line of 

evidence offers another complementary angle of support for their hypothesis, which in 

turn strengthens my case.  The anecdotes of my MDMA-using interview subjects are 

exactly consistent with a stimulated mirror neuron system.  The drug increases 

engagement with rhythmic music, the desire to dance to a steady beat, and empathy.  The 

metaphors of feeling the music and being moved like a puppet by the music represent a 

maximized embodiment of the musical phenomena, afforded by the brain’s 

understanding and synchronization with the rhythmic stimulus.   

Many of the inferences I have made are speculative and will remain so until 

scientists with access to expensive neuroimaging technologies explore these questions in 

a more concrete manner.  However, I believe that through the integration of various 

sources of evidence, a clear picture begins to emerge: The connection between musical 

rhythm and social cognition has a real neural basis.  This underlying neural basis is the 

mirror neuron system. 

WHO WAS THE SCULPTOR? 

 A summary of my case thus far is this: Existing hypotheses that posit the 

coevolution of music with language or the piggybacking of music on structures pre-

evolved for activities like language and auditory scene analysis cannot sufficiently 

account for rhythm.  The regular pulse that defines musical rhythm is absent in language, 

and our ability to process this pulse and synchronize with it is seemingly unique to 
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humans.  Rhythm, movement, and social cognition are intimately connected through their 

mutual neural substrate, the mirror neuron system.  The mirror neuron system is the clay 

from which the rhythmic arms and legs of the musical sculpture were built.  But who – or 

what – was the sculptor?  Which evolutionary pressures molded the clay into something 

we now recognize as musical rhythm? 

 The mirror neuron system is not unique to humans.  It was discovered in 

monkeys, and subsequent studies have shown it to be common in the primate order.  

Even birds have demonstrated mirror neuron activity.  Therefore, the mirror neuron 

system was not evolved solely for the purpose of rhythmic behavior.  It is an ancient 

mechanism, and, evidenced by the variety of important functions it serves, there are 

alternative evolutionary pressures that would have spurred its development.  But then 

why do birds and monkeys not drum and dance?  How did rhythm arise to capitalize on 

the mirror neuron system’s unique abilities to connect our bodies and minds?  I will offer 

a few possibilities. 

 Although we share the mirror neuron system with a host of other animals, the 

human mirror neuron system is the likely the most developed and complex.  No studies 

have compared the degree of mirror neuron activities in various species.  However, we do 

have an understanding of different species’ needs for the functions that mirror neurons 

allow.  Mirror neurons play important roles in social cognition.  Humans have by far the 

most complex social systems of all primates, and it is generally accepted that social 

intelligence was a principle driving force in human evolution (Byrne and Whiten 1).  

Mirror neurons also allow the understanding, imitation, and synchronization of complex 

motor actions that would be indispensible in functions like tool use, building, battle, 



	  

44	  

hunting, and even language.  If the mirror neuron system is at least somewhat unified, 

then evolutionary pressures that selected for social cognition and the abilities to build and 

use tools would spur the evolution of a more complex and developed mirror neuron 

system, with rhythm as a byproduct. 

Although rhythm and rhythmic behavior are absent from non-human animals in 

nature, one extraordinary animal has seemingly been able to master dancing in captivity.  

A male sulfur-crested cockatoo named Snowball attracted attention from a 2007 

YouTube video in which he bobbed his head up and down and stomped his foot 

rhythmically in synch to the song “Everybody” by the Backstreet Boys (Studying 

Synchronization to a Musical Beat in Nonhuman Animals 459).  Aniruddh Patel and his 

colleagues, previously strong proponents of the idea that beat perception and 

synchronization are uniquely human abilities, conducted studies on Snowball in order to 

probe his musical abilities.  They determined that Snowball was exhibiting genuine 

rhythm.  The perceived ability of one cockatoo certainly is not enough evidence to 

revolutionize our ideas of rhythm; however, it offers some interesting possibilities. 

Although the human mirror neuron system is certainly more complex and developed, 

birds do have mirror neurons.  If Patel’s studies are accurate and if Snowball is not 

special, it seems that humans may share their basic neural underpinnings for rhythm with 

certain species of birds.  Since no other primates have been able to acquire rhythm, this 

would be an episode of convergent evolution.  What do we have in common with birds 

that we do not share with other primates, who lack the ability to acquire rhythm in 

captivity?  According to Patel, it is vocal learning (827).  Only some species, including 

humans, certain birds, and some marine mammals have vocal communication systems 
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that rely on imitation.  These systems require a tight connection between auditory and 

motor circuits in the brain; it is this connection that allows for both vocal learning and 

rhythm (though he makes no mention of mirror neurons).  This is consistent with the 

theories that posit the coevolution of music and language.  This data provides support for 

the idea that rather than the evolution of a general unified mirror neuron system, the 

evolution of auditory mirror neurons in particular and their connection with motor mirror 

neurons gave rise to rhythm.  The mirror neuron systems of monkeys and apes, not vocal 

learners, would not have evolved such a strong neural connection between auditory and 

motor mirror neurons, and they thus cannot synchronize to a beat. 

It is certainly possible that rhythm itself presented an adaptive advantage for any 

number of reasons.  Beyond its neural connection to social cognition, rhythm has 

functional connections to social cognition as well.  As presented by the proponents of the 

social bonding theories of musical evolution, music binds us together in action and 

psychological state, fostering closeness and cooperation among a group.  Rhythm can 

accomplish these feats without melody; imagine a group drumming and dancing around a 

fire, as is a pervasive image in the literature of the social bonding theorists (This Is Your 

Brain on Music 258).  Freeman argues that rhythm is the musical component most 

capable of engendering trust and cooperation among members of a social group:  

The strongest basis for cooperation lies in rhythmically repeated motions, 

because they are predictable by others, and others can thereby anticipate 

and move in accord with their expectations.  Music gives the background 

beat. (420) 
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If rhythm itself presented this adaptive advantage, then it is possible that in 

addition to the augmentation of the general mirror neuron system, evolution worked to 

shape stronger auditory mirror neurons in particular and bolster their connection to those 

in the motor areas of the brain.  In this case, rhythm is an adaptation, not a byproduct. 

A modified sexual selection scenario is also possible.  Given the connections 

between rhythm, the mirror neuron system, and the various other functions mediated by 

the neuron system, rhythm could have evolved to signal the health of an individual’s 

mirror neuron system to potential mates.  By drumming and dancing, humans can display 

the functioning of the mirror neuron system, and in doing so they would also signal that 

they have the ability to function socially, cooperate, understand intentionality, imitate, 

coordinate movement, and perform a host of other important activities.  Thus, rhythmic 

behavior works in the same way as the ornate feathers of a male peacock, advertising 

genetic quality to aid reproductive success. 

Another possibility is any combination of the previous scenarios.  Evolutionary 

stories need not be mutually exclusive, although it is a tendency of adaptationsts to argue 

for one particular narrative at the expense of others.  It is certainly conceivable that 

evolutionary pressures selected for social cognition, motor coordination, imitation, vocal 

learning, and rhythm, strengthening the general mirror neuron system, while at the same 

time the specific adaptive advantage of rhythm and/or vocal learning worked to increase 

auditory mirror neurons in particular and strengthen their communication with motor 

mirror neurons, and sexual selection further enhanced the neural substrates of rhythm 

because of its ability to signal fitness.  All these pressures could have worked together to 

shape rhythm and rhythmic behavior. 
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Once we joined rhythm with the pitch-related aspects of music, we truly invented 

music as we know it today.  The various aspects of music are beautifully compatible, and 

thus it was unlikely that two very different rhythmic and melodic systems existed 

separately until one brilliant innovator decided to fuse them.  There was likely significant 

exchange between the systems for millennia.  Over time, all the various elements of 

music were fused and solidified so tightly together that music became a unified practice; 

today we think much more of comprehensive music than we do of isolated rhythm or 

pitch.  We see the forest rather than the trees, the sculpture rather than a collection of 

fused stone body parts.  Music is no mere trifle; it has real biological and neural bases 

that extend far back in evolutionary time.  Because it capitalizes on the same evolved 

structures, music is as profoundly integrated into our basic humanity as are social 

function, tool use, and language.  Although some aspects of music – particularly rhythm 

– may have evolved specifically, most are auditory cheesecake, taking advantage of 

structures evolved for other purposes.  Even if music is cheesecake, it is perhaps 

humanity’s favorite dessert.  Given music’s profound roots, it seems we won’t tire of this 

cheesecake anytime soon. 
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