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Computational Modeling of Medium Spiny Projection Neurons in
Nucleus Accumbens: Toward the Cellular Mechanisms of Afferent Stream
Integration

Abstract
The nucleus accumbens (Nacc) regulates the major feedback pathways linking prefrontal cortex,
hippocampus, and amygdala. We describe simulations of a biophysical level model of a single medium spiny
projection (MSP) neuron, the principle cell of the Nacc. The model suggests that the unusual bistable
membrane potential of MSP cells arises from the interplay between two potassium currents, KIR and KA. We
find that the transition from the membrane potential down state (~-85mV) to the upstate (~-60mV)requires a
significant barrage of synchronized inputs, and that ongoing afferent stimulation is required to maintain the
cell in the up state. The Nacc receives the densest dopaminergic innervation in the brain, and the model
demonstrates, in agreement with recent experimental evidence, that dopamine acts to increase the energy
barrier to membrane potential state transitions. Through its action on KIR and L-type Ca2+ channels,
dopamine selectively lowers cell gain in the down state and increases it in the up state, a mechanism for
context-dependent gain control.

These findings suggest a mechanism of afferent pattern integration in the accumbens arising from transient
synchronization among ensembles of MSP neurons. We attempt to relate these findings to possible origins of
abnormalities of sensory gating in schizophrenia.
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Computational Modeling of Medium Spiny
Projection Neurons in Nucleus Accumbens:
Toward the Cellular Mechanisms of Afferent
Stream Integration

JOHN A. WOLF, LEE F. SCHROEDER,AND LEIF H. FINKEL

Invited Paper

The nucleus accumbens (Nacc) regulates the major feedback
pathways linking prefrontal cortex, hippocampus, and amygdala.
We describe simulations of a biophysical level model of a single
medium spiny projection (MSP) neuron, the principle cell of the
Nacc. The model suggests that the unusual bistable membrane po-
tential of MSP cells arises from the interplay between two potas-
sium currents, KIR and KA. We find that the transition from the
membrane potential down state (��85 mV) to the upstate (��60
mV) requires a significant barrage of synchronized inputs, and that
ongoing afferent stimulation is required to maintain the cell in the
up state. The Nacc receives the densest dopaminergic innervation
in the brain, and the model demonstrates, in agreement with recent
experimental evidence, that dopamine acts to increase the energy
barrier to membrane potential state transitions. Through its action
on KIR and L-type Ca2+ channels, dopamine selectively lowers cell
gain in the down state and increases it in the up state, a mechanism
for context-dependent gain control.

These findings suggest a mechanism of afferent pattern inte-
gration in the accumbens arising from transient synchronization
among ensembles of MSP neurons. We attempt to relate these
findings to possible origins of abnormalities of sensory gating in
schizophrenia.

Keywords—Bistability, frontal cortex, medium spiny projection
(MSP) neuron, modeling, simulation, striatum.

I. INTRODUCTION

Consider the following question: to what degree is it pos-
sible to develop a biophysical-level, computational model of
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schizophrenia? Given that the computational principles of
well-characterized neural structures such as the retina or the
stomatogastric ganglia are not completely understood, what
hope is there of modeling a complex disorder that involves
pathologic changes in multiple brain areas, disorders of neu-
romodulation, complicated genetic expression, and protean
behavioral manifestations?

On the other hand, complex pathologies at the receptor,
cellular, and behavioral levels might all conceivably be man-
ifestations of a singular perturbation at the computational
level—much as a change in economic system (e.g., socialism
to capitalism) is associated with changes on many levels of
society, from a rise in skiing injuries to genetically modified
corn proteins.

In this paper, we will consider the hypothesis that the nu-
cleus accumbens (Nacc), an integrative center located in the
subcortical basal forebrain, may be the epicenter of dysfunc-
tion in schizophrenia. The evidence for pathologic changes in
Nacc in schizophrenic brains is controversial [1]–[3]. How-
ever, Nacc sits at and regulates the crossroads of the major
psychomotor pathways of the brain, receiving major afferent
projections from prefrontal cortex, hippocampus, and amyg-
dala. Each of these projecting areas exhibits gross patho-
logic changes in schizophrenic brains, thereby affecting the
process of integration carried out in Nacc. Fig. 1 shows the
anatomical connections of the Nacc.

Several features of Nacc make it a fascinating structure to
model in its own right. First, the nucleus is composed almost
entirely of inhibitory cells; medium spiny projection (MSP)
neurons, the principle cells of the nucleus, comprise95%
of the cells. MSP neurons are densely interconnected both by
gap junctions and GABA synapses. The MSP cells display
an unusual “bistable” two-state membrane potential. In the
“down” state (resting potential 85 mV) cells are restricted
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Fig. 1. Anatomical connections of the Nacc. The accumbens
is the major subcortical projection site of prefrontal cortex, and
projects back to PFC via the ventral pallidum (VP). PFC and N.
accumbens together control the activity of the ventral tegmentum
(VT) and substantia nigra pars compacta—the major dopaminergic
nuclei which project densely back to both areas. N. accumbens
also receives major projections from hippocampus and amygdala.
Output from VP also regulates the thalamic reticular nucleus, which
mediates cortico-thalamic interactions (not shown).

from firing; in the “up” state (resting potential 60 mV)
cells can be depolarized into firing [4]–[6]. State transitions
occur in a coordinated manner among coupled MSP neurons
in local anatomical microzones [7].

The physiological properties of MSP cells, and their
ability to switch between states, are modulated by dopamine.
The accumbens receives a massive dopaminergic input from
the ventral tegmentum, and together with prefrontal
cortex, Nacc controls the release of dopamine by ventral
tegmentum.1 At the cellular level, dopamine modulates sev-
eral intrinsic currents, including a persistent Nachannel,
L-type Ca channels and an anomalous inward rectifying
potassium current, K . Malenkaet al. [11] marshal evi-
dence that dopamine acts to stabilize MSP neurons in either
the up or down states by effectively increasing the energy
barrier to state transitions.

Graceet al. [12] have put forward an intriguing theory in
which these transitions between the “up” and “down” states
allow MSP neurons to act as a gate controlling information
flow along the reentrant loop linking prefrontal cortex,
ventral striatum and thalamus. In the up state, the gate is
open, and in the down state, it is closed. They propose that
input from the hippocampus opens the gate by depolarizing
MSP neurons into the up state. Experimental evidence shows
that stimulation of the hippocampus induces a long-lasting
transition to the up state, and transection of the hippocampal
fornix, or injection of the anesthetic lidocaine into the fornix,
suppresses the up state [13]. Graceet al. account for the
major symptoms of schizophrenia: disorganized thinking,
impulsive behavior, delusions, hallucinations, perseverative
behavior, and psychomotor retardation as resulting from
a number of specific effects of abnormal dopaminergic
modulation.

The metaphor of “gating” ties into a large body of research
linking schizophrenia to defects in sensorimotor gating. In-

1The release of dopamine is tied to reward and addictive behavior, and
shows pervasive abnormalities in schizophrenic brains. Weinberger [8] put
forward an influential hypothesis that in schizophrenia, hypoactivation of
PFC leads to disinhibition of ventral tegmentum and consequently increased
dopaminergic activation of Nacc. Recent experimental evidence supports
this hypothesis [9], [10].

adequate filtering of incoming stimuli and inaccurate cou-
pling to motor response are posited to lead to the behav-
ioral abnormalities. One paradigm commonly used to as-
sess sensorimotor gating is prepulse inhibition (PPI) of the
acoustic startle reflex. In this paradigm, a short, soft auditory
tone suppresses the startle response elicited by a loud tone
blast—when the prepulse tone precedes the blast by a frac-
tion of a second. In humans, the startle response consists of
eye closure and tightening of facial and neck muscles—other
species exhibit more dramatic responses, e.g., the armadillo
jumps several feet straight up in the air. More to the point,
schizophrenic subjects show diminished PPI, which is inter-
preted as a sign of abnormal sensory gating. PPI is mediated
by the pedunculopontine tegmental nucleus, which is con-
trolled by the Nacc via its projection to the pontine retic-
ular formation [14]. Diseases affecting the dorsal striatum,
such as Huntington’s disease and Tourette’s syndrome, also
show abnormal PPI.2 Swerdlowet al. [15] have shown that
increased dopaminergic activity disrupts PPI via activation of
dopamine (D2) receptors on MSP cells. These dopamine-in-
duced PPI deficits are ameliorated by haloperidol and other
antipsychotic agents.

It is attractive to consider the two-state membrane poten-
tial of the MSP neuron as a gating mechanism, but other in-
terpretations are possible. Consider, for example, the some-
what subtle difference between “gating” and “routing.” In a
telephone switching network, the pulsed input of the dialed
phone number determines which of multiple possible output
routes is opened. This is gating, but with multiple possible
gates, only one of which is opened—and the afferent data
stream provides the information specifying which gate is the
correct one. Might thepatternof hippocampal input to ac-
cumbens determine how the prefrontal cortical input is cou-
pled back to PFC, or equivalently, the pattern of activity to be
reentered to PFC? Other recent experimental data suggests
that transitions between MSP bistable states can be driven
by the PFC input itself [16]. Thus, the accumbal networks
might be envisioned as carrying out some form of computa-
tion on the combined inputs from PFC, hippocampus, amyg-
dala3 and elsewhere, with the result of this computation de-
termining the information content of the accumbal output as
well as its neuronal targets. In such a mechanism, the ac-
cumbens would fuse multiple afferent information streams:
the PFC providing goal-directed information and the hip-
pocampus providing current environmental context. In other
words, the accumbens integrates the “will” and the “way.”

In line with this interpretation, Lopes da Silvaet al.have
proposed that “behaviorally meaningful information in the
Nacc is represented by fine-grained spatiotemporal firing
patterns” of local ensembles of MSP neurons [16]. Thus,
the local firing pattern represents a behaviorally meaningful

2Nacc is composed of a shell and core regions. Anatomically, the shell
is an extension of the amygdala and the core is contiguous with the dorsal
striatum (caudate/putamen). However, MSP neuron morphologies are sim-
ilar in both regions, as are the electrophysiological characteristics of the cells
[16].

3The amygdala is thought to provide affective (emotion-associated) con-
textual information.
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integration of the multiple inputs to accumbens, and the
information is encoded in the spatiotemporal pattern of MSP
cell activity.

As a first step toward understanding these issues, we wish
to examine the cellular mechanisms operating in MSP neu-
rons. In particular, how do the specific afferent spike trains
impingent upon the network determine transitions between
states and the actual firing of MSP neurons. We are moti-
vated by several mechanistic questions.

• What is the biophysical mechanism underlying the
bistable membrane potential of MSP neurons?

• What determines transitions between membrane
states—i.e., are there spatial and/or temporal require-
ments on the afferent spike trains?

• Can a model disambiguate the role of PFC versus hip-
pocampal inputs regarding state transitions and MSP
firing?

• What types of computations might be carried out by
such a network?

Lopes da Silvaet al. provide a motivation for these
questions in their comprehensive review [16]. Making
best-guess approximations for membrane resistances and
single-afferent postsynaptic currents, they calculate that

15–50 input spikes would be required to switch cells
from the down to the up state. They rued however, that this
back-of-the-envelope calculation could not take account of
effects due to the K current, dendritic geometry, and other
complicating factors. As Wilson [4] has further pointed
out, in the down state, the large open Kconductance
reduces the membrane time constant, and thus the synaptic
integration time. All of the received inputs might have to
occur within a narrow time window (2–5 ms) in order to
kick the cell into the up state. Once in the up state, closing
of the voltage-dependent K channel would increase the
membrane time constant, allowing inputs received over
longer time windows to maintain the depolarized state or
induce firing.

As a first objective, we thus sought to develop a biophys-
ical-level model of a single MSP neuron with which one
could investigate the number of inputs required to switch cell
state, and the effect of dopamine on this process.

II. RESULTS

A. Constructing a Model MSP Neuron

We constructed a reduced model of an MSP neuron
using GENESIS [17]. In vivo, MSP neurons have small
to medium somata (15.8 2.8 m) and a multipolar or
fusiform shape from which 3–6 primary dendrites arise
(diameter, 1–2 m). The first dendritic branch point arises
20–30 m out from the soma, and the secondary and higher
order dendrites are densely covered with spines (the primary
dendrites are smooth) [16]. MSP neurons in the core and
shell regions of Nacc, have largely similar morphological
and physiological properties [18] and their differences have
been neglected here. The cells are electrotonically compact,
with an input resistance measured at 21733 M in whole
cell patch clamp [16]. These properties are captured in a

Fig. 2. Medium spiny projection (MSP) neuron. A stained MSP
neuron, the principle cell of the Nacc, is shown on the left [23].
(Top right) Schematic of the 29-compartment cell model used in the
simulations. (Bottom right) Recording from MSP neuron showing
the up and down bistable membrane potential states, with action
potentials fired from the up state. (From O’Donnellet al. [49],
time interval shown is 2.5 s.)

29-compartment model, with four primary dendrites, shown
in Fig. 2.

MSP cells contain a number of active currents, including
voltage-dependent Naand delayed rectifier channels, a per-
sistent Na current, a variety of Ca channels (L, N, P/ Q,
R, and T), and a K current. Most interestingly, cells contain
an unusual, inward-rectifying K channel (K ) that is ac-
tive at hyperpolarized potentials [6]. The Kchannel under-
lies the unusually hyperpolarized “down” state (85 mV).
This channel has extremely fast kinetics, and does not inac-
tivate—rather, it closes with minimal depolarization, effec-
tively shutting off by 65 mV. The K current flows out-
ward (hyperpolarizing) for all voltages above the reversal po-
tential ( 90 mV); the channel is called an “inward rectifier”
because it preferentially allows inward current at membrane
potentials more negative than90 mV.

There is no direct data on K kinetics in accumbal cells,
and so we adapted Hodgkin–Huxley and parameters
from Hayashi and Freeman’s studies of Kin Aplysia
[19], and modified these parameters until they generated a
current–voltage (– ) curve that matched that published
by Wilson [5]. Wilson generated his – curve from
Hagiwara and Takahasi’s data on Kin starfish eggs [20],
together with membrane resistances as determined in spiny
neostriatal cells. Our resulting– curve is shown in Fig. 3.
Clearly, extrapolating from invertebrates, compensating for
temperature differences, and other factors make our K
current model an approximation to this current in accumbal
cells.

The Hodgkin–Huxley parameters for modeling the
K channel were based on those used by Traub [21] for
hippocampal pyramidal cells, and modified to fit the data re-
ported by Gabel and Nisenbaum [22] in rat neostriatum. As
with the K current, we explored the effects of small shifts
in the K – curve on the bistability of the membrane
potential. These potassium currents serve as the anchors for
the two membrane states. Transition between states depends
upon driving the potential past the crossing-point of the
curves. In our studies, we found that one of the critical
elements for attaining bistability is that the K channel

WOLF et al.: COMPUTATIONAL MODELING OF MEDIUM SPINY PROJECTION NEURONS 1085



Fig. 3. I–V curve for the K channel.

Fig. 4. Bistability of membrane potential. Voltage induced by a series of graded current injections
from 1 to 10 nA. Note that the membrane potential tends to remain near either the Kor K
reversal potentials, which define the down and up states.

close at a slightly more hyperpolarized voltage than that at
which the K channel begins to substantially open.

B. Membrane Mechanisms Underlying the Two-State
Potential

Incorporating the K and K currents into our 29-com-
partment MSP neuron model shows that these two currents
(along with the standard Naand K currents), are suffi-
cient to generate the two-state, bistable membrane potential.
Fig. 4 shows the results of a series of ten current injections
applied to the soma of the modeled MSP neuron. The cur-
rent injections were graduated from 0.2 to 0.5 nA in equal
increments, each lasting 40 ms. Increasing currents lead to
greater depolarization, but there is a clear nonlinearity in the
steady-state voltage level reached, with a bifurcation into an
“up” and “down” state. The highest level of current injec-
tion leads to the generation of action potentials from the “up”
state. These results closely correspond to recordings from ac-
cumbal cells, e.g., Fig. 1 from Lopes da Silvaet al. [23].

In the down state, small current injections are countered
by the K current, which acts to keep the potential near
the reversal potential of 90 mV. Larger injections are
able to depolarize the membrane, and begin to close K.
As Wilson has pointed out [4], closing the K channels
increases membrane resistance, thus increasing current
generates a nonlinear increase in depolarization. This non-
linearity helps propel the potential from the “down” state
to the “up” state. However, sufficient depolarization begins
to open K channels, which counter the injected currents,
and tend to stabilize the potential near60 mV. Increasing
depolarization opens more Kchannels,decreasingmem-
brane resistance, and thus reducing the induced potential
change. A disproportionate increase in the injected current
is needed to depolarize the cells the last few millivolts above

60 mV required to generate action potentials. The two
potassium channels, with their offset and opposing voltage
dependencies, thus create a kind of “energy barrier” to
depolarizing the membrane potential. This barrier defines
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Fig. 5. Depolarization as a function of synaptic Drive. Steady-state membrane potential
achieved with increasing amplitudes of current injection to the soma. Note the nonlinear change
in membrane potential.

the two membrane potential states. Note however, that con-
tinued current injection is required to keep the membrane in
the “up” state; when the current is terminated, the potential
quickly falls back to the “down” state (Fig. 4).

Wilson [4] has stressed that the bistable membrane poten-
tial is not an intrinsic membrane property, but rather, ongoing
synaptic input is required to maintain the cell in the up state.
In the model used here, K and K act to maintain the po-
tentials that define the down and up states, respectively. How-
ever, the membrane potential also reflects the input synaptic
current, and thus assumes a continuum of values. It is im-
portant to note that MSP neurons contain a number of other
intrinsic conductances, many or all of which may contribute
to the stability of the membrane states. We do not claim that
K and K solely determine the bistability, rather, that alone
they are sufficient to provide a major component of bista-
bility.

In vivo, the striking nature of the bistable states is their per-
sistence over 500 ms or longer (see Fig. 2), and we therefore
wondered whether longer lasting currents, such as L-type
Ca channels and/or NMDA receptor currents might allow
the cell to persist in the up state in the absence of synaptic
input. We stimulated the cell with a synchronized barrage
of synaptic inputs—the inputs arrived within a 5-ms time
window, and barrages were delivered at 30 Hz. This stimu-
lation frequency was chosen to correspond to a typical firing
rate of delay-period neurons in prefrontal cortex (see discus-
sion). However, our studies revealed that even in the presence
of these additional currents, the cell was not able to remain
in the up state. Activation of NMDA currents should, in prin-
ciple, be able to maintain the up state; however, the voltage in
the up state is not sufficiently depolarized to release NMDA
receptors from the Mg block.

The integrative properties of the cell determine the spatial
and temporal constraints required of the input stream, as well
as the number of inputs required to depolarize the cell into the
up state. Fig. 5 shows the steady-state membrane potential
achieved for different levels of current injection. At roughly
0.4 nA, there is a nonlinear increase in the steady-state po-
tential achieved; this corresponds to a shift to the up state.

We also studied the effect of applying a synchronized bar-
rage of AMPA-mediated synaptic inputs to the cell. Inputs
were delivered in a barrage to the most proximal compart-
ment on a single dendrite, with spike times distributed in a
Gaussian distribution. Fig. 6 shows the number of inputs re-
quired to switch the cell into the up state, as a function of
the width of the Gaussian. Plotted on the abcissa is the stan-
dard deviation of the Gaussian, in milliseconds, i.e., roughly
the time interval over which 63% of the inputs arrived. The
three curves correspond to different densities of Kconduc-
tance. Increase in the K current, such as would occur in the
presence of dopamine (see below), increases the number or
temporal synchrony of inputs required to switch the cell to
the up state. The data shows that on the order of 100–450
roughly synchronous inputs are required for the transition.
This number can be compared to the estimate speculated
by Lopes da Silvaet al. [16], who suggested an order of
magnitude less inputs would be sufficient. Our findings re-
flect the effects of the K channel as well as some aspects
of dendritic geometry. The required number of inputs in-
creases roughly linearly with the temporal dispersion, but
with a small slope, so that the density of Kcurrent is the
major factor in determining how many inputs are required.

C. Effects of Dopamine on Cell Function

The modulatory effects of dopamine arise from effects on
a range of membrane channels together with effects on both

WOLF et al.: COMPUTATIONAL MODELING OF MEDIUM SPINY PROJECTION NEURONS 1087



Fig. 6. Number of synchronized inputs required to switch to the up state. Barrages of AMPA
synaptic inputs were delivered to the MSP cell, timing of spikes in the barrage were Gaussian
distributed, with a� shown on the abcissa. The greater the temporal dispersion, the greater number of
inputs is required to switch to the up state. The three curves show the effect of increasing the number
of K channels in the dendrites, and demonstrate that the magnitude of Kis a major factor in
controlling the ability to switch states. Note that a state transition requires between 100–450 inputs.

glutamatergic and GABAergic synaptic transmission [11]. A
variety of subtypes of dopamine receptors (D1–D5) are ex-
pressed on different cell types.4 However, all dopamine re-
ceptors act via G protein signaling to modulate adenylyl cy-
clase: D1 receptors activate adenylyl cyclase, whereas D2
and D3 receptors inhibit adenylyl cyclase [11]. By increasing
adenylyl cyclase, D1 agonists decrease the peak Nacurrent
and both N and P/Q Ca currents, and increase both K
and L-type Ca currents.

In cellular recordings, dopamine has been found to be
capable of either exciting or inhibiting MSP activity. These
differences may arise from the receptor subtypes activated.
However, even studies from the same lab activating D1 and
D2 receptors (some carried out in D3 knock-out mice) show
conflicting results [24], [25]. Nicolaet al. [11] suggest that
the reason for these conflicting findings is thatthe effect of
dopamine depends on the state(up versus down) of the MSP
neuron. They propose that in the down state, D1 activation
suppresses excitation by depressing the Nacurrent and
enhancing the K current. For cells in the up state, where
K is deactivated, D1 input increases the L-type Ca
current and NMDA currents (but suppresses AMPA cur-
rents). D1 activation is thought to stabilize neurons in their
current state and to increase the barrier to switching states
[11]. This is supported byin vivo experiments showing that
dopamine suppresses background activity while enhancing
goal-directed activity [26].

4The modern era of schizophrenia therapy began with the discovery that
the clinical efficacy of various antipsychotic agents was exactly correlated
with their binding affinity to the D2 subtype of dopamine receptor. Newer
drugs target D3 receptors, which are selectively expressed in the limbic areas
of cortex, including Nacc.

We modeled the effects of dopamine on our MSP neuron
by doubling K from its baseline value of 50 S/mand
quadrupling the L-type Ca conductance from its baseline
value of 5 S/m [27]. These baseline conductances corre-
spond to the low-end values reported in the literature, and
the increase due to dopaminergic stimulation corresponds to
the high-end values observed experimentally [27], [28]. The
L-type Ca channel was constructed based on data reported
for the high-voltage activated channel [27]. Dopaminergic ef-
fects on AMPA conductances were not included. To investi-
gate the up state, the cell was injected with 0.6 nA current
for 50 ms. Separate simulations show that this current cor-
responds to approximately 6000 synaptic inputs per second.
To investigate the down state, the cell was stimulated with
a barrage of 500 synaptic inputs per second, and an addi-
tional barrage of 100 inputs delivered over a 10-ms interval,
as shown in Fig. 7.

As shown in Fig. 7, the effect of dopamine on the MSP
cell depends on cell state. In the down state, the response
to the additional input (over background) is suppressed
by dopamine [compare Fig. 7(d) to (c)]. However, in the
up state, dopamine causes a marked increase in firing
frequency in response to this same synaptic input. These
results correspond to those obtained experimentally by
Hernandez–Lopezet al. [29], who showed that dopamine
applied to the up state decreases the interspike interval of the
firing cell. Note that even though dopamine acts on both the
K and the Ca current, since each current is only active
in one of the states (L-type Ca in the up state, K in the
down state), the net effect of dopamine is state-dependent.
Increased K is responsible for suppressing the effect to
synaptic input in the down state, and increased Cacurrent
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Fig. 7. Effect of dopamine on MSP model neuron response. (Top) Cells were injected with 0.6
nA for 50 ms, which led to repeated cell firing. Dopamine causes an increase in the frequency
of firing. (Bottom) Cells were stimulated with a background input of 500 spikes per second, an
additional barrage of 100 synaptic inputs was applied distributed according to a Gaussian distribution
with a 5-ms standard deviation. In the down state, the effect of dopamine is to suppress the
response to the synchronized inputs.

leads to greater excitability in the up state. We have not in-
corporated dopaminergic effects on synaptic conductances,
which might further increase the observed effect, and may
compensate for the accommodation in spike amplitudes
seen in Fig. 7(b).

III. D ISCUSSION

The MSP neuron model developed here represents an ini-
tial step toward a model of the Nacc, and insight into the role
of the accumbens in cognitive integration must await network
simulations. Nevertheless, this initial model sheds some light
on the four questions posed above, and leads to some specu-
lative hypotheses.

The model demonstrates that the bistable membrane
potential is likely mediated, in large part, by the interplay
between two voltage-dependent potassium currents, K
and K . The nonlinear transition between states requires
that with increasing depolarization, K closes before K
opens. We used identical maximal conductance values for
these currents (100 S/m), so that membrane resistance is
roughly equivalent in the up and down state. Monitoring
total membrane conductance as the cell undergoes state
transitions (data not shown) indicates that the membrane
time constant decreases with depolarization, leveling out as
it approaches the up state. This is in agreement with previous
modeling results reported by Wilson [5].

We were unable to maintain the cell in the up state in the
absence of continued stimulation. Thus, in agreement with

Wilson [4], we find that the up state is not an intrinsically
stable membrane state, but requires ongoing stimulation. Of
particular interest is whether PFC inputs, on their own, are
capable of maintaining the MSP in the up state. We found
this not to be the case: stimulation with a sufficient number
of synchronized inputs delivered at 30-Hz switches the cell
to the up state, but the potential falls back to the down state
before the next input barrage (33 ms). Theoretically, it should
be possible for long-lasting currents from NMDA receptors
or Ca channels to maintain the up state. However, in our
simulations, the up state voltage ( 60 mV) was insufficient
to maintain NMDA activation, and the L-type Ca current
implemented here was similarly unable to generate sufficient
current to maintain the up state. Maintenance of the up state,
therefore, appears to require ongoing input to the cell. How-
ever, it remains to be determined whether network properties
among coupled MSP cells might contribute to the persistence
of the up state.

Our investigation of the effects of dopamine on cell re-
sponse are in agreement with the evidence put forward by
Malenkaet al. [11] and with recent modeling studies in pre-
frontal cortex [30]. We found that dopamine acts to stabilize
cells in their present state, or to increase the barrier to state
transitions. In the down state, dopamine accentuates the K
current, damping out the effects of afferent stimulation; in
the up state, dopamine accentuates the L-type Cacurrent,
which amplifies cell responses to input. We have only incor-
porated D1 receptor effects, and thus the effect could be fur-
ther dissociated according to synaptic location or cell type.
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The ability of dopamine to change cell gain in a state-depen-
dent manner allows the cell to respond in a context-depen-
dent manner.

A. What Controls the Membrane State

Given our conclusion that continuous inputs are required
to maintain the cell in the up state, the question arises of
which afferent sources provide those inputs: PFC, hip-
pocampus, and/or amygdala. Published studies provide
some insight into the firing characteristics of the outputs of
these structures, as well as their functional roles.

Prefrontal Input: Dorsolateral prefrontal cortex is an
area critical for working memory, high-level problem
solving, and planning, and it is centrally implicated in the
symptomatology of schizophrenia [31]. Cells in prefrontal
cortex show sustained activation during working memory
tasks, such as delayed-nonmatch-to-sample [32]. In such
tasks, for example, a pebble might be placed under one of
two identical boxes on a table, the animal must maintain in
memory the location of that box, and after a delay period
(e.g., 30 s) reach for the box which doesnot contain the
pebble. Fuster [32] and others have shown that during the
“delay” period, prefrontal cortex cells fire at a relatively
high rate ( 30 Hz), and cease firing as the motor portion
(reaching for the box) of the task begins. Prefrontal cortex
is considered to be the highest integrative center linking
perception and action. Delay period activity is found in
several cortical areas, but cells in other cortical areas (e.g.,
inferotemporal cortex) switch firing patterns to each new
visual stimulus introduced—PFC cells maintain “goal-
related” activity regardless of intervening stimuli [33].

Durstewitzet al. [30] have developed a biophysical-level
model of a PFC network composed of layer V pyramidal
cells and fast spiking interneurons. The behavior of this net-
work bears a number of similarities to the MSP cells con-
sidered here. The pyramidal cells exhibit two activity states:
a “down” state in which spontaneous firing occurs at1–3
Hz, and an “up” state, corresponding to the more vigorous
delay-period activity with 30-Hz firing. Durstewitzet al.
incorporated the effects of dopaminergic modulation by ap-
propriate shifts in channel conductances. Their results show
that dopamine can have either an excitatory or a suppressive
effect—depending upon the firing state of the cell. When
the network is in the high-activity delay-period state, the
net effect of dopamine is to sustain cells with high-activity
and to suppress cells that are not firing. In the low-activity
state, the suppressive effects of dopamine predominate (due
to increased GABAergic and reduced AMPA conductance).
Thus, dopamine acts to enhance goal-related activity, and to
insulate these activity states from perturbations due to on-
going inputs to PFC.

Hippocampal Input: The accumbens receives a massive
projection from several areas of the hippocampal formation,
including area CA1, subiculum, and entorhinal cortex.
Functional mapping studies show intense activation of CA1
and the subiculum during working memory and associative
memory tasks [34].

Estimates can be made of the spatiotemporal patterns of
activity impinging on Nacc from the hippocampus. In ro-
dents, the activity of “place” cells in CA1 corresponds to the
animal’s location in a known environment. During a spatial
navigation task, such as navigating through a maze toward
a food reward, the firing pattern in CA1 corresponds to suc-
cessively activated constellations of place cells. Under such
experimental conditions, statistical decoding of spike train
data demonstrates that spatial position can be reliably en-
coded in the spiking patterns of as little as 30 neurons [35].
The degree of convergence of these place cells onto single
MSP neurons is not known; however, as the animal moves
through the receptive field of a place cell, there is a preces-
sion in the timing of spike firing relative to the phase of the
underlying theta rhythm (a slow 6–10 Hz synchronous mod-
ulation of firing across CA1). Also, there is a linear increase
in the firing rate proportional to the speed at which the an-
imal is running [36]. At customary speeds of rodent move-
ment (10–20 cm/s), the animal spends several theta cycles
(100–167 ms) traversing one place cell receptive field (10
cm). Interestingly, dopamine also modulates cell properties
and interactions within the hippocampus [37].

B. What Does the Accumbens Compute?

What might be the effect on a network of accumbal
cells of the converging afferent inputs? MSP cells mutually
inhibit each other via GABAergic synapses; however, they
also share mutual excitation via gap junctions. Connorset
al. have shown that such a network architecture is capable of
rapid synchronization [38]. They investigated low-threshold
spiking interneurons in neocortex, which are interconnected
by both GABAergic synapses and gap junctions, and
showed that such networks could be synchronized by the
application of neuromodulators, such as acetylcholine. And
Hopfield [39] has shown that in such networks, the transient
synchrony emerging and re-emerging over time among
different subpopulations of neurons can carry out interesting
computations, including recognition and generalization.
It is interesting to speculate that dopamine might serve to
transiently synchronize accumbal networks. Graceet al.
[12] have evidence that gap junctional coupling between
MSP cells is controlled by NO (nitric oxide) released in
response to dopamine. And in several systems, including
the retina, dopamine has been shown to change the gain of a
local network via modulation of gap junction conductances.
Thus, selective modulation by dopamine might lead to the
emergence of transiently synchronized MSP cell assemblies,
which act as temporary routers on the reentrant feedback
loop to prefrontal cortex. Since the release of dopamine by
the tegmentum is controlled by the cortex, this complex
reentrant circuit is capable of self-modulating the compu-
tations carried out on the basis of the combined afferent
input to accumbens. A number of models have made use
of this interplay between feedback and neuromodulation
to account for the role of prefrontal cortex in executive
volitional control [40]–[42].
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C. Functional Role of Pattern Integration

One possible conception of the computation performed
by the accumbens, couched in terms of spatial navigation,
is as follows. PFC generates a vigorous activity pattern cor-
responding to the goal location. Hippocampal afferents will
convey the sequence of place cell activations—either expe-
rienced or imagined. Both of these inputs will impinge upon
the Nacc network, and based on the current position and the
goal position, the Nacc will predict whether the trajectory is
directed toward the goal. This prediction will be expressed
as the pattern of MSP cells with synchronized firing.

This process of pattern integration might be carried out
by associative memory mechanisms that learn to associate
patterns across the input streams. A second class of possible
mechanisms however would allow the accumbens tocom-
putea prediction of whether the recent inputs received via
the hippocampal channel are progressing toward the goal
defined by the PFC channel. Such a network would more
closely resemble a Kalman filter, and the implementation
might resemble that suggested for predictive coding in the
cortico-thalamic loop [43]. Interestingly, there is recent evi-
dence suggests that schizophrenics are impaired in predicting
trajectories [44].

D. Application to Understanding Schizophrenia

It would be premature to extrapolate these simple mod-
eling studies to the pathophysiology of schizophrenia;
however, it is intriguing to consider how future work might
move toward that goal. One approach is to introduce the
types of pathology found in schizophrenic brains, and to
observe the consequences on network function. Recent work
by Benes [45] points to a loss of GABAergic interneurons
and concomitant changes in GABAreceptor densities
in CA3 and CA1 of schizophrenic brains. Benes proposes
that in CA3, the major loss is in disinhibitory interneurons,
leading to GABA upregulation on other interneurons,
whereas in CA1, loss of inhibitory interneurons leads to
GABA upregulation on pyramidal cells.

Several lines of recent evidence suggest that schizophrenia
may arise from developmental abnormalities in the hip-
pocampus, and that this abnormal hippocampal input to
Nacc affects PFC-accumbens interactions in adult life. This
provides an interesting parallel to Alzheimer’s disease, in
which pathological changes originate near the hippocampal
formation and gradually spread outward to successively
connected regions [46].

In the prefrontal cortex, layer V pyramidal cells are the
source of the projection to Nacc; however, the strongest
evidence of PFC pathology in schizophrenia is in layer
III. Lewis et al. [47] find decreased pyramidal cell soma
sizes, decreased densities of chandelier-type interneurons,
and a decrease or disorganization of long-range excitatory
horizontal connections between layer III pyramidal cells.
These long-range horizontal connections mature at ado-
lescence, just at the time when schizophrenic symptoms
are manifested. In previous modeling studies, it has been
demonstrated that long-range connections are capable of

synchronizing the firing of cortical cells, particularly in
the presence of appropriate neuromodulators [48]. These
findings, together with the evidence reviewed by Lopes da
Silva et al. [16] suggest that schizophrenia may arise from a
fundamental defect in the mechanisms controlling transient
synchronization in Nacc, with functional consequences at
multiple levels for its afferent and efferent partners.
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