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Curvature Covariation as a Factor in Perceptual Salience

Abstract
The salience of a contour depends upon several factors, including continuity, closure and curvature
consistency. We analyze the statistics of curvature variation using a single image from Shimon Ullman’s [1]
original work on contour salience. We develop a measure based on the arc length of a contour segment over
which curvature variation remains within a constrained range. Locally, all contours in the image are similar
with respect to curvature consistency. However, when the entire contour is considered, the most salient
contours are found to have the most consistent curvatures. This finding reinforces Ullman’s point that salience
is a global property of the object.

We interpret these results in view of Rosenholtz’s [2] recent model of salience as a statistical measure of
outliers from a population. In addition, we speculate on the visual cortical mechanisms in striate and
extrastriate cortex required to carry out salience measurements on this class of images.
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Abstract-The salience of a contour depends upon several factors, 
including continuity, closure and curvature consistency. We 
analyze the statistics of curvature variation using a single image 
from Shimon Ullman’s 111 original work on contour salience. 
We develop a measure based on the arc length of a contour 
segment over which curvature variation remains within a 
constrained range. Locally, all contours in the image are 
similar with respect to curvature consistency. However, when 
the entire contour is considered, the most salient contours are 
found to have the most consistent curvatures. This finding 
reinforces Ullman’s point that salience is a global property of 
the object. 

We interpret these results in view of Rosenholtz’s [Z] recent 
model of salience as a statistical measure of outliers from a 
population. In addition, we speculate on the visual cortical 
mechanisms in striate and extrastriate cortex required to carry 
out salience measurements on this class of images. 

Keywords - Salience, curvature, cocircularity, visual cortex 

I .  INTRODUCTION 
Fig. 1 .  Shashua & Ulltnan image. 

The perceptual salience of an object is the degree to which it 
pops-out from the background and captures attention. The 
salience of a target determines the difficulty of locating it in 
search tasks, and the speed of recognizing it in rapid 
presentations. The Gestalt psychologists identified several 
properties that confer salience upon objects, such as 
continuity, colinearity or cocircularity, and closure. 
However, the relative degree to which each of these 
properties contributes to overall salience remains unclear, as 
does the manner in which these factors are integrated. 

As Ullman [ 1,3] pointed out, salience is a global property 
that integrates the Gestalt factors across an entire object. In 
Fig. 1, taken from Ullman’s original paper, the three circular 
contours pop out and are more salient than the background 
squiggles. We are interested, in this paper, in understanding 
quantitatively what factors render the circles salient. 

One Gestalt factor that distinguishes the circular contours 
from the background is closure. Closure is itself a global 
property (Yen & Finkel [4]), and Kovacs & Julesz [5] have 
shown, using roughly circular contours, that closure leads to 
a marked increase in salience. 

In Ullman’s original algorithm, salience was determined 
by the length, continuity, and curvature of the contour. 
Long, smooth contours with little change of curvature and no 
gaps are calculated to be most salient. In a detailed study of 
this algorithm, Alter and Basri [6] found that, for many 
images, it robustly predicted salience values in accord with 
human perception. To our knowledge, a detailed analysis of 
the original Ullman image (Fig. 1) has not been performed. 

We sought to determine, in this image, the degree to 
which the circular contours are more or less cocircular than 
the background squiggles, over a range of spatial scales. In 
other words, to what degree does curvature covary across the 
circular contours as compared to across the squiggles. This 
study therefore represents an attempt to gather image 
statistics on a single image. 

11. METHODOLOGY 

By deliberate construction, the three closed contours in 
Fig. 1 are physically similar to the background contours in 
terms of contrast, thickness, and range of orientations. The 
background squiggles are not all continuous, but terminate at 
the borders of the figure, forming 3 open contours. The 
closed contours are shorter (239, 244, 243 pixels) than the 
background contours (1238, 201 1 ,  880 pixels), but it is not 
clear that the terminations of the background contours are 
perceptually significant. 

An erosion algorithm was first employed to reduce image 
contours down to single-pixel widths (using the MATLAB 
[7] bwmorph function). We were then able to decompose 
the image into closed and background contours and 
investigate each separately. 

Orientations were computed using Freeman & Adelson’s 
[8] G2/H2 steerable filters. At locations where contours 
cross, we ascertained that the correct orientation was 
assigned to each contour. 
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Fig. 2. Method of calculation of curvature at each pixel. 

Curvature is a scale-dependent quantity. Therefore, as 
illustrated in Fig. 2, we used a weighted average of the 
curvatures computed over several arc lengths, and assigned 
the averaged value as the curvature at each pixel. This 
weighted average was chosen to provide some minimal 
smoothing while retaining the true nature of the contours. 
The angle subtraction formulas are corrected modulo 360 so 
that, for example, the difference between a 350 orientation 
and a 10 orientation is 20 , not 340 . 

Once the curvature had been calculated at each pixel, 
cocircular segments were defined. A range (max curvature 
- min curvature) of curvature values for all contours was 
computed. Adjacent pixels on the same contour were 
deemed cocircular if the difference in their curvatures was 
below a set threshold, expressed as a percentage of this total 
curvature range. 

All simulations were carried out using the MATLAB 
application development environment (version 6 R12) and 
the associated Image Processing Toolbox (version 3.1). 

Ill. RESULTS 

We first investigated a number of technical image 
processing issues. We carried out the measurements with 
and without an initial contour-thickening step in an attempt 
to smooth out the thinned contours. Results were similar in 
both cases. 

Our algorithm is parameterized to allow subsampling of 
the contours (for example, start at pixel x of the contour and 
consider only every y pixels). However, the results that we 
present represent a consideration of all pixels. We also 
considered calculating curvatures using the slope of the line 
connecting the pixels for 8 (instead of the steerable filter 
result) and the Euclidean distance between pixels for s 
(instead of the arc length). Both of these approaches were 

Fig. 3. Threshold at 45% of curvature range 

abandoned because of poor results. Other qualitatively 
poorer results were obtained using Gabor filters instead of 
steerable filters, performing calculations with overlapping 
segments of the contours, and mid-pixel averaging if greater 
than threshold. All of these techniques were subsequently 
dropped. 

Decomposition of the image yielded three closed 
contours, three long background contours, and a number of 
short, open cross-hatches. The mean and standard deviation 
of the curvatures for the closed and background contours 
were computed. As expected, the mean curvature for each 
closed contour (0.0202, 0.0204, 0.01 85) was close to the 
inverse of its approximate radius (0.0263, 0.0258, 0.0259, 
respectively), computed by dividing the contour length by 
2n. The sign of the curvature is generally determined by the 
direction of contour traversal (clockwise or counter- 
clockwise). The standard deviation of the curvature over the 
closed contours (0.0284, 0.03 10, 0.0343) was significantly 
less than that of the background contours (0.0840, 0.0869, 
0.0877). Thus, overall, the circular contours are more 
cocircular than the background contours. However, it 
remained to be determined whether portions of the circular 
contours were more cocircular than portions of the 
background. This question can be assessed by determining, 
for each pixel, how far one can move along the contour until 
the curvature deviates past a fixed threshold. For example, 
in Fig. 3, the color of the pixel (and accompanying color bar) 
indicates the number of consecutive adjacent pixels on each 
contour that remain within a threshold of 45% of the total 
curvature range of all of the circular contours. It is apparent 
that at this threshold the closed contours contain much longer 
stretches of cocircularity, compared to the background 
contours and cross-hatches. 

Fig. 4 provides a similar computation when the threshold 
has been set to 35% of the maximal curvature range. This 
stricter threshold cuts down on the extent of contours 
conforming to the curvature constraints. Although the closed 
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Fig. 4. Threshold at 35% of curvature range. 

contours still contain longer segments meeting this criterion, 
the difference between the closed contours and background 
squiggles is less dramatic. 

Fig. 5 shows the results with a threshold set at 15% of the 
maximal curvature range. As the definition of cocircularity 
becomes stricter, i.e., curvature is constrained to a narrower 
range of values, the differences between the circular and 
background contours diminishes. These results therefore 
show that at a local scale, all contours in the image are 
similar. What distinguishes the circular contours (apart from 
closure) is that they maintain a similar curvature over a much 
longer extent, compared to the squiggles, where “similar” 
can be quantitatively defined. In other results, not shown 
here, we have found that further loosening of the curvature 
constraints (ie., allowing variation over 50% or more of the 
maximum range), yields similar results to the 45% case, up 
to a limit. At this point (within a threshold of approximately 
75% of the maximal curvature range), the definition of 
cocircularity is so loose that its discriminatory power begins 
to diminish. Large portions of all contours (circular and 
background) begin to appear cocircular. 

IV. DISCUSSION 

If curvature covariation is a factor in determining 
perceptual salience then Fig. 3 argues that the circular 
contours should be more salient than the background. 
However, as Figs. 4 and 5 demonstrate, the degree to which 
curvature covariation contributes to salience will depend 
upon the mechanisms and the scale over which curvature 
information is computed in visual cortex. 

A number of studies have proposed neural and 
computational mechanisms for computing curvature [9]. 
These lower level curvature calculations are consistent with 
mechanisms, such as end-stopping, available in primary 
visual cortex. At higher cortical levels, Van Essen, Connor 
and colleagues have shown that cells in areas V2 and V4 

Fig. 5. Threshold at 15% of curvature range. 

are selective both for the magnitude and direction of 
curvature [lo, 1 1 3 .  

Our results show that curvature values on the circles are 
much more similar over longer extents. A cortical 
mechanism for distinguishing the circles could thus be based 
on the similarity of firing rates of curvature sensitive cells in 
V4. For example, Hopfield 8~ Brody [12] have proposed a 
mechanism in which groups of cells with similar firing rates 
synchronize. Synchronization occurs naturally in the types 
of cortical architectures studied by Connors and colleagues 
[13]. Hopfield and Brody make the point that in a large 
ensemble of cells, a large fraction of cells firing at the same 
rate is statistically unlikely. Thus, a set of connected V4 
cells, each sensitive to magnitude and direction of curvature, 
that are coupled by horizontal connections, would rapidly 
synchronize in response to the circles, but to a much lesser 
degree to the background squiggles. 

Salience depends upon the degree to which a target 
differs from the background. Rosenholtz [2] has proposed 
that a possible metric for salience is to consider the 
Mahalanobis distance between a target and the background. 
Thus, salient targets are those whose features are statistical 
outliers from the background population. 

For the Ullman figure, the circular contours are statistical 
outliers by virtue of their consistent curvature relative to the 
fluctuating curvatures of the background. The contours are 
also outliers with respect to closure, as discussed above. 
One might ask, however, why the background squiggles are 
not salient since they statistically differ compared to the 
circles. One possible answer relates to Rosenholtz’s [2] 
explanation of salience asymmetries. As illustrated in Fig. 6, 
the standard deviation of curvatures on a circle is much less 
than on a squiggle. Thus, curvatures on the circle are more 
consistent, and lie several (circle) standard deviations away 
from the mean curvatures of the squiggles. But the mean 
curvature of the squiggle lies close (in terms of the standard 
deviation of the squiggle distribution) to the mean of the 
circle curvatures. 
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Fig. 6. Gaussian model of circle vs. background curvatures. 

The relative consistency of the circle curvatures distinguish 
it from the background. 

Area V4 is well situated to carry out computations of the 
type envisioned here. Connor and colleagues have found 
cells in macaque V4 that respond selectively to the 
magnitude and direction of curvature. V4 contains an 
extensive network of horizontal connections, which span 
significant portions of the visual field [14]. Through these 
connections, possibly together with top-down information 
from higher temporal areas, V4 is thought to mediate 
contextual population-based interactions within the scene, 
such as those required in color constancy. Finally, V4 is 
known to play a critical role in determining salience. 
Lesions of V4 render animals incapable of detecting a less 
salient target in the presence of more salient distractors [15]. 

V. CONCLUSION 

For the single image considered here, the consistency of 
curvature on a contour is correlated with increased 
perceptual salience. Salience appears to depend upon the 
statistical distribution of feature properties, such as 
curvature, over the object, in comparison to the background. 
These findings support the earlier work of both Ullman and 
Rosenholtz. The need to compare curvature measurements 
over a significant image region, to segment contours into 
target vs. background, and possibly to discriminate the 
direction of figure, suggest the need for both horizontal as 
well as top-down information, possibly at the level of V4, in 
determining contour salience. 
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