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data from Prospects to estimate the "overall" size of teacher effects on student achievement and to test some
specific hypotheses about why such effects occur. On the basis of these analyses, we draw some substantive
conclusions about the magnitude and sources of teacher effects on student achievement and suggest some
ways that survey-based research on teaching can be improved.
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Introduction 
 

This report is about conceptual and 
methodological issues that arise when 
educational researchers use data from 
large-scale, survey research studies to 
investigate teacher effects on student 
achievement. In the report, we illustrate 
these issues by reporting on a series of 
analyses we conducted using data from 
Prospects: The Congressionally Mandated 
Study of Educational Opportunity. This 
large-scale, survey research effort 
gathered a rich store of data on 
instructional processes and student 
achievement in a large sample of U.S. 
elementary schools during the early 1990s 
as part of the federal government’s 
evaluation of the Title I program. We use 
data from Prospects to estimate the 
“overall” size of teacher effects on student 
achievement and to test some specific 
hypotheses about why such effects occur. 
On the basis of these analyses, we draw 
some substantive conclusions about the 
magnitude and sources of teacher effects 
on student achievement and suggest 
some ways that survey-based research on 
teaching can be improved.1 

 
We first illustrate the varying analytic 

procedures that researchers have used to 
estimate the overall magnitude of teacher 
effects on student achievement, showing 
why previous research has led to 
conflicting conclusions. This issue has 
gained special salience in recent years as a 
result of William Sanders’ (1998, p. 27) 
claim that “differences in [the] 
effectiveness of individual classroom 
teachers…[are] the single largest 
[contextual] factor affecting the academic 
growth of…students” (emphasis added). 
Sanders’ conclusion, of course, is sharply 
at odds with findings from an earlier 
generation of research, especially 
production function research, showing 
that home and social background effects 

are more important than classroom and 
school effects in explaining variance in 
student achievement. We also discuss the 
conceptual and methodological 
foundations that underlie various claims 
about the magnitude of teacher effects on 
student achievement, and we present 
some empirical results that explain why 
analysts have reached differing 
conclusions about this topic. 

 
We then shift from examining the 

overall effects of teachers on student 
achievement to an analysis of why such 
effects occur. Here, we review some 
findings from recently conducted, large-
scale research on U.S. schooling. This 
literature has examined a variety of 
hypotheses about the effects of teachers’ 
professional expertise, students’ 
curricular opportunities, and classroom 
interaction patterns on students’ 
achievement. Decades of research 
suggests that each of these factors can 
have effects on student learning, but the 
research also suggests that such effects 
are usually small and often inconsistent 
across grade levels, types of pupils, and 
academic subjects (Brophy & Good, 1986). 
We also review some common 
hypotheses about teacher effects on 
student achievement and use Prospects 
data to empirically assess both the size 
and consistency of these effects. 

 
Finally, we review what we learned 

from these analyses and suggest some 
strategies for improving large-scale, 
survey research on teaching. We argue 
that large-scale, survey research has an 
important role to play in contemporary 
educational research, especially in 
research domains where education policy 
debates are framed by questions about 
“what works” and “how big” the effects 
of specific educational practices are on 
student achievement. But we also argue 
that large-scale, survey research on 
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teaching must evolve considerably before 
it can provide accurate information about 
such questions. In particular, our position 
is that future efforts by survey researchers 
should: (a) clarify the basis for claims 
about “effect sizes”; (b) develop better 
measures of teachers’ knowledge, skill, 
and classroom activities; and (c) take care 
in making causal inferences from non-
experimental data. 

 

Examining the Size and 
Stability of Teacher 
Effects on Student 
Achievement 

  
Our discussion of large-scale, survey 

research on teaching begins with 
questions about the size of teacher effects 
on student achievement. Researchers can 
use a variety of analytic procedures to 
estimate the overall magnitude of teacher 
effects on student achievement, but as we 
demonstrate below, these alternative 
procedures produce markedly different 
conclusions about this question. The 
overall purpose of this section, then, is to 
carefully describe the conceptual and 
methodological underpinnings of 
alternative approaches to estimating the 
magnitude of teacher effects on student 
achievement, and to clarify why different 
approaches to this problem produce the 
results they do.  

 
Variance Decomposition Models 
 

In educational research, the overall 
importance of some factor in the 
production of student learning is often 
judged by reference to the percentage of 
variance in student achievement 
accounted for by that factor in a simple 
variance decomposition model.2 With the 
widespread use of hierarchical linear 
models, a large number of studies (from 

all over the world) have decomposed the 
variance in student achievement into 
components lying among schools, among 
classrooms within schools, and among 
students within classrooms. In review of 
this literature, Scheerens and Bosker 
(1997, p. 182-209) found that when 
student achievement was measured at a 
single point in time (and without 
controlling for differences among 
students in social background and prior 
achievement), about 15-20% of the 
variance in student achievement lies 
among schools, another 15-20% lies 
among classrooms within schools, and 
the remaining 60-70% of variance lies 
among students. Using the approach 
suggested by Scheerens and Bosker (1997, 
p. 74), these variance components can be 
translated into what Rosenthal (1994) 
calls a d-type effect size. The effect sizes 
for classroom-to-classroom differences in 
students’ achievement in the findings just 
cited, for example, range from .39 to .45, 
“medium-sized” effects by the 
conventional standards of social science 
research.3 

 
Although the review by Scheerens 

and Bosker (1997) is a useful starting 
point for a discussion of the overall 
magnitude of teacher effects on student 
achievement, it does not illustrate the full 
range of empirical strategies that 
researchers have used to address this 
question. As a result, we decided to 
analyze data from Prospects in order to 
duplicate and extend that analysis. In the 
following pages, we illustrate several 
alternative procedures for estimating the 
percentages of variance in students’ 
achievement lying among schools, among 
classrooms within schools, and among 
students within classrooms. The analyses 
were conducted using the approach to 
hierarchical linear modeling (HLM) 
developed by Bryk and Raudenbush 
(1992), and were implemented using the 
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statistical computing software HLM/3L, 
version 5.25 (Bryk, Raudenbush, Cheong, 
& Congdon, 2000). 

 
Analysis of Prospects Data 
 

As a first step in the analysis, we 
duplicated the approach to estimating 
teacher effects on student achievement 
reported by Scheerens and Bosker (1997). 
The analysis was conducted using data 
on two cohorts of students in the Prospects 
study, those progressing from first to 
third grade over the course of the study, 
and those progressing from third to sixth 
grade. In the analyses, we simply 
decomposed the variance in students’ 
achievement at a single point, using 
students’ Item Response Theory (IRT) 
scale scores on the Comprehensive Test of 
Basic Skills reading and mathematics 
batteries as dependent variables. The 
analyses involves estimation of a simple, 
three-level, “random effects” model that 
Bryk and Raudenbush (1992, p. 176-178) 
call an “unconditional” model; that is, a 
model in which there are no independent 
variables. For each cohort, we conducted 
variance decompositions at each grade 
level for reading and mathematics 
achievement, yielding a total of 12 
separate analyses. Across these analyses, 
we found that between 12-23% of the total 
variance in reading achievement, and 
between 18-28% of the total variance in 
mathematics achievement was among 
classrooms. Thus, the classroom effect 
sizes in these analyses ranged from about 
.35 to about .53 using the d-type effect size 
metric discussed by Scheerens and Bosker 
(1997, p. 74).  

 
While these results duplicate those 

reported by Scheerens and Bosker (1997), 
they are not very good estimates of 
teacher effects on student achievement. 
One problem is that the analyses look at 
students’ achievement status — that is, 

achievement scores at a single point in 
time. However, students’ achievement 
status results not only from the 
experiences students had in particular 
classrooms during the year of testing, but 
also from all previous experiences 
students had, both in and out of school, 
prior to the point at which their 
achievement was assessed. As a result, 
most analysts would rather not estimate 
the effect of teachers on cumulative 
measures of achievement status, 
preferring instead to estimate the effect 
teachers have on changes in students’ 
achievement during the time when 
students are in teachers’ classrooms.  

 
A second problem with these 

estimates is that they come from a “fully 
unconditional” model; that is, a model 
that does not control for the potentially 
confounding effects of students’ socio-
economic status and prior achievement 
on classroom-to-classroom differences in 
achievement. For example, at least some 
of the classroom-to-classroom differences 
in students’ achievement status resulted 
not only from some teacher effect, but 
also from differences in the 
socioeconomic background and prior 
achievement of the students in different 
classrooms. Most analysts are unwilling 
to attribute compositional effects on 
achievement to teachers, and they 
therefore estimate teacher effects on 
student achievement only after 
controlling for such effects in their 
models.  

 
These clarifications have led to the 

development of what researchers call 
“value-added” analyses of teacher effects. 
Value-added models have two key 
features. First, the dependent variables in 
the analysis are designed to measure the 
amount of change that occurs in students’ 
achievement during the year when 
students are in the classrooms under 
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study. Second, measures of change are 
adjusted for differences across classrooms 
in students’ prior achievement, home and 
social background, and the social 
composition of the schools students 
attended. The purpose of value-added 
models is to estimate the proportions of 
variance in changes in student 
achievement lying among classrooms, 
after controlling for the effects of other 
confounding variables.   

 
To see whether value-added models 

give different results than those 
previously discussed, we conducted 
further analyses using Prospects data. In 
these analyses, we used two of the most 
common empirical approaches to value-
added estimates of teacher effects on 
student achievement. The first approach 
is often called a “covariate adjustment” 
model. Here, students’ achievement 
status in a given year is adjusted for 
students’ prior achievement, home and 
social background, and the social 
composition of schools, and the variance 
in students’ “adjusted” achievement 
status is decomposed into school, 
classroom, and student components using 
the same three-level hierarchical linear 
model as before.4 Using this approach 
with Prospects data, we found that 
roughly 4-16% of the variance in students’ 
adjusted reading achievement was lying 
among classrooms (depending on the 
grade level in the analysis), and that 
roughly 8-18% of the variance in adjusted 
mathematics achievement was lying 
among classrooms (depending on the 
grade at which the analysis was 
conducted). In the covariate adjustment 
models, then, the d-type effect sizes for 
classrooms ranged between .21 and .42 
depending on the grade level and subject 
under study, somewhat less than the 
effect sizes in the fully unconditional 
models.5    

 

A second approach to value-added 
analysis uses students’ annual gains in 
achievement as the criterion variable. In 
this approach, students’ gain scores for a 
given year become the dependent 
variable in the analysis, where these gains 
are once again adjusted through 
regression analysis for the potential 
effects of students’ socioeconomic status, 
family background, prior achievement, 
and school composition (using variables 
discussed in endnote 4). Using this 
approach with Prospects data, we found 
that somewhere between 3% and 10% of 
the variance in adjusted gains in students’ 
reading achievement was lying among 
classrooms (depending on the grade 
being analyzed), and somewhere between 
6% and 13% of the variance in adjusted 
gains in mathematics was lying among 
classrooms. The corresponding d-type 
effect sizes in these analyses therefore 
range from .16 to .36. 

 
Problems with Conventional 
Analyses 
 

Neither of the value-added analyses 
discussed indicates that classroom effects 
on student achievement are large. But 
each suffers from important interpretive 
and methodological problems warranting 
more discussion. Consider, first, some 
problems with covariate adjustment 
models. Several analysts have 
demonstrated that covariate adjustment 
models do not really model changes in 
student achievement (Rogosa, 1995; 
Stoolmiller & Bank, 1995). Instead, such 
analyses are simply modeling students’ 
achievement status, which in a value- 
added framework has been adjusted for 
students’ social background and prior 
achievement. When viewed in this way, it 
is not surprising to find that teacher 
effects are relatively small in covariate 
adjustment models. Such models, in fact, 
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are assessing teacher effects on 
achievement status, not change.  

 
If one really wants to assess the size of 

teacher effects on changes in student 
achievement, models of annual gains in 
achievement are preferable. As Rogosa 
(1995) demonstrates, annual gains in 
achievement are unbiased estimates of 
students’ “true” rates of achievement 
growth and are therefore preferable to 
covariate adjustment models in the 
analysis of change. However, simple gain 
scores suffer from an important 
methodological problem that researchers 
need to guard against. As Rogosa (1995) 
demonstrates, when there is little 
variance among students in true rates of 
academic growth, annual gains in 
achievement provide very unreliable 
measures of underlying differences 
among students in rates of change. In 
addition, in variance decomposition 
models using gain scores, measurement 
error due to unreliability in the gain 
scores will be reflected in student-level 
variance components, increasing the 
denominator in effect size formulas and 
thus reducing teacher effect size 
coefficients. In fact, as we discuss below, 
this problem is present in the Prospects 
data, where differences among students 
in true rates of academic growth are quite 
small. For this reason, the effect sizes 
derived from the gain score models 
discussed in this report are almost 
certainly underestimates of the overall 
effects that classrooms have on growth in 
students’ achievement. 

 
Improving Estimates of Teacher 
Effects 
 

What can researchers do in light of 
the problems just noted? One obvious 
solution is to avoid the covariate 
adjustment and gains models used in 
previous research, and to instead use 

statistical models that directly estimate 
students’ individual “growth curves” 
(Rogosa, 1995). In current research, the 
statistical techniques developed by Bryk 
and Raudenbush (1992, chap. 6), as 
implemented in the statistical computing 
package HLM/3L (Bryk, Raudenbush, 
Cheong, & Congdon, 2000) are frequently 
used for this purpose. For example, the 
HLM/3L statistical package can be used 
to estimate students’ growth curves 
directly if there are at least three data 
points on achievement for most students 
in the data set. However, at the current 
time, this computing package cannot be 
used to estimate the percentages of 
variance in rates of achievement growth 
lying among classrooms within schools 
over time, for as Raudenbush (1995) 
demonstrated, estimation of these 
variance components within a growth 
modeling framework requires 
development of a “cross-classified” 
random effects model.6    

 
Fortunately, the computer software 

needed to estimate cross-classified 
random effects models within the 
framework of the existing HLM statistical 
package is now under development, and 
we have begun working with 
Raudenbush to estimate such models 
using this computing package. A detailed 
discussion of the statistical approach 
involved here is beyond the scope of this 
report, but suffice it to say that it is an 
improvement over the simple gains 
models discussed earlier, especially since 
the cross-classified random effects model 
allows us to estimate the random effects 
of classrooms on student achievement 
within an explicit growth modeling 
framework. 7  

 
For this report, we developed a three-

level, cross-classified, random effects 
model to analyze data on the two cohorts 
of students in the Prospects data set 
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discussed earlier. In these analyses, we 
decomposed the variance in students’ 
growth in achievement (in mathematics 
and reading) into variance lying among 
schools, among students within schools, 
within students across time, and among 
students within classrooms. Two 
important findings have emerged from 
these analyses. One is that only a small 
percentage of variance in rates of 
achievement growth lies among students. 
In cross-classified random effects models 
that include all of the control variables 
listed in endnote 4, for example, about 27-
28% of the reliable variance in reading 
growth lies among students (depending 
on the cohort), with about 13-19% of the 
reliable variance in mathematics growth 
lying among students. An important 
implication of these findings is that the 
“true score” differences among students 
in academic growth are quite small, 
raising questions about the reliability of 
the gain scores used in the analysis of 
Prospects data discussed above.   

 
More important for our purposes is a 

second finding. The cross-classified 
random effects models produce very 
different estimates of the overall 
magnitude of teacher effects on growth in 
student achievement than do simple gain 
scores models. For example, in the cross-
classified random effects analyses, we 
found that after controlling for student 
background variables, the classrooms to 
which students were assigned in a given 
year accounted for roughly 60-61% of the 
reliable variance in students’ rates of 
academic growth in reading achievement 
(depending on the cohort), and 52-72% of 
the reliable variance in students’ rates of 
academic growth in mathematics 
achievement. This yields d-type effect 
sizes ranging from .77 to .78 for reading 
growth (roughly two-to-three times what 
we found using a simple gains model), 
and d-type effect sizes ranging from .72 to 

.85 for mathematics growth (again, 
roughly two-to-three times what we find 
using a simple gains model).8 The 
analysis also showed that school effects 
on achievement growth were substantial 
in these models (d = .55 for reading, and  
d = .53 for mathematics).9  

 
The Consistency of Classroom 
Effects Across Different Academic 
Subjects and Pupil Groups 
 

The analyses suggest that the 
classrooms to which students are 
assigned in a given year can have non-
trivial effects on students’ achievement 
growth in that year. But this does not 
exhaust the questions we can ask about 
such effects. An additional set of 
questions concern the consistency of these 
effects, for example, across different 
subjects (i.e., reading and mathematics) 
and/or for different groups of pupils. We 
have been unable to find a great deal of 
prior research on these questions, 
although Brophy and Good’s (1986) 
seminal review of “process-product” 
research on teaching did discuss a few 
studies in this area. For example, Brophy 
and Good cite a single study showing a 
correlation of .70 for adjusted, classroom-
level gains across tests of word 
knowledge, word discrimination, 
reading, and mathematics. They also cite 
correlations ranging from around .20 to 
.40 in the adjusted gains produced by the 
same teacher across years, suggesting that 
the effectiveness of a given teacher can 
vary across different groups of pupils. 
Both types of findings, it is worth noting, 
are comparable to findings on the 
consistency of school effects across 
subjects and pupil groups (see Scheerens 
& Bosker, 1997, chap. 3).  

 
Given the sparseness of prior research 

on these topics, we turned to Prospects 
once again for relevant insights. To assess 
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whether classrooms had consistent effects 
on students’ achievement across different 
academic subjects, we simply correlated 
the residuals from the value-added gains 
models for each classroom.10 Recall that 
these residuals are nothing more than the 
deviations in actual classroom gains from 
the gains predicted for a classroom after 
adjusting for the student- and school-
level variables in our models. In the 
analyses, we found only a moderate 
degree of consistency in classroom effects 
across reading and mathematics 
achievement, with correlations ranging 
from .30 to .47 depending on the grade 
level of the classrooms under study.11 The 
results therefore suggest that a given 
teacher varies in effectiveness when 
teaching different academic subjects. In 
Prospects data, there was slightly less 
variation in teacher effects across 
academic subjects at later grades, but this 
could be a cohort effect, since different 
groups of pupils are in the samples in 
earlier and later grades.  

 
A second question we investigated 

was whether classrooms had consistent 
effects on students from different social 
backgrounds. To investigate this issue, 
we changed the specification of the value-
added regression models. In previous 
analyses, we were assuming that the 
effects of student-level variables on 
annual gains in achievement were the 
same in all classrooms. In this phase of 
the analysis, we allowed the effects of 
student socioeconomic status (SES), 
gender, and minority status on 
achievement gains to vary randomly 
across classrooms. Since the data set 
contains relatively few students per 
classroom, we decided to estimate models 
in which the effects of only one of these 
independent variables was allowed to 
vary randomly in this way in any given 
regression analysis.  

 

Overall, the analyses showed that 
background variables had different 
effects on annual gains in achievement 
across classrooms, with these random 
effects being larger in lower grades 
(especially in reading) than at upper 
grades. Thus, in the Prospects study, 
students from different social 
backgrounds apparently did not perform 
equally well across classrooms within the 
same school. Moreover, when the 
variance components for these additional 
random effects were added to the 
variance components for the random 
effects of classrooms, the overall effects of 
classrooms on gains in student 
achievement became larger. In early 
grades reading, for example, the addition 
of random effects for background 
variables approximately doubles the 
variance in achievement gains accounted 
for by classrooms (the increase is much 
less, however, for early grades 
mathematics, and also less for upper 
grades mathematics and reading). For 
example, in a simple gains model where 
only the main effects of classrooms are 
treated as random, the d-type effect size 
was .26. When we also allowed 
background effects to vary across 
classrooms, however, the d-type effect 
sizes became .36 when the male effect was 
treated as random, .26 when the SES 
effect was allowed to vary, and .38 when 
the minority effect was allowed to vary.  

 
Student Pathways through 
Classrooms 

 
A third issue we examined was the 

consistency of classroom effects for a 
given student across years. We have seen 
that in any given year, students are 
deflected upward or downward from 
their expected growth trajectory by virtue 
of the classrooms to which they are 
assigned. This occurs, of course, because 
some classrooms are more effective at 
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producing academic growth for students, 
with the d-type effect size for annual 
deflections being around .72 to .85 in 
cross-classified random effects models 
(and around .16 to .36 when measured in 
terms of annual gains in achievement). In 
any given year, such effects may not seem 
especially sizeable. But if some students 
were consistently deflected upward as a 
result of their classroom assignments 
during elementary school, while other 
students were consistently deflected 
downward, the cumulative effects of 
classroom placement on academic growth 
could be quite sizeable, producing 
substantial inequality in student 
achievement in elementary schools. 

 
Currently, we know very little about 

this process in U.S. elementary schools. 
Instead, the most important evidence 
comes from Kerckhoff’s (1983) seminal 
study of schools in Great Britain. 
Kerckhoff tallied the accumulated 
deflections to expected academic growth 
for students as they passed through 
British schools and found that the 
accumulation of consistently positive or 
negative deflections was much greater in 
British secondary schools than in primary 
schools. A similar process might be 
occurring in the United States, where 
elementary schools have a common 
curriculum, classrooms tend to be 
heterogeneous in terms of academic and 
social composition, and tracking is not a 
part of the institutional landscape. Since 
this is the case, elementary schools do not 
appear to be explicitly designed to 
produce academic differentiation. As a 
result, we might expect the accumulation 
of classroom effects on student 
achievement to be fairly equal over the 
course of students’ careers in elementary 
schools. 

 
To get a sense of this issue, we 

analyzed the classroom-level Empirical 

Bayes (EB) residuals from the cross-
classified growth models estimated 
above. Recall that these models control 
for a large number of student and school 
variables. In the analysis, we first 
calculated the classroom residuals for 
each student at each time point. We then 
correlated these residuals at the student 
level across time points. In the analysis, a 
positive correlation of residuals would 
indicate that students who experienced 
positive deflections in one year also 
experienced positive deflections in the 
following year, suggesting that classroom 
placements in elementary schools worked 
to the consistent advantage of some 
students and to the consistent 
disadvantage of others. What we found in 
the Prospects data, however, was that 
deflections were inconsistently correlated 
across successive years, sometimes being 
positive, sometimes being negative, and 
ranging from -.30 to +.18. Overall, this 
pattern suggests that, on average, within 
a given school, a student would be 
expected to accumulate no real learning 
advantage by virtue of successive 
classroom placements. 

 
Note, however, that these data are not 

showing that students never accumulate 
successively positive (or negative) 
deflections as a result of their classroom 
placements. In fact, some students do 
experience consistent patterns. But in 
these data, such patterns should be 
exceedingly rare. For example, assuming 
that classroom effects are uncorrelated 
over time, we would expect about 3% of 
students to experience positive 
deflections one standard deviation or 
more above their expected gain for two 
years in a row, and less than 1% to receive 
such positive deflections three years in a 
row. Another 3% of students in a school 
would receive two straight years of 
negative deflections of this magnitude, 
with less than 1% receiving three straight 
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negative deflections. Obviously, students 
who experience consistently positive or 
negative deflections will end up with 
markedly different cumulative gains in 
achievement over the years (Sanders, 
1998, p. 27). But the data analyzed here 
suggest that such differences arise almost 
entirely by chance, not from a systematic 
pattern of academic differentiation 
through successively advantaging or 
disadvantaging classroom placements. 

 
The following results further illustrate 

this point. Using the EB residuals, we 
classified students according to whether 
(in a given year) they were in classrooms 
that were one standard deviation above 
the mean in effects on achievement 
growth, one standard deviation below the 
mean, or somewhere in between. Overall, 
when data on both cohorts and for both 
academic subjects are combined, we 
found that 3.4% of the students were in 
classrooms one standard deviation above 
the mean in two consecutive years, while 
2.4% of the students were in classrooms 
one standard deviation below the mean 
for two consecutive years. Across three 
years, .45% of students were in 
classrooms one standard deviation above 
the mean for three consecutive years, and 
.32% were in classrooms one standard 
deviation below the mean for three 
consecutive years. To be sure, students 
accumulated different classroom 
deflections to growth over time, and this 
produced inequalities in achievement 
among students. But the pattern of 
accumulation here appears quite random, 
and not at all the result of some 
systematic process of social or academic 
differentiation. 

 

Summary  
 

What do the findings suggest about 
the overall size and stability of teacher 
effects on student achievement? On the 
basis of the analyses reported, it seems 
clear that assertions about the magnitude 
of teacher effects on student achievement 
depend to a considerable extent on the 
methods used to estimate these effects 
and on how the findings are interpreted. 
With respect to issues of interpretation, it 
is not surprising that teacher effects on 
students’ achievement status are small in 
variance decomposition models, even in 
the earliest elementary grades. After all, 
status measures reflect students’ 
cumulative learning over many years, 
while teachers have students in their 
classrooms only for a single year. In this 
light, the classroom effects on students’ 
achievement status found in Prospects 
data might be seen as surprisingly large. 
In elementary schools, Prospects data 
suggest that after controlling for student 
background and prior achievement, the 
classrooms to which students are 
assigned account for somewhere between 
4-18% of the variance in students’ 
cumulative achievement status in a given 
year, which translates into a d-type effect 
size of .21 to .42.  

 
As we have seen, however, most 

analysts do not want to analyze teacher 
effects on achievement status, preferring 
instead to examine teacher effects on 
students’ academic growth. Here, the use 
of gain scores as a criterion variable is 
common. But analyses based on gain 
scores are problematic. While annual 
gains provide researchers with unbiased 
estimates of true rates of change in 
students’ achievement, they can be 
especially unreliable when true 
differences among students in academic 
growth are small. In fact, this was the case 
in Prospects data, and the resulting 
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unreliability in achievement gains 
probably explains why we obtained such 
small effect size coefficients when we 
used gain scores to estimate teacher 
effects. Recall that in these analyses, only 
3-13% of the variance in students’ annual 
achievement gains was found to be lying 
among classrooms.    

 
One clear implication of these 

analyses is that researchers need to move 
beyond the use of both covariate 
adjustment models (which estimate 
effects on students’ adjusted achievement 
status) and annual gains models if they 
want to estimate the overall magnitude of 
teacher effects on growth in student 
achievement. A promising strategy here 
is to use a cross-classified random effects 
model, as Raudenbush (1995) and 
Raudenbush and Bryk (2002, chap. 12)  
discuss. The preliminary analysis of 
Prospects data reported here suggests that 
cross-classified random effects models 
will lead to findings of larger d-type 
teacher effects. For example, in the cross-
classified random effects analysis 
discussed in this report, we reported d-
type effect sizes of .77 to .78 for teacher 
effects on students’ growth in reading 
achievement, and d-type effect sizes of .72 
to .85 for teacher effects on students’ 
growth in mathematics achievement. 
These are roughly three times the effect 
size found in other analyses. 

 
In this report, we also presented 

findings on the consistency of teacher 
effects across academic subjects and 
groups of pupils. Using a gains model, 
we found that the same classroom was 
not consistently effective across different 
academic subjects or for students from 
different social backgrounds. We also 
used a cross-classified random effects 
model to demonstrate that cumulative 
differences in achievement among 
students resulting from successive 

placements in classrooms could easily 
have resulted from successive chance 
placements in more and less effective 
classrooms. This latter finding suggests 
that elementary schools operate quite 
equitably in the face of varying teacher 
effectiveness, allocating pupils to more 
and less effective teachers on what seems 
to be a chance rather than a systematic 
basis. 

 
While the equity of this system of 

pupil allocation to classrooms might be 
comforting to some, the existence of 
classroom-to-classroom differences in 
instructional effectiveness should not be. 
As a direct result of teacher-to-teacher 
differences in instructional effectiveness, 
some students make less academic 
progress than they would otherwise be 
expected to make simply by virtue of 
chance placements in ineffective 
classrooms. All of this suggests that the 
important problem for U.S. education is 
not simply to demonstrate that 
differences in effectiveness exist among 
teachers, but rather to explain why these 
differences occur and to improve teaching 
effectiveness broadly.  

 
What Accounts for 
Classroom-to-Classroom 
Differences in 
Achievement? 
 

Up to this point, we have been 
reviewing evidence on the overall size of 
teacher effects on student achievement.  
But these estimates, while informative 
about how the educational system works, 
do not provide any evidence about why 
some teachers are more instructionally 
effective than others. In order to explain 
this phenomenon, we need to inquire 
about the properties of teachers and their 
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teaching that produce effects on students’ 
growth in achievement.  

 
In this section, we organize a 

discussion of this problem around 
Dunkin and Biddle’s (1974) well-known 
scheme for classifying types of variables 
in research on teaching. Dunkin and 
Biddle were working within the “process-
product” paradigm and discussed four 
types of variables of relevance to research 
on teaching. Product variables were 
defined as the possible outcomes of 
teaching, including student achievement. 
Process variables were defined as 
properties of the interactive phase of 
instruction; that is, the phase of 
instruction during which students and 
teachers interact around academic 
content. Presage variables were defined as 
properties of teachers that can be 
assumed to operate prior to, but also to 
have an influence on, the interactive 
phase of teaching. Finally, context 
variables were defined as variables that 
can exercise direct effects on instructional 
outcomes and/or condition the effects of 
process variables on product variables. 

 
Presage Variables 
 

The process-product paradigm 
discussed by Dunkin and Biddle (1974) 
arose partly in response to a perceived 
over-emphasis on presage variables in 
early research on teaching. Among the 
presage variables studied in such work 
were teachers’ appearance, enthusiasm, 
intelligence, and leadership — so-called 
“trait” theories of effective teaching 
(Brophy & Good, 1986). Most of these 
trait theories are no longer of interest in 
research on teaching, but researchers 
have shown a renewed interest in other 
presage variables in recent years. In 
particular, researchers increasingly argue 
that teaching is a form of expert work that 
requires extensive professional 

preparation, strong subject-matter 
knowledge, and a variety of pedagogical 
skills, all of which are drawn upon in the 
complex and dynamic environment of 
classrooms (for a review of conceptions of 
teachers’ work in research on teaching, 
see Rowan, 1999). This view of teaching 
has encouraged researchers once again to 
investigate the effects of presage variables 
on student achievement. 

 
In large-scale, survey research, 

teaching expertise is often measured by 
reference to teachers’ educational 
backgrounds, credentials, and experience. 
This is especially true in the so-called 
“production function” research 
conducted by economists. Since 
employment practices in U.S. education 
entail heavy reliance on credentials, with 
more highly educated teachers, those 
with more specialized credentials, or 
those with more years of experience 
gaining higher pay, economists have been 
especially interested in assessing whether 
teachers with different educational 
backgrounds perform differently in the 
classroom. In this research, teachers’ 
credentials are seen as “proxies” for the 
actual knowledge and expertise of 
teachers, under the assumption that 
teachers’ degrees, certification, or 
experience index the instructionally 
relevant knowledge that teachers bring to 
bear in classrooms. 

 
In fact, research on presage variables 

of this sort has a long history in large-
scale studies of schooling. Decades of 
research have shown, for example, that 
there is no difference in adjusted gains in 
student achievement across classes taught 
by teachers with a Master’s or other 
advanced degree in education compared 
to classes taught by teachers who lack 
such degrees. However, when large-scale 
research has focused in greater detail on 
the academic majors of teachers and/or 
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on the courses teachers have taken, 
results have been more positive. For 
example, several large-scale studies 
(reviewed in Rowan, Chiang, & Miller, 
1997, and Brewer & Goldhaber, 2000) 
have tried to assess the effect of teachers’ 
subject-matter knowledge on student 
achievement by examining differences in 
student outcomes for teachers with 
different academic majors. In general, 
these studies have been conducted in 
high schools and have shown that in 
classes where teachers have an academic 
major in the subject area being tested, 
students have higher adjusted 
achievement gains. In the NELS:88 data, 
for example, the r-type effect sizes for 
these variables were .05 for science gains, 
and .01 for math gains.12 Other research 
suggests an extension of these findings, 
however. At least two studies, using 
different data sets, suggest that the gains 
to productivity coming from increases in 
high school teachers’ subject-matter 
coursework occur mostly when advanced 
material is being taught (see, for example, 
Monk, 1994 and Chiang, 1996).13 Fewer 
production function studies have used 
teachers’ professional preparation as a 
means of indexing teachers’ pedagogical 
knowledge, although a study by Monk 
(1994) is noteworthy in this regard. In 
Monk’s study, the number of classes in 
subject-matter pedagogy taken by 
teachers during their college years was 
found to have positive effects on high 
school students’ adjusted achievement 
gains. Darling-Hammond, Wise, and 
Klein (1995) cite additional, small-scale 
studies supporting this conclusion.  

 
 Analyses of Presage Variables   
 

As a follow-up to this research, we 
examined the effects of teachers’ 
professional credentials (and experience) 
on student achievement using Prospects 
data. In these analyses, we developed a 

longitudinal data set for two cohorts of 
students in the Prospects study: students 
passing from grades one through three 
over the course of the study, and students 
passing from grades three through six. 
Using these data, we estimated an explicit 
model of students’ growth in academic 
achievement using the statistical methods 
described in Bryk and Raudenbush (1992, 
p. 185-191) and the computing software 
HLM/3L, version 5.25 (Bryk, 
Raudenbush, Cheong, & Congdon, 2000). 
Separate growth models were estimated 
for each cohort of students, and for each 
academic subject (reading and 
mathematics). Thus, the analyses 
estimated four distinct growth models: (a) 
a model for growth in reading 
achievement in grades one through three, 
(b) a model for growth in mathematics 
achievement in grades one through three, 
(c) a model for growth in reading 
achievement in grades three through six, 
and (d) a model for growth in 
mathematics achievement in grades three 
through six.  

 
In all of these analyses, achievement 

was measured by the IRT scale scores 
provided by the test publisher. The reader 
will recall that these are equal-interval 
scores (by assumption), allowing 
researchers to directly model growth 
across grades using an equal-interval 
metric. In all analyses, students’ growth 
in achievement was modeled in quadratic 
form, although the effect of this quadratic 
term was fixed. In the early grades cohort, 
the results showed that students’ growth 
in both reading and mathematics was 
steep in initial periods but decelerated 
over time. In the upper grades, academic 
growth in reading was linear, while 
growth in mathematics achievement 
accelerated at the last point in the time 
series. Average growth rates for both 
reading and mathematics were much 
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lower in the upper grades than in the 
lower grades. 

 
In all of the models, we estimated the 

effects of home and social background on 
both achievement status and achievement 
growth, where the variables included: (a) 
gender, (b) SES, (c) minority status, (d) 
number of siblings, (e) family marital 
status, and (f) parental expectations for a 
student’s educational attainment. In 
general, these variables had very large 
effects on students’ achievement status, 
but virtually no effects on growth in 
achievement. We also controlled for 
school composition and location in these 
analyses, where the social composition of 
schools was indexed by the percentage of 
students in a school eligible for the 
federal free lunch program, and where 
location was indexed by whether or not a 
school was in an urban location. Here, 
too, the school-level variables had large 
effects on intercepts but not on growth. 
All of these results are important — 
suggesting that when the analysis shifts 
from concern with students’ achievement 
status to concern with students’ growth in 
achievement, home and social 
background, as well as school 
composition and location, become 
relatively insignificant predictors of 
academic development. 

 
In our analysis of presage variables 

using Prospects data, we focused on three 
independent variables measuring 
teachers’ professional background and 
experience. One was a measure of 
whether or not a teacher had special 
certification to teach reading or 
mathematics. The second was a measure 
of whether or not a teacher had a 
Bachelor’s or Master’s degree in English 
(when reading achievement was the 
dependent variable) or in mathematics 
(when mathematics was tested). Third, 
we reasoned that teacher experience 

could serve as a proxy for teachers’ 
professional knowledge, under the 
assumption that teachers learn from 
experience about how to represent and 
teach subject-matter knowledge to 
students. The reader is cautioned that 
very few teachers in the Prospects sample 
(around 6%) had special certification 
and/or subject-matter degrees. For this 
(and other reasons), we used the robust 
standard errors in the HLM statistical 
package to assess the statistical 
significance of the effects of these 
variables on growth in student 
achievement. 

 
The analyses were conducted using a 

three-level hierarchical linear model of 
students’ growth in academic 
achievement, where classroom variables 
are included at level one of the model as 
time-varying covariates.14 The results of 
these analyses were reasonably consistent 
across cohorts in the Prospects data, but 
differed by academic subject. In reading, 
neither teachers’ degree status nor 
teachers’ certification status had 
statistically significant effects on growth 
in students’ achievement, although we 
again caution the reader about the small 
number of teachers in this sample who 
had subject-matter degrees or special 
certification. In reading, however, teacher 
experience was a statistically significant 
predictor of growth in students’ 
achievement, the d-type effect size being  
d = .07 for early grades reading and d = 
.15 for later grades reading.15 In 
mathematics, the results were different, 
and puzzling. Across both cohorts of 
students, there were no effects of 
teachers’ mathematics certification on 
growth in student achievement. There 
was a positive effect of teachers’ 
experience on growth in mathematics 
achievement, but only for the later grades 
cohort (d = .18).16 Finally, in mathematics 
and for both cohorts, students who were 
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taught by a teacher with an advanced 
degree in mathematics did worse than 
those who were taught by a teacher not 
having a mathematics degree (d = -.25).17   

 
It is difficult to know how to interpret 

the negative effects of teachers’ 
mathematics degree attainment on 
students’ growth in mathematics 
achievement. On one hand, the negative 
effects could reflect selection bias (see 
also endnote 13, where this is discussed 
in the context of high school data). In 
elementary schools, for example, we 
might expect selection to negatively bias 
estimated teacher effectiveness, especially 
if teachers with more specialized training 
work in special education and/or 
compensatory classroom settings. In a 
subsidiary analysis, we re-specified the 
regression models to control for this 
possibility (by including measures of 
students’ special education, 
compensatory education, or gifted and 
talented classification), but the effects 
remained unchanged. The other 
possibility is that this is a real effect, and 
that advanced academic preparation is 
actually negatively related to students’ 
growth in achievement in elementary 
schools. Such an interpretation makes 
sense only if one assumes that advanced 
academic training somehow interferes 
with effective teaching, either because it 
substitutes for pedagogical training in 
people’s professional preparation, or 
because it produces teachers who 
somehow cannot simplify and clarify 
their advanced understanding of 
mathematics for elementary school 
students. 

 
Discussion of Presage Variables 
 

What is interesting about production 
function studies involving presage 
variables is how disconnected they are 
from mainstream research on teaching. 

Increasingly, discussions of teachers’ 
expertise in mainstream research on 
teaching have gone well beyond a 
concern with proxy variables that might 
(or might not) index teachers’ expertise. 
Instead, researchers are now trying to 
formulate more explicit models of what 
teaching expertise looks like. In recent 
years, especially, discussions of expertise 
in teaching often have been framed in 
terms of Shulman’s (1986) influential 
ideas about pedagogical content 
knowledge. Different analysts have 
emphasized different dimensions of this 
construct, but most agree that there are 
several dimensions involved. One is 
teachers’ knowledge of the content being 
taught. At the same time, teaching is also 
expected to require knowledge of how to 
represent that content to different kinds 
of students in ways that produce 
learning, and that, in turn, requires 
teachers to have a sound knowledge of 
the typical ways students understand 
particular topics or concepts within the 
curriculum, and of the alternative 
instructional moves that can produce new 
understandings in light of previous ones.  

 
None of this would seem to be well 

measured by the usual proxies used in 
production function studies, and as a 
result, many researchers have moved 
toward implementing more direct 
measures of teachers’ expertise. To date, 
most research of this sort has been 
qualitative and done with small samples 
of teachers. A major goal has been to 
describe in some detail the pedagogical 
content knowledge of teachers, often by 
comparing the knowledge of experts and 
novices. Such work aims to clarify and 
extend Shulman’s (1986) original 
construct. One frustrating aspect of this 
research, however, is that it has been 
conducted in relative isolation from large-
scale, survey research on teaching, 
especially the long line of production 
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function studies just discussed. Thus, it 
remains to be seen if more direct 
measures of teachers’ knowledge will be 
related to students’ academic 
performances.  

 
It is worth noting that prior research 

has found positive effects of at least some 
direct measures of teachers’ knowledge 
on student achievement. For example, 
large-scale research dating to the 
Coleman report (Coleman et al., 1966) 
suggests that verbal ability and other 
forms of content knowledge are 
significantly correlated to students’ 
achievement scores as the meta-analysis 
reported in Greenwald, Hedges, and 
Laine (1996) shows. This is 
complemented by more recent work 
showing that teachers’ scores on teacher 
certification tests and college entrance 
exams also affect student achievement 
(for a review, see Ferguson & Brown, 
2000). It should be noted, however, that 
Shulman’s (1986) original conception of 
“pedagogical” content knowledge was 
intended to measure something other 
than the “pure” content knowledge 
measured in the tests just noted. As 
Shulman (1986) pointed out, it would be 
possible to know a subject well, but lack 
the knowledge to translate this kind of 
knowledge into effective instruction for 
students. 

 
Given the presumed centrality of 

teachers’ pedagogical expertise to 
teaching effectiveness, a logical next step 
in large-scale, survey research is to 
develop direct measures of teachers’ 
pedagogical and content knowledge and 
to estimate the effects of these measures 
on growth in students’ achievement. In 
fact, along with colleagues, we are 
currently taking steps in this direction.18  
Our efforts originated in two lines of 
work. The first was the Teacher 
Education and Learning to Teach (TELT) 

study conducted at Michigan State 
University. The researchers who 
conducted this study developed a survey 
battery explicitly designed to assess 
teachers’ pedagogical content knowledge 
in two areas — mathematics and writing 
(Kennedy, 1993). Within each of these 
curricular areas, a battery of survey items 
was designed to assess two dimensions of 
teachers’ pedagogical content knowledge: 
(a) teachers’ knowledge of subject matter, 
and (b) teachers’ knowledge of effective 
teaching practices in a given content area. 
As reported in Deng (1995), the attempt 
to construct these measures was more 
successful in the area of mathematics than 
in writing, and more successful in 
measures of content knowledge than 
pedagogical knowledge. 

 
An interesting offshoot of this work is 

that one of the items originally included 
as a measure of pedagogical content 
knowledge in the TELT study was also 
included in the NELS:88 teacher 
questionnaire. As a result, we decided to 
investigate the association between this 
item and student achievement in the 
NELS:88 data on 10th-grade math 
achievement. As reported in Rowan, 
Chiang, and Miller (1997), we found that 
in a well-specified regression model 
predicting adjusted gains in student 
achievement, the item included in the 
NELS:88 teacher questionnaire had a 
statistically significant effect on student 
achievement. In this analysis, a student 
whose teacher provided a correct answer 
to this single item scored .02 standard 
deviations higher on the NELS:88 
mathematics achievement test than did a 
student whose teacher did not answer the 
item correctly. The corresponding r-type 
effect size for this finding is r = .03, and  
R2 = .0009.19   

 
Although the effect sizes in the NELS: 

88 analysis are tiny, the measurement 
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problems associated with an ad hoc, one-
item scale measuring teachers’ content 
knowledge are obvious. Moreover, the 
effect of this ad hoc measure of teachers’ 
knowledge was assessed in Rowan, 
Chiang, and Miller’s (1997) analysis by 
reference to a covariate adjustment model 
of students’ 10th-grade achievement 
status. As a result, one should not expect 
large effects from such an analysis. For 
this reason, our colleagues are now 
developing an extensive battery of survey 
items to directly assess teachers’ 
pedagogical content knowledge in the 
context of elementary schooling. Our 
development work to date is promising. 
For example, we have found that we can 
construct highly reliable measures of 
teachers’ pedagogical content knowledge 
within fairly narrow domains of the 
school curriculum using as few as six-to- 
eight survey items. Our goal in the future 
is to estimate the effects of these measures 
on growth in students’ achievement in 
our own study of school improvement 
interventions.20  

 
Teaching Process Variables 

 
Although presage variables of the sort 

just discussed, if well-measured, hold 
promise for explaining differences in 
teacher effectiveness, quantitative 
research on teaching for many years has 
focused more attention on process-
product relationships than on presage-
product relationships. In this section, we 
discuss prior research on the effects of 
teaching process variables on student 
achievement and describe how we 
examined such effects using Prospects 
data. 

 
Time-on-Task/Active Teaching  
 

One aspect of instructional process 
that has received a great deal of attention 
in research on teaching is “time-on-task.”  

A sensible view of this construct, based 
on much previous process-product 
research, would refer not so much to the 
amounts of time allocated to learning a 
particular subject, which has virtually no 
effect on achievement, nor even to the 
amount of time in which students are 
actively engaged in instruction, for high 
inference measures of student 
engagement during class time also have 
only very weak effects on achievement 
(Karweit, 1985). Rather, process-product 
research suggests that the relevant causal 
agent producing student learning is how 
teachers use instructional time.  

 
Brophy and Good’s (1986) review of 

process-product research on teaching 
suggests that effective use of time 
involves “active” teaching. In their view, 
active teaching occurs when teachers 
spend more time in almost any format 
that directly instructs students, including 
lecturing, demonstrating, leading 
recitations and discussions, and/or 
frequently interacting with students 
during seatwork assignments. This kind 
of teaching contrasts with a teaching style 
in which students frequently work 
independently on academic tasks and/or 
are engaged in non-academic work. 
Active teaching also involves good 
classroom management skills, for 
example, the presence of clear rules for 
behavior with consistent enforcement, 
close and accurate monitoring of student 
behavior, and the quick handling of 
disruptions and/or transitions across 
activities.  

 
There are several interesting points 

about these findings. The most important 
is that the concept of active teaching is 
generic. That is, research shows that 
active teaching looks much the same 
across academic subjects and positively 
affects student achievement across a 
range of grade levels and subjects. At the 
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same time, the concept does not imply 
that a particular instructional format (e.g., 
lecture and demonstration, recitation, or 
other forms of guided discussion) is 
generally more effective than another 
across academic subjects and/or grade 
levels. In fact, the findings presented in 
Brophy and Good (1986) suggest that 
what is important is not how a teacher is 
active (i.e., the activities he or she engages 
in) as much as that the teacher is — in fact 
— an active agent of instruction. Thus, we 
can expect to find variability in the 
frequency and effectiveness of various 
instructional formats, but in virtually all 
settings, high achievement growth is 
expected to occur when the teacher is 
actively carrying the material to students 
as opposed to allowing students to learn 
without scaffolding, supervision, and 
feedback.   

 
Analysis of Time-on-Task/Active 
Teaching Measures 
 

To see if patterns of active teaching 
help explain classroom-to-classroom 
differences in students’ academic growth, 
we analyzed the effects on growth in 
achievement of several measures of active 
teaching available for upper grades 
classrooms in Prospects data.21 The 
measures were taken from three types of 
questions on the teacher questionnaire. 
One question asked teachers to report on 
the average minutes per week spent in 
their classrooms on instruction in reading 
and mathematics. The second asked 
teachers to rate the percentage of time 
they spent engaged in various active 
teaching formats, including time spent: 
(a) presenting or explaining material,  
(b) monitoring student performance, 
(c) leading discussion groups, and (d) 
providing feedback on student 
performance. The third asked teachers to 
rate the percentage of time that students 
in their classrooms spent in 

“individualized” and “whole-class” 
instruction.  

 
Following the review of evidence on 

active teaching mentioned earlier, we 
reasoned that what would matter most to 
student achievement was not the amount 
of time teachers spent on instruction, nor 
even how teachers distributed their time 
across various active teaching behaviors. 
Instead, we hypothesized that the 
important variable would be how much 
active teaching occurred. From this 
perspective, we predicted that there 
would be no effect of minutes per week of 
instruction in reading or math on student 
achievement, and no effect of the 
instructional format variables (a-d above). 
What would matter most, we reasoned, 
was the extent to which the teacher was 
operating as an active agent of 
instruction. From this perspective, we 
predicted that the percentage of time 
students spent in individualized 
instruction (where students work alone) 
would indicate a lack of active teaching 
and would have negative effects on 
students’ growth in achievement. By 
contrast, we reasoned that the percentage 
of time spent in whole-class instruction 
(where teachers are the active agents of 
instruction) would have positive effects. 

 
To conduct this analysis, we simply 

re-specified the HLM growth analyses 
used in estimating the effects of teacher 
certification and experience so that it now 
included the active teaching variables. As 
expected, teachers’ reports about minutes 
per week spent in instruction, and their 
reports on the teaching format variables, 
did not have statistically significant 
effects on students’ growth in reading or 
mathematics achievement. The results for 
time spent on individualized instruction 
were mixed, but generally supportive of 
our hypotheses. For reading, the data 
were consistent with the prediction that 
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more time spent by students in 
individualized settings translated into 
less academic growth, the effect size here 
being d  = -.09.22 In mathematics, however, 
time spent on individualized instruction 
had no significant effect. The data on 
percentage of time spent in whole-class 
instruction were consistently supportive 
of our hypothesis. In both reading and 
mathematics, this variable was 
statistically significant. In reading, the 
effect size was d = .09. In mathematics, the 
effect size was d = .12.23   

 
Discussion of Time-on-Task/Active 
Teaching Variables 
  

The results from the Prospects analyses 
appear remarkably consistent with 
previous process-product research and 
confirm that active teaching (as carried 
out in a whole-class setting) can have a 
positive effect on students’ growth in 
achievement. However, the results 
reported here probably do not provide a 
very accurate indication of the magnitude 
of this effect for several reasons. For one, 
items in the Prospects teacher 
questionnaire forced teachers to report on 
their use of different instructional 
behaviors and settings by averaging 
across all of the academic subjects they 
taught. Yet Stodolsky (1988) has found 
that the mix of instructional activities and 
behavior settings used by the same 
teacher can differ greatly across subjects. 
Moreover, a great deal of research on the 
ways in which respondents complete 
questionnaires suggests that the kinds of 
questions asked on the Prospects teacher 
questionnaire — questions about how 
much time was spent in routine forms of 
instructional activities — cannot be 
responded to accurately in “one-shot” 
questionnaires. This lack of accuracy 
probably introduces substantial error into 
our analyses, biasing all effect sizes 
downward and perhaps preventing us 

from discovering statistically significant 
relationships among teaching processes 
and student achievement. 

 
Opportunity-to-Learn/Content 
Covered 
 

In addition to active teaching, 
process-product research also consistently 
finds a relationship between the 
curricular content covered in classrooms 
and student achievement. However, 
definitions and measures of curricular 
content vary from study to study, with 
some studies measuring only the content 
that is covered in a classroom, and other 
studies measuring both the content 
covered and the “cognitive demand” of 
such content.  

 
Any serious attempt to measure 

content coverage begins with a basic 
categorization of curriculum topics in a 
particular subject area (e.g., math, 
reading, writing, etc.). Such 
categorization schemes have been derived 
from many different sources, including 
curriculum frameworks or standards 
documents, textbooks, and items 
included in the achievement test(s) being 
used as the dependent variable(s) in a 
process-product study. In most research 
on content coverage, teachers are asked to 
rate the amount of emphasis they place 
on each topic in the content list developed 
by researchers. Across all such studies, 
the procedures used to measure content 
coverage vary in two important respects. 
First, some surveys list curriculum 
content categories in extremely fine-
grained detail while others are more 
course-grained. Second, teachers in some 
studies fill out these surveys on a daily 
basis, while in most studies, they fill out 
an instrument once annually, near the 
end of the year.  
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Obviously, measures of content 
coverage can serve either as dependent or 
independent variables in research on 
teaching for it is as interesting to know 
why content coverage differs across 
teachers as it is to know about the effects 
of content coverage on student 
achievement. When the goal of research is 
to predict student achievement, however, 
a common approach has been to measure 
the amount of overlap in content covered 
in a classroom with the content assessed 
in the achievement test serving as the 
dependent measure in a study. A great 
deal of research, ranging from an early 
study by Cooley and Leinhardt (1980) to 
more recent results from the Third 
International Mathematics and Science 
Study assessments (Stedman, 1997), have 
used this approach. These studies 
uniformly show that students are more 
likely to answer items correctly on an 
achievement test when they have 
received instruction on the topics 
assessed by that item. In fact, the degree 
of overlap between content covered in a 
classroom and content tested is a 
consistent predictor of student 
achievement scores. 24   

 
In addition to measuring topics 

covered, it can be useful to examine the 
cognitive objectives that teachers are 
seeking to achieve when teaching a given 
topic. In research on teaching, the work of 
Andrew Porter and colleagues is 
particularly noteworthy in this regard. In 
Porter’s work, curriculum coverage is 
assessed on two dimensions — what 
topics are covered and for each topic, the 
level of cognitive demand at which that 
topic is covered where cognitive demand 
involves rating the complexity of work 
that students are required to undertake in 
studying a topic. Recently, Porter and 
colleagues have found that the addition 
of a cognitive demand dimension to the 
topic coverage dimension increases the 

power of content measures to predict 
gains in student achievement (Gamoran, 
Porter, Smithson, & White, 1997). 
 
Analysis of Content Covered 
 

To examine the effects of content 
coverage on student achievement, we 
conducted an analysis of Prospects data. In 
the Prospects study, teachers filled out a 
questionnaire near the end of the year in 
which they were asked to rate the amount 
of emphasis they gave to several broad 
areas of the reading and mathematics 
curricula using a three-point rating scale 
(ranging from no emphasis, to moderate 
emphasis, to a great deal of emphasis). 
From these data, we were able to 
construct two measures of content 
coverage — one in reading for the lower 
grades cohort (sufficient items for a scale 
were not available for the upper grades), 
and one for mathematics. Below we 
discuss how these items were used to 
assess the effects of content coverage on 
student achievement.  

 
For lower grades reading, we 

developed a set of measures intended to 
reflect students’ exposure to a balanced 
reading curriculum. Such a curriculum, 
we reasoned, would include attention to 
three broad curricular dimensions — 
word analysis, reading comprehension, 
and writing. We measured students’ 
exposure to word analysis through a 
single item in which the teacher reported 
the amount of emphasis placed on this 
topic. We measured students’ exposure to 
reading comprehension instruction by 
combining eight items into a single Rasch 
scale, where the items were ordered 
according to the cognitive demand of 
instruction in this area. In the scale, items 
ranged in order from the lowest cognitive 
demand to the highest cognitive demand 
as follows: identify main ideas, identify 
sequence of events, comprehend facts and 
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details, predict events, draw inferences, 
understand author’s intent, differentiate 
fact from opinion, and compare and 
contrast reading assignments. The scale 
had a person reliability (for teachers) of 
.73.25 A third measure was a single item in 
which teachers reported the emphasis 
they placed on the writing process. In 
assessing the effects of these variables on 
growth in students’ reading achievement, 
we simply expanded the HLM growth 
models for the early grades cohort used 
in previous analyses. In the analyses, each 
of the curriculum coverage variables had 
a positive and statistically significant 
effect on students’ growth in reading. The 
effect of a teachers’ emphasis on word 
analysis skills was d = .10. The effect of 
the reading comprehension measure was 
d = .17. The effect of a teacher’s emphasis 
on the writing process was d = .18.26 

 
For mathematics, we used a single, 

multi-item scale measuring content 
coverage. Data for this measure were 
available for both cohorts of students in 
the Prospects data. For both cohorts, the 
measure can be thought of as indexing 
the difficulty of the mathematics content 
covered in a classroom, where this is 
assessed using an equal-interval Rasch 
scale in which the order of difficulty for 
items (from easiest to most difficult) was: 
whole numbers/whole number 
operations, problem solving, 
measurement and/or tables, geometry, 
common fractions and/or percent, ratio 
and proportions, probability and 
statistics, and algebra (formulas and 
equations). In both scales, a higher score 
indicated that a student was exposed to 
more difficult content. For the early 
elementary cohort, the scale had a person 
reliability (for teachers) of .77; in the 
upper elementary sample, the person 
reliability (for teachers) was .80. Once 
again, this measure was simply added as 
an independent variable into the HLM 

growth models used in earlier analyses. 
When this was done, the effect of content 
coverage on early elementary students’ 
growth in mathematics achievement was 
not statistically significant. However, 
there was a statistically significant 
relationship for students in the upper 
elementary grades, the effect size being  
d = .09.26   

 
Discussion of Content Covered 
 

In general, the d-type effect sizes 
reported for the association of content 
coverage measures and growth in student 
achievement are about the same size as d-
type effect sizes for the other variables 
measured here. This should give pause to 
those who view opportunity-to-learn as 
the main explanation for student-to-
student differences in achievement 
growth. In fact, in one of our analyses 
(lower grades mathematics), the 
opportunity-to-learn variable had no 
statistical effect on student achievement.28 

 
Moreover, the positive effects of 

curriculum coverage should be 
interpreted with caution for two reasons. 
One problem lies in assuming that 
opportunity-to-learn is “causally prior” to 
growth in student achievement and is 
therefore a causal agent, for it is very 
possible that instead, a student’s exposure 
to more demanding academic content is 
endogenous — that is, results from that 
student’s achievement rather than 
causing it. To the extent that this is true, 
we have overestimated curriculum 
coverage effects.27 On the other hand, if 
curriculum coverage is relatively 
independent of past achievement, as 
some preliminary results in Raudenbush, 
Hong, and Rowan (2002) suggest, then 
our measurement procedures could be 
leading us to underestimate its effects on 
student achievement. This is because the 
measures of curriculum coverage used in 
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our analyses are very course-grained in 
their descriptions of instructional content, 
and because teachers are expected to 
accurately recall their content coverage 
patterns across an entire year in 
responding to a one-shot questionnaire. 
Once again, the findings just discussed 
seem plagued by unreliability in 
measurement, and in this light, it is 
somewhat remarkable that crude 
measures of the sort developed for the 
Prospects study show any relationship at 
all to achievement growth.  

 
Context Variables 

 
As a final step in our analysis of 

instructional effects on student 
achievement, we examined the extent to 
which the relationships of presage and 
process variables to student achievement 
were stable for different kinds of 
students. This analysis was motivated by 
data from the random effects models 
estimated in the first section of this 
report, which showed that the same 
classroom could have different effects on 
growth in achievement for students from 
different social backgrounds. In this 
section, we have shifted from estimating 
random effects models to estimating 
mixed models in which instructional 
effects are “fixed”; that is, assumed to 
have the same effects in all classrooms for 
students from all social backgrounds. In 
this section, we relax this assumption in 
order to examine interactions among 
presage and process variables and 
student background. 

 
The HLM statistical package being 

used here allows researchers to examine 
whether presage and process variables 
have the same effects on growth in 
achievement for students from different 
social backgrounds, but it can do so only 
when there are sufficient data. In the 
analyses conducted here, for example, 

students’ achievement is measured only 
at three or (in the best case) four time 
points. With this few number of time 
points, the program has insufficient data 
to estimate the extremely complex models 
that would be required to test for 
interactions among social background 
and instructional process variables. But 
there are some ways around this 
problem.28 In addition, if one proceeds 
with such an analysis, as we did for 
exploratory purposes, interactions can be 
found. For example, in an exploratory 
analysis, we specified a statistical model 
for growth in early reading achievement 
in which we assumed that the effects of 
the instructional variables discussed 
earlier would be conditioned by students’ 
gender, SES, or minority status. In the 
analysis, we found some evidence for the 
kinds of interactions being modeled, but 
it was far from consistent. For example, 
the data suggested that whole-class 
instruction was more effective for males, 
and less effective for higher SES students. 
The analysis also suggested that teachers’ 
emphasis on the writing process was 
more effective for males, and that teacher 
experience was less effective for minority 
students. Thus, one can find evidence that 
the effectiveness of particular teaching 
practices varies for different groups of 
pupils.  

 
But there are problems with this kind 

of analysis that extend far beyond the fact 
that there are insufficient data for such an 
analysis in Prospects. Equally important, 
there is little strong theory to use when 
formulating and testing such hypotheses. 
Thus, while research on teaching suggests 
that the effects of instructional variables 
can vary across different groups of 
pupils, it provides little guidance about 
what — exactly — we should predict in 
this regard. Consider, for example, the 
findings just discussed. What 
instructional theory predicts that the 
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effect of whole-class teaching is more 
effective for males than females, or for 
lower SES rather than higher SES 
students? More importantly, while it 
would be possible to formulate an 
elaborate post hoc explanation for why 
more experienced teachers appear to be 
less effective in promoting early reading 
growth among minority students (e.g., 
cohort differences in teacher training or in 
attitudes might explain the finding), 
should we interpret this finding knowing 
that it occurs in the context of several 
other findings that are completely 
unpredicted by any theory? We would 
argue that we should not, and that we 
keep our statistical analyses simple, at 
least until theory catches up with our 
power to analyze data statistically. 

 
The main point about context effects, 

then, is that educational researchers have 
a long way to go in modeling context 
effects, both in terms of having the 
requisite data available for modeling 
complex, multilevel statistical 
interactions, or in having the kinds of 
theories that would make attempts to do 
so justifiable. As a result, we recommend 
that large-scale research on teaching limit 
itself for now to an examination of fixed 
effects models, where theoretical 
predictions are stronger and more 
straightforward. 
 
Summary  

 
The analyses in this section illustrate 

that large-scale research can be used to 
examine hypotheses drawn from research 
on teaching. The results also suggest that 
such hypotheses can be used to at least 
partially explain why some classrooms 
are more instructionally effective than 
others. The analyses presented in this 
report, for example, showed that 
classroom-to-classroom differences in 

instructional effectiveness in early grades 
reading achievement, and in mathematics 
achievement (at all grades) could be 
explained by differences in presage and 
product variables commonly examined in 
research on teaching. In the analyses, 
several variables had d-type effect sizes in 
the range of .10 to .20, including teacher 
experience, the use of whole-class 
instruction, and patterns of curriculum 
coverage in which students were exposed 
to a balanced reading curriculum and to 
more challenging mathematics.  

 
At the same time, these results 

suggest that we probably should not 
expect a single instructional variable to 
explain the classroom-to-classroom 
differences in instructional effectiveness 
found in the first section. Instead, the 
evidence presented here suggests that 
many small instructional effects would 
have to be combined to produce 
classroom-to-classroom differences in 
instructional outcomes of the magnitude 
found in the first section. At the same 
time, the distribution of classroom 
effectiveness within the same school 
suggests that very few classrooms in the 
same school present an optimal 
combination of desirable instructional 
conditions. Instead, the majority of 
classrooms probably present students 
with a mix of more and less 
instructionally effective practices 
simultaneously. This scenario is made all 
the more plausible by what we know 
about the organization and management 
of instruction in the typical U.S. school. 
Research demonstrates that U.S. teachers 
have a great deal of instructional 
autonomy within their classrooms, 
producing wide variation in instructional 
practices within the same school. 
Variations in instructional practices, in 
turn, produce the distribution of 
classroom effects that we discovered in 
our variance decomposition models, with 
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a lack of real coordination across 
classrooms probably accounting for 
students’ movement through more and 
less effective classrooms over the course 
of their careers in a given school. 

 
If there is a “magic bullet” to be found 

in improving instructional effectiveness 
in U.S. schools, it probably lies in finding 
situations in which many instructionally 
desirable conditions co-exist in 
classrooms and in situations where 
students experience such powerful 
combinations of instructional practice 
across their careers in school. In fact, this 
is one reason we and our colleagues have 
become so interested in studying 
instructional interventions. By design, 
these interventions seek to smooth out 
classroom-to-classroom differences in 
instructional conditions, and to encourage 
the implementation of instructional 
conditions that combine to produce fairly 
powerful effects on student learning 
across all classrooms within a school. This 
insight suggests a real limitation to 
research on teaching that looks 
exclusively at natural variations in 
instructional practice, as did the research 
presented in this report (and as much 
other large-scale, survey research tends to 
do). If we look only at natural variation, 
we will find some teachers who work in 
ways that combine many desirable 
instructional conditions within their 
classrooms and others who don’t. But if 
we rely solely on a strategy of looking at 
naturally occurring variation to identify 
“best” practice, we have no way of 
knowing if the “best” cases represent a 
truly optimal combination of instructional 
conditions or whether even the best 
classrooms are operating below the real 
(and obtainable) production frontier for 
schooling. In our view, it would be better 
to shift away from the study of naturally 
occurring variation in research on 
teaching and to instead compare 

alternative instructional interventions 
that have been designed — a priori — to 
implement powerful combinations of 
instructionally desirable conditions across 
classrooms in a school. In this case, we 
would no longer be studying potentially 
idiosyncratic variations in teacher 
effectiveness, but rather the effects of 
well-thought-out instructional designs on 
student learning.29 

 
How to Improve Large-
Scale, Survey Research on 
Teaching 
 

The discussions presented in this 
report show how large-scale, survey 
research has been used to estimate 
classroom-to-classroom differences in 
instructional effectiveness and to test 
hypotheses that explain these differences 
by reference to presage, process, and 
context variables commonly used in 
research on teaching. Throughout this 
report, however, we have pointed out 
various conceptual and methodological 
issues that have clouded interpretations 
of the findings from prior research on 
teaching or threatened its validity. In this 
section, we review these issues and 
discuss some steps that can be taken to 
improve large-scale research on teaching. 
 
“Effect Sizes” in Research on 
Teaching 

 
One issue that has clouded research 

on teaching is the question of: “how big” 
are instructional effects on student 
achievement? As we tried to show in 
previous sections, the answer one gives to 
the question of how much of the variance 
in student achievement outcomes is 
accounted for by students’ locations in 
particular classrooms depends in large 
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part on how the criterion outcome in an 
analysis of this problem is conceived and 
measured. Research that uses 
achievement status as the criterion 
variable in assessing teacher effects is 
looking at how much a single year of 
instruction (or exposure to a particular 
instructional condition during a single 
year) affects students’ cumulative 
learning over many years. Obviously, the 
size of the instructional effect that one 
obtains here will differ from what would 
be obtained if the criterion variable 
assessed instructional effects on changes in 
student achievement over a single year. 
In fact, in analyses of achievement status, 
home background variables and prior 
student achievement will account for 
larger proportions of variance than 
variables indexing a single year of 
teaching. That said, it is worth noting that 
analyses using covariate adjustment 
models to assess instructional effects on 
students’ achievement status can identify 
both the random effects of classroom 
placement on students’ achievement and 
the effects of specific instructional 
variables. However, the effect sizes 
resulting from such analyses will be 
relatively small for obvious reasons. 

 
A shift to the analysis of instructional 

effects on growth in achievement presents 
different problems, especially if gain 
scores are used to measure students’ rates 
of academic growth. To the extent that the 
gain scores used in analysis are 
unreliable, estimates of the overall 
magnitude of instructional effects on 
student achievement will be biased 
downward. As the literature on assessing 
change suggests, it is preferable to begin 
any analysis of instructional effects by 
first estimating students’ “true” rates of 
academic growth and then assessing 
teacher effects on growth within this 
framework. Unfortunately, computing 
packages that allow for such analyses are 

not yet commercially available, although 
preliminary results obtained while 
working with a developmental version of 
such a program (being developed by 
Steve Raudenbush) suggests that effect 
size estimates from such models will be 
very different from those obtained using 
covariate adjustment and gains models. 

 
All of this suggests that there might 

be more smoke than fire in discussions of 
the relative magnitude of instructional 
effects on student achievement. Certainly, 
the discussion to this point suggests that 
“all effect sizes are not created equally.”  
In fact, the same instructional conditions 
can be argued to have large or small 
effects simply on the basis of the analytic 
framework used to assess the effects (i.e., 
a covariate adjustment model, a gains 
model, or an explicit growth model). 
Thus, while there is much to be said in 
favor of recent discussions in educational 
research about the over-reliance on 
statistical significance testing as the single 
metric by which to judge the relative 
magnitude of effects — especially in 
large-scale, survey research, where large 
numbers of subjects almost always assure 
that very tiny effects can be statistically 
significant — the discussion presented in 
this report also suggests that 
substantively important instructional 
effects can indeed have very small effect 
sizes when particular analytic 
frameworks are used in a study. 
Moreover, when this is the case, large 
sample sizes and statistical significance 
testing turns out to be an advantage, for it 
works against having insufficient 
statistical power to identify effects that 
are substantively important when the 
dependent variable is measured 
differently. In particular, to the extent that 
researchers are using covariate 
adjustment or gains models to assess 
instructional effects, large sample sizes 
and statistical significance tests would 
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seem to be an important means for 
locating substantively meaningful effects, 
especially since these models present 
analytic situations in which the decks are 
stacked against finding large effect sizes.30 

 
A final point can be made about 

efforts to estimate the magnitude of 
teacher effects on student achievement. In 
our view, the time has come to move 
beyond variance decomposition models 
that estimate the random effects of 
schools and classrooms on student 
achievement. These analyses treat the 
classroom as a “black box,” and while 
they can be useful in identifying more 
and less effective classrooms, and in 
telling us how much of a difference 
natural variation in classroom 
effectiveness can make to students’ 
achievement, variance decomposition 
models do not tell us why some 
classrooms are more effective than others, 
nor do they give us a very good picture of 
the potential improvements in student 
achievement that might be produced if 
we combined particularly effective 
instructional conditions into powerful 
instructional programs. For this reason, 
we would argue that future large-scale 
research on teaching move to directly 
measuring instructional conditions inside 
classrooms and/or to assessing the 
implementation and effectiveness of 
deliberately designed instructional 
interventions. 

 
The Measurement of Instruction 
 

As the goal of large-scale, survey 
research on teaching shifts from 
estimating the random effects of 
classrooms on student achievement to 
explaining why some classrooms are 
more instructionally effective than others, 
problems of measurement in survey 
research will come to the fore. As we 
discussed earlier, there is a pervasive 

tendency in large-scale, survey research 
to use proxy variables to measure 
important dimensions of teaching 
expertise, as well as an almost exclusive 
reliance on one-shot questionnaires to 
crudely measure instructional process 
variables. While the findings presented 
here suggest that crude measures of this 
sort can be used to test hypotheses from 
research on teaching, and that crude 
measures often show statistically 
significant relationships to student 
achievement, it is also true that problems 
of measurement validity and reliability 
loom large in such analyses. 

 
What can be done about these 

problems? One line of work would 
involve further studies of survey data 
quality — that is, the use of a variety of 
techniques to investigate the validity and 
reliability of commonly used survey 
measures of instruction. There are many 
treatments of survey data quality in the 
broader social science literature (Biemer  
et al., 1991; Groves, 1987, 1989; Krosnick, 
1999; Scherpenzeel & Saris, 1997; Sudman 
& Bradburn, 1982; Sudman, Bradburn, & 
Schwarz, 1996), and a burgeoning 
literature on the quality of survey 
measures of instruction in educational 
research (Brewer & Stasz, 1996; Burstein 
et al., 1995; Calfee & Calfee, 1976; 
Camburn, Correnti, & Taylor, 2000, 2001; 
Chaney, 1994; Elias, Hare, & Wheeler, 
1976; Fetters, Stowe, & Owings, 1984; 
Lambert & Hartsough, 1976; Leighton et 
al. 1995; Mayer, 1999; Mullens, 1995; 
Mullens et al., 1999; Mullens & Kasprzyk, 
1996, 1999; Porter et al., 1993; Salvucci et 
al., 1997; Shavelson & Dempsey-Atwood, 
1976; Shavelson, Webb, & Burstein, 1986; 
Smithson & Porter, 1994; Whittington, 
1998). A general conclusion from all of 
this work seems to be that the survey 
measures of instruction used in 
educational research suffer from a variety 
of methodological and conceptual 
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problems that can only be addressed by 
more careful work during the survey 
development stage. 

  
The work that we are doing with 

colleagues to address these problems 
deserves brief mention here. As we 
discussed at an earlier point in this report, 
we have become keenly interested in 
assessing the effects of teachers’ 
pedagogical content knowledge on 
students’ achievement, but rather than 
rely on the kinds of indirect “proxy” 
measures that typify much previous 
research in this area, we have instead 
begun a program of research designed to 
build direct measures of this construct 
from scratch. To date, we have completed 
one round of pre-testing in which we 
have found that it is possible to develop 
highly reliable measures of teachers’ 
content and pedagogical knowledge in 
very specific domains of the school 
curriculum using as few as six-to-eight 
items (Rowan, Schilling, Ball, & Miller, 
2001). We also have begun to validate 
these measures by looking at “think 
aloud” protocols in which high- and low- 
scoring teachers on our scales talk about 
how and why they answered particular 
items as they did. Finally, in the near 
future, we will begin to correlate these 
measures to other indicators of teachers’ 
knowledge and to growth in student 
achievement. The work here has been 
intensive (and costly). But it is the kind of 
work that is required if survey research 
on instruction is to move forward in its 
examination of the role of teaching 
expertise in instructional practice.31 

 
We also have been exploring the use 

of instructional logs to collect survey data 
on instructional practices in schools. In 
the broader social science research 
community, logs and diaries have been 
used to produce more accurate responses 
from survey respondents about the 

frequency of activities conducted on a 
daily basis. The advantage of logs and 
diaries over one-shot questionnaires is 
that logs and diaries are completed 
frequently (usually on a daily basis) and 
thus avoid the problems of memory loss 
and mis-estimation that plague survey 
responses about behavior gathered from 
one-shot surveys. Here, too, we have 
engaged in an extensive development 
phase. In spring 2000, we asked teachers 
to complete daily logs for a 30-60 day 
time period, and during this time, we 
conducted independent observations of 
classrooms where logging occurred, 
conducted “think alouds” with teachers 
after they completed their logs, and 
administered separate questionnaires to 
teachers designed to measure the same 
constructs being measured by the logs. To 
date, we have found that teachers will 
complete daily logs over an extended 
period of time (if given sufficient 
incentives); that due to variation in daily 
instructional practice, roughly 15-20 
observations are needed to derive reliable 
measures of instructional processes from 
log data; that log and one-shot survey 
measures of the same instructional 
constructs often are only moderately 
correlated; and that rates of agreement 
among teachers and observers completing 
logs on the same lesson vary depending 
on the construct being measured.32 In 
future work, we will be correlating log-
derived measures with student 
achievement and comparing the relative 
performance of measures of the same 
instructional construct derived from logs 
and from our own one-shot 
questionnaire.  

 
The point of all this work is not to 

trumpet the superiority of our measures 
over those used in other studies. Rather, 
we are attempting to take seriously the 
task of improving survey-based measures 
of instruction so that we can better test 
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hypotheses derived from research on 
teaching. Without such careful work, 
estimates about “what works” in terms of 
instructional improvement, and “how 
big” the effects of particular instructional 
practices are on student achievement will 
continue to be plagued by issues of 
reliability and validity that currently raise 
doubts about the contributions of past 
survey research to broader investigations 
of teaching and its consequences for 
student achievement. 

 
Problems of Causal Inference in 
Survey Research 

 
 If the goal of survey research is to test 

hypotheses about the effects of teachers 
and their teaching on student 
achievement, then more is needed in 
addition to appropriate interpretation of 
differing effect size metrics and careful 
development of valid and reliable survey 
instruments. To achieve the fundamental 
goal of assessing the effects of teachers 
and their teaching on students’ 
achievement, researchers must also pay 
attention to problems of causal inference 
in educational research. That large-scale 
survey research confronts tricky problems 
of causal inferences in this area is 
demonstrated by some of the results we 
reported earlier in this report. Consider, 
for example, the findings we reported 
about the effects of teacher qualifications 
and students’ exposure to advanced 
curricula on students’ achievement. A 
major problem in assessing the effects of 
these variables on student achievement is 
that students who have access to 
differently qualified teachers or to more 
and less advanced curricula are also 
likely to differ in many other ways that 
also predict achievement. These other 
factors are confounding variables that 
greatly complicate causal inference, 
especially in non-experimental settings. 

 

For several decades, educational 
researchers assumed that multiple 
regression techniques could resolve most 
of these problems of causal inference. But 
this is not always the case. For example, 
some analysts have noted that strategies 
of statistical control work effectively to 
reduce problems of causal inference only 
under limited circumstances. These 
include circumstances where all 
confounding variables are measured 
without error and included in a 
regression model, when two-way and 
higher-order interactions between 
confounding variables and the causal 
variable of interest are absent or specified 
in a model, when confounding variables 
are not also an outcome in the model, and 
when confounding variables have the 
same linear association with the outcome 
that was specified by the multiple 
regression model (Cohen, Ball, & 
Raudenbush, in press). Other researchers 
have taken to using instrumental 
variables and two-stage least squares 
procedures to simulate the random 
assignment of experiments, or they have 
employed complex selection models to 
try and control for confounding 
influences across treatment groups 
formed by non-random assignment, or 
they have advocated for “interrupted 
time series” analyses in which data on 
outcomes are collected at multiple time 
points before and after exposure to some 
“treatment” of interest. All of these 
approaches are useful, but they also can 
be difficult to employ successfully, 
especially in research on teaching, where 
knowledge of confounding factors is 
limited and where at least one of the main 
confounding variables is also the outcome 
of interest (students’ achievement levels). 
In fact, difficulties associated with 
effectively deploying alternatives to 
random assignment in non-experimental 
research might account for the finding 
that non-experimental data are less 
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efficient than experimental data in 
making causal inferences. For example, 
Lipsey and Wilson (1993) reported on 74 
meta-analyses that included both 
experimental and non-experimental 
studies of psychological, educational, 
and/or behavioral treatment efficacy. 
Their analysis showed that average effect 
sizes for various causal hypotheses did 
not differ much between experiments and 
non-experimental studies, but that 
variation in effect sizes was much larger for 
the non-experimental studies. All of this 
suggests that the typical — non-
experimental — survey study of 
instructional effects on student 
achievement probably builds knowledge 
more slowly, and more tenuously, than 
experimental research. 

 
The argument we are making should 

not be considered an unambiguous call 
for experimental studies of teaching, 
however. While there is growing 
consensus among researchers in many 
disciplines — including economics, 
political science, and the applied health 
sciences fields — that experiments are the 
most desirable way to draw valid causal 
inferences, it is the case that educational 
experiments will suffer from a number of 
shortcomings, especially when they are 
conducted in complex field settings, over 
long periods of time, where treatments 
are difficult to implement, where attrition 
is pervasive, where initial randomization 
is compromised, where crossover effects 
frequently occur, and where complex 
organizations (like schools) are the units 
of treatment. Much has been learned 
about how to minimize these problems in 
experimental studies (e.g., Boruch, 1997), 
but in the real world of educational 
research, complex and larger-scale 
experiments seldom generate 
unassailable causal inferences. Thus, 
scrupulous attention to problems of 
causal inference seems warranted not 

only in non-experimental, but also in 
experimental, research. 

   
Moreover, even when experiments (or 

various quasi-experiments that feature 
different treatment and/or control 
groups) are conducted, there is still an 
important role for survey research. While 
policymakers may be interested in the 
effects of “intent to treat” (i.e., mean 
differences in outcomes among those 
assigned to experimental and control 
groups), program developers are usually 
interested in testing their own theories of 
intervention. They, therefore, want to 
know whether the conditions they think 
should produce particular outcomes do 
indeed predict these outcomes. The usual 
“black box” experiment, which examines 
differences in outcomes across those who 
were and were not randomly assigned to 
the treatment — regardless of actual level 
of treatment — is fairly useless for this 
purpose. Instead, measures of treatment 
implementation and its effects on 
treatment outcomes are what program 
developers usually want to see. They 
recognize that treatments are 
implemented variably, and they want to 
know how — and to what effect — their 
treatments have been implemented. Thus, 
even in experimental studies of teaching 
effects on student achievement, there is 
an important need for careful 
measurement of instruction, and the 
larger the experiment, the more likely 
that surveys will be employed to gather 
the necessary data for such measures. 
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Conclusion 
 

All of this analysis suggests that there 
is a continuing role for survey research in 
the study of instructional effects on 
student achievement. It also shows the 
critical interdependence among the three 
problems that must be confronted if 
survey research is to inform research on 
teaching. We cannot interpret the results 
of large-scale, survey research on 
teaching very sensibly if we do not have a 
clear understanding of what constitutes a 
big or small effect, but no matter what 
method we choose to develop effect size 
metrics, we will not have good 
information from survey research about 
these effects if we fail to pay attention to 
issues of measurement and causal 
inference. Without good measures, no 
amount of statistical or experimental 
sophistication will lead to valid inferences 
about instructional effects on student 
achievement, but even with good 
measures, sound causal inference 
procedures are required. The comments 
and illustrations presented in this report 
therefore suggest that while large-scale, 
survey research has an important role to 
play in research on teaching and in policy 
debates about “what works,” survey 
researchers still have some steps to take if 
they want to improve their capacity to 
contribute to this important field of work. 
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Endnotes 
 
1 Our interest in this problem derives from 
current work on a large-scale, survey study of 
instruction and student achievement in 
elementary schools. This project is being 
conducted by Deborah Ball, David K. Cohen, 
and Brian Rowan under the auspices of the 
Consortium for Policy Research in Education. 
Known as the Study of Instructional Improvement,  
the project is investigating the design, 
implementation, and effects on student learning 
of three of the most widely disseminated 
comprehensive school reform programs in the 
United States (the Accelerated Schools 
Program, America’s Choice, and Success for 
All). As part of this project, we have worked 
with other researchers to develop a variety of 
innovative survey research instruments to study 
teacher effects on student achievement in over 
100 elementary schools across the United 
States. The research we are reporting on here, 
which used Prospects data, was conducted in 
preparation for this study. Prospects data were 
used to “test out” various analytic models that 
might be used in our research, and to 
investigate various survey measures of teaching. 
Readers interested in learning more about the 
Study of Instructional Improvement can consult the 
project’s website at www.sii.soe.umich.edu. 
 
2 Of course, variance decomposition models do 
not unambiguously demonstrate “causal” 
effects. However, they are useful as a first step 
in detecting the potential effects some factor 
might have on an outcome in question. So, in 
the first section of this report, where we 
estimate a variety of variance decomposition 
models, the reader is duly cautioned about the 
ambiguities of causal inference associated with 
this approach to estimating the overall 
magnitude of teacher “effects” on student 
achievement. 
 
3 An effect size can be calculated from a three-
level, hierarchical, random effects model as: d = 
[√(variance in achievement lying among 
classrooms)/√(total student + classroom + 
school variance in student achievement)]. Effect 
size metrics in what Rosenthal (1994) calls the 
d-type family of effect sizes are designed to 

 
express differences in outcomes across two 
groups (e.g., an experimental and control 
group) in terms of standard deviations of the 
outcome variable. In the current analysis, we are 
analyzing data from more than two groups, 
however. In fact, in the “random effects” 
models estimated here, the variance 
components are calculated from data on all of 
the classrooms in a data set, with the 
assumption that all schools have equal variance 
among students and classrooms. In this case, 
we can develop a d-type effect size metric by 
comparing outcomes across two groups 
arbitrarily chosen from among the larger sample 
of classrooms. The two groups chosen for 
comparison here are classrooms within the 
same school that differ in their effects on 
student achievement by one standard deviation. 
Using this approach, the resulting “effect size” 
of .45 can be interpreted as showing the 
difference in achievement that would be found 
among two students from the same school if 
they were assigned to classrooms one standard 
deviation apart in effects on student 
achievement. For example, if the effect size is 
.45, we would conclude that two students from 
the same school assigned to classrooms a 
standard deviation apart in effectiveness would 
differ by .45 standard deviations in 
achievement. 
 
4 The student-level variables controlled for in 
these “value-added” analyses include prior 
achievement on the outcome variable; SES; 
gender; race; whether the student participated in 
special education, a gifted and talented 
program, or compensatory education; the 
student’s age; the number of months between 
test administrations; the educational 
expectations of the student’s parent(s); whether 
both parents live in the household; and the 
number of school-age siblings in the household. 
The school-level variables controlled for 
included the percentage of students at a school 
receiving free lunches, school enrollment, 
number of days a school was in session, and 
whether the school was located in an urban, 
suburban, or rural location. 
 
5 The effect size d in this case is: [√(adjusted 
variance among classrooms)/√(total adjusted 
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variance in achievement)], where the variance 
components have been adjusted through HLM 
regression analysis for the student background 
and school composition variables discussed in 
endnote 4.  
 
6 For this reason, Sanders and colleagues (e.g., 
Sanders & Horn, 1994) have used their own 
statistical computing package and “mixed 
model” methodology to perform variance 
decompositions with a similar aim.  
 
7 A detailed discussion of cross-classified 
random effects models can be found in 
Raudenbush and Bryk (2002, chap. 12). Like 
other HLM growth models discussed in this 
report, this model allows analysts to directly 
model individual growth curves for students in 
ways that separate “true” score variance in 
growth rates from “error” variance. As a result, 
as we discuss d-type effect sizes in the context 
of these models, we are able to ignore error 
variance, which improves our estimates of 
teacher effects over those derived from simple 
gains models. Another advantage of the “cross-
classified” random effects model being 
discussed here is that it allows researchers to 
appropriately model the cross-nested nature of 
students passing through different classrooms 
in the same school over time.   
  
8 The d-type effect size here is: [√(variance in 
achievement growth lying among 
classrooms)/√(total school + class + student 
variance in achievement growth)]. The growth 
models estimated here were quadratic in form, 
but we “fixed” the non-linear term in this 
model. The main reason effect size coefficients 
are so much larger in the cross-classified 
random effects models than in the gain scores 
models is that the cross-classified random 
effects models provide a direct estimate of both 
student growth rates and “errors” of 
measurement, whereas gain scores models do 
not. As a result, effect size estimates based on 
gain scores include error variance, whereas 
explicit growth models do not include error 
variance. To see how the inclusion of 
measurement error affects “effect size” 
coefficients, we can use the variance 
components from the cross-classified random 

 
effects models to estimate the teacher effect 
size as [√(variance in achievement growth lying 
among classrooms)/√(total school + class + 
student + error variance in achievement 
growth)]. If we used this formula, we find effect 
sizes of .37 to .38 for reading and .32 to .45 for 
math, remarkably close to what we find using 
the gains models.  

 
9 The d-type effect size here is: [√(variance in 
achievement growth lying among 
schools)/√(total school + class + student 
variance in achievement growth)]. The growth 
models estimated here were quadratic in form, 
but we “fixed” the non-linear term in this 
model. 
 
10 The statistical computing package, HLM/3L 
version 5.25, calculates two kinds of residuals, 
ordinary least squares residuals and empirical 
Bayes residuals. For our purposes, the empirical 
Bayes residuals seem preferable, and it is these 
that are being correlated here. For a discussion 
of these different residuals, see Bryk and 
Raudenbush (1992, chap. 10). 
 
11 The careful reader might wonder whether the 
low correlations among residuals is produced by 
the unreliability of gain scores. This is probably 
not the case since the classroom-level residual 
scores being reported here are relatively free of 
this kind of measurement error. This is because 
variance due to the measurement errors that 
afflict gain scores is reflected in the within-class 
part of the model, but our residuals reflect 
variance among classrooms. As further 
evidence that this is the case, consider the 
residuals from a covariate adjustment model —
where the dependent variable (achievement 
status) is measured very reliably. When the 
residuals from covariate adjustment models are 
correlated as in the examples above, the results 
are almost identical. Thus, the instability of 
residuals reported here does not appear to be 
due to the unreliability of gain scores as 
measures of growth in student achievement. 
For a further discussion of this issue, see Bryk 
and Raudenbush (1992, p. 123-129). 
 
12 The effect sizes quoted here come from 
Brewer and Goldhaber (2000, Table 1, p. 177). 
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The effect size we are using is what Rosenthal 
(1994) calls an r-type effect size. Effect sizes in 
the r-family are designed to express the strength 
of linear relationships among variables and are 
suitable for assessing effect sizes in models like 
linear regression which assume such 
relationships. Rosenthal’s (1994) formula for 
deriving R2 from the t-tests in a regression table 
is the one used here. The formula for deriving r 
(the correlation among two variables) from a t-
test statistic is: r = √(t2/(t2-df). We simply 
square this to estimate R2. 
 
13 These studies suffer from an important 
shortcoming, however — the strong possibility 
that selection effects are operating. In 
secondary schools especially, teachers with 
advanced degrees often teach the most 
advanced courses so that even after controlling 
for obvious differences among students 
enrolled in more- and less-advanced classes 
(e.g., their prior achievement, prior coursework, 
motivation, and home background), 
uncontrolled selection variables, rather than 
teachers’ subject-matter training, could explain 
the results here. 
 
14 The reader is cautioned that the analyses 
conducted here did not use the cross-classified 
random effects hierarchical model discussed 
earlier and, as a result, do not take into account 
the nesting of pupils within classrooms across 
years. Additionally, the analyses reported here 
do not take into account possible complications 
in causal inference that arise when the kinds of 
teaching that students receive in a given year 
result from the kinds of instruction they 
received in previous years, or as a result of their 
prior achievement. The ways in which both the 
“cross-nesting” of students in different 
classrooms over time, and the endogeneity of 
instructional practices affect causal inference in 
research on teaching, and some newly 
developing strategies for coping with these 
problems, are discussed in Raudenbush, Hong, 
and Rowan (2002). 
 
15 The d-type effect size reported here is, in 
effect, a standardized regression coefficient. It 
expresses the difference among students in 
annual growth (expressed in terms of standard 

 
deviations in annual growth) that would be 
found among students whose teachers are one 
standard deviation apart in terms of experience. 
In this analysis, the standard deviation of 
teachers’ experience is 8.8 years, the 
unstandardized regression coefficient for the 
effect of experience on achievement growth is 
.18, and the standard deviation in “true” rates 
of annual growth among students is 21.64. 
Thus, d = [(8.8 * .18)/21.64]. 
 
16 The effects sizes are calculated as in endnote 
11. 
 
17 Ibid. 
 
18 This is the work of a team of researchers 
headed by Deborah Ball and Brian Rowan and 
including Sally Atkins-Burnett, Heather Hill, 
Robert Miller, P. David Pearson, Geoff Phelps, 
and Steve Schilling. 
 
19 The r-type effect size here is tiny, but it 
should be pointed out that it is based on a 
covariate adjustment model in which we are 
modeling students’ achievement status 
(controlling for prior achievement and many 
other variables). Effect size metrics expressing 
the relationship of this measure to “true” rates 
of growth in student achievement might be 
much higher, as the analyses of teachers’ 
certification status and degree attainment just 
above demonstrate. 
 
20 A report on this work can be found in 
Rowan, Schilling, Ball, and Miller (2001) and 
accessed at www.sii.soe.umich.edu. 
 
21 Relevant data were unavailable in the lower 
grades cohort. 
 
22 The effect sizes here are as in endnote 11. 
 
23 Ibid. 
 
24 In research on high schools, curriculum 
content is often indexed by course enrollment. 
For example, in earlier research, we used 
NELS:88 data to assess the effects of 
mathematics content coverage on student 
achievement in high schools. In these data, 
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variations in the content covered by students 
were assessed at the course level. Even at this 
very broad level of analysis, however, the 
effects of content coverage on achievement are 
evident in the data. For example, in a well-
specified covariate adjustment model 
controlling for students’ home background, 
prior achievement, and motivation, we found 
that an additional course in mathematics during 
9th and/or 10th grade results in a .13 standard 
deviation effect on students’ achievement status 
in the NELS:88 data (see Rowan, 1999). 
However, these findings could reflect selection 
bias, since course placement in high schools 
does not occur from random assignment.  
 
25 The benefit of a Rasch model is that it 
produces an equal interval scale that can be 
used with all teachers. 
 
26 The effect sizes here are as in endnote 11. 
 
27 This problem could be pervasive in non-
experimental research on instructional effects, 
as Cohen, Raudenbush, and Ball (in press) 
discuss. As a result, Raudenbush, Hong, and 
Rowan (2002) are developing analytic 
procedures to take this problem into account in 
estimating instructional effects.  
 

28 For example, one can estimate interactions of 
the sort being discussed here without first 
testing the assumption that the effects of 
instructional variables are random. In such 
models, one is therefore treating the 
interactions under analysis as “fixed effects.”  
 
29 One way to further illustrate this point is to 
compare the “effect sizes” from the random 
effects (i.e., variance decomposition) models 
discussed in this report with the effect sizes 
reported in experiments where the effects of 
deliberately designed teaching interventions are 
studied. Gage and Needels (1989), for example, 
reported the effect sizes for 13 field 
experiments designed to test the effects of 
interventions based on teacher behaviors found 
to be effective in process-product research. In 
these experiments, multiple instructional 
dimensions were altered through experimental 
manipulation. When these interventions 

 
worked, the experiments produced effect sizes 
ranging from .46 to 1.53. These effect sizes 
compare more than favorably to the kinds of 
effect sizes we reported from the random 
effects models estimated here, especially when 
one considers that the effect sizes reported in 
the intervention studies come from studies 
where achievement status and/or gains were 
used to calculate “effect size” metrics. 
 
30 In fact, one possible explanation for the 
“inconsistent” findings in prior process-product 
research might be that researchers using gains 
models or covariate adjustment models to 
assess instructional effects sometimes lacked 
sufficient statistical power to identify the effects 
of instructional variables on student 
achievement.  
 
31 Information on this work can be found at 
www.sii.soe.umich.edu. 
 
32 Information on this work can be found at 
www.sii.soe.umich.edu. Our results are similar 
to those reported in other studies of these same 
issues, especially Burstein et al. (1995) and 
Smithson and Porter (1994). 
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