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Abstract

Graph-based Semi-Supervised Learning (SSL) methods have had empirical success in a
variety of domains, ranging from natural language processing to bioinformatics. Such methods
consist of two phases. In the first phase, a graph is constructed from the available data; in the
second phase labels are inferred for unlabeled nodes in the constructed graph. While many
algorithms have been developed for label inference, thus far little attention has been paid
to the crucial graph construction phase and only recently has the importance of the graph
construction for the resulting success in label inference been recognized. In this report, we
shall review some of the recently proposed graph construction methods for graph-based SSL.
We shall also present suggestions for future research in this area.

1 Introduction

Semi-Supervised Learning (SSL) methods can learn from labeled data combined with unlabeled
data. While labeled data is hard and expensive to obtain, unlabeled data is often widely available.
Because of this desirable property, SSL methods have received considerable attention in recent
years (Chapelle et al., 2006). Graph-based SSL methods are particularly appealing because of
their empirical success along with computational efficiency (Zhu et al., 2003; Zhou et al., 2004;
Belkin et al., 2005; Bengio et al., 2007; Wang et al., 2008; Subramanya and Bilmes, 2008; Jebara
et al., 2009; Talukdar and Crammer, 2009). Most of these methods are transductive in nature i.e.
they can’t be used to classify an unseen test point in the future, though exceptions exist (Belkin
et al., 2005). Graph-based SSL methods have been been effective in a wide variety of domains
ranging from video recommendation (Baluja et al., 2008), protein classification (Tsuda et al.,
2005) to assignment of semantic types to entities (Talukdar et al., 2008). Theoretical justification
for graph-based methods is an area of active research (Lafferty and Wasserman, 2007; Niyogi, 2008;
Singh et al., 2009).

Graph-based SSL methods operate on a graph where a node corresponds to a data instance
and a pair of nodes are connected by a weighted edge. A few nodes in the graph are assigned
labels. This initial supervision separates graph-based SSL methods from spectral clustering meth-
ods (von Luxburg, 2007) which are unsupervised. Staring with this supervision, a graph-based
SSL algorithm assigns labels to other unlabeled nodes in the graph. In most cases, the objective
for label inference optimized by the algorithm results in an iterative process which amounts to
spreading labels from the labeled to unlabeled nodes over the graph structure. Hence, graph-based
SSL methods are sometimes also called Label Propagation methods. An alternative interpretation
is to view these methods as performing random walks on the graph (Zhu et al., 2003; Baluja et al.,
2008; Talukdar and Crammer, 2009).

As is evident from the discussion above, the graph on which learning is performed is a central
object for any graph-based SSL method. In many real world domains (e.g. the web, social networks,
citation networks, etc.), the data is relational in nature and there is already an implicit underlying
graph. Graph-based methods are a natural fit in these domains. However, for a majority of learning
tasks, the data instances are assumed to be independent and identically distributed (i.i.d.). In
such cases, there is no explicit graph structure to start with. The common practice is to create a
graph in the first step from independent data instances, and in the second step apply one of the
graph-based SSL methods on the constructed graph. Even though graph-based SSL methods have
been successfully applied to these tasks (Zhu et al., 2003; Subramanya and Bilmes, 2008), very
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little attention has been given to the graph construction part, with majority of the research focus
devoted to the post-graph construction learning algorithms. Only recently, importance of graph
construction for resulting success in label inference has begun to be recognized (Maier et al., 2009;
Wang and Zhang, 2008; Daitch et al., 2009; Jebara et al., 2009). In this survey, we shall review
some of these methods for graph construction and also suggest opportunities for future research.

In Section 2, we shall present the notations and terminologies used throughout the report.
Also, we shall present the assumptions common to all the methods reviewed.

In Section 3, we shall review two commonly used graph-construction methods: k-Nearest
Neighbor (k-NN) and ε-neighborhood. We shall briefly look at their properties and also list ad-
vantages of k-NN over ε-neighborhood.

In Section 4, we shall review the recently proposed method of graph construction using b-
matching (Jebara et al., 2009). The idea will be to induce regular graphs where all nodes have the
same degree (b). In contrast, popular methods like k-NN can generate irregular graphs. Through
a variety of experiments, Jebara et al. (2009) argue for the importance of regular graphs for graph-
based SSL methods. The graph construction process in (Jebara et al., 2009) involves two stages:
in the first step a sparse graph is constructed where all edges have weight 1. In the second step,
the edges are re-weighted using the Locally Linear Reconstruction (Roweis and Saul, 2000), among
others.

In Section 5, we shall review another recently proposed method for graph construction (Daitch
et al., 2009). In (Daitch et al., 2009), the concepts of Hard and α-Soft graphs are introduced. In
case of hard graphs, each node is required to have a minimum weighted degree of 1. While, in
case of α-soft graphs, this degree requirement is relaxed to allow some nodes (e.g. outliers) have
lesser degree. Daitch et al. (2009) also analyze properties of the induced graphs, which is probably
one of the first analyses of its kind. Effectiveness of these graphs in a variety of experiments are
also presented in (Daitch et al., 2009) which we shall briefly review. We shall also explore the
relationship between the method in (Daitch et al., 2009) to that of (Wang and Zhang, 2008).

In Section 6, we shall look at the method of kernel-alignment based spectral kernel design (Zhu
et al., 2005). The idea here is to construct a kernel to be used for supervised learning, starting with
a fixed graph and in the process transforming the spectrum of the graph Laplacian of the fixed
graph. Though this is not exactly a graph construction method, it provides interesting insights
into the graph Laplacian and its importance for graph-based SSL, which in turn may be exploited
for graph construction. We shall also briefly look at the relationship between (Zhu et al., 2005) and
(Johnson and Zhang, 2008). In (Johnson and Zhang, 2008), the relationship between graph-based
SSL and standard kernel-based supervised learning is explored.

Finally, in Section 7, we shall analyze the methods further and also suggest promising direc-
tions for future research.

2 Problem Statement

We are given a set of n points, X = {x1,x2, . . . ,xn}, sampled from a d dimensional space. We
shall interchangeably use the terms points, instances and vectors. Each point has a length-c label
vector associated with it, where c is the total number of classes. The complete label set is given by
Y = {y1,y2, . . . ,yn}. Labels for the first l points, Xl = {x1,x2, . . . ,xl}, are known. Ultimately,
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we are interested in inferring labels for the remaining n− l points, Xu = {xl+1,xl+2, . . . ,xn}. As
mentioned in Section 1, graph-based methods operate on a graph where each point is associated
with a node. In this report, we shall concentrate on the problem of constructing a graph on which
the above mentioned methods could be applied to learn labels for the points in Xu.

We shall represent the graph by G = (V,E,W ), where V is the set of nodes (|V | = n), E is
the set of edges (|E| = m) and W is the n× n edge weight matrix where weight of the edge (i, j)
is given by Wij . In the constructed graph G, the node corresponding to point xi will be called xi.
In such a graph, a weighted edge will connect two neighboring nodes. Unless otherwise stated, we
shall assume the following:

• The induced graph is undirected and that all edge weights are non-negative i.e. Wij = Wji

and Wij ≥ 0, ∀i, j

• Wij = 0 indicates the absence of an edge between nodes i and j.

• There are no self-loops i.e. Wii = 0, ∀i = 1, . . . , n.

Given that the nodes (V ) are fixed, the real problem is to learn the edge weight matrix W subject
to the constraints above. Some of the methods surveyed may impose additional restrictions on W
which we shall specify as we go along.

3 k-Nearest Neighbor and ε-Neighborhood Methods

k-Nearest Neighbors (k-NN) and ε-neighborhood are some of the most popular methods for con-
structing a sparse subgraph from a set of points. Both methods assume availability of a similarity
or kernel function using which similarity (or distance) between any two points in the data can
be computed. In case of k-NN, undirected edges between a node and its k-nearest neighbors are
greedily added. Finding the k-nearest neighbors in a naive way can be computationally expensive,
specially in case of large datasets. However, a variety of alternatives and approximations have
been developed over the years (Bentley, 1980; Beygelzimer et al., 2006).

In ε-neighborhood based graph construction, an undirected edge between two nodes is added
only of the distance between them is smaller than ε, where ε > 0 is a predefined constant. In other
words, given a point x, a ball (specific to the chosen distance metric) of radius ε is drawn around
it and an undirected edge between x and all points inside this ball are added.

k-NN methods enjoy certain favorable properties compared to ε-neighborhood based graphs.
For example, k-NN methods are adaptive to scale and density while an inaccurate choice of ε may
result in disconnected graphs (Jebara et al., 2009). An empirical verification of this phenomenon
on a synthetic dataset is shown in Figure 1. Also, k-NN methods tend to perform better in practice
than ε-neighborhood based methods (Jebara et al., 2009). Recently, Maier et al. (2009) show that
application of the same clustering algorithm (Normalized Cut, in this case) on two different graphs
constructed using k-NN and ε-neighborhood may lead to systematically different clustering criteria.
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Figure 1: k-NN and ε-neighborhood graphs constructed from a synthetic dataset (Jebara et al.,
2009) (a) The synthetic dataset, (b) ε-neighborhood graph, (c) k-NN graph (k = 10). The ε-
neighborhood is quite sensitive to the choice of ε and it may return graphs with disconnected
components as in (b).

4 Graph Construction using b-Matching (Jebara et al., 2009)

As we had discussed previously in Section 3, k-NN methods are popular in constructing graphs.
However, contrary to its name, k-NN methods often generate graphs where different nodes have
different degrees. A node v can be in the k-nearest neighborhood of more than k nodes, which in
itself results in v having degree greater than k. From example, consider Figure 2 which shows the
1-NN graph of a set of 5 points arranged in specific configuration. We note that the central node
ends up with degree 4 which is significantly higher than degree 1 of all other four nodes. In order

Figure 2: 1-NN graph for a set of 5 points. Note that the central node ends up with degree 4 while
all other nodes have degree 1, resulting in an irregular graph.

to induce a regular graph, a b-matching based graph construction process is proposed in (Jebara
et al., 2009). b-matching guarantees a regular graph in which each vertex has exactly b degree.

We shall use the same notations as in Section 2. The graph construction process outlined in
(Jebara et al., 2009) can be decomposed into the following two steps:

• Graph Sparsification: Given a set of n points with similarity defined between each pair of
points, a total of

(
n
2

)
edges (undirected) are possible. This will result in a very dense graph
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which can significantly slow down any subsequent inference on this graph. Hence, during
graph sparsification a subset of the edges are selected which will be present in the final
graph.

• Edge Re-Weighting: During this step, weights are learned for the edges selected in the
sparsification step.

4.1 Graph Sparsification

Let k(·, ·) be a kernel function used to measure similarity between two points. We define the
similarity matrix A ∈ Rn×n where Aij = k(xi,xj). Note that A is a dense and symmetric (as
k is symmetric). Sparsification removes edges by estimating a matrix P ∈ B (B is the space of
{0, 1}n×n matrices) where Pij = 1 implies an edge between points xi and xj in the final graph and
Pij = 0 implies absence of an edge between these two points in the final graph. We set Pii = 0,
i.e. there are no self-loops. A symmetric distance matrix D ∈ Rn×n can be constructed out of A
using the following transformation

Dij =
√
Aii +Ajj − 2Aij

(Jebara et al., 2009) note that k-nearest neighbor can be viewed as a graph sparsification process
which is optimizing the following optimization problem

minP̂∈B
∑
ij P̂ijDij

s.t.
∑
j P̂ij = k, P̂ii = 0, ∀i, j ∈ 1, . . . , n

where the final binary matrix P is obtained by the symmetrization step: Pij = max(P̂ij , P̂ji).
Even though the optimization satisfies the

∑
j P̂ij = k constraint, the subsequent symmetrization

step only enforces the constraint
∑
j Pij ≥ k, as we had discussed at the beginning of this section.

Sparsification by b-matching overcomes this problem by optimizing the following optimization
problem

minP∈B
∑
ij PijDij

s.t.
∑
j Pij = b, Pii = 0, Pij = Pji, ∀i, j ∈ 1, . . . , n

Please note that the degree (
∑
j Pij = b) and symmetrization (Pij = Pji) constraints are included

directly into the optimization and hence there is no need of any ad-hoc post-processing symmetriza-
tion step as in the case of k-NN. Even though the change from k-NN to b-matching may seem quite
trivial, there are significant differences in computation complexity. We shall discuss more about it
in Section 4.4.

4.2 Edge Re-Weighting

With the set of edges selected through matrix P in the previous section, we would like to estimate
the weights of the selected edges. In particular, we would like to estimate the symmetric edge
weight matrix W with the following constraint: Wij ≥ 0 if Pij = 1 and Wij = 0 if Pij = 0. Three
edge re-weighting strategies are presented in (Jebara et al., 2009). They are,
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• Binary (BN): In this case, we set W = P i.e. weights of all selected edges (Pij = 1)
are uniformly set to 1. This strategy may prevent recovery from errors committed during
estimation of P .

• Gaussian Kernel (GK): In this case, we set

Wij = Pij exp
(
−d(xi,xj)

2σ2

)
where d(xi,xj) measures the distance between points xi and xj , and σ is a hyper-parameter.
lp distance (Zhu, 2005), χ2 distance and cosine distance (Belkin et al., 2005) are some of the
choices for d(·, ·).

• Locally Linear Reconstruction (LLR): This re-weighting scheme is based on the Locally
Linear Embedding (LLE) technique (Roweis and Saul, 2000). Given the binary connectivity
matrix P , weights of edges incident on node xi (the Wij ’s) are estimated by minimizing the
following error

εi = ||xi −
∑
j

PijWijxj ||2

In this case, we would like reconstruct xi from its neighborhood information with
∑
j PijWijxj

representing the reconstructed vector. The resulting optimization problem is shown below

minW
∑
i ||xi −

∑
j PijWijxj ||2

s.t.
∑
jWij = 1, Wij ≥ 0, i = 1, . . . , n

In (Jebara et al., 2009), it is claimed that the matrix W obtained from the above optimization
is symmetric. However, with the symmetric constraint (Wij = Wji) not enforced during
optimization, it is difficult to see how that may be the case.

Anyways, With the edge weights (W ) determined, we now have a weighted graph constructed on
which any of the standard graph-based semi-supervised techniques e.g. Gaussian Random Fields
(GRF) (Zhu et al., 2003), Local and Global Consistency (LGC) (Zhou et al., 2004) and Graph
Transduction via Alternating Minimization (GTAM) (Wang et al., 2008) may be applied.

4.3 Results

Empirical evidence of importance of graph construction and its resulting effect on semi-supervised
learning is presented in (Jebara et al., 2009). In particular, graph construction using following
six combinations of sparsification and re-weighting methods are compared: { KNN, BM } × {
BN, GK, LLR }. For each constructed graph, three transductive learning methods: GRF, LGC
and GTAM are compared against their label prediction accuracy on unlabeled nodes. In these
experiments, all hyper-parameters (e.g. k, b, σ etc.) are heuristically set. Experimental results on
synthetic and two real-world datasets are presented. From these results we observe that in most
cases, b-matched graph improved performance compared to k-NN graph. Also, GTAM seems to
be effective compared to GRF and LGC, with GRF and LGC achieving comparable accuracy.
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4.4 b-matching Complexity

While the greedy algorithm for k-NN is well known, complexity of the known polynomial time
algorithm for maximum weight b-matching is O(bn3). Though recent advances in terms of loopy
belief propagation has resulted in faster variants of it (Huang and Jebara, 2007). A sketch of the
algorithm for bipartite graphs is shown in Appendix A of (Jebara et al., 2009).

4.5 Discussion

In (Jebara et al., 2009), the sparse matrix P is selected with one similarity measure while the edge
re-weights are estimated with respect to another similarity measure (e.g. GK and LLR) resulting
in a mismatch which may lead to sub-optimal behavior. It is worthwhile to consider learning both
jointly using one similarity measure, and with some added penalty in favor of sparseness.

In (Jebara et al., 2009), the hyper-parameters are heuristically set which may favor one method
or the other. In order to have a thorough comparison, a grid search over these parameters results
based on those would have been more insightful. Also, Computational complexity is one of the
major concerns for b-matching. It would have been insightful to have runtime comparison of
b-matching with k-NN.

As suggested in (Jebara et al., 2009), it will be interesting to see theoretical justification for
the advantages of b-matching, which is currently a topic of future research.

5 Graph Construction using Local Reconstruction (Daitch
et al., 2009)

Given a set of vectors (or points in high dimensional space) x1, . . . ,xn, (Daitch et al., 2009) ask
the question: what is the best graph that fits these points, where best is measured as per some
fitness criteria? As an answer to this question, two types of graphs (Hard and α-Soft graphs), their
properties and empirical comparison of these graphs to previously proposed graph construction
methods are presented in (Daitch et al., 2009). We shall look into details of each of these in this
section. We shall change the notations in (Daitch et al., 2009) as needed to make it consistent
with previous sections of this report.

5.1 Hard Graphs

As per the definition in (Daitch et al., 2009), hard graphs are graphs where each node is strictly
required to have (weighted) degree of at least 1. As before, W is the symmetric edge weight matrix
where Wij = Wji ≥ 0. Weighted degree, di, of a node i is defined as di =

∑
jWij . Self loops are

not allowed and hence Wii = 0, ∀i. The hard graph construction algorithm presented in (Daitch
et al., 2009) minimizes the optimization problem shown in (1).

min
W

f(W ) =
∑
i

||dixi −
∑
j

Wijxj ||2, s.t. di ≥ 1, i = 1, . . . , n (1)
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The degree constraints are necessary as an unconstrained minimization of f(W ) will result in
Wij = 0, ∀i, j. We note that f(W ) is similar to the LLE (Roweis and Saul, 2000) objective when
di = 1 ∀i. LLE pre-selcts the neighbors and allows non-symmetric edge weight matrix, where
some of the edge weights can be negative. In contrast, the graph construction method presented
in Daitch et al. (2009) performs neighborhood selection and edge weighting in a single step, the
edge weight matrix is symmetric and only non-negative edge weights are allowed. We shall now
look at an algorithm to solve (1).

Let w be a vector representation of the weight matrix W 1, with only positive weighted edges
considered. Note that while W is of size n× n, w is a vector of length m as we consider only the
edges currently present in the graph i.e. edges with positive weight. Let U be a n×m matrix with
Uie = 1 and Uje = −1 for each e = (i, j) ∈ E. Let V be a m×m diagonal matrix with

diag(V ) = w

Matrix V ’s diagonal stores weights of all the edges in E. Let x(k) be the kth column of the
n × d data matrix X whose ith row represents xi. We define the vector z(k) = UTx(k) and its
corresponding matrix Z = diag(z(1), . . . , z(d)). The Laplacian of the constructed graph, L, may be
decomposed as L = UV UT . f(w) (same as f(W ) since w is nothing but reshaped W ) may now
be re-written as

f(w) = ||LX||2F =
d∑
k=1

||Lx(k)||2 =
d∑
k=1

||UV UTx(k)||2

=
d∑
k=1

||UV y(k)||2 =
d∑
k=1

||UY (k)w||2 = ||Mw||2

whereMT =
[
Y (1)UT , . . . , Y (d)UT

]
and ||M ||F = (

∑
ijM

2
ij)

1
2 is the Frobenius norm. The resulting

optimization problem for hard graphs is shown below.

min
w

f(w) = ||Mw||2, s.t. di ≥ 1, i = 1, . . . , n (2)

The problem shown in (2) is a quadratic program in
(
n
2

)
variables (length of w). This is because

for the set of n nodes, a total of
(
n
2

)
(undirected) edges are possible. Optimizing (2) for all these

variables at once may be computationally infeasible (Daitch et al., 2009). Hence, an incremental
(greedy) algorithm is presented in (Daitch et al., 2009). The idea is solve the quadratic program
(2) initially for a small subset of edges and then incrementally new edges to the problem which
would improve the hard graph, and in the process remove any edge whose weight has been set to
zero. This process is repeated until the graph can’t be improved any further. New edges to be
added to the program are determined based on violation of KKT conditions (Nocedal and Wright,
1999) of the Lagrangian.

Some more details of this incremental algorithm (e.g. how to choose the initial set of edges
etc.) would have helped in improving our understanding of it (Daitch et al., 2009).

1equivalent to the Matlab operation: w = reshape(W > 0, 1, m)
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5.2 α-Soft Graphs

Sometimes it may be necessary to relax the degree constraint for some nodes. For example, we
may want to have sparser connectivity for outlier nodes compared to nodes in high density regions.
With this in mind, the degree constraint in (1) may be relaxed to the following∑

i

(max(0, 1− di))2 ≤ αn (3)

where α is a hyper-parameter. Graphs estimated with this new constraint will be called α-soft
graphs. If all nodes satisfied the hard degree requirement (di ≥ 1 i.e. 1−di ≤ 0, ∀i), then constraint
(3) is trivially satisfied. Each hinge loss term, max(0, 1− di), in the left hand side of (3) incurs a
positive penalty when the corresponding node xi violates the degree constraint i.e. di < 1. Note
that the value of f(w) =

∑
i ||dixi −

∑
j wijxj ||2 is decreased (improved) by uniformly scaling

down weights of all the edges. In that case, it is easy to verify that the constraint (3) will be
satisfied with equality. If we define η(w) =

∑
i(max(0, 1− di))2, then

η(w∗) = αn (4)

where w∗ is a minimizer of f(w) subject to constraint (3). Instead of incorporating constraint (3)
directly, the algorithm for α-soft graphs in (Daitch et al., 2009) incorporates the constraint as a
regularization term and instead solves the optimization problem shown in (5).

min
w

f(w) + µ η(w), s.t. w ≥ 0 (5)

where µ is a hyper-parameter. Let us now look at the algorithm for α-graph construction presented
in (Daitch et al., 2009), which minimizes (5). Note that the objective in (5) is not directly dependent
on α. We will see how that connection is established.

Let w be a solution to (5) for some given µ. In that case, following condition (4), w is also a
solution for an α

′
-graph where α

′
= η(w)

n . Additionally, as µ is increased, α
′

decreases accordingly.
This is because, as µ is increased, the degree violation penalty, η(w), is going to be reduced as the
objective in (5) is minimized. Hence, the algorithm starts with an initial guess for µ which is then
adjusted accordingly until α

′
comes close to α (the desired value), subject to some tolerance. In

this iterative algorithm, the problem in (5) is solved once for each value of µ.

5.3 Properties of the Graphs

The hard and α-soft graphs may not be unique in general (Daitch et al., 2009). A few other
properties of the hard and α-soft graphs are proved as well in (Daitch et al., 2009), which are
reproduced below.

Theorem 3.1. For every α > 0, every set of n vectors in Rd has a hard and an α-soft graph
with at most (d+ 1)n edges.

This theorem suggests that the average degree ( 2m
n ) of any node in the graph is at most 2(d+1).

For situations where n� d, this theorem guarantees a sparse graph. Empirical validation of this is
also presented in (Daitch et al., 2009). However, this bound will turn out to be very loose for high
dimensional data e.g. data from Natural Language Processing where instances often have millions
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of dimensions (or features). Daitch et al. (2009) also suggest that the average degree of a hard or
α-soft graph of a set of vectors is a measure of the effective dimensionality of those vectors, and
that it will be small if they lie close to a low-dimensional manifold of low curvature. Currently, no
theoretical (or empirical) validation of this claim is presented in (Daitch et al., 2009). However,
if it were indeed the case, then such graph construction process may be independently useful in
discovering dimensionality of a set of points in high dimensional space. This may also suggest
whether methods like Manifold Regularization (Belkin et al., 2005) is going to be effective on such
set of points.

Daitch et al. (2009) prove an additional theorem about planarity of induced hard and α-soft
(α > 0) graphs in R2.

5.4 Results

A variety of experimental results are presented in (Daitch et al., 2009) which demonstrate properties
of the constructed hard and 0.1-soft graphs (α = 0.1) as well as their effectiveness in classification,
regressions and clustering tasks. From Table 1 of (Daitch et al., 2009), it is interesting to note
that the average degree of a node in the hard and soft graphs are lower than the upper bound
predicted by Theorem 3.1. From the same table, we observe that hard and soft graph construction
time increases sharply as n increases, which raises scalability concerns for such methods.

Once the graphs are constructed, the label inference algorithm in (Zhu et al., 2003) used for
classification and regressions experiments. Performance of hard and soft graphs are compared
against k-NN and ε-neighborhood graphs. From the results in Tables 2 and 3 (Daitch et al., 2009),
we note that inference on hard and 0.1-soft graphs outperform these other graph construction
methods.

5.5 Relationship to LNP (Wang and Zhang, 2008)

The Linear Neighborhood Propagation (LNP) algorithm (Wang and Zhang, 2008) is a two step
process whose step 1 involves a graph construction step. In this case, the graph is constructed by
minimizing an objective (6) which is similar to the LLE objective (Roweis and Saul, 2000). As in
Section 5.1, the difference with LLE is that in LNP, the edge weight matrix W is symmetric and
that all edge weights are non-negative (these constraints are not shown in (6)).

min
W

∑
i

||xi −
∑
j

Wijxj ||2, s.t. di =
∑
j

Wij = 1, i = 1, . . . , n (6)

By comparing (6) with (1) from Section 5.1, we note that the hard graph optimization enforces
the constraint di ≥ 1 while the LNP graph construction optimization (6) enforces di = 1. In other
words, LNP is searching a smaller space of graphs compared to hard graphs.

6 Graph Kernels by Spectral Transform (Zhu et al., 2005)

Graph based transductive methods often try to strike a balance between accuracy (of the labeled
nodes) and smoothness with respect to variation of labels over the graph. Smoothness enforces
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the constraint that labels across a high weighted edge should not differ much. A central quantity
in determining smoothness is the graph Laplacian, a matrix computed from edge weights. In
(Zhu et al., 2005), it is noted that the eigenvectors of the graph Laplacian play a critical role in
the resulting smoothness and that the eigenvectors can be combined using different weightings
resulting in varying levels of smoothness. In (Zhu et al., 2005), such weightings of the eigenvectors
of the graph Laplacian are called spectral transforms. A spectral transformation based method
for estimating a graph kernel is presented in (Zhu et al., 2005), which will be discussed in this
section. We first start with a review of the basic properties of graph Laplacian and its relationship
to smoothness.

6.1 Graph Laplacian

Unnormalized Laplacian, L, of a graph G = (V,E) is defined as

L = D −W

where W is the symmetric edge weight matrix, and D is a diagonal matrix where Dii =
∑
jWij

and Dij = 0 for i 6= j. We note that L,D, and W are all symmetric n × n matrices. Given a
function, f : V → R, which assigns scores (for a particular label) to each vertex in V , it is easy to
verify that

fTLf =
∑
i,j∈V

Wij(f(i)− f(j))2 (7)

We note that minimization of Equation 7 enforces the smoothness condition as in such a mini-
mization, we shall end up with f(i) ≈ f(j) for edges with high Wij .

We know that Wij ≥ 0, ∀i, j and hence fTLf ≥ 0, ∀f which implies that L is a positive
semi-definite matrix. Let λ1 ≤ λ2 ≤ . . . ≤ λn and Φ1,Φ2, . . .Φn be the complete set of eigenvalues
and orthonormal eigenvectors of L. Smoothness penalty incurred by a particular eigenvector, Φi
is then given by

ΦTi LΦi = λiΦTi Φi = λi

Thus, as noted in (Zhu et al., 2005), eigenvectors with smaller eigenvalues are smoother. For
illustration, a simple graph (with two segments) and its spectral decomposition are shown in
Figure 3. From this figure we observe the following,

• λ1 = λ2 = 0, which is equal to the number of connected components in the graph (in this case
2). In general, A graph has k connected components iff λi = 0 for i = 1, . . . , k. Moreover, the
corresponding eigenvectors are constant within the connected components, which we observe
in the first two plots of Figure 3 (b).

• The eigenvectors become more irregular with increasing eigenvalues.

This association between smoothness and ranked eigenvalues (and corresponding eigenvectors)will
be exploited for learning smooth kernels over the graph is explained in next section.
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Figure 3: A linear-chain graph (part (a)) with two segments and its spectral decomposition (part
(b)). Note that the eigenvectors are smoother for lower eigenvalues (Zhu et al., 2005).

6.2 Kernels by Spectral Transforms

In order to learn a kernel K ∈ Rn×n which penalizes functions which are not smooth over the
graph, the following kernel form is considered in (Zhu et al., 2005)

K =
∑
i

µiφiφ
T
i (8)

where φis are the eigenvectors of the graph Laplacian L, and µi ≥ 0 are the eigenvalues of K. We
note that K is the non-negative sum of outer products and hence a positive semi-definite matrix
and hence a valid kernel matrix. We wold like to point out that in order to estimate K, an initial
graph structure is necessary as estimation of K is dependent on L which is the Laplacian of a fixed
graph.

In order to assign higher weight (µi) to outer product φiφTi of smoother eigenvector φi (and
correspondingly smaller eigenvalue λi) of L, a spectral transformation function r : R+ → R+ is
defined, where r is non-negative and decreasing. By setting µi = r(λi), we rewrite Equation 8 as
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follows
K =

∑
i

r(λi)φiφTi (9)

The spectral transformation essentially reverses the order of the eigenvalues. Construction of
kernels from graph Laplacians have also been the focus of some previous research (Chapelle et al.,
2002),(Smola and Kondor, 2003). For example, setting r(λi) = 1

λi+ε
(where ε is a hyper-parameter),

results in the Gaussian field kernel used in (Zhu et al., 2003).
One remaining crucial question is the choice of function r. Although there are many natural

choices, it is not clear up front which one is most relevant for the current learning task. Moreover,
tuning any hyper-parameter associated with any parametric form of r is another issue. In (Zhu
et al., 2005), these issues are handled by learning a spectral transformation that optimizes kernel
alignment to the labeled data 2. This is described in the next section.

6.3 Optimizing Kernel Alignment

Let Ktr be the l× l sub-matrix of the full kernel matrix K, with Ktr corresponding to the l labeled
instances x1, x2, . . . , xl. Let the l × l matrix T derived from the labels y1, y2, . . . , yl be defined
as: Tij = 1 if yi = yj and −1 otherwise. Empirical kernel alignment (Cristianini et al., 2001),
(Lanckriet et al., 2004) between Ktr and T is defined as

A(Ktr, T ) =
〈Ktr, T 〉F√

〈Ktr,Ktr〉F 〈T, T 〉F
(10)

where < ·, · >F is the Frobenius product3. Please note that A(Ktr, T ) is maximized when Ktr ∝ T .
In (Zhu et al., 2005), the kernel matrix K (as given by Equation 8) is estimated by maximizing
the kernel alignment objective in Equation 10, with the optimization defined directly over the
transformed eigenvalues µi, without any parametric assumption for r which would have otherwise
linked µi with the corresponding eigenvalue λi of L. Since the optimization is directly over the
variables µi’s, we need a way to encode the constraint that µi with lower index i should have higher
value (Section 6). In (Zhu et al., 2005), following order constraints are added to the optimization
to achieve this goal

µi ≥ µi+1, i = 1, 2, . . . , n− 1

The estimated kernel matrix K should be a positive semi-definite matrix and hence the kernel
alignment based optimization described above can be set up as a Semi-Definite Program (SDP).
However, SDP optimization suffers from high computation complexity (Boyd and Vandenberghe,
2004). Fortunately, the optimization problem can also be set up in a more computationally efficient
form. The resulting optimization problem is presented below

maxK A(Ktr, T )
subject to K =

∑
i µiφiφ

T
i

Tr(K) = 1

2Please remember that the goal in (Zhu et al., 2005) is to learn a kernel in the (transductive) semi-supervised
setting and so a few instances are labeled.

3〈M, N〉F =
P

ij MijNij
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µi ≥ 0, i = 1, 2, . . . , n
µi ≥ µi+1, i = 1, 2, . . . , n− 1

The trace constraint is needed to fix the scale invariance of kernel alignment (Zhu et al., 2005).
The problem can be equivalently rewritten as

maxK 〈Ktr, T 〉F (11)
subject to K =

∑
i µiφiφ

T
i (12)

〈Ktr,Ktr〉F ≤ 1 (13)
µi ≥ 0, i = 1, 2, . . . , n (14)

µi ≥ µi+1, i = 1, 2, . . . , n− 1 (15)

The kernel obtained by solving the above optimization is called Order Constrained Kernel (Zhu
et al., 2005), which we shall denote by KOC . Another property of the Laplacian is exploited in (Zhu
et al., 2005) to define an Improved Order Constrained Kernel, which we shall refer to as KIOC .
In particular, λ1 = 0 for any graph Laplacian (Chung, 1997). Moreover, if there are no disjoint
components in the graph then φ1 is constant overall4. In that case, φ1φ

T
1 is a constant matrix

which does not depend on L, with the product µ1φ1φ
T
1 acting as a bias term in the definition of

K.
In that case constraint (15) from above can be replaced with

µi ≥ µi+1, i = 1, 2, . . . , n− 1, and φi not constant overall (16)

We would like to point out that constraint (16) is meant to affect only µ1 and that too in connected
graphs only, as in all other cases φi is not going to be constant overall. Replacing constraint (15)
with (16) and solving the resulting optimization results in KIOC .

6.4 Results

Results from a large number of experiments comparing KOC and KIOC to six other standard
kernels: Gaussian (Zhu et al., 2003), Diffusion (Smola and Kondor, 2003), Max-Align (Lanckriet
et al., 2004), Radial Basis Function (RBF), Linear and Quadratic. Out of these, RBF, Linear
and Quadratic are unsupervised while the rest (including the proposed order kernels) are semi-
supervised in nature. All 8 kernels are combined with the same Support Vector Machine (SVM)
(Burges, 1998). Accuracy of the SVMs on unlabeled data is used as the evaluation metric. Experi-
mental results from 7 different datasets are reported. For each dataset, an unweighted 10-NN (with
the exception of one 100-NN) graph is constructed using either Euclidean or cosine similarity. In all
cases, the graphs are connected and hence constraint (16) is used while estimating KIOC . Smallest
200 eigenvectors of Laplacians are used in all the experiments. For each dataset, 5 training set sizes
are used and for each set 30 random trials are performed. From the experimental results presented
in (Zhu et al., 2005), we observe that the improved order constrained kernel, KIOC , outperformed
all other kernels.

4Otherwise, if a graph has k connected components, then the first k eigenvectors are piecewise constant over the
components.

16



6.5 Discussion

In the sections above, we reviewed the kernel-alignment based spectral kernel design method de-
scribed in (Zhu et al., 2005). At one end, we have the maximum-alignment kernels (Lanckriet
et al., 2004) and at the other end we have the parametric Gaussian field kernels (Zhu et al., 2003).
The order-constrained kernels introduced in (Zhu et al., 2005) strikes a balance between these two
extremes. In such spectral transformation based methods, it will be interesting to see how the
resulting edge weights (W ) vary with different spectral transformations.

6.6 Relationship to (Johnson and Zhang, 2008)

In (Zhu et al., 2005) and its review in the sections above, we have seen how to derive a kernel from
the graph Laplacian and effectiveness of the derived kernel for supervised learning. Johnson and
Zhang (2008) look at the related issue of the relationship between graph-based semi-supervised
learning and supervised learning. Let k be a given a kernel function and K the corresponding
kernel matrix. Let L = K−1 be the Laplacian of a graph. In that case, in Theorem 3.1 of (Johnson
and Zhang, 2008), it is proved that graph-based semi-supervised learning using Laplacian L = K−1

is the equivalent to a kernel-based supervised learner (e.g. SVM) with kernel function k.
In (Zhu et al., 2005), spectrum of the Laplacian of a fixed graph is modified to compute a

kernel. While in (Johnson and Zhang, 2008), the kernel is created up front using all the data and
without need for any a-priori fixed graph structure.

7 Discussion & Future Work

In this section we further analyze the methods reviewed in this report and suggest steps for future
work.

• Degenerate Solutions: Graph-based SSL methods may generate degenerate (or trivial)
solutions sometimes i.e. solutions where all nodes in the graph are assigned the same label.
In order to handle this issue, various heuristics e.g. Class Mass Normalization (CMN) (Zhu
et al., 2003) have been proposed. In CMN, class proportion information is taken into account
account and the unlabeled points are classified so that the output class proportions are similar
to the input class proportion. This is done by post-processing the output obtained from the
graph-based SSL method.

From Section 6.1, we know that the eigenvectors corresponding to the smaller eigenvalues are
smoother and in particular cases constant across each connected component. It will be quite
insightful to explore the relationship between spectrum of the Laplacian and the possibility
for degenerate solutions in a given graph. For a given algorithm, it will be useful to know the
types of graphs on which it is likely to produce degenerate solutions so that more principled
corrective steps can be taken accordingly. Transformation of the Laplacian may be one such
possibility.

• Regular vs Irregular Graphs: Jebara et al. (2009) emphasize the importance of regular
graphs (all nodes have same degree) for graph-based SSL compared to irregular graphs often
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generated by popular graph-construction methods such as k-NN. It is not directly clear what
effect node degrees have on the resulting classification. In under-regularized methods (Zhu
et al., 2003), it is conceivable that presence of a high degree node may have adverse effect.
In such cases, the algorithm may end up assigning most of the nodes the same label as the
high degree node, thereby producing a degenerate solution as discussed previously. Recent
methods have tried to address this problem by decreasing importance of high-degree nodes
through additional regularization (Baluja et al., 2008; Talukdar and Crammer, 2009). In the
light of these developments, it will be interesting to see whether the need for regular graphs
can be substituted by applying these new regularized methods on corresponding irregular
graphs.

• Construction based on Global Property: All the graph construction methods reviewed
so far emphasize on local properties of the graph e.g. each node should have certain num-
ber of neighbors (either exactly or approximately). There seems to be a lot more room for
exploration in terms of enforcing other node local properties or even global properties (e.g.
diameter of the graph). Enforcing global property directly may lead to combinatorial ex-
plosion and so certain efficiently enforceable approximation of the global property may have
to considered. Moreover, all induced graphs are undirected in nature. This is primarily be-
cause graph-based transductive methods are targeted towards undirected graphs. However,
transductive methods for directed graphs exist (Zhou et al., 2005) and so there is scope for
induction of graphs with non-symmetric edge weight matrices.

• Alternative Graph Structures: All graph structures considered so far have instance-
instance edges. There has been very little work in learning other types of graphs e.g. hybrid
graphs with both features and instances present in them. Such types of graphs are used in
(Wang, Z. and Song, Y. and Zhang, C., 2009), though the graph structure in this case is
fixed a-priori and is not learned.

• Including Prior Information: All the graph construction methods surveyed so far (Jebara
et al., 2009; Daitch et al., 2009; Wang and Zhang, 2008) use the locally linear reconstruction
(LLR) principle (Roweis and Saul, 2000) in some way or the other. For example, (Daitch
et al., 2009; Wang and Zhang, 2008) use variants of LLR during construction of the graph
itself, while LLR is used for edge re-weighting in (Jebara et al., 2009). This suggests that there
is room for exploration in this space in terms of other construction heuristics and methods.
For example, none of these methods take prior knowledge into account. Sometimes we may
know a-priori existence of certain edges and in the resulting graph we would like to include
those edges. Such partial information may regularize the construction method and result in
more appropriate graphs for the learning task at hand.

• Including Labeled Data: Unlike the empirical kernel alignment step in (Zhu et al., 2005),
none of the graph construction methods (Jebara et al., 2009; Daitch et al., 2009; Wang and
Zhang, 2008) exploit available labeled data during construction of the graph. This is related
to the comment above about incorporation of prior-information. Labeled data may be seen
as one type of prior information which could be useful in customizing the graph construction
for the current learning task.

• New Application Settings: Most of the experimental datasets considered in the papers
surveyed in this report have small number of instances and often small number of dimensions.
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Since the methods reviewed can incorporate unlabeled data and acquiring unlabeled instances
in most domains is often not hard, the number of instances input into the algorithms can be
readily increased. Also, in many domains (e.g. Natural Language Processing), the number
of dimensions (features) can run up to millions. It will be interesting to see effectiveness of
these methods in such settings.

8 Conclusion

In this report, we have reviewed several recently proposed methods for graph-construction (Wang
and Zhang, 2008; Jebara et al., 2009; Daitch et al., 2009). Locally Linear Reconstruction (Roweis
and Saul, 2000) based edge weighting and enforcement of degree constraint on each node is a
common theme in these methods. Daitch et al. (2009) further analyze properties of the induced
graphs, while Jebara et al. (2009) emphasize the need for regular graphs in graph-based SSL.
Additionally, we also looked at semi-supervised spectral kernel design (Zhu et al., 2005). Even
though the graph structure is fixed a-priori in this case, this method highlights useful properties
of the graph Laplacian and also demonstrates the relationship between the graph structure and
a kernel that can be derived from it. Finally, we suggested a few steps for future work on graph
construction for graph-based SSL.
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