
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1991

Performance Evaluation via Perturbation Analysis Performance Evaluation via Perturbation Analysis

Tarek M. Sobh
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Tarek M. Sobh, "Performance Evaluation via Perturbation Analysis", . May 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-38.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/366
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/366
mailto:repository@pobox.upenn.edu

Performance Evaluation via Perturbation Analysis Performance Evaluation via Perturbation Analysis

Abstract Abstract
In this paper we present an overview for the development of a theory for analyzing and predicting the
behavior if discrete event dynamic systems (DEDS). DEDS are dynamic systems in which state transitions
are caused by internal, discrete events in the system. DEDS are attracting considerable interest, current
applications are found in manufacturing systems, communications and air traffic systems, future
applications will include robotics, computer vision and artificial intelligence. We will discuss the
perturbation analysis technique (PA) for evaluation the performance of DEDS.

Keywords Keywords
communication networks, control theory, dynamic systems, discrete event systems, perturbation analysis,
performance evaluation, queueing networks

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-38.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/366

https://repository.upenn.edu/cis_reports/366

Performance Evaluation via Perturbation Analysis

MS-CIS-9 1-38
GRASP LAB 263

Tarek M. Sobh

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

May 1991

Performance Evaluation via Perturbation Analysis

Tarek M. Sobh

GRASP Laboratory

Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104

Abstract

In this paper we present a.n overview for the development of a theory for analyzing

and predicting the behaviour of discrete event dynamic systems (DEDS). DEDS are

dynamic systems in which st,ate tra.nsitions are caused by internal, discrete events in

the system. DEDS are attracting considerable interests, current applications are found

in manufacturing systems, communica.tions and air traffic systems, future applica.tions

will include robotics, computer vision and artificial intelligence. We will discuss the

perturbation analysis technique (PA) for evaluating the performance of DEDS.

Keywords : Communication Networks, Control Theory, Dynamic Systems, Discrete Event

Systems, Perturbation Analysis, Perforn~a~lce Evaluation, Queueing Networks.

1 Introduction

In this paper, we describe a recently developed framework for analyzing and evaluating the

performance of discrete event dyna,mic syster~ls (DEDS) called perturba.tion a.nalysis (PA)

[1,2,8]. T h e approach used in this framework is a quantitative a p p r ~ a , ~ h that focuses on the

performance measures of DEDS. There a.re other state space approaches that collcentrate

on the qualitative a,spects of DEDS [6,7,9,10], however, we shall concern ourselves only with

the PA technique a.s it is more suita.ble for a.nalyzing communication networks.

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in

which state transitions are triggered by the occurrence of discrete events in the system. Many

existing dynamic system have a DEDS structure, manufacturing systems and communication

systems are just two of them. The PA approach to analyzing DEDS is different from the

analysis techniques for the state space approach, the existence of a consistent and pre-

defined automata-like model of the system under consideration is not necessary to perform

PA. For example, if we consider a serial production line with A4 stations with a queue space

of size I(, for each station. Then the total number of states for such a system would be

(flz,(~i + 1))(2"), which can aillount to billions for relatively sillall values of K , and M.

It is quite clear that modeling such systerns as finite state machines is inefficient, if not

impossible. It should also be nleiltioned that the finite state machines approach is more

suitable for answering qualitative rather than quantitative questions.

Perturbation a.na1ysis (PA) is a, t,echnique that calcula~t~es the sensitivity of performance

measures of DEDS with respect to system parameters by aaalyzing its sample path. The

object of PA is to obtain the perturbed performance from a nominal experiment or sample

path without doing a perturbed experiment. To a,void doing illore than one experiment or

simulate a perturbed experiment is the goal of PA.

2 Infinitesimal Perturbat ion Analysis (IPA)

To present the idea behind IPA, we shall first introduce a simple system (see Figure 1). It

consists of a buffer, call it A, where messa.ges a,rrive and acre pla,ced in a FIFO queue, and is

connected via a link to another buffer, call it B, where the messages are received.

Consider the following definitions:

8 = link service time (s/bit)

H = header length (bits)

L; = length of message i (bits)

We define the "service time" to be the time it takes to transmit a nlcssage i from A to

B assuming the message does not wait in the queue before it gets sent. PVc denote this by

A r r i v i n g

Mcssagcs

Let us also define the "system time", ti , to be the time since a message i arrives at A till

it is completely received by B. Finally let us call our performance measure T(0, y). This can

Fig. 1. Link in a comniunicaiion nc\work.

k7el
Sourcc N o d c

A

be approximated by using the mean system time, T(0, y, AT), where

0 k ~ ~] ---+

D c s t i n a ~ i o n N o d c
U

Note that as N -+ m, T(O, y, N) converges to T(0, y).

For sensitivity estimates, we use dT/dO and dT/dy. A good estimate for dT/dO is

P = [F(o + AO, y, N) - f (0 , y, N)] /AO. (3)

Similarly a good estimate for dT/dy is

As can be seen, to obtain thc estimates above one nccds onc more expcriment at 0 + A0

and another aty + Ay.

The problein here is to cl~oosc a value for A0 (and similarly Ay). For, if we choose to

large a value we will not get a good estimate of the gradient. On the other hand, if we

choose A0 to be too small, we may amplify the noise interference present in ?(o, y + AT, N)

and F (8 , T, N). In this paper, however, we will not concern ourselves with this experimental

problem.

2.1 An Unperturbed Experiment

Figure 2 displays the time evolution for a scquencc of messages, that arrive and dcpart the

buffer of A, within a certain period of timc. Where A; is the time between the arrival of

and A4; (with thc exccption that Al is from the start of the expcrirnent). We define a

busy period (BP) to be thc time whcn the system is busy processing mcssagcs.

t t
Fig. 2. Tinlc cvol~~i ion 01 Ilic cs),crimrnl

In our example, we start off with the buffer empty, and have to wait a time of length Al

for the first message to arrive, and another X; for the messagc to be completely transmitted

(hence total time is Al + XI). However, during this time M2, followed by M3 arrive at the

queue and have to wait for MI to get fully transmitted. In the case of M2 the arrival timc is

A, + A, and the departure time is Al + X1 + X2. More generally, M; has an arrival timc

of to + ~ i = , Aj and a departure time of to + xi=, Xj, where lo = A1. Hencc we can define

the system time to be

where the sum is zero for the case when i = 1. Note that this sum only holds up until the time

of the complete departure of the fourth message (i.e. after the first busy period). Therefore,

we can rewrite the system time (as would apply to our specific example) in the following

way :

or more generally, we can define it for the lnth busy period as follows

Hence the average system time of a 1ilessa.g.e ca.11 be written a,s

2.2 Performing the IPA

We now consider the experinlent a.t ha.nd wit,ll the link service time set a t 19 + A0 (the

perturbed expel-iinent). In this ca.se we will have a.n increa.se in the tra.nsmission time

This means that Ml will ta.ke AX, longer to get, fully transmitted, hence 1\f2 will take

AXl + AX,, and so on. Hence in the first busy period w e have an increase in the system

time

At, = Cj=, AX,

= (AO/O) c;=~ A - Y ~

However, when we move to the next busy period we must take into consideration two

possibilities. Has the effect of Ad caused M4 to get completely transmitted after M5 arrives?

If this is not the ca.se (see Figure 3) then the next busy period can be represented using

equation (10). On the other hand, if this is the case then, returning to our example, we can

see from Figure 4 that

At5 = ASl + AX5. (11)

where AS1 is thc time where the first busy period has overlapped with the second. Hence,

it; follows that

in other words

' 1

' ,
' I

' I

. , ' .
' I

' 7

I I
' I

' I

1 '

E ' I ' ,

z

Inn UI~~~II~MIMII~~:::

*ll+ T i +

AXl+AX2+AXj

Fig. 3. P c ~ ~ ~ r r b ~ i ~ i o n s in ~ h c sample (,a111 lor c;lsc 1).

Fig. 4. I'crlurl~al~ons in Ihc s11nl)lc p,lth f o r casc i i) .

We can generalize the equa,tions further so as to represent the mth busy period (let

ASm-l(Ad) be the amount BP,,-l overlaps with the arrival of Mk,n+l).

Note that ASm-l(Ad) inclucles all effects of the previous busy periods. We are now ready

to define the average system time after performing the perturbation:

We are now ready to define the sensitivity of with respect to 6 :

dT/dO = lim lim A?(d, ?, N) / A d .
ae-o N-CXP

Now we assume that as the number of messages increases the sun~mations of busy periods'

overlaps becomes negligible. In other words:

Note that we will provide a, reason for this assumption later 011.

Hence, the correct measure of dT/dO is reduced to

12.I

d T / d @ = lim (h) H,/O.
N-m

nz=l

where
M n,

So finally the gradient estimate can be defined to he

We now try to estimate dT/dy. We note tha.t t.he ecluat.ion

tells us that y is independent of Li and 0.Therefore

It follows that

a t , = z;=, ay
= a? 1

Hence our estimator is trivially

Hence we can implement the following algorithm to calculate both dT/cly and clT/clQ at the

same time.

1. Initialize: Set J, X S U M , J,Sli114, H,tj'li!\J, CSl'Ail = 0 ;

Set T H E T A = 0;

2. Update: At departure of nest message (with service time observed to be SJ);

1.1) J + 1

1.2a) X S U M = XSUAZil + X J

1.2b) J S U M = JSI! M + 1

1.3a) HSlJAd = H,Sl:114 + AY,S'l;Al

1.313) c;lsrfnd = c;,wn/r + J ~ ~ Y ~ I

1 .4) If link is now idle then AY6s'111V1 = 0 and X'SlI'M = 0

3. Test: If J = N then go to OUTPUT else goto UPDATE ;

4. Output: dT/dB FZ H S U M / (N * T H E T A) ;

d T / d y FZ GSUIZl/A;;

It was show11 that under the assumptioils of small perturbation values and in the near-

absence of "dramatic" changes in the system's behavior due to the perturbation (i.e. as-

suming very little overlap between the busy periods, or, in other words, the system has

the property that limas-o limN-., (5) ~ k ~ = ~ Cr&nl ASm-I (A0) = 0) that an experimental

estimate, which converges t o the true value of dT/d0 as N -t oo, can be easily computed

while the nominal (unperturbed) experiment is evolving . It should be noted that this gra-

dient estimate is an infinitismal PA (IPA) estimate, and for "sufficiently small" Ad the IPA

estimate will be equal to the finite difference estimator. In other words we say

where 6 is very small.

However, one should notice tha,t the correct definition of the gradient involves letting

N -t oo first and then A0 + 0 for convergence to dT/dH, but a,s call be noticed in (25), the

order in which we take limits is reversed, for we let AH + 0 then let N -t oo. In order to be

able to switch the limits we r n ~ i a t mnkc the a.ccurnpt1011 thnt t h f s y s f c m snti.$,fie.r; :

liim li111
hT(N; AH)

= lim liin
af(lv; ao)

N-WAB-0 A#-OIV-czr' AH (26)

For it is this assumption that make it feasible to do the estimation for very small A0 and

then find the estimator for large N (hence changing the order of taking limits).

Then it follows that

lim ijB(A1) = dl1/d0.
N-02 (271

For the class of systellls where (26) holds, hence, we can nlalie excellent use of the PA

experiment.

3 IPA for a GI/G/ l System

We now consider the PA experinlent when applied to a G I / G / l queue. We start by defining

two sets of i.i.d(independent and idelltically distributed) randoin variables. First we have

the set of r.v.'s

('41, } . (2s)

this represents the sequence of interval times during a given experiment, and

represents a sequence of service times. Next, we assume tha t X1 is dependent on 0.

Finally, we make a n assumption that the system is stable, that is E(Xi) < E (A i) . We are

interested in the mean service time T(0). This - as mentioned earlier - is close to the value

of ? (B , N) for large N,or

lim F (0 , N) = T(0).
N-CQ

To estimate dT/dO, we first make the assumpt,ion t11a.t the r.v.'s X;(O) are ulliforillly

differentiable. We make use of this assuinptioil and of (9) and rewrite the equation (14) as

Also, we have

dX, /dO = lim AX, 1 4 0 .
AQ-0

Hence, as before we try and estimate the sensitivity. We have

dT/dO = lirnN-, lirnas+o (5) ~ z = ~ EC"ZZ1 E:'; axk,+,/AO
(33)

- - l i r n , ~ - ~ (8) E:',=, EM^ E:Z~ dd?im+, / d o

Thus our IPA estimator is finally

M n,, i

m=1 i=1 j=1

3.1 Sensitivity Analysis for Random Parameters

Earlier in our development, we stated that ?it is dependent on 0. \Ve now need to elaborate

more on this matter in order to displaj soille feature5 of the PA experiment. -1, can be

dependent on 0 in one of two cases. In the first case

Therefore

dXi/dO = (N + L;)

= &lo.
However, thcrc are other systems where

Then, trivially

dX;/dO = 1.

What can be observed from the two rcsults above is that A0 does not appear on [he RfIS.

Tltis is the wltole idea behind tlte IPA, for it means that we can find tlte eslitnale without

having to repeat .?he experiment at AU! Furthermore, in the former result, wc need not even

concern ourselves wilh the distribution of the r.v. X, . In the lalter, case we don't even need

to know 0 .

We can now safely make the assumption that clX;/dO call be expressed as $(Xi, 0) .

The following is an algorithm for estima.ting dXi/dO:

1. Initialize: Set J, X S U M , HSUM = 0;

2. Update: At departure of next inessage (with service time obscrvcd to be X J) ;

1.1) J + 1;

1.2) X S U M = X S U M + P S I (X J , T H E T A) ;

1.3) I ISUM = HSUM + X S U M ;

1.4) If linl< is now idle then X S U M = 0;

3. Test: If J = N thcn go to OUTPUT else goto UPDATE ;

4. Output: clT/dO w I ISUhd/N;

3.2 Consistency of IPA

We now want to insure that the assumption that

lim tjo(N) = dTld0.
N-rm

is solid. But, assuming for tllc moment that the above assumption is true, wc can also make

the following inference :

lim E(ijo(N)) = dT/dB.
N 4 m

We can prove this fact for an M/M/1 (due to the simplicity of the proof). This system

is described by an exponentially distributed arrival times, with rate X and mean l / X , and

by an exponentially distributed service times with mean 0. Finally the trafic intensity is

defined by p = XO. We are also given

T(O) = @/(1 - P)

E (B) = 0/(1 - P) (41)

E (B) ~ = 202/(1 - p)3

where B is a r.v. for the time length of an arbitrary busy ~ e r i o d . Differentiating T, wc

get

dT/dO = 1/(1 - p)2. (42)

Also since we can see that 0 is a scale parameter of Xi, we have

Since we are assuming that the estimate is consistent we can say

Looking at X:. we can see that it is the time from the start of a busy pcriod till the

departure of the j th message in this busy period. This summation can be rewritten as the

12

time from the start of the busy period to the time of the arrival of message j (denoted by

zj), plus the system time of the message. Or,

Now working wit11 the expected value of g (to simplify our proof) we get

Analyzing the above equation we see that the expected system time was defined by us

earlier to be T(0). On the other hand, E(zj) is the expected time for the message to arrive.

Hence, one of the following two cases may be the situation. Either the server is idle (denote

that by I), or the system is busy (denote that by b). In other words

But when the system is idle there is no busy period, therefore zj is zero. Therefore

where pb is the utilization of the server p, and E(zjlb) is the average time of a busy period

seen by a random arrival into the BP (which has been found to be E(B)2/2E(B)) . Thus

going back to E(g), we now have

Substituting the values the we are given in (41) we get

thus proving the assumption made in (39).

4 IPA for General Networks

In the previous scction, the main ideas of infinitismal perturbation analysis were illustrated

using a single server queue model of a communication link. To make use of IPA in realistic

situations, we have to look at IPA for more general systems. We are going to address the

problem of finding IPA algorithms for the case of a simple production line with just two

machines and then for a general network of servers.

4.1 IPA for a Simple Production Line

IPA can be performed for a simple production line consisting of two servers (machines) and a

buffer in between as shown in the figure. The production line can be thought of as a system

consisting of two computers and one buffer.

BufCer (Size D)

hlachine Machine

Supply a T w hro;k!hput
Uninterrupted

of
Parts

A simple production line. ,

Server 1 (S1) is a machine whose cycle time depends on a parameter 01. Wc can assume

that S1 has an uninterrupted supply of parts to work on. After S1 finishes its work cycle

on a part, it places the part in thc buRer. The second machine S2 picks one part from thc

buffer, works on it for a cycle time (which depends on a parameter 0 2) and then releases it

to a finished goods arca. The size of the buffer is B. If the buffer is full when S1 completes

a part then the part stays at S1, which is then unable to work on anothcr part and is said

to be blocked. S1 remains blockcd until S2 finishes its current cycle, releases its part, and

takes the next part from the buffer, thereby releasing a buffer space. We shall assume that

all transfers take place in a negligible amount of time, and that the finished goods area is

never blocked. The performance measure we shall consider of interest for this system is its

steady state throughput (number of parts produced per unit time) which we shall denote

r (& , 82). We can define an experiment on this system, starting with no parts in S1, S2, or

the buffer, and ending when the Nth part is completed by S2. If T is the lcngth of time for

this experiment,, then the experimental estimate of the throughput is

.i(01,82, N) = NIT

Under some conditions, this estimate will satisfy

lim +(01,02, N) = 7(01,02)
N4oo

which is desired for a good experimental estimate.

Nominal sample path for the production line.

A typical sample path is shown in the figure with N = 10, Xi and Yt: denotes the cycle

time for S1 and S2 for the it11 part. The vertical axis represents the number of parts at

S2 and at the buffer. The size of the buffer B is 2 for this example, part i is denoted

by Pi and dashed lines implies that S2 is idle, crosses implies that S1 is blocked. Our

goal then is to develop an IPA algorithm to estimate d ~ / d O for this system. Introducing a

perturbation A8 in this system, the perturbed sample path is shown in the figure . Where

AXI=(X;(O1 + A &) - Xi(&)) denotes the change in cycle times a t S1 due to a change AO1 in

the parameter 01. I t should be clear that there is an implicit assumption for the perturbed

path shown in the figure, namely that the perturbations are small enough so that the ordcr

of events does not change, such assumption is standard in IPA.

m l + a 2 A x 1 + . , , A X 3 A x , + ... A X , AXI+. . . A X 5 A x I + A x 2 ml+M2+ A X 6 M i e A x 2 * AX6*AX7

I . y :-+I :--+I r" 9 -
s, 1

X I ; x 2

s, - - - - - - - - - - - . - -
Y, :

:+
' A x
t

-START OF E X P ~ I M E N T TIME ---+

Perturbations in the sample path lor the production line.

With the above assumption, stating the IPA algorithm becomes particularly simple.

Letting AC1 and AC2 be accumulators associated with S1 and S2, AC, is the perturbation

a,t ,Sj for the last part tha.t left Sj, and the arrows (t I) shows the va,lues of the accumulators.

Then we can develop three rules, the first is that whenever a part Pi has bccn served at S1

the first accumulator is incremented by AX;, the second is that if Pi finds S2 idle, then AC2

gets the value of ACI and finally if Pk unblocks Sl by departing from S2 then ACI gets the

value of AC2. We can then procced to write the algorithm for calculating the gradient of 01.

At the end of the experiment, A T = AC2, and as shown above AC2 is the sum of some

of the AX; values, say for i E I . Under the assumption that the random values X;(O) have

the property that dX;/dO can be expressed as $(X;, 0), we can say that

dT -- AC2 dX;
- lim - - - = C$(Xi ,Ol)

dOl nol-0 AO1 - 5 do1

and since N is fixed by definition of the experiment, then

Which implies that if we accumulate $(Xi, 0) instead of AX;, in the first rule above, and call

the accumulators Al and A2, then after the experiment is performed, the value -(N/T2)Az

will be the IPA estimate of d.i/dOl. The algorithm is then developed as follows :

1. Initialize: Set Al, A2 = 0;

Set THETA1 = 4;

2. Update: Whenever a part (say Pi) completes service, check these conditions :

1) If Pi completed service at Si then

Al +-- Al + PSI (Xi , THETA1);

2) If Pi leaves S1 and terminates an idle

period of Sz then A2 + Al;

3) If Pi leaves Si and terminates a blockcd

period of Sl then Al t A2;

3. Test: If Sz has completed N parts go to OUTPUT

else goto UPDATE ;

4. Output: Let T be the total time since the start of the experiment;

The IPA estimate of d ~ / d O is -(N/T2)A2.

4.2 IPA for General Networks with Finite Buffers

Considering a general network with finite buffers, having a single server at each station,

we can generalize the algorithm described above easily to allow for more than two servers.

It should be noted that the only times when perturbations propagate from one server to

another are when idle or blocked intervals are terminated by a customer moving from one

server to another. Thus the propagation rules 2 and 3 in the above algorithm can be modified

by allowing for any servers S; and Sk instead of S1 and S2 and naming the associated

accumulators A; and Ak and thus replacing A2 t A1 by Ak t A;. In general network it

is possible to have a situation of "chain" blocking, where, for example, Sk is blocked by S,,

and then in turn the buffer a t SIC gets full and it ends up blocking Sj . In this case we just

need to implement the propagation for each unblocked server in turn, but there is no change

in the rule. A further generalizatioil would be to change the first condition statemeilt in the

2-server algorithm to allow the use of the accumulators associated with different servers. It

is also possible to state the algorithm in such a way so that it can compute I(gradients

at the same time as follows : (Aij is the accumulator at S; for gradient with respect to Oj)

1. Initialize: Set Aij, i = 1, ..., I(; j = 1, ..., K ;

Set THETA; = a;, i = 1, ..., I(;

2. Update: Whenever a customer (say C) completes service, check these conditions :

1) If C completed service a t S; then

A;; + Aii + PSI (i , X, THETAi) ;

2) If C leaves S1 and terminates an idle

period of S, then Amj t A;j,

for j = 1, . . . , I(; (If there is a chain of blocking

then continue this procedure through the chain)

3. Test: If Send has completed N parts go to OUTPUT

else goto UPDATE ;

4. Output: Let T be the total time since the start of the experiment;

The IPA estimates of the I(gradients d~/dO,

(j = l , ..., I<) are-(N/T2)Aendj (j = l , ..., I () .

Extensions of IPA

In some cases, the IPA tecl~niquc discussed above will fail to work. One instance might be due

to the assumption that small changes in the system parameter 8 will not cause coalescing of

busy periods in a GI/G/ l queue because of small A0. Suppose that the performance measure

of interest is the average number of messages sent between idle periods of a comnlunicatio~l

link. If we model the link as a single server queue, this performance measure is the average

number of customers served in a busy period (BP). Denoting this average by P(O), then a

simple experimental estimate for P (0) would be to observe M BPS and then let

where n, is the number of customers served in BPm. Considering the arguments pre-

sented in the IPA, we can see that IPA is based entirely on the assumption that no BPS

will coalesce. If we make A0 small enough so that no BPS coalesce, then each nm value

will remain the same, so that there will be 110 change in the estimate of the performance

measure. Thus, the IPA estimate of sensitivity will be zero ! It is clear that this is wrong

and thus IPA failed in this example. IPA ignores the cffects of some events in the systcm,

when the probability of occurrence of these events, multiplied by the effect of the events

on the performance is significant, IPA fails. This motivates some extensions which enable

gradient estimation for a wider class of systems.

5.1 Smoothed Perturbation Analysis (SPA)

Motivated by the failure of IPA to work for the simple case above, the idea of using condi-

tional probabilities was introduced to develop an extension for the IPA. A conditioning vari-

able can be used to dccompose the gradient estimate expectation expression. Thc fact that

more information is used in developing the conditional probability counts for the "smoother"

kind of performance measure estimate curve that is obtainable by using this method. For

example, we can ask the question, for a given AO, what is the expected change in the value

of n;, based on the observed BP,.

5.2 Extended Perturbation Analysis (EPA)

For systems tha t can be represented by markov chains, a new approach that may overcome

the potential inconsistency of IPA can be applied. T h e idea behind the extended perturbation

analysis is the fact that the perturbed and unperturbed systems should be st,atistically

evolving similarly once they enter a, colnilloll state .r, due to their ina.rlio\iian propertj.. 'This

method works by choosiilg a finite A0 and predicting, from the nominal path, where the

perturbed pa.th would 11a.ve bra.1lchec1 to a, different sta.te, say y, ~vhile the nomina.l pa.th

continues in, sa.y, s ta te x. Up to this point, an IPA-like estimator is used to compute the

effects of perturl~a~tion, but a,t this point, the computa.tion is "frozen". T h e a,lgori thm then

waits for the system to enter state y during the nomina.1 path, then EP.4 restarts. When an

event order change occurs, the state sequences of the noininal path (NP) and the perturbed

path (PP) may or may not start t,o differ depending on whether some discontinuous change

is involved (e.g., a job originally going to server A mav now go t o server B). As shown in the

figure below, if wl and wz are two state sequences of a Markov DEDS and the state sequence

jumps on from S , on wl to S, on u2 inst.ea.d of Sh on d l , suhsecluent perturha.tions in\:olving

state changes may cause further devia,tions so that a perturbed pa.tl1 could be ma.cle u p from

segments of s ta te sequences from wl? u2 ,..., uj , . ..

We can see right way that EPA cannot be as efficient as IPA, since it may remain "inac-

tive" for significant sections of the nominal experiment. However, there are two factors that

make its performance bet,t,er tha.n one might expect,. The first is tha.t in most applica.tions

we do the gradient estimation wit11 respect to a number of para,meters simultaneously, it will

probably turn out that several of the gra.dient computa,tions are "active", on average, during

the observations and the sa.vings is still better compared to mu1 tiple experimentation. Thc

second is that from a practical point of view, one can often aggregate the states of the system

to fewer subsets, and use the aggregate state to decide whether to activate or deactivate the

EPA calculation. Not only does this keep the computation active for longer segments of thc

experiment, but it also enables EPA to be applied to non-Markovian systems.

9: ~ e ~ ~ n , ~ D ' ~ u p ~ t ~ ~ o ~ ~ m , ~ g ~ ~ z z ~ d ~ ~] ~ ~ ~ ~ ~ ~ ~ ~ m m ~ a a ~ e e ~ S s s o o ~ P ' s ~ s ~ S a ~

Fig. 4. State sequences of a Markov DEDS.

-- - - - - -+ Actual perturbed path (PP)
5 Nominal path (NP) . . . Constructed perturbed path (CPP)

u-*G-.*

5.3 Other Perturbation Techniques

Another Perturbation technique is finite perturbation analysis (FPA), this technique was

introduced to overcome the IPA assumption that events do not change order. However, FPA

considers changes in order of events to a pre-specificd limit, for example, it may consider

only "first order" changes, that is, changes in the order of adjacent events, and ignores any

effects of changes in order beyond adjacent events. The way it works then is to introducc

perturbations and propagate them while observing the nominal path, but limiting its calcu-

la-tions by only extra.pola.ting to predict the effect of such changes in order. Origillally FPA

was heuristic and experimental in nature, however, recent research has been performed to

provide more theoretical foundations for it.

Other techniqucs to make IPA work include changing the system parameter under con-

sideration to transform problems into "easier" versions, or to versions that have already bcen

solved. Using a different representation for the system sometime helps in performing IPA.

Research Issues and Future Work

Many problems regarding discrcte event dynamic systems in general, and perturbation anal-

ysis as an cvaluation technique remains opcn. For example, performing PA for a discrcte

parameter 0 is one such interesting problem. In practical systems, many paramcters (such

as buffer sizcs, or number of servers a t a station) are discrete in nature. It should bc noticccl

that IPA, by its nature can be applied only to continuous parametcrs. Understanding and

expanding the domain of IPA necds to be addrcssed, in fact, to "automate" the process of

generating algorithms to calculate the scnsitivity of a performance measure remains an open

problem. To be able to construct a preprocessing stage, whcre its inputs are the system

specification and the performance measurc and parameters of interest, and the output as

an IPA algorithm to bc run while the nominal experiment is periormcd, is one challenging

problem for researchers. Morc work still rcmains to be done on developing eficicncy and

accuracy measures for the PA output. Trying to get the "maximum" amount of information

froin a sample path is anothcr long-tcrm goal.

References

[l] Xi-Ren Cao, "The Predictability of Discrete Event Systems", Proceedings of the 27""

Conference on Decision and Control, December 1988.

[2] Y. Ho, "Performance Evaluation and Perturbation Analysis of Discrete Event Dynamic

Systems", IEEE Transactions on Automatic Conlrol, July 1987.

[3] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and

Computatioiz, Addison-Wesley, 1979.

[4] Zvi Kohavi, Switching and Finite Automata Theoiy, McGraw-Hill, 1979.

[5] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-

Hall, 1981.

[6] Yong Li and W. M. Wonham, "Controllability and Observability in the State-Fccdback

Control of Discrete-Event Systems", Proc. 27th Conf. on Decision and Contr~ol. 1988.

[7] C. M. ~ z v e r e n , Analysis and Control 0.f Discrete Eveat Dynamic Systems : 4 .%ate

Space Approach, Ph.D. Thesis, hlassachusetts 1nstitutc of l'echnolog~., .4ugust 1989.

[8] Rajan Suri, "Perturbation .Analjrsis : The State of the .4rt and Research Issue5 Ex-

plained via the G I / G / l Queue", Proc. of t h t IEEE, Januarj. 19S9.

[9] P. J. Ramadge and W. Ad. ?Vonham, "Modular Feedback Logic for Discrcte Event

Systems", SIAM Journal of Control and Optimizatio7z, Septeinber 1987.

[lo] P. J . Ramadge and W. M. \;lionham, "Supervisorj, C'o~ltrol of a Class of Discrcte Event

Processes", SIAM Journal 0.f Corztrol and Optirnizat~orz, January 1987.

[ll] G. E. Rkvbsz, Introduction to Fo r~na l La~zgwag~s, hlcC:ran.-Hill. 1SS.5.

	Performance Evaluation via Perturbation Analysis
	Recommended Citation

	Performance Evaluation via Perturbation Analysis
	Abstract
	Keywords
	Comments

	tmp.1186496685.pdf.AzEST

