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Local Matching of Surfaces 
Using Critical Points 

Abstract 

The local matching problem on surfaces is: Given a pair of oriented surfaces in 3-space, 

find subsurfaces that are identical or complementary in shape. A heuristic method is 

presented for local matching that is intended for use on complex curved surfaces (rather 

than such surfaces as as cubes and cylinders). 

The method proceeds as follows: (1) Find a small set of points-called "critical 

points" -on the two surfaces with the property that if p is a critical point and p matches 

q, then q is also a critical point. The critical points are taken to be local extrema of 

either Gaussian or mean curvature. (2) Construct a rotation invariant representation 

around each critical point by intersecting the surface with spheres of standard radius 

centered around the critical point. For each of the rt<sulting curves of intersection, 

compute a "distance map" function equal to the distance from a point on the curve to 

the center of gravity of the curve as a. function of arc length (normalized so that the 

domain of the function is the interval [0,1]). CaB the set of contours for a given critical 

point a "distance profile." (3) Match distance profiles by computing a "correlation" 

between corresponding distance contours. (4) Use maximal compatible subsets of the set 

of matching profiles to induce a transformation that ma.ps corresponding critical points 

together, then use a cellular spatial partitioning technique to find all points on each 

surface that are within a tolerance of the other surface. 
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1. Introduction 

The local matching problem for surfaces is: Given two surfaces in 3-space, find 

subsurfaces (one from each surface) that are similar in shape. Of course, there are many 

possible interpretations of "similar in shape." In this paper, we are concerned with rigid 

matching of noisy data. Thus, we will take "similar in shape" to mean that for each 

pair of matching regions there exists a rigid motion that can be applied to one region 

that brings all points of each region to within a fixed tolerance of the other region. We 

will present a heuristic method for local matching that will work on a broad class of 

surfaces, but is geared toward irregularly shaped surfaces. 

2. Motivation 

Local surface matching is important in analyzing how objects fit together. Here are 

some possible applications: 

2.1. Biochemistry 

Interaction of two complex organic molecules (e.g. protein) occurs when geometrically 

complementary surface sections come together [7]. Although the molecules are not 

always complPtely rigid, they assume certain well-defined shapes and the rigid model 

remains useful [11]. Although other factors may influence the interaction, the area of the 

matching surfaces is important in predieting the likelihood of a reaction mode. Thus, 

local matching could be used to screen pairs of molecules for possible reactions and find 

the most likely configurations of complexes. 

2.2. Jigsaw puzzles 

A system for assembling three-dimensional jigsaw puzzles clearly requires local surface 

matching in order to find how pairs of pieces can fit together. Of course. additional 

higher level algorithms would be needed to control the puzzle assembly. See [9J and [5] 

for papers on two-dimensional jigsaw puzzle matching. 
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2.3. Scene analysis 

Only portions of objects in a scene may be visible in a single picture. This limits the 

methods that can be used to recognize objects. One approach is to use color or texture 

to recognized objects. However, in many applications this information is not available or 

not unique enough to disambiguate objects. Another approach is use silhouettes to 

recognize the objects. Often, however, silhouettes will not be sufficient for recognition. 

A more general approach is to use surface geometry (obtained through stereo, shape 

from shading or structured light) for recognition. One approach to the identification 

problem is to integrate multiple views of an object [3, 4] in order to obtain a complete 

object shape description that can then be matched using any traditional matching 

method [2] (for example, moments). Often, it may not be possible or convenient to 

obtain multiple views of a scene, and objects may still be occluded. Local matching can 

be used to recognize objects when only parts of the surfaces can be reconstructed. 

3. Previous work 

Oshima and Shirai [8] described a method for recogmzmg objects that uses local 

matching. Structured light was used to obtain three-dimensional coordinates from a. TV 

picture. The resulting points werP segmented into planar or quadric surface regions. A 

graph was then built describing the regions and relations between them. This graph was 

matched against graphs that were constructed while the system was in a "learning 

mode" in order to obtain a match. 

This method assumes that the surfaces can be decomposed into well defined patches 

and tha.t patches will correspond on two matching surfaces. Thus, the method is more 

suited for matching surfaces of objects that are the same, and would not be suitable for 

applications in which a surface fit is to be found (for example fitting three-dimensional 

jigsaw puzzle pieces). 

Watson and Shapiro [10] presented a method for local matching of images of three­

dimensional objects, but they worked with line drawings rather than surface data. 
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4. Surface representation 

There are several representations m common use for surfaces [1], including quadric 

patches, spline patches and polygonal networks (sometimes called "polyhedral surfaces"). 

We have chosen to represent surfaces by networks of polygons-in particular 

triangles- because of the ease with which geometric operations necessary to our matching 

method can be done on triangles. Any surface can be represented by triangles to as close 

a tolerance as desired. 

5. Matching method 

Each surface to be matched is processed in order to extract certain features that can be 

used in matching and construct a rotation and translation independent representation. 

The actual matching can then proceed quickly. This preprocessing is particularly 

advantageous when a surface has to be compared against a number of other surfaces. 

Our matching method works as follows: 
Preprocessing 

1. Identify a small set of points on each surface ("critical points") with the 

property that points in this set should match other points in the set. 

2. Construct a representation of surface shape in the neighborhood of each 

critical point (called a "distance profile") which is rotation and translation 

invariant. 

Matching 

1. Compare all pairs of distance profiles from the two surfaces for matches. 

2. Find maximal compatible sets of pairs of matching profiles. (A set 1s 

compatible if there is a single transformation which, when applied to one 

surface, brings together all the corresponding critical points from the set.) 

3. For each set of profile pairs, apply the transformation mentioned in step 

2 and find all points on each of the two surfaces that are within a tolerance 
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of the other surface. 

5.1. Critical points 

Since curvature at a point on a surface depends only on the shape of the surface in a 

small neighborhood of a point, the curvatures at corresponding points on matching 

regions should be the same. In particular, maxima and minima of curvature should 

occur at corresponding points on two matching regions. Thus, we can use maxima and 

minima of curvature as the points around which the distance profile representation is 

constructed. We shall call maxima and minima of curvature "critical points." 

There are several "curvatures" defined on surfaces, including Gaussian curvature and 

mean curvature. If mean curvature is used, then saddle points on a surface will not be 

identified as critical points. If Gaussian curvature is used, then other points which would 

have been identified as critical points by mean curvature will be missed. Therefore, it is 

best to use minima and maxima of both mean and Gaussian curvature for critical points. 

5.2. Finding critical points 

We have defined critical points to be maxima or mm1ma of Gaussian or mean 

curvature. To find critical points, we compute an approximation to curvature at each 

vertex of a triangulated surface. Then any vertices that have a curvature higher than all 

vertices within a fixed neighborhood (whose size is a parameter selected by the user) are 

identified as critical points. 

In many cases, we may not have mathematical descriptions of the surfaces to be 

matched in a form from which the curvature can be computed directly. We assume that 

only polyhedral approximations to the surfaces are available. Thus, we must 

approximate curvature of an underlying surface from the triangulated surface. To 

compute curvature at vertex V, we fit a polynomial surface to vertices within a cylinder 

whose axis is the normal at V (where AIW"ID is a user-selectable parameter) and whose 

radius is AIWlD. (The cylinder is used because a function of the form z = !(x,y) is 

fitted.) To find these vertices, a region growing procedure is used. First we convert to a 
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coordinate system in which the normal at Vis parallel to the z axis. Then we initialize 

region R to contain an arbitrary triangle having V as a vertex. We add triangles 

adjacent to R as long as they share an edge with a triangle already in R and have at 

least one vertex whose (x,y) coordinates are within AIWID of the (x,y) coordinates of V 

The parametric surface is then fit to the set P of all triangle vertices in R that have (x,y) 

coordinates within AI\VID of the (x,y) coordinates of V 

Given a set P of points in 3-space, we fit a surface by finding the coefficients a .. 
IJ 

(0 < i + j < 2) that minimize 

E [pz-J(px,Py)]2 
pEP 

where !(x,y) = Ea. xiyi. 
IJ 

The curvature can then be computed from the coefficients of the polynomial f. 

5.3. Constructing the profiles 

After a surface's critical points have been found, the distance profile representation of 

the surface can be computed. Each distance profile represents the local geometry in the 

neighborhood of a critical point. Recall that a profile is made up of a collection of 

distanee contours. A distance contour is the locus of all points on the surface that are a 

fixed distance from a point called the cente·r point of the contour. The center point of 

each contour is a critical point. In our implementation, we restrict the distances from 

the center point that are used for computing COi~tours to be integral multiples of a real 

number called the radius increment (RINCR). The set of points on the surfa,ce at 

distance k·RINCR from a center point p is called "contour level k of the profile around 

p." Note that this is equivalent to the intersection between the the surface and a sphere 

with radius k-RINCR and center p. 

A contour of intersection between a sphere and a triangulated surface can be 

decomposed into curves that are either closed or start and end on the boundary of the 

surface. 
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An encoded surfate can be thought of as an array of profiles, one for each critical 

point. A profile contains the location of the center point and an array of contour levels, 

normally ranging from 1 to some value less than 15. Each level is either the empty set 

(if there is no interseetion at that level) or a linked list of connected curves. Note that if 

contour level k is empty, then all contour levels greater thank must also be empty. This 

follows from the fact that the surfaces are connected and the distance function is 

continuous. Each curve in a contour is represented as a set of points which when 

connected by line segments approximate the true curve of intersection. 

We will now discuss the algorithm used to compute the contours. The problem is to 

generate a set of curves that represents the locus of all points on a triangulated surface 

that are distance D (where D = k·RINCR for some k) from a point p on the surface. 

The algorithm for contour generation is: 

initialize list Q to empty; 

for each triangle T in the database 

if T intersects the sphere with radius D and center p then 

add T to list Q; 

while Q is not empty do 

begin 

choose an arbitrary triangle A from Q; 

generate a connected curve on the contour that goes through 

triangle A, removing from Q each triangle T through which 

the curve passes if all curves through T have been generated1
; 

end; 

1There can be up to three curves of intersection between a triangle and a sphere. 

7 



Local Matching of Surfaces Using Critical Points 

5.4. Matching profiles 

Profiles are used to represent the shape of neighborhoods of critical points in a way 

that allows easy comparison for shape similarity. Two profiles P and Q are said to 

match if 

1. The curvatures at the center points of the profiles are the same to within a 

tolerance. 

2. A specified number of contours on one profile match contours on the other 

profile. 

5.5. Contour matching 

Any matching method that will work on space curves may be used to match contours. 

If we assume that contours are simple closed curves, then a representation we call the 

"distance map array" (a modified version of Freeman's centroidal profile [6]) may be 

used. The distance map array for a contour C is defined by 

dmaC[i] = d(C(i·(length(C)/NDIS~fP),C) 

dmaC[i+NDISMP] = dmaC[i] 

where C is the center of gravity of the contour: 

C = f C(s) ds 

1 < i < NDISMP 

I\TDISMP is the size of the distance map arra.y. We typically use 50. 

Note that this representation does not change if the contour is rotated or translated. 

Therefore, if two contours represent the same shape curve, then their distance map 

arrays can only differ by a cyclic shift. Thus, tvvo distance map arrays dmaC and dmaD 

represent the same shape curve only if there exists a k such that 

dmaC[i] - dmaD[i+k) < DMTOL 1 < i < NDISMP - -
(DMTOL is another parameter.) We assume here that the contours match globally. The 

contours should match globally within a small enough neighborhood of a critical point 
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unless the critical point is on the boundary of a matching region. However, it would be 

better to match the contours locally. 

5.6. Finding eompatible profile matches 

Corresponding to each pair of profiles that have been matched, there is a number 

which represents the goodness of the match. (The smaller the number is, the better the 

match.) We arrange all pairs of profiles whose "goodness" is below a certain threshold 

into a table called the "match table." 

We then use a backtracking search of the table to find all maximal compatible sets of 

pairs. A set of pairs {P .,Q .} of profiles is compatible if there exists a transformation 
' ' 

which, when applied to the center points of the Q ., will bring the center points P. and 
' ' 

Qi together (to within a tolerance) for all i. From each set we can derive a 

transformation, and if a set contains three or more noncollinear pairs of points, there will 

be a unique transformation that minimizes the mean distance between corresponding 

points. Once we have this transformation, we can apply it to the second surface and 

find all points on each surface that are within a given tolerance (called NEARTOL) of 

the other surface. 

5.7. Finding matching regions 

Once we have a transformation that brings together some pans of points on two 

surfaces (points which happen to be critical points), we wish to find all points on each 

surface that are within a tolerance of the other surface. Assume that the transformation 

has been applied to the second surface. If we consider each point p to be represented by 

a box with side length NEARTOL and center p, then two points can only be within 

NEARTOL of each other if their boxes overlap (i.e., if there exists a point contained in 

both boxes). Therefore, if we enter a point into the list of points for each cell through 

which its box passes, then two points can only be within NEARTOL of each other if 

there exists a cell with both points in its list of points. 

The algorithm for finding the regions is: 
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initialize CHAIN to empty; 

for each point p in sl a.nd s?. do 

for each cell C which intersects the box of p do 

begin 

if C is not in the hash table then 

begin 

add C to the hash table as an empty cell; 

add C to list CHAIN; 

end; 

add p to the list of points in C 

end; 

for each cell C in list CHAIN do 

for each point p of S
1 

in G' do 

for each point p' of s?. in c do 

if d(p,p') < NEARTOL then 

begin 

add p to R
1

; 

add p • to R
2

; 

end; 

If the average distance between neighboring vertices of a triangulated surface is greater 

than NEARTOL, we can make the cells cubes with width equal to the average distance 

between neighboring vertices. This means that there will be an average of one vertex 

from each surface per cell. Since there can be no more nonempty cells than there are 

vertices on the two surfaces, the cost of the "for each cell" loop is 0(1811+1821). 

Therefore, the total cost of the above algorithm is O(IS11+1S21). 
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6. Results 

The matching method described in previous chapters was implemented and tested on a 

series of surfaces. Our first test was with the two surfaces shown in Figure 7-1. The 

first surface consists of a flat plane with a pyramid, a Gaussian hill and a "volcano" 

superimposed. The second surface is the same except that a polynomial hill is added. 

Figure 7-2 shows the result of matching the surfaces. The matching regions are shaded 

lighter than the nonmatching regions. In this case, the matching regions happen to cover 

most of the surfaces. 

Our next test used similar surfaces, except the flat corner of the first surface was bent 

down. The result is shown in Figure 7-3. 

Our third test was performed on the "plug" and "outlet" in Figure 7-4. The result of 

matching is shown in Figure 7-5. 

7. Conclusions 

We have presented a local matching method for surfaces. 

The limitations of the method a.re: 

• Matching regions must contain critical points in order to be recognized. 

• Contours from two profiles must match globally in order for the profiles to be 

matched. 

Topics for future research are: 

• Combine the matching method described here with a method of matching 

large regions of constant curvature (which do not contain critical points). 

• Find a way to do local matches on contours and handle contours that are not 

simple closed curves. 

;11 Add domain-specific information to the matching process, for example color 
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or texture. 

• Integrate the local matcher into a vision system. 

Figure 7-1: Surfaces with critical points 

Adjacent lines in the picture differ by 1 in their x and y coordinates. Each square shown 
is actually divided into eight triangles. The critical points were computed using an 
AIWID value of 2, and a l\TBHRAD of 3.5. Critical points found by the program are 
shown marked with triangles. 
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matching regions 

// \ 
/ \, 

/ \ 

\ 

Figure 7-2: Surfaces with matching regions shown 

The matching and nonmatching regions of the two surfaces are detached. The matching 
was done with a DMTOL of 5.0 and a NEARTOL of 0.5. 

matching regions 

,/ \ 

/ 

Figure 7-3: Effect on matching regions of bending first surface 
A corner of the first surface has been bent down. Notice the larger nonmatching regions. 
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Figure 7-4: Plug and outlet with critical points 

The triangles have sides of length 1, 1 and J2. The critical points were computed using 
an AIWll) of 2 and a NBHRAD of 3. 

t h." . rna c mg regiOns 

F igure 7-5: Plug and outlet matching regions 

The matching regions are shown shaded. The matching was done with DMTOL and 
NEARTOL set to 0.1. 
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