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Abstract 

In an earlier paper [Rymon et a1 891, we showed how domain localities and regu- 
larities can be used to reduce the complexity of finding a trauma management plan that 
satisfies a set of diagnostic and therapeutic goals. Here, we present another planning idea 
- Progressive Horizon - useful for optimizing such plans in domains where planning 
can be regarded as an incremental process, continuously interleaved with situation-goals 
analysis and plan execution. In such domains, planned action cannot be delayed until 
all essential information is available: A plan must include actions intended to gather 
information as well as ones intended to change the state of the world. 

Interleaving planning with reasoning and execution, a progressive horizon planner 
constructs a plan that answers all currently known needs but has only its first few 
actions optimized (those within its planning horizon). As the executor cames out actions 
and reports back to the system, the current goals and the plan are updated based on 
actual performance and newly discovered goals and information. The new plan is then 
optimized within a newly set horizon. 

In this paper, we describe those features of a domain that are salient for the use of 
a progressive horizon planning paradigm. Since we believe that the paradigm may be 
useful in other domains, we abstract from the exact techniques used by our program to 
discuss the merits of the general approach. 

'This research was partially supported by the Office of Naval Research under Subcontract Grant N00129- 
89-C-006 and under ARO Grant DAAL03-89-C0031PRI 



1 Introduction 

Classical planners [Fikes and Nilsson 711 descend from general problem solvers (e.g. GPS 
[Ernst and Newel1 691) that themselves originated from theorem provers and search pro- 
grams. As a result, they view actions much like operators - well-defined transformations on 
a space of states. Planning is viewed as an independent process that takes a goal and an 
initial world state as its input, and produces a plan as its output. 

However, actual planning differs in many ways from proving a mathematical formula. 
Almost by definition, acting involves a dynamic environment. So it is possible that by the 
time planning is completed, its very assumptions are no longer valid. This is particularly 
true of planning systems that employ computationaly costly algorithms. But even if planning 
is instantaneous, unforeseen changes in the world, unpredictable effects of actions and new 
information acquired while the plan is executed may in fact invalidate it1. Indeed, more 
and more people argue for the elimination of the artificial separation between planning and 
execution, and there is a growing attention to issues of uncertainty and unpredictability in 
planning2. 

Much of the research addressing those problems of classical planning has focused on 
reactive (or reaction) planning paradigms [ A g e  and Chapman 87, Georgeff and Lansky 87, 
Schoppers 891. While very efficient in runtime, reaction plans may require exponentially 
large space (and thus exponentially large preparation time, see [Ginsberg 89]), and it is still 
unclear whether situations can be indexed and accessed effectively. 

In this paper we argue that in unpredictable domains in which planning has to be done 
with only partial information available, a new planning paradigm - Progressive Horizon (PH) 
planning - can often serve as both a plausible and a computationally feasible compromise 
between the two extremes. We are currently using a PH planning technique in TraumAID 
for planning a management recommendation for trauma patients. Besides describing the 
paradigm we also characterize those features of the domain that justify its use. 

2 Motivating Partial Plans 

In this section we describe a few of the motivations leading us to prefer partial plans over 
complete ones. Plans can be partial in many ways: plans that rely on unproved (default) 
assumptions are partial, reactive plans that specify only the next action are obviously partial 
and plans that are verified only in a high, non-operational level of abstraction are also partial. 

The type of partial plans of interest to us are Partial Global Plans - plans that are 
global in addressing all known goals, but yet partial in some other sense. These constitute 
a particularly interesting class of partial plans because they establish and keep to a plan's 

'Strips' designers have later noticed the need to adapt plans to actual events and added Triangle Tables as 
a form of keeping parts of plan for future reuse [Fikes et al 721. 

2'Tlanning in Uncertain, Unpredictable and Changing Environment" was the theme of 
[AAAI Spring Symposium 901. 



overall course. Progressive Horizon Planning is one paradigm for constructing partial global 
plans. The plans it constructs are partial in that (a) not all goals are explicitly known at the 
time of planning, and (b) only their first few actions are globally optimized. The Progressive 
Horizon paradigm itself is described in section 3. 

2.1 Problem Introduction 

In trauma, it is common for patients to suffer multiple injuries. A choice of protocols for 
addressing single injuries, presented alone, are readily available, but in cases of multiple 
injuries the physician has to make choices as to what protocols to use and in what order. A 
good management plan is often a function of the combination of injuries. 

Throughout patient management, a physician often faces two types of goals: diagnostic 
(acquiring evidence for or against the existence of a problem), and therapeutic (treatment 
of a diagnosed problem). In general, each goal can be satisfied with a one of a number 
of alternative procedures. These alternative protocols may be ranked to reflect their relative 
preference with respect to a given problem (based on their respective risk, cost, inconvenience 
etc). It is important to note that a procedure may satisfy several goals, all at once, and that 
so, two procedures may be ranked differently with respect to one another for different goals. 

We would like to see a planner pick the best set of procedures for addressing the specified 
set of goals, and order them into a plan. Unfortunately, even if the need to order the 
chosen procedures is neglected, we have proven the procedure selection sub-task is NP-Hard 
[Rymon 901. For reasons that will soon become clearer, even if this were feasible, any plan 
may soon become obsolete due to inherent unpredictability and uncertainty. 

2.2 Lack of knowledge (Uncertainty) 

In trauma, as in most areas of medicine, there is always uncertainty as to what injuries, 
external and internal, a patient has sustained from hislher wounds. Questions and tests 
are standardly used to get rid of uncertainties, but in multiple trauma one cannot settle all 
uncertainties before taking a therapeutic action. For example, if a patient is in shock, it must 
be eliminated before further diagnosis proceeds. As a result, one is forced to come to the 
following conclusions: 

1. Often a plan has to be constructed with sub-optimal knowledge of a patient's condition 
and consequently with incomplete knowledge of all the therapeutic goals that will be 
required. 

2. Since missing information may be crucially important to management success, any 
plan must include actions that are exploratory in nature and that do not necessarily 
have any corrective effect. 

3. Emerging goals and new information acquired while the plan is executed may jeopar- 
dize the validity of the rest of a plan or require substantial changes. 



2.3 Unpredictability 

In most real systems, not everything is within the full control of the planner or plan executor. 
This is particularly true of systems such as TraumAID that does not even have its own 
perception or execution capabilities. As opposed to uncertainty (lack of knowledge), the 
effects of unpredictable events often become apparent only after-the-fact. There are many 
different sources of unpredictability that affect an agent: 

1. Actions that were not executed correctly. 

2. Actions that were executed correctly, but had unexpected results. This unexpected 
result may in some cases be failure, but may also be the detection of a good condition 
that was unaccounted for. 

3. Actions taken by other agents - in TraumAID, there are at least two agents other than 
the system. One is the patient, whose condition may change independently of the 
system's expectations. The second autonomous agent is the physician. TraumAID 
has no control over the physician's actions. The system has no perception, and can 
only recommend action. As a result it must be able to make use of new information 
reported by the physician whenever this information becomes available and accommo- 
date whatever the physician chooses to do regardless of its correlation with the planned 
activity. The system may well need to change its plan accordingly. 

Note that unpredictable events can make new information available that may in fact 
improve TraumAID7s ability to plan. In some cases, an emerging goal may be satisfied with 
procedures already scheduled for the satisfaction of other problems, or may require a simple 
subsumption of one procedure - originally selected for a pre-existing goal - for another that 
satisfies both goals. In any case, a robust system has to be able to reason about such events 
as they occur, and be able to change its plans accordingly. 

3 Progressive Horizon Planning 

3.1 Planning as Search in the Situation-Action Space 

There is more than one way to view planning as a search problem: Classical planners viewed 
it as searching a space of plans (e.g. Strips [Fikes and Nilsson 711, Noah [Sacerdoti 771, etc). 
Alternatively, one can think of planning as searching through a connected space of world 
states. States in this space are world descriptors, connected to each other with directed 
edges. Each of these edges corresponds to an operator that transforms one world state into 
another. Actions constitute a particularly interesting class of operators, but operators such 
as No-Action, or Information-Is-Received in which the agent is not engaged in activity may 
also represent possible change to the world or to the agent's view of the world. 



Ideally, each state in this Situation-Action (SA) space would consist of a complete de- 
scription of the corresponding world state, or at least all relevant information about it. A 
planner would then be given an initial world state, a sufficient description of what should 
hold in a goal state and a set of operators, with a complete description of their preconditions 
and effects. Its task would be to construct a sequence of actions (a path in the SA-space) 
that when followed from the initial state would reach one of possibly several goal states. In 
the context of this ideal SA-space, planning can be viewed as simply searching a (possibly 
infinite) directed tree, rooted at the initial situation. We call this tree the Situation-Action 
tree (SA-tree). 

Obviously, planning by simply searching some representation of the SA-space is not 
practical. Nevertheless, because the SA-space so closely resembles a simulation of reality, 
plans that were originally constructed using other representations may easily be transformed 
into the SA-space. Thus, the SA-space can serve as a common ground for evaluating artificial 
(and also human) planning techniques. We therefore chose the SA-tree as a platform for 
demonstrating the principles of PH planning. As will be noted in section 4, the PH ideas are 
not limited to the SA representation and can be extended to other representations as well. 

The presence of unpredictability may complicate things: earlier, common assumptions 
were that (a) actions' effects are known and predictable, and (b) the acting agent is the sole 
source of change in the domain. It follows that do(a., s) - performing action a in a situation 
s - is well defined as a unique next state in the SA-space. With unpredictability, these 
assumptions are no longer valid and a given action performed at a given situation may result 
in one of a number of possible states, each corresponding to a different outcome. This makes 
the use of brute force search even less desirable for planning. More importantly, any plan 
may fail as a consequence of unexpected change. 

Uncertainty may also complicate things. In many cases, trauma management included, 
one may be forced to act before one has all necessary information. As a result a plan must 
include actions aimed at gathering more information having little to do with the physical 
achievement of particular goals. Note that without uncertainty, or for that matter in the 
presence of an uncertainty-clearing oracle, these actions could be eliminated without affecting 
the correctness of the rest of the plan. Uncertainty thus contributes to the length of the plan. 
In the context of an SA-tree search, the length of the plan corresponds to the depth of the 
search process. 

3.2 An Overview 

PH planning requires an architecture in which a basic cycle of reasoning, planning and 
execution is employed. In this cycle, a reasoner is responsible for continuous processing 
of available information, producing a list of current goals for the planner. The planner 
takes these goals together with goals-means information and passes on to the executor a 
complete plan for addressing all currently known goals. The executor reports back all actions 
performed, changes observed, and information acquired. All these are directly added to the 
reasoner's input to begin a new cycle. 



PH planning proceeds in two steps: in the fist  stage an approximate plan is constructed 
which is then partially optimized in the second stage. Optimization is only applied to the first 
few actions - those that are within the planner's horizon. Then, as actions are carried out 
and their results are reported, this horizon progresses to include new actions. It is important 
to note that further actions are not completely ignored, but are considered when optimizing 
the first actions. 

In TraumAID a rule-based reasoner is responsible for analyzing the current patient con- 
dition, and for generating diagnostic and therapeutic goals. The planner addresses these 
goals and presents the physician with the system's recommended plan. The physician is not 
expected to carry the plan to its end, but rather to report back to the system the results of 
any activity, whether suggested by the system or not, as well as any new information that 
becomes available. A new cycle of reasoning, planning and execution is then initiated3. 
Figure 1 depicts the system's cycle of operation. 

Figure 1: TraumAID's Cycle of Operation 

3.3 Approximate Planning in TraumAID 

In the approximate planning stage of PH planning, we try to find a minimal set of procedures 
that will address all known goals, and that can be consistently ordered. As noted, the mapping 
between goals and procedures is many:many, in that a goal may be satisfied by more than 
one procedure and a procedure may be used to satisfy more than one goal. (For example, 
the diagnostic goal of ruling out Tension Pneumothorax can be satisfied by either a Needle 
Decompression or a Survey Chest X-Ray. On the other hand, a Survey Chest X-Ray can be 
used for many other diagnostic goals such as ruling out a Hemothorax, Fractured Ribs, etc.) 

3For a more complete account, see [Webber et al 901. 
4There is more than one interpretation for the term approximate in the planning community. Here, it 

describes a plan of a sketchy nature, which correctness has not been established. 



3.3.1 Domain Regularities 

Our algorithm takes advantage of the localities and regularities in the domain as it interleaves 
procedure selection and ordering in an iterated fashion. While these domain features do 
reduce the computational cost of plan construction, a complete consideration of all remaining 
combinations is still intractable. 

Logistic regularities. Tracing the patient path within the hospital, we found that typi- 
cally a patient is brought to the Emergency Room (ER). Then if radiographic tests are 
required that cannot be performed in the ER, the patient is transferred to the X-Ray 
room (XR). In either case, the patient may then be brought to the Operating Room 
(OR) for major surgery. After surgery is completed, or if it was not necessary, the 
patient is monitored in the Trauma unit (TU). Note that the patient never goes back in 
that chain. This suggests that actions performable at one site should always precede 
those that require facilities of a later site. 

2. Standardized priorities. Standard practices of trauma care (ABC's5) call for attention 
to management goals based on their classification in the following order: Airway (and 
problems that interfere with patients breathing), Circulation (of blood), Neurological, 
Contamination, Stabilization (orthopedic) and only then all other problems. 

3. Urgency-motivated alterations. We have identified that instability is not just another 
diagnosis or condition. The urgency to stabilize a patient has a major impact on 
the planning physician and a shock-causing problem will be addressed before other 
problems that under normal conditions would precede it. 

3.3.2 The Algorithm 

The input to the first phase consists of: (1) the set of goals proposed by the reasoner, (2) all 
patient-specific data acquired in response to questions and previous tests, and (3) a knowledge 
base of goals and procedures, describing what procedures are capable of addressing what 
goals. 

Given this input, the proposed selection and ordering algorithm does the following: 

1. It sorts the set of goals I' based on urgency and goal priority. Urgency is related to 
shock, or cause of shock, and indicates the need to address this goal promptly. Goal 
priority reflects standard practices in the management of multiple trauma (ABC's): 
first, goals involving patient airways, then ones involving circulation, then neurological 
problems, then contamination, then orthopedic stability, etc. 

2. It then constructs a plan II through the following iterated steps, stopping when r is 
exhausted: 

5ABC stands originally for Airway, Breathing, Circulation etc. In our implementation, we have combined 
the first two. 



(a) Pick the next goal y on I?. If y is not already addressed by a procedure in- 
cluded in I3 (recall that procedures can satisfy more than one goal), identify the 
most preferred procedure .rr for addressing y that does not violate patient-specific 
contra-indications or require equipment that is not available - i.e., the procedure 
that would have been chosen for that patient, were y the only problem to be 
addressed. 

A i r  C i r c  N e u r  C o n t  O r t h  O t h e  

Emergency Room X R 0 R T U 
U 

Unstable Stable 

Figure 2: Sorting Procedures 

(b) Add x to I3 at a position that conforms to the order depicted in figure 2. If the 
patient is unstable (shock), instability-related procedures take precedence over 
other procedures. Otherwise, procedures are ordered logistically, with those per- 
formable in the Emergency Room ordered first, then those only performable in 
X-Ray, then those only performable in the Operating Room, and then those only 
performable in the Trauma Unit. Within a given location, procedures are ordered 
according to the standard practices of trauma care. Finally, location and prior- 
ity being equal, therapeutic procedures for one condition take precedence over 
diagnostic procedures for another. 

(c) Check that x does not violate any procedure already in the plan. If there is no 
way to locate T in the given plan, choose the next best procedure that addresses 
y and repeat. 

(d) If there is no valid way of addressing y in the current plan, leave it unaddressed 
and inform the physician. Note that having ordered goals in Step 1 by urgency 
and priority, any goals left unaddressed will be less urgent and less important 
(vis-a-vis standard practices of trauma care) than any goal already addressed by 
the plan. 

3.4 Optimizing to a Progressive Horizon 

The algorithm described in section 3.3 is greedy. As a result, the plan constructed is not 
optimal in many ways: it possibly contains redundant procedures, a number of procedures 
may potentially be subsumed by a single procedure resulting in a more efficient plan, etc. 
Furthermore, scheduled procedures may then block the execution of a procedure that would 
ideally be recommended at the next cycle of reasoning and planning. The problem is that 
a complete optimization is very costly in terms of computation, and even if all necessary 
resources were allocated, unpredictability would avert any validation of that plan. 

The main idea captured in the PH planning paradigm is that (a) an agent should limit 
the computational resources put into planning if it is to be practical, and (b) if so, and if the 



domain has the characteristics previously described, more time should be spent on planning 
actions to be carried out in the near future than subsequently. This idea by itself is not new, 
Korf [Korf 901 has suggested the exploration of actions within a specific horizon. The PH 
approach differs in that a complete plan is constructed, but only its first part is optimized. 

As mentioned before, in terms of the SA-tree, planning amounts to search and complete 
search is too costly, particularly as unpredictability may invalidate any plan even while it 
is constructed. A classical planner's search for a plan can be seen as a plan-space version 
of a complete search, taking exponentially long time. At the other extreme we find reac- 
tive planners trying to remedy this deficiency of classical planners by minimizing runtime 
consideration of alternative plans. However, while these planners differ in the way in which 
they index and identify the current situation6 and in the form of their plans7, all of them 
must represent, one way or another, all anticipated situations. In terms of an SA-tree, this 
can theoretically amount to representing all its nodes. 

The Real-Time A* algorithm [Korf 901 uses a representation that is very similar to the 
SA-spaces, and cuts search at a predetermined level, replacing further search with an eval- 
uation function. This has obvious computational advantages over the classical and reactive 
approaches but it suffers from two problems: first, because it considers only the first few 
actions, it is bound to have an extremely short-term view of things. Second, in systems 
such as ours, it is not acceptable to provide the interacting physician with only the next few 
actions. For a plan being acceptable it must somehow address all currently known needs in 
a coherent fashion. 

Instead of searching the entire SA-tree for an ideal plan P, a process that may fail 
anyway, a PH planner first comes up with an approximate plan P' and then works down the 
tree to a constant depth (denoted by Copt) optimizing actions within that horizon (see figure 
3). Whenever, a variant on the initial segment of the plan is tested, its effect on the entire 
plan is evaluated (i.e. including parts of the plan beyond the planning horizon). Doing that, 
we expect to reduce, but not eliminate the differences between P' and P. Like RTA*, PH 
planning enjoys obvious computational advantages (see section 3 . 3 ,  but it is also capable of 
generating global plans that address all known goals. 

In TraumAID, we take the approximate plan II, constructed by the algorithm of section 
3.3, and perform a 1-depth optimization (i.e. looking for possible modifications of the 
first procedure). We currently employ two optimizers. Both are concerned with coverage 
properties, independent of the specific domain, and are generally applicable. Any possible 
alternation of the first procedure is evaluated in the context of the plan as a whole. Since in 
TraumAID, procedures are originally ordered based on urgency and importance, it follows 
that under a progressive horizon method, actions with higher urgency-importance rating at a 
given time are those that are optimized at that time. 

6Universal plans [Schoppers 891 uses a decision tree structure, PRS [Georgeff and Lansky 871 uses rules, 
Pengi [Agre and Chapman 871 uses deictic representation. 

7PRS [Georgeff and Lansky 871 uses KAs, which are a type of a program, Schoppers [Schoppers 891 
constructs sequences of actions, TraumAID's first version flushes a preordered set of prescriptions, and other 
programs would even provide the executor a single action to be carried out next. 

"t differs in assuming a single predictable result for each action. 



Figure 3: The SA-Tree and the Progressive Horizon Paradigm 

3.5 Computational Analysis 

Here we use the SA-tree platform to compare PH planning to other planning paradigm. 

Let: 

a represent the size of the agent's repertoire of actions, 

n represent the size of the plan (the number of action instances included in the plan) 

b represent the branching factor of a system's model of the SA-tree (b # a, because 
an action may result in a number of possible states). 

1. Complete run-time search - In a general SA-space, a complete Breadth-First search 
may require O(bn) time. However, if one assumes that actions' outcome is fully 
predictable, BF-search may "only" take O(an). In any case, the time consumed is 
exponentially large in the length of the plan. 

2. Reactive planning techniques may, in theory, need to represent all anticipated situations 
with corresponding recipes of action. For similar reasons this may require space (and 
pre-processing run time) of O(bn). 



3. Under RTA*, one searches to a given horizon, applies an evaluation function to the 
leaves, and propagates the results back up the tree. Let Copt denote the search horizon 
and f ( a ,  n )  denote the cost of evaluating a leaf at level n. Them the total cost of RTA* 
is O(aCOpt + acOpt - f ( a ,  n,)) (replace b  for a ,  for the more general SA-space). 

4. Under the progressive horizon paradigm, one follows the steps: 

(a) Generate an approximate plan. For this purpose, one can use domain specific 
heuristics or other methods (e.g. [Elkan 891). We denote the runtime requirement 
for this stage by x(b, n). 

(b) Reason about each combination of the first Cop, actions and its appropriateness 
together with other parts of the plan. Let y ( n )  be the time required to process 
one action, then this takes O ( y ( n )  - aCopt) time. 

An algorithm that searches to a progressive horizon would therefore have a total runtime 
of O ( x ( b ,  n )  + y ( n )  . bCOpt). Assuming that z ( b ,  n ) ,  and y ( n )  are both polynomial in 
b and n, then because Copt is constantly fixed (or at least bounded by a constant) the 
total runtime is also polynomial of degree Diaz {Copt + d e g ( y ( n ) ) ,  d e g ( x ( b ,  n ) ) )  in b  
and n. 

4 Progressive Horizon from a Plan-Space Perspective 

In a plan-space, nodes represent partial plans, edges stand for operators that map the space of 
partial plans onto itself, often expanding one action into several others. Figure 4 depicts one 
such plan: One usually begins with a very rough overall plan (drawn as the root of the tree 
in the figure) and adds and refines it until a plan with the desired features is found (finally 
drawn at the lowest level of the tree). 

Figure 4: Plans-Space and the Progressive Horizon Paradigm 

Early planners used means-ends analysis, or other information of a heuristic nature for 
locating actions that would contribute to their plans. Hierarchical planners [Sacerdoti 74, 



Tenenberg 881, exploit a structured representation in which plans are discovered and main- 
tained in various degrees of abstraction. If one takes the plan in figure 4: its higher levels 
would contain fewer, very abstract, action operators and going down the hierarchy, operators 
expand and their level of detail increases. 

But most hierarchical planners ([Elkan 891 is an exception) continue their planning pro- 
cess until a plan is exposed in its entirety. One problem, noticed and addressed by other 
researchers, is that much effort is spent on resolving unimportant details. A hierarchical 
planner (e.g. [Tenenberg 881) begins search of a detailed space only after a solution has 
been established in a more abstract level. 

Another problem is that late actions receive as much attention as forthcoming actions. 
As explained before, in an uncertain, unpredictable environment this is not the most sensible 
thing to do as latter parts of the plan are often vulnerable to unexpected circumstances. 

The progressive horizon idea can be used here as well: expand only nodes that would 
be scheduled in the beginning of the plan. Figure 4 shadows nodes visited by a progressive 
horizon planner: it would visit the whole plan in the lowest level of detail. Then, recursively, 
going down the hierarchy, it would visit only descendants of the leftmost procedureg, leaving 
late actions in higher level of abstraction. 

5 Summary 

The full planning problem, however defined, is probably too hard to be solved in its entirety 
[Chapman 851. It might therefore be of advantage to break it down into smaller classes of 
planning problems, based on common domain and problem characteristics. 

In TraumAID's planner, we exploit domain and problem characteristics in two different 
ways: first [Rymon et a1 891, we use domain localities and regularities to divide our search 
space into what [Lansky & Missiaen 901 calls "(almost) disjoint regions", facilitating the 
formation of an approximate plan. We then use a progressive horizon paradigm to limit the 
cost of an optimization pass. 

The progressive horizon paradigm is useful for planning domains where uncertainty and 
unpredictability play a major role. We take unpredictability to stand for failed actions, actions 
that have unexpected results and other events that do not fall within the system's expectations. 
By uncertainty we refer to lack of knowledge, reflected in the fact that, most notably in early 
stages, one has to plan (and act) before diagnosis is completed. We show that PH planning 
is (a) computationally feasible, and (b) provides a plausible solution for such domains. 

It is important to note that progressive horizon planning does not address constructively 
specific types of unpredictability and uncertainty exhibited by the domain. We nevertheless 
hope that it can be taken at least as a general advice while specifics are addressed in the actual 
implementation of search within the horizon and in confronting alternative plan initiations 
with the plan's completion. 

'Note that we assume that actions in the plan are ordered left to right based on their temporal order in the 
plan. 



Another question of particular interest is how to determine the appropriate value for 
Copt. A planner that optimizes less than is appropriate would end up with too rough a 
plan, while too far an optimization is obviously wasteful. In general, Copt appears to be 
inversely related to the degree of predictability in the domain. More specifically, the rate 
of unpredictable effects, ratio of positive/negative diagnosis, ratio of successful diagnosis 
and treatment, specificity of diagnosis and treatment, and number of alternatives for each 
procedure as well as the availability of informational, computational and time resources may 
all influence Copt. 
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