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Conditional Entropies as Over-Segmentation and Under-Segmentation Metrics for
Multi-Part Image Segmentation

Abstract

In this paper, we define two conditional entropy measures for performance evaluation of general image
segmentation. Given a segmentation label map and a ground truth label map, our measures describe their
compatibility in two ways. The first one is the conditional entropy of the segmentation given the ground
truth, which indicates the oversegmentation rate. The second one is that of the ground truth given the
segmentation, which indicates the under-segmentation rate. The two conditional entropies indicate the
trade-off between smaller and larger granularities like false positive rate and false negative rate in ROC,
and precision and recall in PR curve. Our measures are easy to implement, and involve no threshold or
other parameter, have very intuitive explanation and many good theoretical properties, e.g., good bounds,
monotonicity, continuity. Experiments show that our measures work well on Berkeley Image
Segmentation Benchmark using three segmentation algorithms, Efficient Graph- Based segmentation,
Mean Shift and Normalized Cut. We also give an asymmetric similarity measure based on the two
entropies and compared it with Variation of Information. The comparison revealled that our method has
advantages in many situations.We also checked the coarse-to-fine compatibility of segmentation results
with changing parameters and ground truths from different annotators.
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Abstract In this paper, we define two conditional entropy
measures for performance evaluation of general image seg-
mentation. Given a segmentation label map and a ground
truth label map, our measures describe their compatibility in
two ways. The first one is the conditional entropy of the seg-
mentation given the ground truth, which indicates the over-
segmentation rate. The second one is that of the ground truth

given the segmentation, which indicates the under-segmentation

rate. The two conditional entropies indicate the trade-off
between smaller and larger granularities like false positive

rate and false negative rate in ROC, and precision and re-

call in PR curve. Our measures are easy to implement, and

involve no threshold or other parameter, have very intuitive

explanation and many good theoretical properties, e.g., good

bounds, monotonicity, continuity. Experiments show that our
measures work well on Berkeley Image Segmentation Bench-
mark using three segmentation algorithms, Efficient Graph-

Based segmentation, Mean Shift and Normalized Cut. We

also give an asymmetric similarity measure based on the

two entropies and compared it with Variation of Informa-

tion. The comparison revealled that our method has advan-

tages in many situations. We also checked the coarse-to-fine

compatibility of segmentation results with changing param-

eters and ground truths from different annotators.

1 Introduction

Evaluation of an image segmentation algorithm on a dataset
with ground truths is an important topic in computer vi-
sion. We consider general multipart image segmentation, in
which an image is segmented into multiple parts, the resul-
tant segmentation is validated with one or multiple ground
truths, and no semantic label is involved. In this setting, the

Department of Computer and Information Science, University of Penn-
sylvania

validation of an segmentation with ground truths is not so
straightforward, because the labels in the segmentation and
ground truths are not in correspondence, and ground truths
come in varying granularities. The performance evaluation
of foreground/background segmentation (Ge et al, 2007) and
semantic segmentation (Everingham et al, 2010) is simpler
and not in the scope of this paper.

Good image segmentation metrics should indicate over-
segmentation and under-segmentation explicitly. Qualitatively,
there are four possible outputs of comparing a segmentation
to a ground truth — almost perfect segmentation, good over-
segmentation, good under-segmentation and unacceptable
bad segmentation. Like false alarm and missed detection in
object detection, over-segmentation and under-segmentation
are two types of errors that can happen simultaneously. For
example, an algorithm may give under-segmented results
at the left side of an image, while giving over-segmented
results on the right. All segmentation algorithms have pa-
rameters to trade off these two type of errors. For different
applications, one might prefer over-segmentation or under-
segmentation. For example, if we use segments as prepro-
cessing of an automatic object segmentation or tracking al-
gorithm, we may prefer over-segmentation, because it can be
further merged into better and bigger segments using other
cues that have not been used in segmentation and it is not
easy to split under-segmentation for automatic algorithms.
If we use segments for an interactive object cropping, we
may prefer under-segmentation, because we can ask users
to further split big segments, while too many small seg-
ments will need more human interaction to merge. There-
fore, it is necessary for segmentation metrics to describe the
over-segmentation and under-segmentation rates explicitly
and separately.

In addition to the above mentioned requirement, a good
measure must fulfill the following conditions:



1. Well bounded. The measurement should score a perfect
segmentation as zero errot, and the degenerate segmen-
tations (the segmentation where all pixels share the same
label and the segmentation where each pixel has an indi-
vidual label) as the largest error.

2. Good numeric stability. This requirement comes in two
aspects. 1) Changing the label of one pixel should result
in a small change in the metric scores. This rules out the
simple idea of first establishing label correspondences
greedily, then counting the overlapping areas, because
small changes in the segmentation may result in very dif-
ferent correspondences. 2) If we gradually change the al-
gorithm parameter to produce segmentations at different
granularities, the scores should also change gradually.

3. Easy to implement. It should have no or a very small
number of parameters to tune. The algorithm to compute
the measure should also be simple and efficient.

1.1 Related Work

The most popular measures are Berkeley image segmen-
tation benchmark (Martin et al, 2001), Normalized Proba-
bilistic Rand (NPR) index (Unnikrishnan et al, 2007) and
Variation of Information (VI) (Meilad, 2005)(Meila, 2007).
In Berkeley image segmentation benchmark (Martin et al,
2001), two sets of measures are proposed, a) F-measure, b)
Global consistency error (GCE) and Local consistency er-
ror (LCE). The F-measure is defined on probability edge
maps. It matches segmentation boundaries by bipartite graph
matching and produces a precision-recall curve by chang-
ing the edge blurring bandwidth. The PR curve only shows
the error of boundary localization, and doesn’t indicate over-
segmentation or under-segmentation. Other boundary based
measures (Estrada and Jepson, 2009) have similar problems.
As pointed out in (Martin et al, 2001), the GCE and LCE
suffer a degeneracy problem, at two trivial segmentations,
where each pixel has an individual label or the whole im-
age shares the same label. NPR index (Unnikrishnan et al,
2007) is the normalized version of of Probability Rand (PR)
index, which first computes the probability of label corre-
lation of all pairs of points in a set of ground truths, then
uses the likelihood of the segmentation with respect to this
probability as output score. The normalization is introduced
to make the index value comparable across different im-
ages. Though it has many good properties, such as compa-
rable scores and accommodation of refinement, it does not
indicate over-segmentation and under-segmentation explic-
itly. Variation of Information (Meild, 2005)(Meild, 2007)
is closely related to our measure. It uses the sum of the
two conditional entropies of the ground truth and the seg-
mentation as a score. We use the two entropies as two in-
dividual metrics, to measure under-segmentation and over-
segmentation separately.

Although there are many metrics that measures how a
segmentation is consistent with a set of ground truths, to
the best of our knowledge, no work in the literature has at-

tempted to indicate the over-segmentation and under-segmentation

explicitly and separately.

Our work is motivated by the Variance of Information
score (Meila, 2005) and therefore inherits many of its ad-
vantages, €.2., 1) many good theoretical properties, 2) no pa-
rameter to tune, very easy to implement. In addition, our two

metrics can describe over-segmentation and under-segmentation

in an information theoretical manner, and therefore, have in-
tuitive explanation in term of information encoding.

1.2 Notations

Let X and Y be two discrete random variables, which follow
distributions P(X) and P(Y") respectively. We denote the
entropy of X by

H{X}=-) P(X)log P(X) (1)
X
and the conditional entropy of X given Y by
H{X|Y} =-> P(X,Y)log P(X]Y). 2)
X,Y

The enrtopy H{X} measures how much information we
need to encode X, while H{X|Y} measure how much in-
formation we need to encode X if we have encoded Y and
want to further encode X. The entropy of conditional prob-
ability of X givenY = y is

HIXIY =y} = = 3 P(X|Y = y) log P(X|Y = ).

3)
Note that H{X |Y'} is the expected value of H{X|Y = y}
H{XY} =) PY = y)H{P(X]Y =y)}. @
y

In the proof of the theorems in the rest of this paper, we
need mutual information. We denote the mutual information
between X and Y by

P(X,Y)

XY)= P(X,Y)log ————~— 5

MX,Y) =3 PX,Y)log 55y (5)
XY

and the conditional mutual information between X and Y

given Z by

M(X,Y|Z)= > P(X,Y,Z)log lm'
XY, Z

(6)

All the above mentioned entropies and mutual informa-
tions are non-negative.
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Fig. 1 A pair of conditional entropy measures. (a) A Ground truth with 4 segments. (b) A Segmentation overlaid on the ground truth. (c) The
segmentation in each segment of the ground truth. (d) Explanation of the over-segmentation entropy. Each segment in the ground truth is further
segmented into multiple subsegments by the segmentation. The over-segmentation rate of each segment 1 ~ 4 can be measured by its entropy
E; = H{S|T = i}, because higher entropy in each segment means that each ground truth segment is covered by more segmentation labels, or by
the same number of subsegments, but in a more uniform manner. The over-segmentation entropy Ho is the weighted sum of these entropies. (e)
THe segmentation with 5 segments. (f) The ground truth overlaid on the segmentation. (g) The ground truth in each segment of the segmentation.
(h) Explanation of the under-segmentation entropy. Each segment in the segmentation is further segmented into multiple parts by the ground truth.
The under-segmentation rate of each segment a ~ e can be measured by its entropy. The under-segmentation entropy #H; is the weighted sum of

the entropies of segment a ~ e.

2 Conditional Entropies

Let T be the label map of ground-truth, and .S be the label
map of segmentation. These are integer matrices, T'(x,y) €
{1,--+,Np}and S(z,y) € {1, -+, Ng}, in which Ny and
Ng are number of segments in the ground truth and the seg-
mentation correspondingly. There is no correspondence be-
tween their labels. Let A be the image lattice, Ay ; be the
lattice occupied by the ¢-th segment in 7'. By counting the
histograms of labels in 7" and S, we can define a set of prob-
abilities

o Arl
P(T=1i)= i @
NN
P(S =j) = > 8
(5=1) X ®)
P(T=i,S=j)= |ATJ|2ASJ‘| ©)

from which conditional probability P(T' = i|S = j) and
P(S = j|T = i) can be computed. Now we are ready to
define our two conditional entropies.

If we superimpose .S on 7', each segment in 7 is divided
into smaller subsegments by S. In i-th segment in 7', if the
number of the subsegments is smaller, or there is only one
dominant subsegment, S and 7" are more consistent. This
property can be measured by entropy H{S|T" = i}. For the
whole image, we combine these entropies using the segment
sizes as weights, >, P(T' = i)H{S|T = i} = H{S|T},

following Equation 4. See Figure 1 for a more detailed ex-
planation.

Definition 1 Over-segmentation entropy (OSE) of segmen-
tation S with respect to ground truth 7" is the conditional
entropy of .S given T’

Ho = H{S|T} = = P(T,S)log P(S|T). (10)
s, T

If we superimpose 7" on .S, similarly, we can define under-

segmentation entropy.

Definition 2 Under-segmentation entropy (USE) of segmen-
tation S with respect to ground truth 7" is the conditional
entropy of 1" given S

Hy = H{T|S} = =Y P(T,S)log P(T|S). (11)
T,S

If multiple ground truths are provided, we use the means
of the two entropies as the final metrics. Let 7%, --- , T, be
the set of ground truths.

Definition 3 Mean over-segmentation entropy (MOSE) and
mean under-segmentation entropy (MUSE) of segmentation

S with respect to ground truths 77, - - - , T, are defined by
_ 1

Ho = 1 D H{SIT:}, (12)
_ 1

Ho =1 ZH{MS}- (13)



Meild(Meild, 2005) uses the sum of the over-segmentation
and under-segmentation entropies as a distance between the
segmentation and ground truth.

Definition 4 Variation of information(Meili, 2005) between

T and S is defined by
V(S,T) = Ho + Hu, (14)

and for mulitple ground truths, we can define mean variation
of information (MVI)
V(S,Th, -+, Tr) = Ho + Hu. (15)

We will compare MUSE/MOSE with MVI in the experi-
ments. Though this symmetric measure has many good prop-

erties, it summarizes the under-segmentation and over-segmentatfgl)ip

with equal weights, and cannot tell one from another, or let
us prefer one to another.

The intuitive explanation of the two conditional entropies
is as follows. The over-segmentation entropy counts how
much information we need to further encode S N T given
T, and the under-segmentation entropy counts how much
information we need to further encode S NI given S.

If the segmentation splits each segment in the ground
truth in half, then the over-segmentation entropy Ho is log 2.
More generally, if the segmentation splits each segment in
the ground truth into M equal parts, the over-segmentation
entropy is log M. Therefore, exp(Ho) is a measure of de-
gree of over segmentation in term of number of uniform
splits. Similarly, if each segment in the segmentation con-
tains M segments of ground truths of equal areas, then the
under-segmentation entropy is log M. In this sense, both
OSE and USE are well normalized and comparable across
images. Note that we cannot use counts of segments in each
ground truth segment or segmentation segment instead of
entropy, because this does not tolerate small boundary mis-
matches, and gives unnecessarily large scores.

If both conditional entropies are very low, the segmen-
tation is an almost perfect one. If both are high, then it is a
bad segmentation. If the over-segmentation entropy is high
but the under-segmentation entropy is very low, it is a per-
fect over-segmentation, and may be useful if we want su-
perpixels. If the under-segmentation entropy is high but the
over-segmentation entropy is very low, it is a perfect under-
segmentation.

3 Theoretical Analysis

3.1 Bounds

For a perfect segmentation, both over-segmentation and under-

segmentation entropies are zero. If S is a perfect under-
segmentation of 7', that is each segment in 7' is restricted

within a single segment in S, then Ho = 0. Similarly, if .S
is a perfect over-segmentation of 7', that is each segment in
S is a part of a segment of 7', then H; = 0. These properties
are summarized in the following two theorems.

Theorem 1 Over-segmentation entropy is bounded, for all
possible S,

0< Ho < log|4| — H{T}. (16)

Furthermore, Ho = 0 if and only if

V(z,y), (@), T(z,y) =T(",y) = S(z,y) = S, y).
a7

Proof We first prove Equation (16). Because conditional en-
ies of discrete random variabls are non-negative, Ho >
0 is obvious. To prove the upper bound, we write the con-
ditional entropy as the expected value of entropies of condi-
tional probabilities

Ho = P(T =t)H{S|T =t} (18)
< zt:P(T:t)log|At| (19)
t
= Z P(T =t) (log ||AA*| + log A|) (20)
= lotg Al — H{T} 2D

The equality holds when P(S|T = t) is uniform for all ¢.
Equation (17) can be proved as follows. Ho = 0 means
H{S|T = t} = 0 for all ¢, because H¢ is the weighted
sum of H{S|T = t} (see Equation (4)) and H{S|T =t} is
non-negative. The entropy of conditional probability is zero
means that P(S = s|T = t) is a delta function, that is, for a
given t, s has only one possible value. a

Theorem 2 The under-segmentation entropy is bounded, for
all possible S,

0< Hy < H{T}. (22)

Furthermore, Hy = 0 if and only if

Y(z,y), (',y"),S(z,y) = S y) = T(x,y) =T (', y).
(23)

Proof The lower bound in Equation (22) is obvious. To prove
the upper bound, we rewrite the conditional entropy as the
following

Hy = H{T} — M{S,T}
< HA{T}.

The equality holds when the mutual information M{S, T}

is zero, that is, S and 7" are independent.

Equation (23) can be proved in the same way as Equa-
tion (17). a

(24)
(25)



From the above two theorems, we can see that both con-
ditional entropies are zero (i.e., Ho = 0 and Hy = 0), if
and only if S and T are equivalent under label number per-
mutations.

3.2 Monotonicity

When we split a segment in the segmentation .S into two,
the over-segmentation entropy Ho increases, and the under-
segmentation Hy decreases.

Theorem 3 If we split a segment in S into two, a new label
map S’ is obtained. Let H, be the OSE of S', Hy; be its
USE. Then we have

Ho > Ho (26)
Hy < Hy. 27)

Proof Because S is an refinement of S, P(S]S’) is a delta
function, which implies that H{S|S’} = H{S|S",T} = 0.
Now we prove the first inequality,

Ho —Ho = H{S'|T} = H{S|T} (28)
=H{S' T} — H{S,T} (29)
=H{S', S, T} — H{S, T} (30)
=H{S'|S, T} > 0. 31)

Similarly, we can prove the second inequality,

My — Hy = H{T|S'} — H{T|S} 32)
= H{S'S, T} — H{S'|S} (33)
=-M{S",T|S} <0 (34)

O

This theorem further confirms that the over-segmentation
entropy really represent the degree of over-segmentation,
and the under-segmentation entropy really represent the de-
gree of under-segmentation.

Note that Theorem 3 can be described in an alternative
way: when merging two segments in the segmentation, OSE
decreases and USE increases. This description is helpful in
the proof of continuity in the next subsection.

3.3 Continuity

The two entropies are insensitive to boundary perturbation.
This point can also be proven theoretically, by considering
one pixel perturbation of the segmentation.

Theorem 4 If we change the label for one pixel in S, a new
label map S’ is obtained. Let H{, and Hy; be the OSE and
USE of S’ respectively, and AHo = Hp—Ho and AHy =
Hiy — Hu be the change. Then we have

lim AHo = 0. (35)
|A]—= o0

lim AMy = 0. (36)
|A]—= o0

Proof We first prove the situation where the pixel is as-
signed a new label to become an isolated segment, or an
isolated pixel is merged into an another segment. From the
proof of Theorem 3, we have AHo = H{S’'|S,T} and
AHy = H{S'|S, T} — H{S’|S}. When |711| — 0, P(5]S)
approaches delta function, and therefore both H{S’|S, T}
and H{S’|S} approach zero. So we have AHo — 0 and
AHU — 0.

For the situation where the pixel is switched to an ex-
isted label, we regard it as two steps: first assigning a new
label to create an isolated segment, then merging this iso-
lated pixel to another segment. Then the entropy increments
in both steps approach zero when ﬁ — 0. a

This property ensures that small change in .S only results
in small change in Ho and H . That is, our measures have
good numerical stability.

3.4 GCE and Conditional Entropies

In (Martin et al, 2001), the Global Consistency Error (GCE)
is defined in the following way. If R(S, ) is the segment in
segmentation S that contains the i-th pixel, the local refine-
ment error from .S to 7" is defined as

|R(S,3) N R(T,14)]
[R(T, )]

and GCE is defined as

GCE(S,T) = min {ﬁl > E(S,T,i), ﬁ > E(T, S, i)} .
(33)

In fact, E(S,T,%) is a linear monotonically decreasing
function of P(S|T") because in our notation, W =
P(S = s;|T = t;), where s; denotes the label of the i-th
pixel in S and ¢; the label of the i-th pixel in T". If we choose
an alternative monotonically decreasing function, and define

F as

|R(S,i) N R(T,i)]
[R(T )

E(S,T,i) = —log (39



then our new GCE is
GCE(S,T) = min { Tl ZlogP S|T),

= min {Ho, HU}.

Now, one can see that GCE differs from VI in two ways: it
chooses a different penalty function, and a different way to
combine the two types of errors.

4 Experiments

We test the conditional entropy metrics on Berkeley Image
Segmentation Database(Martin et al, 2001), using three seg-
mentation algorithms, the efficient graph based segmenta-
tion (EGB) (Felzenszwalb and Huttenlocher, 2004), Mean
Shift(Comanicu and Meer, 2002) (MS) and an accelerated
version of Normalized Cut (NCUT) (Shi and Malik, 2000)
based on Constrained Delaunay Triangulation(Seidel, 1988;
Wu and Yu, 2003). The database contains 300 images, and
for each image, about 5 ground truths are provided. For each
algorithm and each image, we use 18 ~ 20 sets of param-
eters to obtain segmentations at varying granularities. The

over-segmentation and under-segmentation entropies are com-

puted for all these segmentations, with respect to all the
ground truths. The results are shown in the following sub-
sections.

4.1 Multi-scale segmentation

First, we show an example of conditional entropy curve of
multiple segmentations of a image with respect to a single
ground truth, in Figure 2. The conditional entropy curves
look similar to an upside-down ROC curve. One can see that
for the two algorithms illustrated in the figure, the condi-
tional entropy curves reveal the trade-off of over-segmentation
and under-segmentation while granularity changes. In this
illustration, the NCUT is better than EGB, because at a rea-
sonable range of OSE [0, 3], given the same OSE, NCUT
achieve smaller USE. This conclusion can be verified by the
segments superimposed on the curves. Note that the over-
segmentation entropy has larger domain because it is bounded
by the number of pixels.

Figure 3 shows the changes of the conditional entropy
curves with respect to ground truths. For similar ground truths,
the curves are similar. For ground truths that differ a lot, the
curves also differ a lot. For ground truths with more seg-
ments, the curves rise higher at left part.

Figure 4 shows the mean conditional entropy curves with
respect to multiple ground truths. For each segment, we com-
pute the over-segmentation and under-segmentation entropies
with respect to all ground truths, and use the mean of over-
segmentation entropy as horizontal axis, and the mean of

under-segmentation entropy as vertical axis. One can see
tha};;e mean conditional entropy curve successfully reveals

| A] Z log P(T ¢ @nage difficulties and the relative performances of the

algerithms on different images.
(41)

4.2 Algorithm performance analysis

We compute the overall performance of all the three algo-

rithms on the whole dataset. First, we compute the mean

conditional entropies of each image with respect to all ground
truths. Then we average the mean conditional entropy curve

to obtain an overall conditional entropy curve. Figure 5 shows
the results. One can see that the conditional entropy curve

reveals that NCUT is better with a smaller number of seg-

ments, EGB is better at superpixel level, and Mean Shift

is good trade-off of the two. This agrees with our experi-

ences of using these algorithms. The metrics in (Unnikrish-

nan et al, 2007)(Meild, 2005) cannot reveal this point.

4.3 Comparison with Variation of Information

To further illustrate the benefits of the two conditional en-
tropies, we define a new similarity measure based on the
two, and compare it with Variation of Information(Meild,
2005)(Meila, 2007). For general application tasks, we have
bias over the two types of errors. That is, over-segmentation
is easier to remedy by further processing, and thus should
be discounted. The human annotators trend to split an im-
age into a smaller number of segments, and the real ground
truth may be a refinement of the annotated one. Therefore,
we define the following biased variation of information.

Definition 5 Biased variation of information (BVI) and mean
biased variation of information (MBVI) are defined by

B{S, T} = woSat(Ho — bo) + wySat(Hy — by),
B{S, Ty, ,TL} = wosat(ﬁo — bo) + wUSat(?’:[U — bU),

where Sat(x) is a bottom saturation function

zifz >0
Sat(z)z{mmg()’

wo and wy; are the weights to balance the two term, and bp
and by are used to further tolerate small errors. This is an
asymmetric similarity.

(42)

Note that this is an asymmetric similarity.

We use both MBVI and MVI to select the best segmen-
tation for each image among all possible segmentations at
different granularities produced by different algorithms. For
multiple ground truths, we compute the mean of MVI. We
use wo = 0.8, wy = 1, bp = 0.05 and by = 0 to re-
flect our preference to over-segmentation error. We find that
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Fig. 2 Examples of conditional entropies curve with respect to one ground truth: left, EGB algorithm; right, NCUT algorithm. Horizontal axis is
OSE; vertical axis is USE. The original image and the ground truth are shown on the top right corner. Segmentations at varying scales are shown
along the curves. One can see that the curves reflect the trade-off between the two entropies as segmentation granularity changes.
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Fig. 3 The conditional entropy curves for an image with respect to varying ground truths. Left column, the results of EGB. Right column, the
results of NCUT. The images and the ground truths are shown in the middle of each axis. 1st row, ground truths differ moderately, and the curves
also differ moderately. 2nd row, ground truths differ considerably, and the curves also differ considerably.
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Fig. 4 The mean conditional entropy curves for an image with multiple ground truths. Each row shows the results of an individual image. Left
column is the results of EGB; right column is the results of NCUT. Horizontal axis is MOSE; vertical axis is MUSE. The original image and
the ground truths are shown on the top right corner. Segmentations at varying scales are shown along the curves. Green dots are the MOSE and
MUSE of ground truths. 1st row, an image of low difficulty, EGB achieves the perfect result (EGB18). 2nd row, an image of high difficulty,
NCUT works better than EGB, because at a low OSE, it has lower corresponding USE. 3rd row, an image of medium difficulty, EGB is better at
over-segmentation and NCUT is better at under-segmentation. One can see that the conditional entropies reflect the difficulties of the three images
well, in a sense similar to an ROC curve.
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Fig. 5 Comparison of three algorithms — EGB, Mean Shift and NCUT using conditional entropy curves. Left, the mean conditional entropy
curves of the three algorithms over the whole dataset. Right, the zoomed version of the left column. EGB is the best at high over-segmentation
domain, which indicates that it is good at superpixel. NCUT is the best at high under-segmentation domain, which indicates that it is good at object
level segmentation. Mean Shift is a good trade-off of the two types of errors.

MBVI works consistently well and Figure 6 shows some of
the results. MVI sometimes chooses degenerate segmenta-
tion, because the range of MUSE is much smaller than that
of MOSE. From Figure 5, one can see that the maximum of
average MUSE is about 1.6, but the maximum of average
MOSE is about 10. This also suggests that it may not be a
good idea to combine them with equal weights. Figure 6 also
shows that BVI can tolerate occasional bad ground truths.

4.4 Coarse-to-fine Compatibility

Let S1,- .-, S be the segmentations given by an algorithm
at changing granularities, from smaller segments to larger
ones. Now we consider the conditional entropies between
each pair of them. Ideally, if i > j, H{S;|S;} = 0, oth-
erwise, H{S5;|S;} increases monotonically as j increases
from j = 4, and decreases monotonically as ¢ increases until
i = j. That is to say, if we let M; ; = H{S;|S;} be a ma-
trix, all its entries above the diagonal are zeros, and below
the diagonal, entry values increases from top to bottom and
right to left. We call this property coarse-to-fine compati-
bility. We compute the coarse-to-fine matrices of NCUT on
all images in Berkeley Image Segmentation Benchmark, and
find that almost all images demonstrate good coarse-to-fine
compatibilities. Figure 7 ~ 10 show 4 examples. For EBS
and Mean-Shift, similar results are observed.

We also conjectured that ground truths of those images
given by different annotators demonstrate the same good
properties. Unfortunately, this is only true for a small num-
ber of them. Figure 11 ~ 12 show the matrices for the 4
images used in Figure 7 ~ 10. Figure 11 shows two exam-
ples that have good coarse-to-fine compatibilities. Figure 12

shows two examples that have bad coarse-to-fine compati-
bilities. The reason is that some annotators prefer more de-
tails on foreground objects while some prefer more details
on backgrounds.

Note that none of F-measure, VI and NPR can reveal
these properties of segmentations and ground truths.

5 Conclusion

In this paper, we proposed the use of the two conditional en-
tropies between a segmentation and a ground truth as met-
rics of image segmentation. The two conditional entropies

represent the degrees of over-segmentation and under-segmentation

separately, and therefore successfully reveal the performance
of algorithms at difference granularities. By combining the
two in a biased way, we can also show our preference to
over-segmentation or under-segmentation.
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Fig. 9 Conditional entropies between segmentations at different granularities, which demonstrate good coarse-to-fine compatibilities.



Fig. 10 Conditional entropies between segmentations at different granularities, which demonstrate good coarse-to-fine compatibilities.



Fig. 12 Conditional entropies between ground truths, which demonstrate bad coarse-to-fine compatibilities. Some annotators prefer more details
on foreground objects, while some annotators prefer more details on backgrounds.
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