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Abstract—The Border Gateway Protocol (BGP) is the single
inter-domain routing protocol that enables network operators
within each autonomous system (AS) to influence routing deci-
sions by independently setting local policies on route filtering
and selection. This independence leads to fragile networking and
makes analysis of policy configurations very complex. To aid the
systematic and efficient study of the policy configuration space,
this paper presents network reduction, a scalability technique for
policy-based routing systems. In network reduction, we provide
two types of reduction rules that transform policy configurations
by merging duplicate and complementary router configurations
to simplify analysis. We show that the reductions are sound,
dual of each other and are locally complete. The reductions are
also computationally attractive, requiring only local configuration
information and modification. We have developed a prototype
of network reduction and demonstrated that it is applicable on
various BGP systems and enables significant savings in analysis
time. In addition to making possible safety analysis on large
networks that would otherwise not complete within reasonable
time, network reduction is also a useful tool for discovering
possible redundancies in BGP systems.

I. INTRODUCTION

The Internet today runs on a complex routing protocol called
the Border Gateway Protocol (BGP). It enables autonomous
systems (ASes) worldwide to achieve global connectivity,
subject to each system’s local policy (which paths are allowed,
and the route preference used to select best paths). The
convergence behavior of the global Internet depends on how
each AS configures its policy.

Prior work has shown that policy misconfigurations can
lead to rapid oscillation between routing states, slowing or
even preventing convergence [11]. This happens when the
conflicting local policies cannot be reconciled: there is no
solution to the routing problem. Other configurations support
a unique stable solution, which normal protocol execution is
bound to reach. We refer to such configurations as ‘safe’.
While abstract formal models of BGP [8], [5], [7] allow
researchers to explore how local policies affect BGP stability,
the membership problem for this safe subset is NP-hard, and
real network configurations are very large, drastically limiting
the feasibility of the safety test.

In this paper, we present a novel network reduction tech-
nique that enables networking researchers to study and analyze
large BGP systems in a sound and automatic fashion. Central
to network reduction is two forms of rewriting rules that
transform policy configurations into smaller and simpler forms
while preserving safety property. These rewriting rules are
directed at known patterns in real networks, which exhibit

considerable structural redundancy. Once a configuration is
reduced, safety analysis can be performed directly to check
for possible misconfigurations.

To evaluate the effectiveness of the reduction technique for
scaling up safety analysis, we use an automated analyzer [20]
based on the Maude rewriting logic engine [12]. In the Maude-
based analyzer, a BGP system is encoded as a transition
system driven by concurrent rewriting rules. Safety analysis is
then performed by simulating execution runs on the transition
system, as well as exhaustively exploring all execution runs
for possible divergence. Our experimental results show that
network reduction enables us to perform safety analysis effi-
ciently, often completing the analysis on large networks that
would otherwise not be possible to study within reasonable
time.

Prior work [19] demonstrates that a limited form of rewrit-
ing rule based on merging identical router-level configurations
can significantly improve convergence analysis time of BGP
instances. This paper introduced a new form of rewriting rule,
based on a new unified model (EPD). Using EPD model, we
proved that the two forms of rules are dual. Moreover, we
proved that they form a complete set of reduction rules that
require only local rewrites; this and other properties of the
reduction rules, have provided a deeper understanding of the
redundancies presented in BGP systems, and established net-
work reduction a sound and effective tool for scaling up formal
analysis. Specifically, we make the following contributions:
Formal model for reduction. We propose an abstract model
for modeling Internet topology and policies. This abstract
model, which we call the Extended Path Digraph (EPD),
extends prior models [7], [17], and provides a basis for re-
ducing instances prior to analysis. EPD enables the unification
of configuration specification and analysis within a common
model, resulting in simpler reductions. We further provide a
tool developed using Maude for automatically extracting EPD
from existing network topologies and policies.
Network reduction. We present two reduction rules that trans-
form EPD policy configurations to simplify analysis. These
two reduction rules merge duplicate or complementary router-
level configurations into one. We show that these reductions
are sound and mutually dual, and establish a confluence result
for duplicate reduction. These operations are also computa-
tionally attractive, since they require only local inspection and
modification of the EPD structure. Indeed, we formally prove
that no other such reductions are universally sound, meaning
that our repertoire of local reduction methods is now complete.



Case studies and evaluation. We have developed a prototype
of network reduction using Maude, and performed network
reduction on a variety of network topologies, ranging from AS-
level Caida and router-level Rocketfuel dataset, to topologies
that include standard BGP configurations such as full mesh,
route reflection and confederations [21]. Through a series of
case studies, our experiment results demonstrate that network
reduction enables significant savings in analysis time due the
the use of reduction. Moreover, it makes possible safety analy-
sis on large networks that would otherwise not complete within
reasonable time. Our experiment results further demonstrate
that duplicate and complementary reductions apply to different
parts of the network, suggesting that reduction can also serve
as a tool to identify possible types of policy and topology
redundancies. We further apply the network reduction to a
subset of Internet topologies obtained from RocketFuel [18]
and CAIDA [1], and observed high reduction rates, suggesting
that the Internet topology has a high degree of redundancy.

II. FORMAL MODEL

We first present the formal model used for performing
reduction and analysis. The central data structure, called the
Enhanced Path Digraph (EPD), is a compact representation
of two configuration aspects of a BGP system: the topology
of how routers are connected, and for each router, the export,
import, and route preference policies.

The policy configuration problem can be understood in-
dependently of the means for calculating routes—the BGP
path-vector mechanism as implemented by the various router
vendors. Policy conflicts exist independently from the details
of how messages are exchanged and local data structures are
updated. So the EPD model abstracts away the mechanism,
and focuses on the policy itself.

Enhanced path digraph (EPD) is an extension of the path di-
graph structure [17], tuned to enable us to conveniently express
and perform reduction. As we will see in Section IV, through
this modification, EPD allows us to prove the correctness of
reduction in a much more intuitive and concise way than
reasoning directly with path digraph [19].

Definition 1 (Path digraph): Let (V,E) be a directed graph
and let d be a designated ‘destination’ node in V . A path
digraph instance on (V,E, d) is given by (P,Ev, Ep), where
P is a set of paths in (V,E) terminating at d, and Ev and Ep

are binary relations on P fulfilling the following properties:
1) (p, q) is in Ev if and only if p is a suffix of q.
2) If p and q have different origin nodes, then (p, q) is not

in Ep.
3) The restriction of Ep to any set of paths having the same

origin node is a strict linear order.
The relations Ev and Ep are called the transmission and
preference relations respectively.

We may also write Ep as ‘≺’, where p ≺ q means that p
is strictly preferred to q. The ‘path digraph’ structure, then,
is the derived graph where the nodes are the elements of P
and the arcs are Ev ∪ Ep. For example, Figure 1 shows a
network of three nodes 0, 1 and 2, where 0 is the particular
destination. The paths are shown alongside their origin nodes,

in preference order (so 1 prefers path 120 over 10); any path
not shown is not permitted. The path digraph is shown in
Figure 2, where dashed arcs correspond to prefers arcs, and
solid arcs for transmission arcs.

We can define a notion of ‘stable solution’ corresponding
to the endpoint of the route computation process.

Definition 2: A stable solution to a path digraph
(P,Ev, Ep) is a subset S of P that contains the empty
path εd from d to itself, and such that any other path q is in
S if and only if

1) there is some p in S such that (p, q) is in Ev , and
2) there is no p′ in S such that (p′, q) is in Ep.
In general, there may be zero, one, or many stable solutions.

If there is no stable solution then the routing protocol will
certainly oscillate; if there are more than one, then it might
oscillate (depending on details of the path-vector mechanism).
If, however, there is exactly one stable solution, then the
protocol will necessarily converge to it [17], [9]. A sufficient
condition for this is that the path digraph be acyclic.

Theorem 1: If a path digraph has no cycle (that is, the
transitive closure of Ev∪Ep is irreflexive) then it has a unique
stable solution.

Proof: See [10].
The property of a path digraph having a unique stable solu-

tion implies that the configuration is both safe and robust [3],
[2], [4], [16]. Informally, a routing configuration is safe if
any fair execution sequence for the path-vector protocol must
eventually result in convergence of the routing state. It is robust
if it remains safe even after removing some subset of the nodes
and arcs in the graph.

The transmission relation Ev forms an arborescence rooted
at εd. It therefore contains, implicitly, data about the connec-
tivity of the original graph. The extended structure, which we
now define, makes that information more explicit.

Definition 3 (Extended path digraph (EPD)): If
(P,Ev, Ep) is a path digraph on (V,E, d) then the extended
path digraph is (P,Ev, Ep, s), where s is the function from
P \ {εd} to V that maps each path to its origin node.

An EPD may be represented diagramatically by grouping
the paths in P according to s, as in Figure 3. Here, and in the
rest of this paper, paths in P are represented by square boxes,
nodes in V by ovals, preference arcs by dashed arrows and
transmission arcs by solid arrows.

We will also use the following notation, for an EPD instance
(P,Ev, Ep, s) on a graph (V,E, d):
• Pu is the set {p ∈ P | s(p) = u}.
• Concatenation of paths is denoted by ‘◦’.
• Γ+(u) = {v ∈ V | (u, v) ∈ E} and Γ−(u) = {v ∈
V | (v, u) ∈ E}.

We call elements of Γ+(u) the downstream neighbors of u,
and elements of Γ−(u) the upstream neighbors of u. We will
also use the notation Γ+(u, v) to mean the union of Γ+(u)
and Γ+(v), and similarly for Γ−(u, v).

In general, a cycle in an EPD must involve more than one
node in V , since the preference arcs alone do not contain
cycles. That is, this paper does not consider inconsistent



Fig. 1. The network con-
figuration of Disagee

Fig. 2. The path digraph
for Disagee

Fig. 3. The EPD nota-
tion for Disagree.

Fig. 4. Relate duplicate and complementary reduction

preference relations within a single node. Moreover, since the
transmission arcs form a tree, the EPD cannot be cyclic unless
there is a cycle in (V,E). That is, regardless of the routing
preferences, convergence is guaranteed for any network that
has no cycles.

III. NETWORK REDUCTION

This section presents a rewriting calculus for policy-based
routing systems, based on the idea of reducing a given network
to one which is smaller, but has the same safety property. We
define two specific rules, called duplicate and complementary
reduction, for merging two router nodes in an EPD. Both
of these are purely local, meaning that the operations only
require examination of the relevant nodes and their immediate
neighbors. In the following, assume we are working with a
given EPD instance G = (P,Ev, Ep, s) on a graph (V,E, d).

A. Definitions

To ease the discussion of these reductions, we first introduce
three auxiliary notions: ‘consistent node’, ‘node rewrite’, and
‘strongly adjacent’. We say two nodes are consistent if their
configurations do not form a cycle in the EPD representation,
formalized as follows:

Definition 4 (Consistent nodes): Given a policy configura-
tion’s EPD (P,Ev, Ep, s) on the network graph (V,E, d),
nodes u and v in V are consistent if there is no cycle in the
EPD which consists only of paths p for which s(p) ∈ {u, v}.
An example of nodes violating consistency is in Figure 3:
nodes 1 and 2 are not consistent since there is a cycle of
paths (120, 10, 210 and 20) that only involves these two
nodes. This conflicting configuration causes route oscillation
behavior. Such examples of consistency violation, where two
nodes have a policy conflict, should not be eliminated during
reduction, in order for the problem to be detected in the final
analysis. A consistency check is hence a precondition for
reduction.

Definition 5 (Strongly adjacent): Two nodes u and v in V
are strongly adjacent if for every path in Pu, either v does
not appear, or it appears as the next node following u; and
likewise for Pv .
Strong adjacency implies that two nodes are either immediate
neighbors, or one does not route to destination through the
other. It is also a precondition for reduction.

Definition 6 (Node rewrite): The procedure to rewrite node
u to v is as follows: Rewrite the path p ∈ Pu in u to p′ ∈ Pv

in v by: If p = u◦w◦r, and w 6= v, then rewrite p to v◦w◦r;
If p = u◦v◦r, then rewrite p to v◦r; For all other cases, abort
rewrite. Rewrite the preference among Pu to that among Pv

by: Rewrite preference arc (p, q) to (p′, q′), where p rewrites
to p′ and q to q′.

The global rewrite on the EPD is straightforward, once the
two nodes have been merged. All paths in P are rewritten
according to the procedure of Definition 6, as is the transmis-
sion relation Ev . Write p[u, v 7→ w] for a path p where all
occurrences of u or v are replaced with w, eliding any ‘ww’
subpath. The preferences at the new node w are determined
by the specific reduction procedure; for any other node t, the
new path preferences on Pt are obtained as follows. For a
path p, let p̂ denote the path that is minimal according to Ep

among {q ∈ Pt | q[u, v 7→ w] = p}. Then the written Ep on t
is {(p̂, q̂) | (p, q) ∈ Ep}: that is, a path ‘inherits’ the relative
preference of the highest ranked path in its preimage.

B. Duplicate Reduction
Definition 7 (Duplicate condition): Suppose that u and v

are two consistent and strongly adjacent nodes. Then v is
a duplicate of u, if after rewriting v to u, the following
conditions hold: (1) v’s path P ′v is equivalent to (or a subset
of) the u’s paths Pu; (2) For every preference arc (p, q) in v,
there exists (p′, q′) in u.

Fig. 5. Nodes u, v are merged by duplicate reduction if they agree on
how to route to destination d through their neighbors x, y, . . . , z: For
any path pi, qj , u, v agree on their preference.

Fig. 6. Nodes u, v are merged by complementary reduction if their
neighbors x, y, . . . , z agree on how to route to destination d through
them: After merging, the route preference for any path pi, qj are set
according to the consensus among x, y, . . . , z.

The duplicate precondition ensures two nodes agree on
the paths and their preference to reach the destination. The
duplicate ‘redundancy’ of u and v is characterized in terms



of u, v’s views of their neighbors through which they route
to destination d. The general duplicate reduction process is
shown in Figure 5, where u and v are merged into one node
u. One can view the local change as merging the paths of v
into u, and this operation can be done consistently since they
have the same routing preference.

C. Complementary Reduction
In contrast to duplicate reduction, complementary reduction

captures the redundancy observed by the neighbors of u and v.
The intuition is that if all the neighbors route to destinations
through u and v in a consistent way, then u and v can be
combined into one node without changing the routing behavior
of these neighbors. This is formalized as follows.

Definition 8 (Complementary Condition): Two consistent
and strongly adjacent nodes u and v are complementary if, for
any paths p and q in Pu ∪ Pv , and any nodes x and y which
are immediately downstream from u and v, the preference
(x ◦ p, x ◦ q) is in Ep if and only if (y ◦ p, y ◦ q) is in Ep.

The general complementary reduction process is illustrated
in Figure 6 where nodes u and v, whose neighbors x, y, . . . , z
agree upon routes through them, are merged into one node.
The merging is more subtle than the duplicate one: (1) The
merged node w’s paths combine those from u and v, i.e.Pw is
the union of Pu and Pv; (2) The route preferences for the new
node w are partly determined by the consensus of preferences
of their neighbors (in cases where the preference could not be
derived from either u or v). That is, if u has path p (and not
q) and v has path q (and not p) then we set p to be preferred
over q in w if and only if all downstream neighbors x agree
that x ◦ p is preferred over x ◦ q.

D. Example
Consider the configuration in Figure 7, Here, there is an AS

with three border routers (3, 7 and 4) and two internal routers
(5 and 6), as well as three external router nodes (1, 2, and the
destination 0). The nodes 3 and 4 are complementary because
their downstream neighbors (the internal nodes 5 and 6) agree
on the preference among paths to 0. After merging them, the
new node is again complementary to node 7. Following a
second complementary reduction step, the two internal nodes
are both duplicate, and can also be eliminated.

IV. PROPERTIES

This section establishes the three properties of network
reduction: (1) The duality property reveals that duplicate and
complementary reductions are symmetric; (2) The soundness
property enables us to use the reduced configuration to study
the original one; (3) The local completeness property shows
that reduction can be done efficiently just by examining only
“local configuration” — the two nodes and their immediate
neighbors, and that duplicate and complementary reductions
form a complete repertoire of such “local” methods; and (4)
The confluence property reveals the role of merging order in
reduction. In this section we present the definitions and proof
sketches.

Assume in the rest of the section that we are working with a
given EPD instance G = (P,Ev, Ep, s) on a graph (V,E, d),

where u and v are two reducible (duplicate or complementary)
nodes. Let G′ be an instance to which G reduces by duplicate
or complementary reductions.

A. Duality: Relating Duplicate and Complementary Reduction

Theorem 2: a. If all the nodes in Γ−(u, v) can be merged
into one node by (multiple steps of) complementary reduc-
tions, then u and v must be duplicate. b. If all the nodes in
Γ+(u, v) can be merged into one node by (multiple steps of)
duplicate reductions, then u and v must be complementary.

Proof: Part a may be proved as shown in Figure 4 (a).
After all nodes in Γ−(u, v) (left-most EPD) are merged to x
(the middle EPD), nodes u and v are duplicate, since they
satisfy the criteria of Definition 7. Part b can be proved in the
same way in Figure 4 (b).

The duality theorem reveals the symmetry between du-
plicate and complementary reduction, as prefigured in Sec-
tion III-D (where the border routers were complementary
but the internal, downstream routers were duplicate). It also
implies that if two nodes’ upstream (or downstream) neighbors
can be reduced into one node in our calculus, then these two
nodes themselves can be further merged into one.

B. Soundness

The main soundness result is that the reduced policy con-
figuration has the same safety and robustness properties as the
original one, and so we can use the reduced one to analyze
the original.

Theorem 3: a. If G′ is safe then G is safe; b. if G′

experiences route oscillation, then in running G, there exists
at least one execution trace that exhibits route oscillation.

According to Theorem 1, to prove part a, it is sufficient to
prove G’s EPD is acyclic. Since G′ is already acyclic (it is
safe), it reduces to prove that the rewriting process preserves
the absence of cycles in EPD representations. For part b, we
proceed by prove its dual: G is safe implies G′ is safe. This
can be proved in the same way as a.
In sum, we only need to prove that the rewriting process
preserves the absence of cycles in the configuration’s EPD
representation:

Proposition 1: The path digraph of G is acyclic if and only
if the path digraph of G′ is acyclic.

Proof: For duplicate reduction, we prove rewriting pre-
serves cyclicity by constructing a cycle in G′ for any cycle
c in G. The duplicate rewrite from G to G′ is defined by
merging duplicate nodes u and v, and the proof proceeds by
case analysis of whether any of the paths originating from u
or v are on c. We prove rewriting preserves acyclicity via the
contrapositive: if G′ is cyclic then G is cyclic, which is also
proved by construction.

For complementary reduction, the proof is similar thanks to
the EPD formalization and the dual nature of the two rules.

We only provide a proof sketch here, the complete proof
and its graph illustration are in Appendix A.



Fig. 7. Application of complementary and duplicate reduction to border and internal routers,
respectively.

Fig. 8. If u and v are neither duplicate nor complementary,
merging them can create a cycle.

C. Local Completeness

We first formalize the notion of “local reduction” and “local
safety”, and then prove that duplicate and complementary
reductions are locally complete with regard to preserving the
presence or absence of EPD cycles. Intuitively, a reduction
rule applied to nodes u and v is “local”, if it only requires in-
formation from u, v and their immediate neighbors (Γ−(u, v)
and Γ+(u, v)) in order to test the reduction precondition, and
generate the configuration of the merged node.

Let Nrest stand for the nodes in V which are not within one
hop of u or v. We introduce a binary relation ∼u,v on EPDs,
capturing the idea that they only differ on the configuration of
Nrest, by G ∼u,v G

′ if and only if the following hold:
1. G and G′ are on graphs having the same set of nodes.
2. They have the same path configuration for u and v: so
Pu = P ′u, Pv = P ′v , with the same preference arcs; and
they have the same set of transmission arcs to and from
u or v.

3. A preference arc (y ◦ p, y ◦ q) is in Ep if and only if
it is in E′p, for any y in Γ+(u, v), and any p and q in
Pu ∪ Pv .

Definition 9 (Local Safety): A network reduction rule on G
by merging u and v is locally safe, if it also preserves safety
for any G′ with G′ ∼u,v G.

Theorem 4 (Local Completeness): If a network reduction
rule that rewrites G by merging u and v is locally safe, then
it must be either duplicate or complementary reduction.

Proof: Proof by contradiction. We use proof by contra-
diction to establish that if u and v are neither duplicate nor
complementary, then the reduction rule that merges them is
not locally safe. To show such reduction is not locally safe,
we only need to construct an acyclic EPD G including u, v ,
where application of the node merge results in G′ being cyclic.
By assumption, G is acyclic, so in particular u and v are not
on a cycle (see the left of Figure 8). We construct an EPD
where there is a series of transmission arcs from a downstream
neighbor of v to an upstream neighbor of u (illustrated from
y2 to x1). Merging u and v creates a cycle, shown in the right
of Figure 8.

Note that, while duplicate and complementary reduction
are locally complete, we do not exclude the existence of
other safety preserving reduction that requires checking policy
configuration beyond u, v and their neighbors. That is, we do
not exclude less efficient algorithms for simplifying networks.

D. Confluence

This section discusses confluence properties of the reduc-
tions: we first prove duplicate reduction is confluent.

Theorem 5: [Duplicate reduction is confluent] If, for a set
of nodes V , any pair of nodes u and v in V are duplicate,
then V can be merged into one single node by multiple steps
of duplicate reduction, regardless of the reduction order.

Proof: By induction on the size of V .
The base case. |V | = 2 is trivial.
The induction step. For |V | = k+1 > 2. Consider two nodes
u and v in V , which by assumption are duplicate. By merging
them into a new node z, we can rewrite V to V ′ = W ∪ {z}
where W = V \ {u, v}. By the induction hypothesis that any
k pair-wise duplicate nodes can be merged into one node, it
is sufficient to prove that V reduces to one node by showing
that V ′ is pair-wise duplicate, since |V ′| = k. By definition,
in V ′, the subset W is pair-wise duplicate, so we only need to
show that z is duplicate with any w in W . Since u and v are
duplicate with w, it must be the case that z and w satisfy at
least the duplicate conditions. Since Pz = Pu∪Pv , and by the
pair-wise duplicate definition we know that paths in Pu and
Pw, in Pv and Pw, and in Pu and Pv always form a unique
total ordering. That is, for any three paths p ∈ Pu, q ∈ Pv , and
r ∈ Pw, we know how to set the preferences between any two
of them. Then there must be be a unique ordering between the
three of them, and so all paths from Pu ∪Pv ∪Pw are totally
ordered.

On the other hand, complementary reductions are not con-
fluent. Consider the EPD in Figure 9(a), in which nodes
u, v and w have the same set of downstream neighbors.
For example, node u has two paths p2 and p3, and there
is some downstream preference p2 ≺ p3. All downstream
neighbors have consensus on preference among paths from
u and v (p2 ≺ p1 ≺ p3), and among paths from v and w
(p2 ≺ p1 ≺ p4). However, there is no consistent ranking for
paths from u and w, since some nodes prefer p3 over p4, and
others prefer the reverse. While complementary reduction can
be applied to either u and v (as in Figure 9(b)), or u and w
(as in Figure 9(c)), a further reduction step is not possible.

Finally, we show that duplicate reduction does not commute
with complementary reduction, by exhibiting a counterexam-
ple. Consider the EPD in Figure 10, where nodes u and v
are duplicate, and v and w are complementary. If u and v are
merged into z through duplicate reduction, then this z is not
reducible with w, due to the lack of consensus on paths p3
and p4 among downstream neighbors.



Fig. 9. The EPD in (a) either rewrites to (b) or (c) depending on the order of two complementary
reductions (u, v or v, w)

Fig. 10. Duplicate/complementary reductions do not
commute

V. EVALUATION

We have implemented a prototype of network reduction
using Maude. With the prototype, we demonstrate that network
reduction is applicable on various networks, can be done
efficiently at low overhead, and enables analysis of BGP
configurations that cannot otherwise be completed. Moreover,
by comparing BGP systems before and after reduction, we
not only validate our reduction theory, but also gain insights
into redundancy and conflicts in network configurations. We
primarily selected Maude due to its existing libraries [20],
[19] for modeling BGP systems and performing safety analy-
sis [20].

A. Network Generation

We present evaluation on a variety of networks ranging
from synthetic networks including configurations of Cisco
guidelines [21], and random network topologies generated
using GT-ITM, to actual network topologies including CAIDA
inter-AS level topologies [1], and Rocketfuel router-level ISP
topologies [18]. All experiments are carried out on an Intel
Xeon 2.33GHz CPU with 4GB memory, running Linux 2.6.

a) Reduction on Synthetic Networks: We evaluate
network configurations that span multiple ASes, consisting
of both iBGP and eBGP configurations. We first develop a
model of a BGP system [15] in Maude, which consists of
several ASes and routers running the path-vector protocol, and
exchanging routes based on their import, export, and route
selection policies. In particular, both the Cisco-Synthetic and
GT-ITM network policies are realized by the local preference
and AS path attributes for route selection, and import/export
filtering for route exchange. In addition, we develop Maude
functions that generates the EPD model from a BGP system
in terms of topology and configuration attributes [15]. More
details on synthetic network setup are in Appendix B.

b) Reduction on Actual Topologies: We evaluate the
effectiveness of our reduction techniques on actual Internet
topologies, obtained from the CAIDA Inter-AS level topolo-
gies [1] and the Rocketfuel router-level ISP topologies [18].
In the CAIDA and Rocketfuel dataset, we sample1 the dataset
to derive network of sizes up to 185 and 128 respectively.
For all the topology samples, we insert the same policy
configurations as our earlier Cisco-Synthetic and GT-ITM

1Our experimental dataset was limited by the physical memory constraints
of storing the entire EPD in memory. As future work, we plan to explore
out-of-core implementations or the use of multiple machines for executing a
single reduction.

setups. We observe that the reduction rate was high, achieving
a rate of 75% and 69% on average respectively. This suggests
that in practice, there is significant configuration redundancy
in actual configurations, observable even for a sample of the
network.

B. Reduction Performance

Table I summarizes the performance overhead of network
reduction and analysis on the two classes of input topologies
for various network sizes. Cisco-Good-22 refers to a 22-node
Cisco-Synthetic topology embedded with Good Gadgets. The
columns shown refer to:

• EPD Generation. Time to generate a EPD model from the
input BGP configuration.
• Reduction Time. Reduction time required to generate the

reduced EPD from the corresponding input EPD. Both reduc-
tion rules are applied, duplicate followed by complementary.
• Reduction Time (Dup). Same as above, except that com-

plementary reduction is not applied. The difference allows us
to compare the marginal overhead of applying complemen-
tary reduction.
• Reduction Rate. Percentage of redundant nodes that are

reduced. For example, 68% for Cisco-Good-22 means that the
reduced EPD is only 1-68% = 32% of the original network
size.
• Reduction Rate (Dup). Rate of reduction achieved by only
merging duplicate nodes.
• Reduced Analysis. Time required to run the safety analysis
on the reduced EPD after reduction, using existing Maude-
based safety analyzer [20].

c) EPD Generation and Reduction: The overhead of
reduction includes the time required to generate the EPD
representation of the policy configuration, and the overhead
of doing the reduction itself. Due to space constraints, we
will show performance graphs (derived from Table I) for the
the Cisco-Synthetic networks, but discuss conclusions drawn
from both input topology classes.

Figure 11 shows the EPD generation time (left) and reduc-
tion time (right) as the number of nodes increases. We observe
that the execution times are polynomial (cubic/quadratic) with
respect to network size. While the complexity bounds are not
ideal for scaling up, we note that the absolute numbers are
easily within the realm of practicality. For instance, on a single
commodity PC, EPD and reduction using our unoptimized
Maude code requires only 16 minutes and 32 seconds (or



Input Topology EPD Generation
Time (ms)

Reduction
Time (ms)

Reduction Time
(ms, Dup)

Reduction
Rate

Reduction
Rate (Dup)

Analysis Time
(ms)

Cisco-Good-22 3 74 22 68% 63% 429043
Cisco-Good-48 113 863 124 85% 84% 429043
Cisco-Good-87 5299 5665 649 92% 92% 429043

Cisco-Good-104 26567 10341 1814 93% 93% 429043
Cisco-Good-140 983300 32562 1814 95% 94% 429043

Cisco-Bad-22 5 96 23 69% 68% 80224
Cisco-Bad-49 112 935 119 86% 86% 80224
Cisco-Bad-87 5204 6075 465 92% 92% 80224

Cisco-Bad-104 25449 11258 725 93% 93% 80224
Cisco-Bad-121 177421 19741 1111 94% 94% 80224

Cisco-Disagree-23 2 30 14 78% 80% 184
Cisco-Disagree-53 40 352 73 90% 90% 184
Cisco-Disagree-70 182 901 164 93% 92% 184

Cisco-Disagree-103 3951 3641 469 95% 95% 184
Cisco-Disagree-122 20792 6430 810 96% 96% 184

GT-ITM-12 1 6 2 82% 81% 1
GT-ITM-38 7 24 9 94% 94% 1
GT-ITM-77 57 2279 68 95% 95% 1
GT-ITM-80 71 5241 84 90% 90% 2

GT-ITM-118 350 583143 455 86% 91% 2

TABLE I
SUMMARY OF RESULTS ACROSS VARIOUS INPUT TOPOLOGIES. AVERAGES ACROSS MULTIPLE RUNS ARE PRESENTED.

18 seconds with duplicate only reduction) respectively, for a
network of 140 nodes (Cisco-Good-140).

We observe that in Cisco-Synthetic networks, the reduction
overhead is dominated by the EPD generation time. Note how-
ever that EPD generation is amortized across both reduction
and analysis, since the subsequent analysis essentially uses the
same EPD representation. In contrast, in GT-ITM networks,
we observe that the actual reduction dominates over EPD
generation, suggesting that a nosier (more randomize) config-
uration increases reduction overhead. Among Cisco-Synthetic
networks, we observe that reduction times are increased on
denser topologies with full meshes within an AS, as compared
to ASes that use route reflectors internally.

d) Reduction rate: Table I shows that reduction is very
effective at reducing the size of the EPDs. In some cases,
as the network sizes increases, the reduction can reduce the
original EPD by 95%. Figure 12 shows the reduction rates
on the Cisco-Synthetic networks. For networks beyond 40
nodes, the reduction rate is above 80% and relatively stable.
The effectiveness of reduction can be attributed to the highly
structured natures of these topologies, where the resulting
reduced EPD is often identical to the original embedded
gadgets themselves. Another source of irreducibility is if the
BGP decision procedure falls through to attributes we do not
analyze.

The trends observed in GT-ITM are largely similar, though
we note that since these topologies are randomly generated,
the reduction times and rates have higher variance across
experimental runs. In Cisco-Synthetic networks, the reduction
rate exhibits smaller variance due to its regular structure. In
general, when a network becomes more hierarchical, (from
GT-ITM to Cisco, from full-mesh to reflection), reduction
rate improves due to increased redundancies. Moreover, the
reduction overhead is relatively smaller (compared with the
growth of network size). All in all, our results imply that a

well structured hierarchical network configuration is easier to
analyze in terms of reduction times. They are also more likely
to result in safer configurations that do not oscillate.

e) Duplicate vs Complementary: As we noted in
Section III, the complementary condition is more complex.
While duplicate reduction only requires two nodes to agree
upon what they learned from their neighbors, complementary
requires all the neighbors of the two nodes to agree upon what
are learnt from them. Our experimental results summarized
in Table I validate that the overall reduction time tends to
be dominated by complementary reduction. In addition, the
marginal benefit of performing complementary reduction on
top of duplicate reduction is often small. For instance, Cisco-
Good-22 results in a 63% reduction compared to the original
EPD when only duplicate reduction is used, and 68% (i.e.
an additional 5%) with both forms. While complementary
reduction is less effective, we note that in almost all cases, the
EPD is further reduced by the reduction. Moreover, as noted
in Section V-C, both forms of reduction allow us to shed light
into the policy configurations themselves.

f) Analysis time: To understand the benefits of per-
forming safety analysis on the reduced EPDs, we compare
analysis results on the original and the reduced EPD, by
running existing safety analyzer [20]. The analyzer [20] uses
an exhaustive search strategy to explore all possible execution
sequences. Oscillation is detected if the same best route is
selected multiple times during protocol execution. Overall, we
observe that after reduction, the analyzer is able to detect the
same route oscillation pattern found in the original network.
While the original pre-reduction EPDs did not terminate within
minutes, all the post-reduction EPDs completed successfully,
while requiring significantly less time and state exploration.
The Cisco-Synthetic topologies with Good Gadget requires the
longest analysis time, since these are safe instances, and hence
require enumerating all possible states before completing the
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Fig. 11. EPD (left) and Reduction time (right) as number of nodes increases for the Cisco-Synthetic
topologies
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Fig. 12. Reduction rate as number of nodes
increases for the Cisco-Synthetic topologies.

Fig. 13. In a Cisco-Synthetic network, duplicate reduction (left) merges
core (triangles), internal routers (ovals) and retains the border gateway nodes
(highlighted squares) post-reduction; Complementary reduction (right) merges
core, border gateway routers and retains internal nodes (highlighted ovals).

analysis. In the case of unsafe instances, the analysis time was
quicker and terminated whenever an unsafe execution trace
was obtained.

In the GT-ITM networks, since they were less structured,
not all of input topologies reduced to small gadgets (like the
Cisco-Synthetic examples do) that can be analyzed quickly.
For instance, in GT-ITM-118, only 25% of the reduced EPDs
were analyzable, since the other reduced instances themselves
still contain 20 nodes. We note however that when these
instances are analyzable, they are typically reduced to small
EPDs which can be analyzed quickly.

C. Observations and Implications
In addition to performance benefits of feasible analysis, the

process of reduction allows us to gain new insights into policy
configurations.

In Section IV, we prove that duplicate and complementary
are dual concepts. Figure 13 illustrates these effects, by
comparing the EPDs before and after reduction, while only
applying duplicate and complementary reductions respectively.
In these figures, triangles denote core network (transit) ASes
(which includes the embedded gadgets) in the Cisco-Synthetic
networks, and transit AS nodes in GT-ITM. Squares refer to

reflectors in stub ASes, and all other nodes are drawn as ovals.
Nodes that remain after reduction are highlighted.

The duplicate reduction (left) removes some of the core
network nodes, as well as some internal nodes in stub networks
(those which are not border routers) In contrast, complemen-
tary reduction (right) removes an opposite family of nodes,
namely the border routers that connect each stub network to
the core.

This duality reveals deeper insights into the role of re-
dundancy in networks. For core and iBGP internal nodes,
duplicates arise because they are likely configured to agree
upon how to route to their neighboring BGP routers for a
given destination node. Such redundancies are typically elimi-
nated by duplicate reduction. On the other hand, redundancies
among border routers may be caused by configuring one router
as a backup for another, so that the internal nodes that route
through them view them in the same way. This falls into the
definition of complementary nodes.

VI. RELATED WORK

g) Rigorous theory of BGP safety properties: Re-
searchers have used abstract models including routing alge-
bra [6], [4], [17] and combinatorial models [5] to identify
sufficient safety conditions, as well as analyzing particular
BGP routing systems. Practitioners have also discovered global
constraints, or policy guidelines [3], which ensure safety if
universally adopted. These static analysis techniques advance
our understanding of how local policy configurations affect
global convergence, and provide the theoretical foundation
for the analysis of safety. This paper utilizes these safety
conditions to prove the properties of our reduction techniques.

h) Automated detection of safety violations: Existing
practical tools such as rcc [14], [2] statically check BGP
configurations for possible faults due to policy conflicts across
routers. This contrasts with the Maude approach of exhaustive
search, based on the above rigorous theory [20]. These auto-
mated tools all suffer problems: rcc scales well but is neither
sound nor complete, whereas though the analysis in Maude is
sound, it suffers a state explosion problem due to the NP-hard



nature of detecting safety problems. These difficulties motivate
reduction as a means of providing rigorous techniques to
accelerate existing analysis.

i) Accelerated automatic analysis with duplicate re-
duction: In [19], a restricted form of duplicate reduction was
proposed, it dramatically reduces both the state space and the
execution time required for detecting safety misconfigurations,
enabling users to analyze configurations up to 100 nodes
(compared with the previous limit of 25 [20]).

Encouraged by the success of duplicate reduction, this paper
introduced its dual, complementary reduction, based on a new
unified model (EPD). Using EPD model, we proved that no
other rules are locally complete; this and other properties of the
reduction rules, have provided a deeper understanding of the
redundancies presented in BGP systems. We also implemented
a prototype with which we experimentally validated the reduc-
tion rules on various realistic topologies. In sum, the rigorously
proved reduction properties together with the experiments
establish our reduction rules as a sound, efficient, and complete
method for scaling up existing analysis techniques.

VII. CONCLUSION

We present network reduction, a scalability technique for
efficiently analyzing BGP configurations in a sound and au-
tomated fashion. Based on a unified EPD model of policy
configurations for both specification and analysis, we develop
two reduction rules that transform a policy configuration to
a smaller one by only local inspection. We proved that the
two reduction rules (duplicate and complementary) are dual to
each other, and are sound and locally complete with respect to
the safety property. Our evaluation results not only show the
benefits of reduction by scaling up safety analysis of BGP
systems, but also allow us to gain insights into structural
redundancies among Internet routing policy configurations.
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APPENDIX

A. Soundness

Fig. 14. Proposition 2: Case (a.2) and (b) None of Γ−(u, v) are on a cycle;
Case (c.1) Some of Γ−(u, v) and u, v are in the cycle, and at least one of
those in Γ−(u, v) is in Γ−(u) and Γ−(v); Case(c.2) Same as (c.1) except
that no nodes in Γ−(u, v) are both in Γ−(u) and Γ−(v).

Our main soundness result is that the reductions preserve the
presence or absence of cycles in the EPD. From Theorem 1,
this means that the reduced EPD has the same safety and
robustness properties as the original. In the following, let G be
the original EPD, containing nodes u and v which are merged
(by duplicate or complementary reduction) to a single node w
in the reduced EPD G′.

1) Duplicate Reduction Preserves Cyclicity:
Proposition 2: If G rewrites to G′ by duplicate reduction,

then (1) G is cyclic implies G′ is cyclic, and (2) G is acyclic
implies G′ is acyclic.

Proof: For (1), we construct a cycle c′ in G′ for any
cycle c in G. The duplicate rewrite from G to G′ is defined
on u,v, and Γ−(u, v), and the proof proceeds by case analysis
of whether any of these nodes are on c.
Case (a) None of the nodes in Γ−(u, v) are on c. Consider
two sub-cases: (a.1) Γ−(u, v) = ∅ when u and v have no
common upstream neighbor. Regardless of whether u or v is
on c, a cycle c′ in G′ is constructed from c by the global
rewrite c[u, v 7→ w]. (a.2) Γ+(u, v) 6= ∅. We know u and v
cannot be on c either, as then one of the upstream nodes from
Γ−(u, v) would be on c too. Merging u and v will not affect
c, and c′ is obtained by c[u, v 7→ w] (Figure 14 (a)).
Case (b) Some of the nodes in Γ−(u, v), but neither of u and
v, are on c. As in case (a.1), c′ can be constructed from c by
c[u, v 7→ w].
Case (c) A subset of Γ−(u, v) (call it X), and u and v, are on
c. Consider two sub-cases: (c.1) Some of Γ−(u, v), u and v
are on c, and at least one of those in Γ−(u, v) is an upstream
neighbor of both u and v. On the cycle, x must be the last
element in X , shown in Figure 14 (b). After merging u and



v, they are replaced by w in c′. The rest of the changes in c′

are obtained by c[u, v 7→ w]. Note that the presence of arcs
between u and v will not affect the result, represented by the
line between u and v in the figure. (c.2) Some of Γ−(u, v), u
and v are on c, and none of those in Γ−(u, v) are upstream
neighbors of both u and v. There must exist at least two nodes
x and x′ in c, shown in Figure 14 (c). After merging u and
v, c is broken into two cycles. Pick either for c′.

Part (2) is proved via the contrapositive: if G′ is cyclic then
G is cyclic. The proof is similar to that of (1): for any cycle
c in G′, we construct a cycle c′ in G. Consider the two cases:
Case (a) None of the nodes in Γ−(u, v) are on c. There are
two sub-cases: (a.1) Γ−(u, v) = ∅. Regardless of whether w
is on c, in the preimage, a cycle c′ must exist in G where
w replaces either u or v. (a.2) Γ−(u, v) 6= ∅. In this case, w
cannot be on c. In the preimage G, where w is split into u
and v, the cycle is still present. (Note that we only depict one
possible splitting here.)
Case (b) Some x in Γ−(u, v), but not w, is on c. The proof
is similar to that of case (a.1).
Case (c) At least one x in Γ−(u, v), and w, are on c. In the
preimage, there are two cycles, one through u and the other
through v (but which are otherwise identical).

Fig. 15. Proof sketch of Proposition 3: Case 1 (left)
and Case 2.1 (right).

Fig. 16. Proof sketch of Proposition 3: Case 3.

Fig. 17. Proof sketch of Proposition 4, Case 1
(left), and Case 2 (right).

2) Complementary Reduction Preserves Cyclicity:
Proposition 3: If G rewrites to G′ by complementary

reduction, then G is cyclic implies G′ is cyclic.
Proof: Proof by case analysis, for any cycle c in G,

consider whether u, v are on it.
Case (1) Neither u nor v is in the cycle. Merging u, v does
not affect cycle, shown on the left of Figure 15.
Case (2) Either u or v is in the cycle. Then according to com-
plementary reduction definition, consider two sub-cases: (2.1)
shown on the right of Figure 15, if a common downstream
neighbor x of u, v is also on c, then after merging u, v, c
transforms to a new cycle c′ where u is replaced by w. (2.2)
If none of u, v’s common neighbor is on c, c′ can still be

constructed similarly.
Case (3) Both u and v is in the cycle, as shown in Fig-
ure 16. Regardless whether some of u, v’s common down-
stream neighbor (the figure depicts the case where such a
common neighbor is x), after merging u, v, cycle c transforms
to two cycles in G′.

Proposition 4: If G rewrites to G′ by complementary
reduction, then G is acyclic implies G′ is acyclic.

Proof: Prove the dual statement: If G′ is cyclic, then G
is also cyclic. Proof by case analysis. For any c in G′, assume
G′ is obtained from G by merging complementary nodes u, v
into w.
Case (1) If w is not on c, as shown in the left of Figure 17.
Obviously, reversing the reduction by splitting w into u, v does
not affect the cycle.
Case (2) If w is on the cycle of G′, as shown in Figure 17.
Then at least one of the downstream neighbor x is also on c.
Reversing the reduction by splitting u, v will split c into two
cycles in the original G.

B. Reduction on Synthetic Networks
a) Cisco-Synthetic Network: To evaluate network reduc-

tion on well-designed, highly structural policy configurations
proposed by Cisco, we construct various synthetic topologies
combining full-mesh and reflection configurations according
to these guidelines [21].

To understand how reduction helps in detecting route os-
cillation due to policy misconfigurations, we embed in the
network three small substructures or gadgets [7]: namely the
Good, Bad and Disagree gadgets that correspond to safe,
permanent, and transient oscillation behaviors. These gadgets
are embedded within the transit ASes by configuration of
the local preference attributes. There are also several stub
ASes, set up with full-mesh or reflection topologies (described
below), and employing a policy that prefers paths with fewer
AS hops. (To break tie, an older route is preferred over a newly
generated one.)

b) GT-ITM networks: As an alternative dataset, we
generate transit-stub topologies using the GT-ITM topology
generator [13]. Each transit-stub topology is parameterized by
the number of transit domains, nodes within a transit domain,
stubs per transit nodes, and finally, nodes per stub. We increase
the network size by increasing all of these parameters. We
configure routing policies as follows: transit ASes are willing
to carry all traffic, while each stub AS carries traffic only for
itself. Given the randomness of GT-ITM topology generation,
this dataset are less structured compared to the earlier Cisco-
Synthetic topologies, resulting in increased variance in our
results.
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