
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2012

The Impact of an Agile Methodology on Software Development The Impact of an Agile Methodology on Software Development

Costs Costs

Kristin Fergis
University of Pennsylvania, kfergis@wharton.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Kristin Fergis, "The Impact of an Agile Methodology on Software Development Costs", . January 2012.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-12-09.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/971
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/971
mailto:repository@pobox.upenn.edu

The Impact of an Agile Methodology on Software Development Costs The Impact of an Agile Methodology on Software Development Costs

Abstract Abstract
With the emergence of the Internet, software development has become an integral part of almost every
facet of business today. Because consumers have a surmounting demand for immediacy and
convenience, companies are pressured to add web-based services to their product offerings. Therefore,
an increasing number of resources are being allocated to the development of profitable software to meet
customer needs. Because companies desire to maximize their profits, an efficient allocation of these
resources is necessary to minimize costs. This can be achieved by implementing a process model that
best converts their resources to quality products.

Agile software development is a relatively new framework aimed at reducing risk and production costs. It
is based on iterative development and continuous feedback from all stakeholders throughout the
development cycle. The switch to an agile process model from a traditional waterfall process model can
reduce the risk associated with producing a large-scale software application by decreasing lead times
and increasing team morale and productivity. My literature review and initial findings suggest that firms
across industries can benefit from incorporating some degree of agility in their development process.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-12-09.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/971

https://repository.upenn.edu/cis_reports/971

EAS 499 Senior Capstone Project
Project Report
April 24, 2012
Instructor: Max Mintz

The Impact of an Agile Methodology on Software
Development Costs

Kristin Fergis

Advisor: Chris Murphy (cdmurphy@seas.upenn.edu)
University of Pennsylvania

ABSTRACT

With the emergence of the Internet, software development has become an integral
part of almost every facet of business today. Because consumers have a surmounting
demand for immediacy and convenience, companies are pressured to add web-based
services to their product offerings. Therefore, an increasing number of resources are
being allocated to the development of profitable software to meet customer needs.
Because companies desire to maximize their profits, an efficient allocation of these
resources is necessary to minimize costs. This can be achieved by implementing a process
model that best converts their resources to quality products.

Agile software development is a relatively new framework aimed at reducing risk
and production costs. It is based on iterative development and continuous feedback from
all stakeholders throughout the development cycle. The switch to an agile process model
from a traditional waterfall process model can reduce the risk associated with producing
a large-scale software application by decreasing lead times and increasing team morale
and productivity. My literature review and initial findings suggest that firms across
industries can benefit from incorporating some degree of agility in their development
process.

1. INTRODUCTION

A process model is necessary to
define a timeline of deliverables for the
software project and to ensure that every
member of the development team, from
management to engineers to consumers,
understands the expectations of the
workflow. While a waterfall model has
been used for many years, companies are
beginning to realize its inherent

restrictions. Due to its linear timeline of
creating requirements, implementing the
complete functionality, then testing, it
does not adapt well to changing
consumer needs and thus exposes the
project to substantial risk. My research
explores the impact of switching to an
agile methodology on such risk and
associated costs. Agile employs an
iterative development process where
functionality is implemented in two-to-

four-week iterations. Therefore, all three
main components of software
development are repeated throughout the
development cycle. This allows for
change in consumer desires, as a small
amount of functionality is produced
every few weeks and may be easily
altered. Risk is therefore less than that
under the waterfall model, which would
then reduce the cost of capital for
software projects under the agile
framework. Because this process is very
adaptive and open to continuous
feedback, the final product is almost
perfectly aligned with customer
expectations, thus resulting in high
satisfaction and demand, which yield
high profits. Only a sufficient
implementation of an agile method, that
is, a sufficient degree of agility, however,
can lead to such reduced software
development costs.

My research investigates the

advantages and disadvantages of both
process models to determine the impact
of a switch in a business context. More
specifically, I begin with an analysis of
the general expert consensus on the
limitations of both traditional and agile
methods and the benefits of an agile
process model. Next, I explore the effect
of switching from a traditional, plan-
driven model to agile methods on several
measures of cost, quality, and customer
satisfaction. Finally, I analyze the degree
of agility, defined as the fit between the
actual practices of a firm and the
espoused agile practices, employed by
most companies and its correlation with
reduced risk and costs.

2. BACKGROUND

There have been few attempts at
measuring and proving the impact of

switching to an agile development
process model on costs and overall
software quality. Jaana Nyfjord and Mira
Kajko-Mattsson from Stockholm
University are in the process of
integrating agile methods with risk
management, while Kai Petersen and
Claes Wohlin discovered various
improvements by moving from a plan-
driven to an incremental software
development approach by performing a
case study at Ericsson AB in Sweden
[1][2]. However, there have been even
fewer attempts to quantize the effect of
such a switch.

2.1 Limitations of Traditional Methods

 The most common issues
associated with a traditional method
include obsolete requirements, a lack of
an opportunity to understand changing,
current customer needs, and a high
number of faults found during testing [2].

2.1.1 Requirements

Plan-driven, or traditional,

methodologies rely on extensive and
comprehensive planning before the
implementation of any functionality can
begin. Because many documented and
validated requirements, which were
compiled only at the first stage of the
development process, must be discarded
and reworked throughout the
implementation and testing phases, due to
changing customer needs, much time and
effort is wasted outlining an exhaustive
list of requirements. Therefore the
fraction of implemented requirements
over the total number of requirements
written is small, which suggests waste. At
the same time, because a plan-driven
process model is not adaptive to a
changing market, many of the features

that are implemented in the final product
are not needed or used by customers.
Thus requirements become obsolete due
to long lead times (the time between
project conception and implementation).
Such waste increases the cost of
development because those resources
allocated to writing an excessive number
of requirements, over those desired by
current customer needs, do not produce
any output of value. Those resources
could have been allocated to other phases
of the development process, or to another
project, to obtain a positive return on
investment.

2.1.2 Customer Needs

In a study comprised of 400

projects produced using a waterfall
approach, customers used only a small
portion of the developed application code
[2]. This study confirms the lack of an
opportunity to gain insight into shifting
customer needs. It is also evident that
there is no outlet for feedback or an
opportunity to clear any
misunderstandings about customer
requirements within a plan-driven
process model. Because the three main
stages of software development
(planning, implementation, testing) are
completed in a linear, bulk fashion, it is
increasingly difficult and expensive to
pinpoint current customer needs and
adjust requirements and implementation
accordingly.

2.1.3 Number of Faults

Another major issue of plan-

driven development is the significant
number of faults found during the testing
phase. Because testing is done only
during the final stage of development, it
is the first sacrificed when earlier phases

of the process model take an
unexpectedly long amount of time. In
order to meet a fixed deadline, not
enough testing can be done to find a
sufficient amount of faults and thus the
test coverage is low. Because it is usually
the case that the project manager is
overzealous in estimating task duration
times and implementation does not elapse
without a hitch, many faults persist when
the product is released, which results in
decreased customer satisfaction. Such
low customer satisfaction can reduce
repeat or future sales, which decreases
profits and thus the return on investment.

Even when the planned amount of
time for testing is available, it is difficult
to find every fault since the entire code
base needs to be examined at once. Also,
since the quality of the implemented code
is not known until just prior to the release
date, when the functionality is tested, an
unseen amount of faults may be found,
which may be very expensive to fix. Thus
this issue of plan-driven development
also increases costs and drives down the
profitability of a project.

2.2 Limitations of Agile Methods

Although agile development is
not without its own issues, the number
and severity of issues that impact costs
and return on investment of a plan-driven
methodology greatly outweigh those of
an agile methodology [2]. Common
issues remaining for agile after the switch
from traditional methods are related to
high testing lead times, low test coverage,
and many teams requiring high
coordination and communication from
project managers. An agile process model
also does not scale well to large projects,
as numerous iterations are needed to
complete the desired functionality and

too much time may be devoted to any
single, small feature. Thus the
opportunity cost of foregone production
on more profitable and lean projects may
be too high to employ agile methods on a
large-scale project.

2.2.1 Testing Lead Times

High testing lead times can exist

when a piece of functionality is only
realized and implemented too late in an
iteration to be tested and must wait for
the next iteration to be tested. When
switching to agile from a plan-driven
method, such an issue is negligible
compared to the excessive testing lead
times of the latter, seeing as testing is
saved for just prior to release (which may
be several months after conception).

2.2.2 Test Coverage

Because continuous testing is

needed in an agile methodology (testing
at the end of every iteration), a
substantive test environment containing
test cases for every incremental piece of
functionality is required. Agile
development inherently requires that
functionality be implemented in small
steps with great attention to detail and
current customer needs. This implies that
testing must be done in small steps; it
follows that such detailed implementation
necessitates detailed testing. Thus more
test cases are developed than in a plan-
driven approach as testing is done
continuously and exhaustively, which
suggests that testing is the bottleneck of
an agile process model [2]. Even though
many test cases are developed, they tend
to test on a unit level since small pieces
of functionality are tested at a time.
Because integration and system testing
may be ignored more often than in a

traditional methodology and there are
simply many more test cases, testing in
agile may result in low test coverage. As
previously stated, low test coverage
causes an increase in the number of faults
found after the release of the product or
more resources allocated to fixing such
faults. Therefore, increased costs reduce
profit and ROI.

2.2.3 Communication & Coordination

The last common issue with agile

development involves management
overhead. Because a successful
application of an agile methodology
relies heavily on strong teamwork, the
project manager must remain involved in
the dynamics of the team to foster a sense
membership and attachment to the
quality of the final product. This involves
much communication and collaboration
between team members and management
to ensure all employees across process
phases (business analysts, software
developers, and testers) are working
together to build a successful product.
Also, the project manager must make
certain that the incentives of all members
are aligned with the mission of the
project. In addition to such team-specific
attention, agile development usually
employs multiple teams working on
different features of a product, especially
for larger projects. It follows that
management must provide such quality
attention to multiple teams, each with
different needs and behaviors. Although
this issue does not directly affect costs,
the time and effort needed to manage
these teams may impact the resources
available to work on other projects that
do not employ an agile process model.

Although agile development does
exhibit some issues, they pale in

comparison to those of plan-driven
development. Therefore, due to the most
common issues of both methodologies, as
presented by Kai Petersen and Claes
Wohlin in their case study at Ericsson
AB and based on my analysis of their
impact on several business metrics, agile
development does the least harm to
potential costs and return on investment.

3. ADVANTAGES OF AGILE

Based on the literature, there are
numerous benefits of agile, which I will
relate to the business measures of
performance that have been used thus far,
costs and return on investment.

There exist many commonly
perceived improvements from switching
to an agile methodology. The critical
improvements include more stable
requirements, earlier fault detection,
lower lead times for testing, increased
communication, and increased adaptive
capacity. I will now explain in more
detail the impact of such improvements
on costs and ROI and finally synthesize
the overall perceived benefit of agile
versus traditional methods.

3.1 Requirements

The foremost improvement from

switching from a plan-driven approach is
indeed related to the core competency of
the approach: the planning phase of
development. Agile development arose
out of the need to alleviate the inherent
issues of a plan-driven methodology,
which are mostly related to writing
requirements (many of which become
obsolete) and planning. Thus it is natural
to perceive how agile methods, in
general, dissipate such issues.

There is much evidence to

suggest that the planning phase is
dramatically improved. First, because
customers are directly involved in the
development process, that is, customers
control the processes of projects through
on-site interaction, requirements truly
reflect the current needs of the end users.
Instead of writing requirements in bulk
upfront, some of which may become
obsolete during subsequent phases of
development, an agile process mandates
iterations of no longer than four weeks
where all phases are incrementally
repeated. This system updates customer
needs every month, at the most, when
new requirements are written for each
additional feature. If the requirements
from the previous iteration become
obsolete, which is rare since customer
needs infrequently change within two to
four weeks, it is easy (and cheap) to
update the developed code because only a
small piece of functionality was
implemented. Due to such dynamic
requirements, based on customer
feedback, there is little need to revise
existing requirements and make dramatic
changes to existing functionality.

Plan-driven development does not

provide an outlet for customer feedback
or interaction, which is a major hindrance
to productivity since consumers do not
use a large portion of the developed code
of the released product [2]. Agile
provides much relief in this respect;
customers provide feedback after almost
every iteration, communicate their likes,
dislikes, and new needs, and the team
instantly responds to any changes.
Because development is incrementally
completed over time, it is not expensive
to react to such changes. The sheer time
and effort that is saved reworking

requirements reduces the opportunity cost
of working on more profitable projects
while increasing revenues from future
projects that are able to begin earlier.

Also, customers receive an end

product that is very aligned with their
needs and are therefore willing to pay a
premium for such quality, which
increases revenues and ROI. This
behavior has a multiplicative effect;
because a quality product is released in
line with demand, customer satisfaction
increases, which also increases customer
retention and CLV (customer lifetime
value). Since customers are more likely
to purchase the product due to its
alignment with their needs, they associate
a positive experience with the company
and are incentivized to purchase future
products from the same company. Thus
the high present value of the revenues
attributed to these relationships with
various customers, or CLV, further
increases ROI due to the expectation that
customers will continue purchasing such
products in accordance with their needs.

3.2 Fault Detection

Because testing is performed

during each iteration, and not left for just
prior to release, faulty pieces of code can
be detected at an earlier rate than with a
plan-driven process model. Each iteration
includes a testing phase, which suggests
that each incremental piece of code is
tested with much detail. Functionality is
developed in small pieces within each
iteration, thus testing occurs in small
steps as well; each singular feature is
tested within its respective iteration.
Because testing occurs continuously,
faults are detected earlier and can be
fixed before it increases in severity.
Earlier fault detection implies many

faults are found between iterations and
can be cheaply fixed before much time
and effort is devoted to substantial
implementation, since implementation
and testing occurs recursively. Since an
iteration spans two to four weeks, it is not
difficult to reconstruct code that contains
a fault, due to the small amount of
functionality that can be implemented
during such a short amount of time. Also,
continuous testing allows continuous
testing feedback, which further improves
code developed in future iterations.
Because faults are detected at an earlier
and continuous rate, fewer persist to
release, and as previously mentioned,
customer satisfaction and ROI increase.

3.3 Testing Lead Times

It follows from the previous

improvement (earlier fault detection
times) that agile development, in general,
employs lower lead times for
implementation and testing. Although it
was previously stated that agile
development might cause high testing
lead times, it is true for only the
exceptional case when a feature is
implemented too late in the iteration to be
tested. However, it is more often the case
that those features discussed during the
planning phase (of the iteration) are
implemented then tested within the same
iteration. Then, in general, testing lead
times are greatly reduced since testing is
not the ultimate action before release.
Continuous testing contains the benefit of
not only early fault detection, but also
early and often testing, which reduces the
testing lead times for pieces of
functionality. Thus, testing is not
sacrificed in the sake of time (if a fixed
deadline must be met) due to its
pervading nature, and fewer faults persist

to release. Then, for reasons previously
mentioned, ROI is increased.

3.4 Communication

As a result of the strong

teamwork necessary to uphold agile
standards, much communication is
necessary to maintain such fine
relationships. Agile development not
only improves communication between
the company and customers but also
between different employees working on
the same project. Increased
communication leads to increased team
morale as employees begin to trust and
gain the trust of their team members. A
close-knit team dynamic improves
productivity as members feel a part of
something greater than themselves and
accountable for the work of their peers.
This increases team productivity and
generates superior performance than the
sum of all individual output. Such
synergy improves the quality of the
product and results in increased revenues
and ROI.

3.5 Adaptive Capacity

As Philippe Kruchten implores,
software development projects are not
necessarily replicable to benefit from
prescriptive processes [4]. An agile
methodology attempts to add a dynamic
component to software development;
business analysts, developers, and testers
must interact with each other, as well as
with customers, to devise the best
forward-looking strategy to meet
customer demand. The adaptive nature of
agile development, due to its iterative
process, allows current customer needs to
be incorporated into the final product,
which increases demand and revenues.

Finally, there exists a high correlation
between process maturity and agile
practices. As a project evolves into the
late stages of development, firms are
more likely to employ agile methods
enjoy the adaptive nature of the process
and facilitate the deployment of products
[5].

The improvements generated by
switching to an agile methodology are
great in severity. The most persuasive
motive to switch to agile includes the
dissolution of most issues related to
upfront, bulk planning. The effect on
testing lead times is questionable; for the
purpose of my analysis, I will assume
that testing lead times is negligible
relative to those under a plan-driven
approach and those for other phases of
the agile development cycle [3]. These
improvements, in general, increase ROI,
seeing as the definite reduction in the
number of obsolete requirements and
increase in customer satisfaction as a
result of increased alignment with
demand account for the majority decrease
in costs and increase in revenues,
respectively.

4. DEGREE OF AGILITY

Thus far I have explored the
benefits of switching to an agile
methodology from a traditional process
model under the assumption that the
software development team employs all
artifacts and values of an agile process. I
will now question if the degree of agility
applied by a firm affects the magnitude
of such benefits.

Before I explore in detail the
advantages (or lack thereof) of the
various tools supplied by an agile
methodology (for example Daily Scrum

Meeting or Open Office Space), I would
like to note that a team can only benefit
from learning how to better understand
and adopt agile methods in general.
Maria Paasivaara and Casper Lassenius
performed a case study, using an agile
coaching team to instruct development
teams in the use of an agile methodology,
to illustrate the gains in productivity from
being “more agile” [6]. They did not
specify which tools are more beneficial
than others, only that a more complete
understanding of the agile philosophy can
increase product quality and decrease
overall project costs.

The most important component of

an “agile mindset” is teamwork.
Improving the team dynamic generates
many benefits: not only would members
experience a sense of belonging at their
place of work, but also feel free to
discuss difficult aspects of the
development process with others (which
there are numerous). The free flow of
information and discussion between team
members facilitates both team and
individual growth. As individuals share
experiences with others, both personal
and work-related, a sense of trust is
fostered throughout the team. The team
then develops into a functional and
productive one since all members are
working together toward a common
purpose. By learning from the
experiences of others, individuals
advance their personal growth as they
cultivate such knowledge when away
from the team. In order to gain these
benefits in productivity (which increases
ROI) from such team and individual
growth, the team must embrace an agile
mindset and understand that strong
teamwork is very important in the
success of the project.

Jaana Nyfjord and Mira Kajko-
Mattsson have discovered through
interviews with firms that employ agile
practices that upfront, thorough planning
allows for more agility in the
implementation and testing phases [1].
This suggests the use of a plan-driven
approach during the pre-implementation
phase of development. The degree of
agility that was observed in this phase
depended on many factors including
project type and size, criticality, degree
of uncertainty, budget, and the innovative
character of the project. For the majority
of fixed budget projects, a more
traditional approach was employed
before implementation because the
development team could not afford
change the focus of the project based on
current customer needs. At the same
time, it is hard to conduct upfront, very
thorough planning for small, innovative,
and completely new projects. More
agility in the pre-implementation phase is
therefore required. The authors note that
any degree of agility after performing
some solid planning is acceptable as long
as the project vision is not lost.

Seeing as 60% of software
companies do not subscribe to only one
process model, few firms adopt an agile
methodology in its entirety [7]. Various
fragments of agile development are
utilized to help improve some failing
aspect of the current process. For
example, the Daily Scrum Meeting, a
critical tool espoused by an agile
methodology, can lead to increased
collaboration, real-time information
exchange, increased leadership and
morale, and elevated communication. An
open office space promotes faster
problem solving and a reduced need for
documentation but may decrease focus
on work. Pair programming lends to

improved product and design quality,
reduced code defects, and increased
creativity. Risk is reduced per iteration as
a result of timeboxing, a planning
technique that divides the schedule into
several separate time periods, each
containing its proper deliverables,
deadline, and budget. Thus many agile
techniques possess great advantages and
help to reduce costs, but some, such as
maintaining an open office space, may
detract from the project goals. To
conclude, a high degree of agility is
beneficial only if the selected fragments
do not cause more harm than good.

5. METHODOLOGY

I will now start to explain my
analysis on data collected from various
individuals with experience at firms that
moved to an agile methodology. I
hypothesized that the switch to agile
indeed reduced costs, in line with my
research.

5.1 Data Collection

I developed a questionnaire,
which is attached to the appendix for
reference, to gauge the effectiveness of
an agile method versus a more traditional
approach from experienced employees.
My questionnaire sought to investigate
the day-to-day experiences associated
with the factors of agile development that
reduce cost.

Not only did I desire to gain insight
about the firm’s agile practices, but also
about its plan-driven process before the
switch. Learning about the issues the firm
experienced with a more traditional
approach would help to understand the
appeal of agile. In addition to presenting
the employees with absolute questions

concerning both methodologies, I
included a simple mechanism to indicate
(with an arrow) an increase or decrease in
critical business factors, for each
development phase, as a result of the
switch:

Figure 1: Chart to Indicate an Increase or
Decrease in Business Metrics After the Switch

By collecting first-hand
information about the work effects of a
traditional versus an agile methodology, I
can better understand from real world
data the benefits of a switch to agile and
make a conclusion regarding the success
of the process model.

5.2 Data Analysis

 Introductory emails were sent to
several University of Pennsylvania
alumni employed at firms that recently
moved to an agile process model, which
include Google, Microsoft, EA Games,
Bank of America, JP Morgan Chase,
SAIC, Dell, and Salesforce.com. I
received responses from a few alumni,
after which I sent my questionnaire for
completion. I believe this foot-in-door
technique resulted in the highest
probability of response. However, after
sending out the questionnaire to those
interested alumni, I received usable
feedback from only one individual from
Microsoft. My initial analysis was based
on this piece of data.

6. RESULTS

 I wished to determine whether the
observed experience with an agile
methodology matched my research.
Indeed, Microsoft does not use an agile
process throughout its entire development
cycle. Also, due to resource and time
constraints, some teams must stop
accepting faults and begin new iterations
as necessary. The alumnus stated that
team members feel more tied to projects
under an agile process and desire to
ensure that customer needs are met. Due
to these experiences, it would seem that
costs are reduced as a result of an
enhanced sense of belonging and strong
teamwork.

 At the same time, the alumnus
experienced less time to react to faults
later in the cycle under a traditional
methodology, which also agrees with my
research. Less available time to work on
faults increases the number of defects
found in the released product, which
decreases ROI.

5. FUTURE WORK

My results did not produce any
surprising points, but with time and a
greater response rate from employees
exposed to agile methods, more
substantial results may be found. In the
future, much more data may be collected
to generate more extensive analyses. The
increases or decreases in costs and return
on investment may also be quantized to
provide more quantitative evidence of the
benefits of agile development.

7. REFERENCES

[1] Nyfjord, Jaana, and Mira Kajko-
Mattsson. Degree of Agility in Pre-
implementation Process Phases. Rep.
Berlin: Springer-Verlag, 2008. Print.

[2] Petersen, Kai. The Effect of Moving
from a Plan-Driven to an Incremental
Software Development Approach with
Agile Practices. Rep. Print.

[3] Petersen, Kai. An Empirical Study of
Lead-Times in Incremental and Agile
Software Development. Rep. Springer,
2010. Print.

[4] Kruchten, Philippe. A Plea for Lean
Software Process Models. Rep. 2011.
Print.

[5] Ronkko, Mikko, Antero Jarvi, and
Markus M. Makela. Measuring and
Comparing the Adoption of Software
Process Practices in the Software
Product Industry. Rep. Berlin: Springer,
2008. Print.

[6] Paasivaara, Maria. How Does an
Agile Coaching Team Work?: A Case
Study. Rep. New York: ACM, 2011.
Print.

[7] Paasivaara, Maria. How Does an
Agile Coaching Team Work?: A Case
Study. Rep. New York: ACM, 2011.
Print.

APPENDIX

QUESTIONNAIRE

The Switch to Agile Development

A: Background Information

1. What is your job title?

2. What is your firm name?

3. How long have you been with your firm?

4. How would you best describe the industry in which your firm operates?

5. Approximately how many people work in software development?

B: Agile Methodology

6. Why did your firm start using agile methods for software development?

7. Which agile process does your firm utilize (Scrum, XP)?

8. To what extent does your firm follow the procedures and principles set by this

process?

9. What is the average project lifetime, from inception to a functional system, under

agile development?

10. Do developers and testers feel more tied to projects (IE do they care about the

projects’ impact on the overall firm)?

11. How much time and resources do you spend fixing bugs?

12. Do customers feel more satisfied with your end product?

C: Traditional Methodology

13. What software development methodology did you employ before agile?

14. What did you not like about this methodology?

15. What was the average project lifetime, from inception to a functional system,

under this methodology?

16. How much time and resources did you spend fixing bugs?

17. Overall, do you prefer agile methods to this methodology?

18. If so, why?

Please indicate below which of the following factors have increased or decreased (mark

with an arrow), for each development phase, as a result of switching to agile methods:

• Time: the time to completion

• Scope: the number of features your firm is able to include or implement

• Quality: the number of bugs (internal) or customer satisfaction (external)

• Cost: the amount of resources (monetary or otherwise) allocated

 Time Scope Quality Cost
Analysis of
Requirements

Design
Implementation
Testing
Maintenance

	The Impact of an Agile Methodology on Software Development Costs
	Recommended Citation

	The Impact of an Agile Methodology on Software Development Costs
	Abstract
	Comments

	Microsoft Word - Project Report.docx

