University of Pennsylvania ScholarlyCommons

Techniques for Goal-Directed Motion

James U. Korein
Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

James U. Korein and Norman I. Badler, "Techniques for Goal-Directed Motion", . January 1981.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-81-16.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1003
For more information, please contact repository@pobox.upenn.edu.

Techniques for Goal-Directed Motion

Abstract

When motions of linkages such as the human body must be specified in terms of joint angle changes, considerable effort is required to acheive a particular goal. We review some techniques useful for the automatic generation of joint angle adjustments from a goal specified in terms of a world coordinate system.

\section*{Disciplines}

Computer Engineering | Computer Sciences

\section*{Comments}

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-81-16.

Techniques for Goal-IIirected Motion

James U. Korean and Norman I adler [left. of Computer and Information Science University of Pennsylvania

Abstract

When motions of linkages such as the human body must be specified in terms of joint angle changes, considerable effort is required to acheive a particular goal. We review some techniques useful for the automatic serieration of joint angle adjustments from a sal specified ir n terms of a world coordinate system,

Iritroduction

As computer animation systems achieve greater graphics realism and hishls interactive interfaces, it becomes a challense to animate articulated figures such as the human body. Allowable motions of linkases such as an arm or les are soverned by well known rotation transformations. However, the design of a particular movement such as takins a step or reaching for an object mas require considerable trial and error, if specified at the level of individual joint adjustments. For purposes of convenient animation, it is clear that, at a minimum, one must supply a movement primitive to achieve a sal position with a linked structure [4].

Parallel research in robotics can shed lisht on comeutational solutions to the problem of achievins a farticular position and orientation in sface. The aroblem of soal-directed motion will be cast in terms of robotics and linkase kinematics: the studs of Fosition (displacement) and its time derivatives (velocits and accelerations.

Considerations of force and mass (dunamics) [23,25,46], balance [36,37] and obstacle avoidance [34,35] are besond the scofe of this pafer.

We froceed by establishins the necessary terminolosyy descrinins . linked structures such as the human bode, discussiris constraints and outlinins alsebraic and mumerical methods for soal acheivement.

Fisid Object Fosition and Orientation

The relative fosition of a risid $2-n$ object with resfect to a siven Cartesian reference frame is given by a translation (x, y) and a rotation (r). Hence, a risid object in the plane is said to have three desrees of freedom (d.0.f.). In 3-II, six variables are necessary and sufficient to sfecifs the fosition (xッs,z) and orientation (r1,r2yr3) of a risid object. Therefore, a risid object in space is said to have six do.f.

Intermolation

Consider aris despee of freedom in fosition or orientation of an object (x, for example). It may be expressed as a function of time which will be denoted $x(t)$. The x comporients of velocits and acceleration are the first and second time derivatives. Given a temforal sequence of values for $x y$ a furiction $x(t)$ may be obtained by aris of 3 rimmber of iriterfolation methods. Sirice Ehusical objects carmot achieve infirite accelerationg realistic simulation reauires that the acceleration be everswhere firiteg hence that $x(t)$ be everswhere twice differentiable This reauirement frohibits use of linear iriterfolation schemes common in comfuter animation systems. Quadratic methods have been discussed by Faul [44] and Herbison-Evans [22]. Finkel [17] discusses the use of cubic sfline interfolation for comfutirs robot arm trajectories. Several iriterfolation schemes are comFared bs Mujtaba [38].

Joints and CMairis

Joints which connect risid links mas be divided into those with a sinsle d.0.f., such as revolute ard slidins (frismatic) jointsy arid those with more, such as spherical (ball and socket) joints. A sfherical joint has three desrees of freedom. SuFfose that the fosition and orientation of one of the liriks conmected by a sfherical joint is fixed. Two variables suffice to sive the direction in which the zxis of the free link is fointinsy and a third to sive its rotational wosition about thot axis, For

Figure 1

Furfoses of analysisy multifle doof. joints may be decomfosed into "kinematically equivilent" sequences of one d.o.f. joints. For example, a sfherical joint mas be decomposed into a seauence of three revolute joirits sefarated by zero leristh linksy all of whose axes intersect at a foirit. Further discussion of joints and Kinematic ecuivalence mas be found in texts by Sun and Fadcliffe [56], Di,jksman [14], Hunt [26] and Faul [41].

A limear seauence of limks conmected fairwise by joints is called a (kinematic) chair. We will consider chairs whose joints have been decomposed into one dob,f. joints. A chain has a free (distal) end arid a fixed (froximal) end. It is useful to thirik of the froximal ens as beiris attached by a joint to a reference link, fossibly imbedded in the world coordinate system. A concise notation for the descriftion of such chains was develofed bs Denavit and Hartenmers [12], and is widels used in robotics amplicationsy [45,46,58]. In the Memavit-Hartenbers notationg a chain with n joints and n links and its current confisuration is described by n four-element vectors. Each vector contains a joint variable value and three "lirk. seometry" values relating the position and orientation of two consecutive joints. The sustem awplies to hoth revolute and frismatic joints. This information is sufficient to define a transformation between a coordinate system embedded in one link and one embedded in a consecutive link. Specification of joint limits requires two additional values fer joirit.

We specify the the confisuration of a chain with n one d.oif.

temforal sequence of confisurations for a chain we cang by interfolatins each variable of the confisuration vector, obtain the confisuration of the sestem as a vector function of time, $Q^{m}(t)$.

Apflication to Humari Bods Arimation

The human bods mas be described as a tree structure, where "approximately risid" sesments of the bods are taken as nodesy connected bs joints rearesented as arcs, $[2,3,4,5,6]$. The number of arcs impinsins on each node n is tyfically twoy as in the case of the uffer arm sesment, or three, as in the case of the felvis. If the fosition of some sesment is constrained, and a second sesment is to be moved with resfect to the first, then the joints and links relevant to the motion form a simple fath throush the tree. A fath throush the tree mas be abstracted as a chair.

Some amprokimations are inherent in this rearesentation. Complex joirits such 35 wrist arid shoulder are first affroximated as spherical joints, which are then decomfosed into a kinematically equivalent sequence of one d.o.f. joints. (In fact, the actual motion of the shoulder involves a center of rotation which defends on the fosition of the uffer arm). It is further assumed that each joint mas move independently of any other, and that the Fosition of one joint soes not effect the ranse of motion of any other. A refinement to this model is the direct rearesentation of swherical joints. This avoids inaccuracies inmerent in modellins a spherical joirit by a sequence of lower fairs with independent
joint limitsy at the cost of iritroduciris a joirit limit furiction. A simple affroach is to restrict the fosition of the distal lirk. of a sphericel joint to 1 ie within some arisle of a specified center fositiong therebs allowins it to move within a cone. The rotation of the distal joirit about its axis is morelled indewendently [2].

The rumber of desrees of freedom to be controlled when moviris sesments relative to one another is just the rumber of joints after each syinerical joint has been decomfosed. Orice all joint variables are sfecifiedy the bods is effectively made risid. Thus, there are six additiorial desrees of freedom required to specify the wosition and orientation of the body with respect to the world coordinate system. Note that each mods sesment is defined in terms of its own coordinate ssstem. Orie of theseg called the root, must be chosen to specify the relation of the risid bods to the world coordinate system. Once the root is sfecified, a Fosition vector for a muman body consists of joint ansles for each joint, and siovariables relatins the root and world coordiriate swstems. If each of these variables is siven as a furiction of timeg as misht be serierated bu iriterfolatiris between kes fosition vectors, the motion of the bods is entirely sfecified [65].

G0als

For maris furfosesy we wish to specify the actions to be ferformed bs a bods or linkase, without the burden of havins to sfecify
motion of all desrees of freedom exflicitls [4]. The first stef towards this erid is to frovide a facilits by which sesmerits of the bods mas be Fositioned witin resfect to the world coordinate system, and other objects withinit. Most of the work done on this tufe of frohlem has been in the context of industrial robotics [18,46].

We gefirie a soal iss a set of coristraints on the fosition or orieritation of a bods sesmerit. For exammle, we misht reauire a certain foint on the tif of the risht forefinser to be at a
 Alternativels, we misht reauire that the coordinate system imbedded in tine left forearm be fositioned at a farticular Fosition and oriemtation in the world coordinate sustem. The soal fm for the forearm would be specified as a coristarit Fositionmoriemtation vector (kx,kygkokryokrgkr3). To reauire that a foot sesmerit be flat on the suffort flaneg we would specify reauired values for heisht (ks) arid two rotations, (say Kr1 and kr2), leavins the others uriswecified.

These sets of comstraints may be writteri as equations. For the first enameley we have:

$$
x=k \times
$$

(1) ъ $\quad=$ צ.
$z=k z$

Clearly, restrictions of the tyme discussed above may froduce 山F to six such equations.

More comflex equations mas be used to describe more comizex constraints, For examfley we misht restrict the firisertif to lie on a circle in the x-s flane by the following constrisints:

$$
z=k z
$$

where kr and. kz are constarits. Iri the exanfles abovey we have considered only equalits constraints. We misht also wish to constrain orie or more desfees of freedom to lie is a specified ranse of values. For examfle, we misht constrairi the firsertif to lie withirı a rectansular bow, hy sfecifsirıs maximum and mirimum Value for x y arid $z, ~ S i x$ inequality constraints result:

Additiomal constraints mas arise from coriditions imfosed on the bods sesments. For examfley the feet mas be firiried to the floory the waist restrairied by a seatbelt or the wafer torso by a Marriess [53]. Constraints on the mosition and orientation of the bods mas be treated just as soals are. The orils distiriction is that hods constraints usually refer to coriditions which held irı a Frevious confisuration, as offosed to soals, which must be scheived. The term "constrairied sesmerit" will be used to encomfass both sesments for which a soal is sfecified amo those which are to maintain their previous fosition with respect to the
world coordinate system.

Fositional Constraints and Joint Varianles

Consider two constrained sesmerits belonsins to a common chain. In considerins their relative fositions we mas take the coordinate system embedred in one (frowimal) sesment as the worla coordinate ssstem. The constrairits constitute a (fossibly fartial) sfecification of the sosition and orientation of the distal link. in the coordinate sustem of the froximal link.

Now, the coordinate sustems embedded in each consecutive pair of links in the chain are related bs a risid transformation, includins translation and rotation. Since the joint between the links has only one d.o.f., the transformation demends on a sinsle joint variable. The comfosition of these transformations from link to link sives a vector expression for the position and orientation of the distal link in the proximal link coordinate ssstem. This expression, in conjunction with the specified soals and bods constraintsy describes implicitly the set of chain confisurations that will satisfy those constraints.

Let us consider a simple example $[15,25]$. Consider the three-link Flamar chain shown in fisure 1 . The frowimal end is constrained to the orisir. The link lensths are a[1], a[2] and a[3]. The joint variables (all ansular) are a[1], a[2] and a[3]. For convenience, we will sive each joint the same name as its joint variable, and call the chain's distal terminal a[4]. Similarly,

Korein and Eadler
the ith link from the froximal end is labelled a[i].

The fosition of ans joint a[i] may be obtained by examinins the Frojections of more eroximal links on the x and y axes, marked off in the fisure, Lettins $x[i]$ and $y[i]$ be the x and y components of the position of joint a[i], we see from the fisure that:
(4) $x[2]=a[1] * \cos (6[1])$
(5) $y[2]=a[1] * \sin (Q[1])$
-
(6) $x[3]=a[1] * \cos (a[1])+a[2] * \cos (a[1]+a[2])$
(7) $y[3]=3[1] * \operatorname{sir}(a[1])+3[2] * \sin (a[1]+a[2])$
(8) $x[4]=a[1] * \cos (a[1])+a[2] * \cos (a[1]+a[2])$ $+\operatorname{s}[3] * \cos (a[1]+a[2]+a[3])$
(9) \quad [4] $=$ a[1]*sin(a[1]) + a[2]*sin(a[1]ta[2]) $+\operatorname{a[3]} \sin (a[1]+a[2]+a[3])$

The orientation, r[i], of link a[i] is just the accumulation of more froximal joint ansles:
(10) $r[1]=a[1]$
(11) $r[2]=a[1]+a[2]$

```
(12) r[3] = a[1] + a[2] + a[3]
```

Easations for fosition and orientation for links of a planar chain of arbitrary lensth mas be combuted in exactly the same was $[15,25]$.

Let us now consider several differert classes of soals for the deficted chairy and their implications for the confisuration of the chairi. It will be useful to define the worksface of a chair as the set of foints which mas be reached by its distal end. In particulary the workspace of the chairn with distal end a[i] will be derioted W[i].

Let the soal be that joirit a[3] (not the tir a[4]) move to a Foint (kx, k.y). This imposes two constraints:
(13) $x[3]=k \%$
(14) s[3] $=$ k.s

Combinins these constraints with the equations for fosition of a[3] (ea. 6 and 7), we set:
(15) $k=a[1] * \cos (a[1])+a[2] * \cos (a[1]+a[2])$
(16) k.y $=a[1] * \sin (a[1])+3[2] * \sin (a[1]+a[2])$

We have two equations in two tumanomsy namely o[1] anis a[2], so the two lirk subchain endins at a[3] is ferfectls constrained. These farticular equations mas be solved alsebraically for a[i] arid $Q[2]$ [25]. The workspace of this subchain is either a disk-shaped or armular resiony dependins on relative lim lenstins [25], arid that there are a firite rimber of solution confisurations (ome or two) at each foint in the workspace. This is characteristic of a ferfectly constrairied system. The worksfaces of ssstems which are overcomstrained have a lower dimensionality than the space in which they lie. For exampleg the one link subchain endins at a[2] can only reach points lyins on the perimeter of a circle Undercomstrained systems are of central importance in animation apolications, and will be discussed in a subsequent section.

Fieturnins to the examfle, we mas add to the soal a coristraint on the orientation of the last lira:

```
(17) r[3]=kr
```

Then combiniris with ea, 12, we have:

```
(18) Kr = G[1] + G[2] + Q[3]
```

Since $q[1]$ and $a[2]$ are alreaŋy coristrained, this aives the solution for orientationg so that the entire chain is perfectly coristrairied.

The conceft of a worksface for furely fositional soals mas he

Abstract

exterided to that of a soalswace for soals of other tymes. For examble the soalsmace for fositionmorientation soals (key ks, kr) is a set in the 3 -5Face with $3 \times e s \times y$ y, r.

If joints are limited, the soalswace will be a subset of that of the same chain with urilimited joirits In the ferfectly constrairied caseg if an alsebraic solution is availabley all solution comfisurations may the fourid, If rione of them satisfy joint limitsy it is immediatels clear that the soal is not in the soalspace of the restricted chairn.

Three Iimerisions

The equations for the fosition of joints of 3 3-II chain mas be obtained just as in the Flamar caseg by considerims the frojections of those foints on $x y$ y and z axes [15]. Ohtainins orientation eanations directly reasires that we ohtain the contribution to each of the three rotation angles by each link. aros joint of the chain [15]. Fiather thari froceediris directly alons these liriesy the usual aforoach is to use homosenous transformation matrices.

The relationshif between the ith and it1st linis of a chain may be written as a homogerieous tramsformation matrix A[i]y which is a furiction of the ith set of farameters for the chairi. For a given chainy $A[i]$ is a furiction of joint variable $Q[i]$ only. These matrices mas ge multiflied to obtain new matrices relatins aris two rom-consecutive liriss. The first and last links are
related by the froduct of all the matrices $A[1]$ throush $A[r]$. But the fosition and orientation of the distal link in the world coordinate ssstem mas also be expressed as a homoserieous transform matrix T defined in terms of the soal. Thus we obtain the matric equation:
(19) $T=A[1]$ 次A[2]* $=$. *A[ri]
for a chain with rı \quad + o.f. Since each of the matrices in eq. 19 is 4 bs 4 it rewresents 16 scalar equations. The number of these which are linearly indefendent correspond to the number of soal constraints embodied in the matrix T. These easations sive a (fossibly fartial) sfecification of position and orientation of the distal lirik iri terms of the joint arisles a[1] throush a[ri] [45,46,47].

Alsebraic Solutiori

When the system of equations arisins from the sfecification of a soal for a chain is ferfectly constrained, it is sometimes the CBse that an zlsebraic solution mas be found. The situation that has received the most atterition in robotics is that where the sosl is a complete specification of fosition and orientation for the gistal link of 35 atial chain with six desrees of freedom.

It was first shown by Fiefer [47] that if the axes of three consecutive revolute joints intersect zt a foint, e six d.o.f. system may be decomposed arid solved for the joint variables

```
a[1]"..."a[6], Such chains are called "rinematically simfle"
[45].
```

Ari alsebraic solution to the MIT Vicarm robot is described by Horn [24] in ari irituitive, seometric was. Faul solved the Stariford Schienman robot arm [42], and has recently published descriftions of gerieral alsebraic technicuses for the solution of kinematically simple robot arms [44,46]. Other accounts of alsebraic solutions mas be found in [32,43,52].

Alsebraic solutions have two primary advantases over rumerical techniques. First, thes can be performed more quickly. This speed is imfortant for real-time robotic afflications. Second, all solution confisurations are found, frovidins sreater flexibility than ari iterative technigues, which converse to a single solution.

Numerical Solutions

Fiefer [47] evaluated two methods of numerical solution for sio d.0.f. ssstems: the first method uses Newton-Fiafhson iteration; the second method is based on the use of velocity screws. Pieper obtained solutions faster with the latter method. The use of these numerical methods is not restricted to kinematically simple chains. Whitnes [60,61] proposed a numerical method called "resolved rate control" usins velocity, rather than fosition, since the relationshif between the components of velocity of the distal link and that of the joint ansles is linear.

The fact that rumerical methods converse on only one solution freserits a fractical froblem: it is necessary to insure that the solution reached is not prohibited by joint limits. Which solution, if any, an iterative method will converse to depends on the initial estimate of the solution. The use of the initial Fosition of the chain has been frofosed for this furfose [60]. If this choice is not sufficiently close to the final confisuration to frovide conversences an intermediate soal fartway between initial and final positions may be choser, and the frocess refeated recursively. This frocedure still does not suarantee conversence to a confisuration satisfyins joint limit restrictions (discussed subsequeritly). A more seneral discussion of numerical methods for the solution of non-linear system of ealations mas be found in Ortesa [40].

Underconstrained Sustems

If a system has more desrees of freedom than the rumber of constraints imposed by the soal farametersy it is underconstrained or redurdant. The difference between the desrees of freedom and the soal-imposed constraints is the desree of reduridaricy.

We returng for example, to the three link flanar chain in fisure 1. Consider the soal of fositionins the distal terminal a[4] at a specified position (kx,ky). From eauations 8 and 9 we set:


```
    + a[3]*cos(ca[1]+c[2]+a[3])
(21) k.s = a[1]*sin(a[1]) + a[2]*sin(a[1]+a[2])
    t 3[3]*sin(a[1]+a[2]+a[3]
```

That is, we have two equations, or eanality constraintsy in three variables, a[1]y a[2], $\quad[3]$. The desree of reduridancy of the system is orieg irtuitivels, the solution set is the locus of woints lsins on a sface-curve in confisuration sface.

Lasransean Methods

Orie method for dealiris with reduridant systems is to frofose an objective function to he minimized arid to afFly the method of Lasrarise Multiғ]iers [60]. This results iri a ferfectly constrained sytem which will hoth satisfy the constrairits and minimize the objective $[19,63,64]$.

SuFpose we are siveri an objective function:
(22) f(o)
where a^{m} is the vector (a[1]....a[n]), singect to comstraints:

$$
c \pm\left(Q^{m}\right)=0
$$

(23):

$$
c \pi\left(\mathbb{Q}^{m}\right)=0
$$

We introduce a vector of variables $\mu^{\wedge}=(u[1], \ldots, \ldots[m])$, called Lasranse multifliers, and write the Lasransean:
(24)

```
L(\mp@subsup{Q}{}{n},\mp@subsup{J}{}{\prime}})=f(\mp@subsup{Q}{}{-}
    - (u[1]*ci(am) + u[2]*c2(an) + ... + u[m]*cm(an))
```

We then senerate n new constraints; bs settins to zero the Fartial derivatives of L with respect to a[i] throush a[ri], respectively:

```
\(\mathrm{dL} / \mathrm{da}_{\mathrm{a}}[1]=0\)
(25) :
:
\(d \operatorname{dLd}\left[r_{1}\right]=0\)
```

This results in a system of mon eauations (eas. 23 and eas. 25) irn m+n urikrowns (a's and a's), which usually must be solved numerically.

It is sometimes fossible to avoid solviris such a larse system of equations by performins alsebraic manipulation directly on vector valued functions.

We rewrite the constraints as a sinsle vector valued function:

$$
\begin{equation*}
c^{m}\left(a^{m}\right)=0^{m} \tag{26}
\end{equation*}
$$

The Lasranseari, which is scalar-walued, mas also be rewritten as:

$$
\begin{equation*}
L\left(Q^{m}, J^{m}\right)=f\left(Q^{m}\right)-U^{m} * C^{m}\left(Q^{m}\right) \tag{27}
\end{equation*}
$$

Where u^{m} is just u^{m} written as a row vector. We now set to 0^{m} the derivative with respect to the vector \mathbb{e}^{-}, ontainins the vector eauation:

$$
\begin{equation*}
d \mathrm{~L} / d Q^{-}=d / d Q^{-}\left(f\left(a^{-}\right)\right)-d / d a^{m}\left(u^{-} * C^{n}\left(a^{m}\right)\right) \tag{28}
\end{equation*}
$$

Eauations 26 and 28 above constitute two vector equations in two vector unknowns (a^{m} and a^{m}). Workins with velocities, rather than Fosition, and usins a suitable onjective furiction, Whitney [60,62] has demonstrated that \boldsymbol{u}^{-1} mas be eliminated from these two equations, resultins in a sinsle vector eauation consistins of n scalar equations in the orisinal minnowns, q[1], q[n]. The manifulation requires the use of the seneralized or Fsuedo-iriverse for rectansular matrices, which has been the subject of books by Foullion and Odell [10] and Ben-Israel [8]. Similar techriaues have been srofosed for robot hand control by Asade [1].

Extensions for Inequality Constraints

The technicues for handins redundant systems which have been discussed do not account for inequality constraints. Those arisins from joint limits are of farticular concerrı Lasransean methods mas be made to cofe with inequality constraints in
several different wass.

The Lasrarise affroach discussed earlier will firid all minima for the obiective, subject to the eamality constraints only. Those which do not satisfy the joint limit inemualities may be discardes immediately Ary rew minima which arise from the inequalities must lie on the bonndary of the resion defined by those limitsf that isy when ore or more of the joint variables take extreme values, Thereforey these mirima may be fourid bu solviris 2n smaller froblems, each irivolviris orie fewer variables than the origimal. The mumber of levels of recursion to solve a Froblem in this maririer is just the despee of redundancy of the orisinal sצstem.

Arother method is to introduce a riew "slact" variable for each ireamality, trarsformiris it irito an eauality comstraint. If all ri joints have uFFer arid lower limitsy the resultins sustem contairis 2n additional variables [64].

A somewhat sifferent method is the use of a ferialty furictiong which is imcorforated irito the objective furiction. The perialty causes the objective to increase as joirits affroach their limits. The desired result is that the objective furiction itself effectively frohibits joint limit violations aiscussions of Fenalty furictions mas be found in Gi11 [19] arid Wismer [64].

Arother method is to isnore the ineaualities until an iterative solution frocedure ruri irito one of the bouridaries of the solutioni sface, The bourndars is then followed in the feasible direction
closest to that of the onjective furiction sradient [64].

Qbjective Functions

The choice of objective furiction is afalication deferiderit. Some Fossible objectives are minimization of discomfort, time, work. disturbance to the linkase. We must bear in mind that if a Lasransean method is to be usedy the objective function must be differentiable Moreovery furictions of desree larser than auadratic carry a laraer compıtational cost for mumerical methods such as Newtorimafhsori [64]. Whitries [60,61] chose to minimize instaritarieous kirietic eriersyy expressed as a furiction of velocity, which froved computationally exfedient for the resolved rate coritrol method.

Feach Hierarchy

A rather different affroach to the sfecific froblem of reachins a Foint \quad oal has been Frofosed bu kiorein [28]. The frocedure relies on frecomfuted worksfaces for the chain and each of its distal subchains. A distal subchain is a chain extendins from arus joint in the chairi to its distal end.

Let the chain be Chi[1] and its workspace w[1]. Let the subchain with just the most froximal joirit and link deleted be Chi[2] with worksface w[2], etc. Given these workseacesy the alsorithm Froceeds as follows:

- If the soal is not in w[1], it is not reachable: sive ur.
- Otherwisey adjust a[i] only as much as is neccesary to brins the soal irito W[2].
- Froceed down the chairi, at each ster adjustins a[i] onily as much as is necessars to brins the soal into a[i+1].

This alsorithm will work with exact workspace descriftions, and with with affronimations which satisfy the condition that
(29) affrox(W[i]) is a subset of sweep(affrox(W[i+1]), a[i])
where the sweer is the volume senerated by sweerins the apfroximation to $W[i+1]$ about joirit $Q[i]$.

This method reauires precomputation and storase of workspace descriftions. While it is theoretically extensible to Fosition-orientation soals, the cost of storins hish dimensional workspaces is prohibitive. A number of fapers on the nature and construction of workspaces have been fublished in the context of robotics [13, 21, 29, 30, 50, 54, 55].

The implicit "objective function" minimizes adjustment of froximal joints. This may be advantaseous for chains imbedded in tree structures, sirice disturbance to the tree is minimized.
the intersection between a worksface surface and a line or circle [28]. The final links of the chain, which comprise a ferfectly constrained system, may be solved alsebraically.

Conclusion

A number of techmigues relevant to soal directed motion of Kinematic linkases have been discussed. The intent has been to Fublicize linkase fositionins tools which mas be useful for the develofment of commuter animation systems which are easier to use.

Refererices

[1] Asaday Harıhiko, Studies on Frehension and Handlina by Fiohot Harids with Elastic Firisers, Fh.II. Thesis, Automation Fesearch Laboratorsy kisoto Uriversitsy Jafarig 1979.
[2] Badler, N. I. arid O'Fiourkey J., Represeritation of Articulable, Quesi-Fisidy Three-limerisionzl Objects," - Froceediriss of the Workshof on Fepresentation of Three-IImerısional Dbjects.., Fhil., F'A, Mas 1979.
[3] Badler, N. I., ${ }^{\prime}$ Fiourke, J., Smoliar, S. W. and Weber, L., "The Simulation of Human Movement by Computery" Uriversity of Ferinsyslvaniay lleft, of Comfister arid Information Sciencey Tech. Fiep. MS-CIS-78-36. 1978.
[4] Badler, N. I. arid Smoliary S. W., "Iisital Refreseritation of Hıman Movemerity" Computins Survess, Vol. 11, No. 1, March 1979, FF. 19-38.
[5] Badler, N. I., 0^{\prime} Fourke, J. and Toltzis, H., 'A Spherical Refresentation of a Hımari Bods for Visualizins Movemerit," Proceediriss of the IEEE, Vol. 67, No. 10y Oct. 1979, FF. 1397-1403.
[6] Badlerg N. I+y D'Rourteg J. arid kiaufmarig B., Gfecial Froblems in Hıman Movement Simılation" " Comfuter Grafhics, Vol. 14, No. 3. 1980, FF. 189-197.
[7] Badler, N. I., O'Fourke, J. and kiaufman, E., "Sfecial Problems in Hımari Movemerit Simulationg" _Comfuter Gramhics_y Vol. 14, No. 3, 1980, FF. 189-197.
[8] Gen-Israel, Adi arid Grevilley Thomasy Gerieralized Iriverses: Theory arid Afflications, John Wiles and Sons, New York. 1974.
[9] Bottema, 0. arid Foth, E., Theoretical kimematics, North Holland Press, 1978.
[10] Eoullion, T, arid Odell, F.g Gereraliaed Iriverse Matricesy John Wiles arid Soms, New Yort. 1971.
[11] Cooferg L. arid Steiribers, I., Introduction to Methods of Drtimiaationg W. H . Saumders Company, Fhiladelphia, 1970.
[12] Llemavit, J. and Harteribers, Fi.S., "A Kimematic Notatiori for Lower-Fair Mecharisms Eased on Matrices," Jourrial of Afflien Mechanics, Vol. 77, Jume, 1955, FF. 215-221.
[13] Merbs, Stefherig "The Maximum Reach of a Revolute Jointed Marifulator," Mechanism arid Machine Theory, Vol. 16. No. 5, 1981, FF. 255-261.
[14] Injusmany E. A., Motion Geometry of Mechanisms, Cambridse University Firessy Londonit New York., 1976.
[15] Luffy Josean, Arialysis of Mecharisms and Fobot

Manipulators, Edward Arnold Ltd., Londori, 1980.
[16] Faix, I, II, and Fratt, M. J., Computational Geometry for Hesisn and Manufacture, Ellis Horwood Limited, John Wiles and Sons, New York, 1979.
[17] Finkel, Rafheal A., -Constructins and Mebussiris Marizulator Prosrams_, F'h. Il Thesis, Stariford University, Aus., 1976.
 J., "AL, A Frosraminins Ssstem for Automation," Stanford Universits Artificial Intellisence Laboratory Memo AIM-243, Nov., 1974.
[19] Gill, P. E. and Murras, W." Numerical Methods for Constrairied Oftimization, Academic Fress, 1974.
[20] Gottfried, B , and Weismar, J. ${ }^{2}$ Introduction to Dptimization Theory, Frentice Hall, Englewood Cliffs, N. J., 1973.
[21] Gupta, K, C. and Roth, B., "Desisn Considerations for Manifulator Worksface," ASME Faper No. 81-DET-79, Sept., 1981.
[22] Herbison-Evaris, Donald, NUULE 2: A Numeric Utility for Displasiris Ellifsoid Solids, Version 2," -Computer Grafhics_, Vol. 12, No. 3, Aus. 1978, :8. 354-356.
[23] Hollerbach, John M, "A Fiecursive Lasransian Formulation of Manifulator Iunamics and a Comparative Study of Iuniamics Formulation Complexity," -IEEE Transactions on Sustems, Mari" and Csbernetics_, Vol. SMC-10, No. 11, Nov. 1980, Fe. 730-736.
[24] Horri, E. K. F. and Inoue, H." "Kinematics of the MIT-AI-UICAFM Marifislator," M.I.T. Artificial Iritellisence Laboratory Workins Faper 69, May, 1974.
[25] Horn, Eerthold K. F., "Kinematics, Statics, and nunamics of Two-Ilimensional Marifulators," Artificial Intellisence: Ari MIT Fersfective, Vol. 2, ed. F. H. Winstor, MIT Fress, Cambridse, Mass." 1979.
[26] Hunt, K. H., Kinematic Geometry of Mechanisms, Clarendon Press, Oxford; New York, 1978.
[27] Joint Motion: Method of Measurins and Recordins, American Academs of Orthopedic Surseons, Chicaso, Ill., 1965.
[28] Koreiny James, "Usins Reach Descriptions to Fosition Kinematic Chains," Froceedinss of the Fourth National Conference of the Canadian Society for Computational Studies of Intellisence, Mas 1982.
[29] Kumar, A., Characterization of Manifulator Geometry, Fi.II. Thesis, Uriversity of Houstor, Feb., 1980.
[30] Kımary A. and Waldron, K, "The Workspaces of a Mechanical

Manifulatory" Jourral of Mechanical mesishy Vol. 103y Julsy 1981, FF. 665-672.
[31] Lansranay N. A., Gpatial Kiriematic Arıalysis of the Uffer Extremity Usirs a Biflanar Videotafiris Method." Jourrial of Eiomecharical Ensimeerinsy Vol. 103y Feb.y 1981, FF. 11-17.
[32] Lewisy Fi. A., "Aıtonomous Manifulation on a Robot: Sımmars of Manifulator Software Furictions," Jet Frofulsion Laboratory Tech. Memo 33-679, Marchy 1974.
[33] Lootsmay F. A. (ed.) , Numerical Methods for Norilinear Oftimization, Academic Fress. New York., 1972.
[34] Lozario-Ferez, T, and Wesles, M. A.g "An Alsorithm for Flanrins Collision-free Faths amons Folshedral Obstaclesy" _Communications of the ACM., Vol. 22, Dct.9 1979, FF. 560-570.
[35] Lozario-Ferezy Tomasy Automatic Flanirinis of Marifulator Transfer Movements," _IEEE Transactions on Ssstemsy Maris an山 Csbernetics_, Vol SMC-11, No. 10, Dct. 1981, Fe. 681-698.
[36] McGhee, Robert $\mathbf{B .}$. "Control of Legsed Locomotion Sustems," _Froceeririss of the 1977 Jairit Automatic Coritrol Conference_, Vol. 1, FF. 205-213.
[37] McGhee, Fobert B, and Iswandiniy Geoffres I., "Adaftive Locomotion of a Multilessed Fobot Over Roush Terrainy" ..IEEE Transactions on Sustemsy Many arid Cwbernetics., Vol. SMC-9, No. 4, Afril 1979, FF. 176-182.
[38] Mıjtabay M. S., Miscussion of Trasectory Calculation Methods," Chafter 8 iri "Explorators Stıds of Computer Iritegrated Assembly Systems," by Einford, T.0. et aly Stanford Universits Artificial Intellisence Ladorators Memo AIM-285, Marcing 1977.
[39] 0'Fourke, Josefin F., Imase Arialssis of Human Motiony Fin. il. Thesisy University of Feririsslvaria, 1980.
[40] Ortesag J. M. arid Fineiriboldt, W. C. Iterative Solution of Non-linear Eauztions in Several Variables, Academic Fress, 1970.
[41] Faul, Eurtony Kinematics and Iumamics of Filanar Machinersy Freritice-Hall, 1979.
[42] Faul, Richard C., Modelliris, Trajectory Calculation aris Servoins of a Comfuter Controlled Army Fin. Il Thesis. Stariford University, 1972.
[43] Fauly R., Luhy J.y Eeridery J. Erowrig R., Femingtoriy M. Brid Walker, M." "Advariced Industrial Fobot Systems," First Feporty Furdue University School of Electrical Ensineerins Tech Fief. TFi-EE 78-25, Mas, 1978.
[44] Fauly Richars, "Manifulator Cartesion Fath Controly" IEEE

Transactions on Sustems, Man, and Cybernetics; Vol. SMC-9, No. 11, Nov., 1979, FF. 702-711.
[45] Faul, R., Shimano, F. and Maser, G. E., "Kinematic Control Eauations for Simple Marifulators, IEEE Transactions on Sustems, Man, arid Csbernetics, Vol. SMC-11, No. 6, Jurie, 1981.
[46] Faul, Richard F., Robot Manifulators, MIT Fress, Cambridse, Mass., 1981.
[47] Fieper, Monald L., The Nimematics of Marifulators under Compater Control, Fin.II. Thesis, Stanford University, Oct., 1968.
[48] Foberts, L. G., "Homoseneous Matrix Feeresentation and Manifulation of N-Mimensional Constructs" MIT Lincoln Laboratory Documerit MS1045, May, 1965.
[49] Roberts, L. G., "Machine Fercertion of Three nimensional Solids," Oftical and Electro-Dptical Information Frocessins, Tipfett, J. T., ed., MIT Fress, Cambrigse, Mass., 1965.
[50] Roth, Bernard, FFerformance Evaluation of Manifulators from a Kinematic Viewfoint," -Ferformance Evaluation of Prosramable Fobots and Marifulators_, National Eureau of Standards Special Fiublication 459, 1976, fF. 39-62.
[51] Roth, Berriard, "Kobotsy" Afplied Mechanics Reviews, Vol. 31, No. 11, Nov., 1978, FF. 1511-1519.
[52] Shimano, Erisce, "Imfrovements in the AL Ruri-Time System," Chafter 3 in "Ewflorators Stusy of Computer Intessated Assembly Systems: Frosress Refort 3," Stanford Universits Artificial Iritellisence Laboratory Memo AIM $285,1976$.
[53] Spessel, Marjan, --Frosrammins of Mechanism Motion,., Tech. Refort No. CFL-43, Ilivision of Afflied Scierice, New York University, 1975.
[54] Susimotog K. and Inffy, J., Iletermination of Extreme nistances of a Fobot Hand - Fart 1: A General Theory," Journal of Mecharical Mesisny Vol. 103, July, 1981.
[55] Susimoto, K. and Iuffy, J." "Iletermination of Extreme Ilistances of a Robot Hand - Fart 2: Robot Arms with Special Geometry," Journal of Mechanical Desisn, Vol. 103, Oct., 1981.
[56] Suh, C. H. and Fadcliffe, C. W., Kinematics and Mechanisms Hesisng John Wiley and Sons, New York, 1978.
[57] Waters, Richard C., "A Mechanical Arm Control System," MIT Artificial Intellisence Laboratory Memo AIM-301, Jari, 1974.
[58] Waters, Richard C., "Mechanical Arm Control," MIT Artificial Intellisence Laborators Memo AIM-549, Oct., 1979.
[59] Weber, L, Smoliar, S. W. and Badlery N. I., "Ar Architecture for the Simulation of Humar Movement," Proceedinss of the ACM National Conference, 1978, fF. 737-745.
[60] Whitriey, Mariel, "Fiesolved Motion Fiate Control of Manifulators and Human Frostheses," IEEE Transactions on Man-Machine Systems, Vol. MMS-10y No. 2, June, 1969\% FF. 47-53.
[61] Whitnes, IInniel, "The Mathematics of Coordinated Control of Frosthetic Arms and Marifulators," Journal of nunamic Systems, Measuremerit, and Control, Vol. 94, Series G, No. 4, Hec., 1972, FF. 303-309.
[62] Whitney, $\mathrm{I} . \mathrm{E}, \mathrm{C}$ C. S. IIrafer Laboratories, Cambridse, Mass., Personal Communication.
[63] Williamson, Fi. E.y Crowell, F . H. and Trotter, H. F., Calculus of Vector Furictions, Frentice-Hally Enslewood Cliffs, N.J., 1972.
[64] Wismer, David A. and Chattersy, R., Iritroduction to Nonlinear Optimization, North Holland, New York, 1978.
[65] Zeltzer, Havid, "Motor Control Techriaues for Fisure Animation," -Compitter Grafhics and Apelications., Oct. 1982.

