
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

7-31-2015

An Empirical Study of Off-by-one Loop Mutation An Empirical Study of Off-by-one Loop Mutation

M. S. Raunak
Loyola University Maryland, raunak@loyola.edu

Christian Murphy
University of Pennsylvania, cdmurphy@seas.upenn.edu

Bryan O'Haver
bryan.ohaver@gmail.com

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
M. S. Raunak, Christian Murphy, and Bryan O'Haver, "An Empirical Study of Off-by-one Loop Mutation", .
July 2015.

MS-CIS-16-01

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1011
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/1011
mailto:repository@pobox.upenn.edu

An Empirical Study of Off-by-one Loop Mutation An Empirical Study of Off-by-one Loop Mutation

Abstract Abstract
Context: Developing test cases that are measurably effective in finding faults in programs is a very
challenging research problem. Mutation testing, a prominent technique developed to address this
challenge, often becomes com- putationally too expensive for practical use due to the very large number
of mutants that need to be analyzed. Objective: This paper evaluates the impact of One-by-one (OBO) loop
mutation in reducing the cost of mutation analysis and investigates this technique's effectiveness in
measuring the strength or weakness of test suites. Method: A set of Java and C programs have been
used to generate both OBO and traditional mutants. Mutation scores are computed and analyzed for both
sets of mutants. An analysis of first order vs. higher order loop mutations have also been performed.
Results: On average, 89.15% fewer mutants are generated by OBO op- erator in comparison to traditional
operators while the two sets of muta- tion scores still remain highly positively correlated (correlation
coefficient of .9228) indicating the usefulness of OBO operator in measuring test suite's ef- fectiveness of
finding faults in programs. We also investigate the relationship between first order OBO mutation (FOM)
and their corresponding higher order mutations (HOM). We have found that OBO HOMs do not subsume
their corresponding FOMs. Conclusion: We conclude that One-by-one (OBO) loop mutant operator, which
targets specific program elements for mutation, can greatly reduce the number of mutants generated, and
thus make the mutation analysis relatively inexpensive and practical while still being capable of providing
useful measurement of the strength or weakness of a test suite. Our investigation into the relationship
between higher order OBO mutants (HOM) and first order OBO mutants (FOM) has revealed that OBO
HOMs usually do not add any value to the mutation analysis over the corresponding FOMs.

Keywords Keywords
Mutation Testing, One-by-one, Loop Mutation

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
MS-CIS-16-01

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1011

https://repository.upenn.edu/cis_reports/1011

An Empirical Study of Off-by-one Loop Mutation

Mohammad Raunaka, Christian Murphyb, Bryan O’Haver

aLoyola University Maryland
bUniversity of Pennsylvania

Abstract

Context: Developing test cases that are measurably effective in finding faults
in programs is a very challenging research problem. Mutation testing, a
prominent technique developed to address this challenge, often becomes com-
putationally too expensive for practical use due to the very large number of
mutants that need to be analyzed.

Objective: This paper evaluates the impact of Off-by-one (OBO) loop
mutation in reducing the cost of mutation analysis and investigates this tech-
nique’s effectiveness in measuring the strength or weakness of test suites.

Method: A set of Java and C programs have been used to generate both
OBO and traditional mutants. Mutation scores are computed and analyzed
for both sets of mutants. An analysis of first order vs. higher order loop
mutations have also been performed.

Results: On average, 89.15% fewer mutants are generated by OBO op-
erator in comparison to traditional operators while the two sets of muta-
tion scores still remain highly positively correlated (correlation coefficient of
.9228) indicating the usefulness of OBO operator in measuring test suite’s ef-
fectiveness of finding faults in programs. We also investigate the relationship
between first order OBO mutation (FOM) and their corresponding higher
order mutations (HOM). We have found that OBO HOMs do not subsume
their corresponding FOMs.

Conclusion: We conclude that Off-by-one (OBO) loop mutant operator,
which targets specific program elements for mutation, can greatly reduce the
number of mutants generated, and thus make the mutation analysis rela-

Email addresses: raunak@loyola.edu (Mohammad Raunak),
cdmurphy@seas.upenn.edu (Christian Murphy), bryan.ohaver@gmail.com (Bryan
O’Haver)

Preprint submitted to Information and Software Technology July 31, 2015

tively inexpensive and practical while still being capable of providing useful
measurement of the strength or weakness of a test suite. Our investigation
into the relationship between higher order OBO mutants (HOM) and first
order OBO mutants (FOM) has revealed that OBO HOMs usually do not
add any value to the mutation analysis over the corresponding FOMs.

Keywords: Mutation Testing, Off-by-one, Loop Mutation

1. Introduction

An important research challenge in software testing is to measure the
effectiveness of a test suite in revealing program errors or faults and to find
ways to guide the development of a stronger test suite. Mutation testing
emerged as a promising technique in this regard, and has received growing
attention in recent years [1]. In this approach, numerous simple syntactic
faults are systematically inserted into a program P . Each individual syntactic
fault results in a separate version of the program, Pmi

, which is called a
mutant of P . The rule used for creating Pmi

is called a mutation operator.
For example, an arithmetic mutation operator can alter a ‘+’ to a ‘−’ to
produce a mutant. Once Pmi

s are created using a set of mutation operators,
test suites are run against each of the mutants. If the test suite fails over a
mutant Pmi

, it is said to have been killed. Otherwise the mutant is considered
to remain live.

An altered program Pmi
is called an equivalent mutant if it is semantically

equivalent to the original program P . In this case, all test cases will produce
the same result for both Pmi

and P , i.e., the mutant cannot be killed by any
test case. The mutation testing process measures how strong a test suite
is by computing its mutations score - the ratio of the number of mutants
killed by the test suite with respect to the total number of non-equivalent
mutants generated. The goal of mutation analysis is to have a test suite
with a high mutation score, which is indicative of a stronger test suite. If
the mutation score is low, however, it points to a relatively weak test suite,
which is likely to fail in discovering many faults in the program. When the
mutation score is low, test cases are added to kill the previously live mutants
and thus to systematically strengthen the test suite. Thus mutation testing
provides a systematic process for developing strong, effective test suites. The
term mutation coverage is used to specify a test adequacy criterion, where
the mutation score defines the level of coverage achieved by a set of test cases.

2

In mutation testing, the synthetically created mutants are hypothesized
to be representative of real faults introduced by programmers in their soft-
ware [2]. Here the idea is that programmers tend to make small syntactic
errors instead of making gross mistakes in their programs. This is known as
the “competent programmer hypothesis.” [2]. Another hypothesis underly-
ing mutation testing approach is that a test suite’s ability to detect small
simple faults is correlated to its capacity in revealing major, complex faults
(the “coupling effect”) [2][3]. Both of these hypotheses have been studied
theoretically and validated to some degree using empirical studies [4][5].

There are two major limitations, however, of this potentially very useful
mutation analysis technique: a) the high computational cost of executing a
very large number of mutants against the test suite; and b) the detection
of equivalent mutants, which often requires human effort. Researchers have
made a number of different efforts in reducing the cost of using mutation
testing. These efforts have focused primarily on reducing the number of
generated mutants, and enabling faster and cheaper execution of test cases
[1]. In recent years, researchers have also looked into creating mutants by
inserting more than one fault in a mutant program, known as higher order
mutation or HOM [6].

In this research, we present a novel mutant reduction technique, Off-by-
one (OBO) loop mutation, in which instead of applying a traditional set of
mutation operators at all potential program points, we only alter the for-loop
headers. In a classic study of programmer errors, Edward A. Youngs showed
that one of the more common programmer errors is related to unsuccessful
iterations [7]. A common fault often found in loops is that it is iterated one
less than or one more than the required number of times. This type of error
or fault is popularly known as off-by-one (OBO) error. In this research, we
have studied the usefulness of using OBO as a mutation operator.

The main contributions of our research presented here are as follows:

• Our study empirically evaluates the impact of OBO loop mutation in
measuring the effectiveness of test suites.

• Our results provide some empirical validation of the coupling effect
between first-order and second-order OBO loop mutations, which aligns
with some parts of theoretical study presented by Wah[5].

3

2. Approach

There are seven possible mutations that can be made altering the for-loop
header related to the index variable. These involve two errors in initialization
(EI+1 and EI-1), two errors in comparing against the sentinel value (ES+1
and ES-1), two shift errors (SH+1 and SH-1), and a shrink error (SK). The
following list shows the mutations introduced by our OBO mutation operator
for an original loop declaration of the form:

for (int bar = 0; bar < N; bar++)

• Error in Initialization +1 (EI+1): for (int bar = 0+1; bar < N; bar++)

• Error in Initialization -1 (EI-1): for (int bar = 0-1; bar < N; bar++)

• Error in Sentinel Value +1 (ES+1): for (int bar = 0; bar < N+1;
bar++)

• Error in Sentinel Value -1 (ES-1): for (int bar = 0; bar < N-1; bar++)

• Shift Error+1 (SH+1): for (int bar = 0+1; bar < N+1; bar++)

• Shift Error-1 (SH-1): for (int bar = 0-1; bar < N-1; bar++)

• Shrink Error (SK): for (int bar = 0+1; bar < N-1; bar++)

Ideally, each mutant program should be created with only one simple
alteration of the code such as EI+1, EI-1, ES+1 and ES-1. When multiple
mutations are done to create a mutant program, it is known as a Higher
Order Mutation (HOM). Thus SH+1, SH-1 and SK are HOMs, as each of
them involves two first order OBO mutations. In particular: SH+1 is a
combination of EI+1 and ES+1; SH-1 is a combination of EI-1 and ES-1;
and SK is a combination of EI+1 and ES-1.

3. Experimental Design

In this study, we investigate the following research questions:

• RQ1: Are OBO loop mutation operators effective in evaluating the
strength or weakness of a test suite compared to other traditional mu-
tation operators?

• RQ2: Do higher order OBO loop mutations subsume any of the first
order OBO loop mutations?

4

3.1. Mutation Tools and Process

We developed an application to generate OBO mutants in programs writ-
ten in Java and C. Our OBO mutant generator, which is implemented in Java,
reads in the source code, identifies locations where for-loops exist, and then
performs some syntax checking to determine whether to mutate the loop or
not. For example, mutations are not made to for-each loops as there is no
opportunity for programmers to insert a traditional OBO type error. Next,
the tool determines if the index variable can be incremented or decremented
by checking its type against a set of predefined types. The types that are
considered for mutation include int, double, long, short, byte, and float, as
well as the Integer, Double, Long, Short, Byte, and Float wrapper classes for
Java.

While some other types could be incremented, such as nodes on a list
or user defined data types, the method to iterate these must be determined
on a case-by-case basis. Whenever our tool decides against an automatic
mutation for a loop, it is saved in a log file for later manual inspection and
creation of mutation through human intervention as necessary.

The tools generate OBO mutants judiciously by applying the OBO oper-
ator only where it is reasonable. For example, if the body of a for-loop does
not use the index variable at all, the loop does not generate the higher-order
Shift mutations, and it only generates Error in Initialization (EI+1 or EI-1),
or Error in Sentinel Value (ES+1 and ES-1) mutations, but not both. In
such loops, the index variable is only counting how many times the loop it-
erates. If the original loop iterates N times, shift mutations would create an
equivalent mutant that would still iterate N times. Our mutation generation
program thus tries to avoid generating these types of equivalent mutants.

For applying traditional mutant operators in our study, we used PIT
[8], a fast mutation tool for Java programs. PIT creates the mutations at
the byte code level. There are ten groups of mutation operators available
in PIT including conditionals boundary, the negation of conditions, mathe-
matical operators, increment operators, constant replacements, return value
mutator, void and non-void method calls, and constructor calls. For the C
programs, we wrote our own tool to generate mutant programs that provides
the following mutation operators: arithmetic operators, comparison opera-
tors, boolean operators, assignment operators, and increment operators.

5

3.2. Subject Programs

We have used two sets of programs in this study: a) a set of four open
source Java libraries with JUnit test suites and b) a set of five C programs.
Table 1 shows the list of programs used in our study. In addition to listing
the size of the programs in LOC and in number of classes or procedures,
we also provide the number of test cases included in their test suite or the
number of data sets we have used while testing the programs.

Table 1: Programs Used in Experiments

Program Classes/functions LOC Test Cases/Test Data Sets

Jtopas 50 5400 101
HTML Parser 245 47000 805
XML Security 225 16800 678
JMeter 389 43400 92
Totinfo 7 565 944
Grep 146 10068 139
Space 136 6199 1349
C4.5 141 5285 16
MartiRank 19 804 20

Amongst our Java subject programs, we have JTopas, which is a Java
tokenizer and parser tool. HTML Parser is a library used to parse HTML
documents. XML-Security is a security and encryption tool for XML. Fi-
nally JMeter is an application designed to load-test functional behavior and
measure performance of software.

For our C programs, we have studied Totinfo, a program originally created
by Tom Ostrand and his colleagues at Siemens Corporate Research to study
fault based software testing. It is part of the Siemens test suite. Grep is the
popular UNIX shell utility. Space is an interpreter for an array definition
language (ADL). Space has had by far the most comprehensive set of test
cases associated with it. We will also see an impact of this in the mutation
analysis of the program. C4.5 is a statistical classifier used for generating
decision trees from a set of training data [9]. MartiRank is a supervised
machine learning ranking algorithm first presented by Gross et al. in their
study of predicting electrical feeder failure [10].

Except for HTML Parser, all Java programs were collected from the
software-artifact infrastructure repository (SIR)[11]. Four of the C programs

6

(Tot-Info, Grep, Space and MartiRank) were also collected form SIR. We
collected C4.5 directly from its author Ross Quinlan’s website. Each of these
programs has been used in a number of different mutation analysis and other
software testing related studies [1].

3.3. Methodology

As the first step of experimenting with our selected test programs, we
made sure that the programs passed all their associated test cases before any
mutation was applied. We then applied two types of mutations on each of
the subject programs: a) the OBO loop mutation operators introduced by
us in this study and b) a set of traditional mutation operators as described
in section 3.1.

Once the mutants were generated, we ran each of the mutated programs
against its set of test cases, collecting data on whether all tests passed or if
there was any failed test case. If the program resulted in a runtime error,
we excluded the mutant from our data. Although we could also include the
runtime errors as cases where mutants are killed, excluding those data points
gives us a more conservative score about the effectiveness of the mutation
operators. Since our study investigates the relative effectiveness between
OBO and traditional operators, the decision of excluding runtime errors from
collected data does not impact the findings.

4. Results and Analysis

4.1. Impact of OBO Mutants

To answer RQ1, we looked into the effectiveness of OBO mutation analysis
in identifying the strength or weakness of a test suite compared to other
traditional mutant operators.

We begin by investigating OBO loop mutant operators’ impact on mutant
reduction. As shown in the rightmost column of Table 2, OBO mutation sub-
stantially reduces the number of mutants compared to traditional mutation,
ranging from 63.95% for JTopas to 98.08% for Space. For the nine target
programs, OBO mutation reduced the number of mutants by 89.15% overall.

To demonstrate the OBO mutations are effective in evaluating the strength
or weakness of a test suite compared to traditional mutation operators, we
computed the Mutation Score MS for each technique using the formula:

MS =
MUkilled

MUtot −MUequiv

7

Table 2: Comparison of OBO and Traditional Mutation Operators

OBO Loop
Mutation Operators

Traditional
Mutation Operators

Program

#
non-
equiv
Muts

Killed

Mut
Score

#
non-
equiv
Muts

Killed

Mut
Score

Reduction

JTopas 84 65 .7738 233 121 .5193 63.95%
HTMLParser 1470 559 .3803 6507 2115 .3250 77.41%
XMLSec 1164 413 .3548 4833 1298 .2686 75.92%
JMeter 2760 488 .1768 23736 937 .0395 88.37%
TotInf 82 71 .8659 1894 1609 .8495 95.67%
Grep 839 105 .1251 12483 3176 .2544 93.28%
Space 101 101 1.00 5273 5273 1.00 98.08%
C4.5 406 324 .7980 8539 5203 .6093 95.25%
MartiRank 287 148 .5157 2802 796 .2841 89.76%

In this equation, MUtot is the total number of mutants generated, MUkilled

represents the number of mutants killed by a test suite or test data, and
MUequiv is the number of equivalent mutants that were generated. The mu-
tation score MS is a measurement of how strong the test suite is in its ability
to catch program errors or faults. A higher mutation score is indicative of
the test suite being more effective in revealing faults. By contrast, a lower
mutation score points toward a relative weakness of the test suite or test
data in identifying potential faults in the programs.

Table 2 shows that mutation score from using OBO operator (MSobo),
in general, is higher than mutation score from using traditional mutation
operators (MStrad). This means that traditional mutant operators, which
is a larger set compared to OBO operators, provide a more conservative,
and often more accurate, measure of a test suite’s fault revealing strength.
However, this information comes at a cost of often extraordinarily large num-
ber of mutants getting generated as part of computing MStrad, which can
make the mutation analysis too computationally expensive for practical use.
On the other hand, OBO loop mutant operators produce much fewer mu-
tants, while still providing a useful mutation score MSobo indicative of the
strength or weakness of the test suite. The relatively higher MSobo compared

8

to the MStrad means that OBO mutation operator gives a more optimistic
score about the strength of a test suite than the traditional operators. We
note, however, that there is a strong positive correlation between MSobo and
MStrad. From the set of experiments we have performed, we have found
a correlation coefficient of .9228 between OBO loop mutant operators and
the much larger set of traditional mutant operators. Figure 4.1 depicts the
correlation between the two sets of mutation scores.

Figure 1: Comparison of mutation scores of OBO and traditional mutant operators. Al-
though the OBO scores tend to be higher, they still show strong correlation to the tradi-
tional scores.

Unlike all other subject programs, in the case of ‘grep’, we found that
MSobo was lower than MStrad. In other words, OBO operator is indicating
a more conservative measure of test suite effectiveness than traditional op-
erators for ‘grep’. We conjecture that this is possibly a result of how the
test cases were developed for this particular subject program. The software-
artifact infrastructure repository (SIR) [11], from where this program was
taken, notes that the test cases were generated by seeding errors in the code
and then writing test cases specifically to reveal those errors. The seeded er-
rors were probably more representative of traditional mutant operators than

9

OBO operators. Hence the test suite was capable of killing more traditional
mutants compared to OBO mutants.

The subject program ‘Space’ shows another special case scenario. This
subject program came with by far the most comprehensive test suite. We
only ran a randomly selected subset of the test cases and still found that set of
test cases to have a 100% mutation coverage, i.e., they killed all the mutants
generated using the traditional mutation operators. Not surprisingly, the
same set of test cases also killed all OBO loop mutants.

Our research question 1 (RQ1) aimed at investigating the effectiveness of
OBO loop operators in evaluating the strength or weakness of a test suite
as compared to the traditional operators. Using table 2 and from the above
discussion, we can summarize our findings to address RQ1. The OBO loop
mutant operator significantly reduces the number of mutants generated while
still providing a useful indication of the strength or weakness of a test suite.
The OBO mutations scores are highly correlated with the findings one would
get from the much more expensive option of using all traditional mutation
operators. Thus, although OBO mutant operators cannot directly replace
all traditional mutants, they can be a practical, relatively inexpensive, and
useful technique to measure the strength of test suites.

4.2. Higher order OBO Loop Mutation

In section 2, we introduced three Higher Order OBO Mutations (HOM):
the SH+1 (shift forward), SH-1 (shift backward), and SK (shrink). Our
second research question (RQ2) sought to investigate whether these HOMs
provide any additional information about test suites’ strengths compared
to the two First Order Mutations (FOM) that comprise them. For this
particular study, we have used only the Java subject programs. We collected
our data by running the test suite only against the HOMs vs. the FOMs that
comprise them. We can describe the effectiveness of the HOMs as follows:

• More effective: The HOM is more effective than its corresponding
FOMs if both FOMs are killed while the the HOM lives. In this case,
the HOM provides additional information about the weakness of the
test suite not captured by the FOMs.

• Less effective: The HOM is less effective than its corresponding FOMs
if at least one of the two FOMs lives and the HOM is killed. This
means that the HOM does not reveal a weakness of the test suite while
the one of the two FOMs did.

10

• Equally effective: The HOM is equally effective compared to its corre-
sponding FOMs if the HOM lives and at least one of the FOMs also
lives. This means that both the HOM and at least one of the FOMs
reveals a weakness of the test suite.

• No information: If both the HOM and each of its corresponding FOMs
are killed, then no specific information about the relative effectiveness
of HOM vs. FOM can be deduced. This is because all the mutants
failed to reveal any weakness of the test suite in this scenario.

We analyzed our data for the results of running each HOM against the re-
sults of running the two corresponding FOMs. Table 3 presents the combined
results from the four Java programs we tested.

Table 3: Higher Order Mutation Analysis

The HOM is..
EI+1,ES+1

vs.SH+1
EI-1,ES-1
vs.SH-1

EI+1,ES-1
vs. SK

More effective 0 1 0
Less effective 50 28 46
Equally effective 33 28 94
No information 42 32 126

We found only one instance where a HOM lived while both its corre-
sponding FOM were killed by the test suite. This suggests that HOM OBO
operators are rarely useful in providing additional information than what is
already known from FOMs. Additionally, we have found that OBO HOMs
do not subsume their corresponding FOMs. It is not uncommon where one
of the FOM lives to indicate a weakness in the test suite while the same test
suite kills the corresponding HOM. This empirical finding aligns with some
of the theoretical findings presented by Wah in [5].

The above analysis also implies that we can generate even fewer OBO
loop mutants without losing much effectiveness in judging the strength of a
test suite. By eliminating three of the seven OBO mutations we introduced
(SH+1, SH-1, and SK), we can reduce the total number of mutants being
generated by 3/7 = 42%. The resulting mutants, as shown in table 4, still
produces mutation scores that closely track the MSobo with all the OBO
operators. In fact, using only the FOM operators consistently provide a lower
mutation score for each of the test suite. In other words, FOMs provide a

11

more conservative and thus more accurate measure about the weakness of
the test suite.

Table 4: Comparison of First-Order Mutants (FOMs) and Higher-Order Mutants (HOMs)

Program
Total OBO

Mutation Score
FOM-only OBO
Mutation Score

JTopas 0.7738 0.7500
HTMLParser 0.3802 0.3530
XMLSec 0.3548 0.3343
JMeter 0.1768 0.1675

5. Related Work

Since the introduction of the idea in the 1970s [12][2], mutation testing
has seen a wide range of interest over the years [1]. Even though muta-
tion testing technique provides one of the best known methodologies towards
estimating the fault-finding ability of a test suite, it has not yet received
widespread acceptance in practice due to its high cost. One primary focus
of our research has been to tackle the challenge of this high computational
cost of mutation analysis by reducing the number of mutants that are gen-
erated. Other researchers have also worked towards achieving this goal over
the years. The techniques applied by researchers toward mutant reduction
can be categorized into four groups: a) sampling, b) clustering, c) selective
subset, and d) using higher order mutations.

In mutant sampling, a randomly selected subset of mutants is used for
mutation analysis. DeMillo and Offutt developed the first widely used muta-
tion analysis tool, Mothra, which applied 22 mutation operators on Fortran
programs [13]. Wong and Mathur’s study used random sampling to select
mutants from the full set of mutants [14]. King, Offutt and Demillo have
done similar studies later [13] [15] with various degrees of success.

Instead of selecting mutants randomly, another approach has been to
use clustering techniques to divide mutants in different clusters and then
select a small number from each cluster [16]. Another approach, known as
selective mutation, selects a subset of all mutation operators and only applies
these operators for creating mutants. The term N-selective mutation is used
to represent the omission of N operators from the set of well established
mutation operators, such as the ones defined in the Mothra system. Wong

12

and Offutt have worked separately with 2, 4, and 6-selective mutations [17,
18], where they have looked at mutation analysis by removing 2, 4 and 6
operators from the original Mothra mutation operators.

In a study by Jia and Harman [6], higher order mutations have been shown
to subsume some of the first order mutations that comprise them. That is,
any test suite that would kill an HOM would also kill the corresponding
FOMs. Our study reveals a different scenario for OBO mutants than what
Jia and Harman found for some of their HOM mutant operators.

One important aspect of many of the above mentioned studies is that
they were applied on very small programs (a few dozen lines of code), often
written in languages like Fortran. In our research, we have worked with
significantly larger programs written in Java and C. Although our approach
is similar to selective mutation, instead of selecting a subset of traditional
mutation operators, we have focused on a specific program unit to mutate,
specifically for-loops. There is no other study that we are aware of which has
looked at such program element based mutation.

6. Threats To Validity

The threat to the internal validity of our experiments is limited. The
only independent variable in the experiments has been the types of mutation
operators used, which has resulted in different numbers of mutants being
generated with corresponding mutation score. The causal relationship be-
tween the mutant operators and the number of different mutants generated
is easy to establish.

There is room for being cautious about the external validity of the find-
ings. The sample size of our empirical study is not very large. The experi-
ments, however, include different types of test programs. There is diversity in
the size as well as in the language of the test programs (Java and C). Another
limitation of the experiments is that there was a single set of test cases used
with each program, namely the ones that came with them. It is conceivable
that a different set of test cases may result in finding the mutation scores
from OBO operators to be more or less effective as compared to mutation
scores from traditional mutant operators. Since most of the test cases were
developed along with the programs, they are likely to be representative of
unit tests typically written by programmers during the development of these
software. Let us also note that the experiment subjects are a well known
set of programs that have been used in many mutation and other testing

13

studies. Nevertheless, a larger experimental data set and multiple set of test
cases would increase the confidence in the generalizability of the findings.

7. Concluding Remarks

Considering the coupling hypothesis (small syntactic bugs are coupled
with larger, more complex bugs), mutation testing has the potential to
emerge as one of most effective techniques to develop test cases that are
potentially very useful in revealing errors in programs.

We have presented a novel mutant reduction technique, namely using
the Off-by-one (OBO) loop mutant operator, which targets specific program
elements of software for mutation. Through empirical studies, we have found
that such selective mutation on specific program elements can greatly reduce
the number of mutants generated, and thus making the mutation analysis
relative inexpensive and practical while still being capable of providing useful
measurement of the strength or weakness of a test suite.

We have further studied the relationship between the higher order (HOM)
and first order OBO loop mutants (FOM) and our data suggests that HOMs
add value to the mutation analysis only rarely. On the other hand, HOM
OBO operators do not subsume their corresponding FOMs. This suggests
that we can reduce the number of generated mutants even more using only
first order OBO mutant operators without losing effectiveness in measuring
the strength or weakness of a test suite.

In future, it would be useful to extend the HOM vs. FOM investigation
using additional programs. We are also interested in studying the possible
prioritization of all OBO loop mutant operators in terms of their capacity of
revealing errors or faults. Finally we would like to perform additional studies
in future using a wider number of subject programs and compare the results
to other other mutant reduction approaches.

Acknowledgments

A number of people have directly helped us with this work. We would
like to thank Silvia Moreno, Tim Stephani and Nandini Sundara-Raman for
helping us with running the experiments and generating the data. We are
grateful to Dr. Dave Binkley and Dr. David Broderick for their valuable
comments on the initial draft of the paper. We are also grateful to Loy-
ola University Maryland for partially supporting this research through its
summer faculty research grant program.

14

[1] Y. Jia, M. Harman, An analysis and survey of the development of
mutation testing, IEEE Transactions on Software Engineering TSE 37
(2011).

[2] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection:
Help for the practicing prgorammer, Computer 11 (1978) 34–41.

[3] A. J. Offutt, Investigations of the software testing coupling effect, ACM
Transactions on Software Engineering and Methodology 1 (1992).

[4] J. H. Andrews, . Briand, L. C, Y. Labiche, Is mutation an appropriate
tool for testing experiments?, in: Proc. of the International Conference
on Software Engineering (ICSE’05), St. Louis, MO.

[5] K. S. H. T. Wah, An analysis of the coupling effect i: Single test data,
The Science of Computer Programming 48 (2003).

[6] Y. Jia, M. Harman, Constructing subtle faults using higher order mu-
tation testing, pp. 249–258.

[7] E. A. Youngs, Human errors in programming, International Journal of
Man-Machine Studies 6 (1974).

[8] H. Coles, Pit mutation testing, http://pitest.org, 2011.

[9] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, 1993.

[10] P. Gross, A. Boulanger, M. Arias, D. Waltz, P. M. Long, C. Lawson,
R. Anderson, M. Koenig, M. Mastrocinque, W. Fairechio, J. A. John-
son, S. Lee, F. Doherty, A. Kressner, Predicting electricity distribution
feeder failures using machine learning susceptibility analysis, in: Proc. of
the 18th conference on Innovative applications of artificial intelligence,
IAAI’06, AAAI Press, 2006.

[11] H. Do, S. G. Elbaum, G. Rothermel, Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact., Empirical Software Engineering: An International Journal 10
(2005) 405–435.

[12] R. Lipton, Fault Diagnosis of Computer Programs, Student Report,
Carnegie Melon University, 1971.

15

[13] R. DeMillo, D. Guindi, W. McCracken, A. Offutt, K. N. King, An ex-
tended overview of the mothra software testing environment, in: Soft-
ware Testing, Verification, and Analysis, 1988., Proceedings of the Sec-
ond Workshop on, pp. 142–151.

[14] W. E. Wong, On Mutation and Data Flow, Ph.D. thesis, Purdue Uni-
versity, West Lafayette, IN, 1993.

[15] A. J. Offutt, A fortran language system for mutation-based software
testing, Software: Practice and Experience 21 (1991).

[16] C. Ji, Z. Chen, B. Xu, Z. Zhao, A novel method of mutation clustering
based on domain analysis, in: Proc. of the 21st International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE’09),
Boston, MA.

[17] A. J. Offutt, G. Rothermel, C. Zapf, An experimental evaluation of
selective mutation, in: Proceedings of the 15th international conference
on Software Engineering, ICSE ’93.

[18] W. E. Wong, A. P. Mathur, Reducing the cost of mutation testing: An
empirical study, Journal of Systems and Software 31 (1995) 185–196.

16

	An Empirical Study of Off-by-one Loop Mutation
	Recommended Citation

	An Empirical Study of Off-by-one Loop Mutation
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1453325566.pdf.cBoxa

