
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1989

A Pumping Lemma Scheme for the Control Language Hierarchy A Pumping Lemma Scheme for the Control Language Hierarchy

Michael A. Palis
University of Pennsylvania

Sunil M. Shende
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Michael A. Palis and Sunil M. Shende, "A Pumping Lemma Scheme for the Control Language Hierarchy", .
March 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-24.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/783
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/783
mailto:repository@pobox.upenn.edu

A Pumping Lemma Scheme for the Control Language Hierarchy A Pumping Lemma Scheme for the Control Language Hierarchy

Abstract Abstract
In [9] Weir introduced control grammars as a model for describing the syntactic structure of natural
languages. Informally, a control grammar is a pair {G, C} where G is a context-free grammar whose
productions are assigned labels from a finite set of labels II, and C (called the control set) is a set of
strings over II. A derivation in a control grammar is similar to that in an ordinary context-free grammar
except that the control set C is used to further constrain the set of valid derivations. In particular, if one
views a derivation as a tree, then (in a manner to be described later) each edge in such a tree is given a
label from II according to the production of G associated with the edge. The derivation tree is considered
"valid" if certain paths in the tree correspond to strings which are in the control set C. The language
generated by the control grammar is then the set of strings having at least one derivation tree in the sense
just described.

Keywords Keywords
context-free grammars, control grammars, pumping lemma, language hierarchies

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-24.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/783

https://repository.upenn.edu/cis_reports/783

A PUMPING LEMMA SCHEME
FOR THE CONTROL LANGUAGE

HIERARCHY
Michael A. Palis

and Sunil M. Shende

MS-CIS-89-24
LlNC LAB 148

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

April 1989

Acknowledgements: This research was supported in part by DARPA grant N00014-85-
K-0018, NSF grants MCS-8219196-CER, IR184-10413-A02, MCS-82-07294, DCR-84-10413,
MCS-83-05221 and U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

A Pumping Lemma Scheme for the Control Language
Hierarchy

Michael. A. Palis Sunil M. Shende*

22 March 1989

Keywords: Context-free grammars, Control grammars, Pumping Lemma, Language hierarchies.

1 Introduction

In [9] Weir introduced control grammars as a model for describing the syntactic structure of natural
languages. Informally, a control grammar is a pair {G, C) where G is a context-free grammar whose
productions are assigned labels from a finite set of labels 11, and C (called the control set) is a set
of strings over II. A derivation in a control grammar is similar to that in an ordinary context-free
grammar except that the control set C is used to further constrain the set of valid derivations. In
particular, if one views a derivation as a tree, then (in a manner to be described later) each edge in
such a tree is given a label from II according to the production of G associated with the edge. The
derivation tree is considered "valid" if certain paths in the tree correspond to strings which are in the
control set C. The language generated by the control grammar is then the set of strings having at
least one derivation tree in the sense just described.

Weir deiined a hierarchy of language classes called the Control Language Hierarchy (CLH) as
follows: (1) the first class consists of all languages generated by control grammars whose control
sets are context-free languages; (2) the k-th class consists of all languages generated by control
grammars whose control sets are members of the (k - 1)-st class. This hierarchy has interesting
properties. For instance, Weir has shown that every class in the hierarchy is a full AFL [2] and
contains only semilinear sets (hence, all members are included among the context-sensitive languages).
These classes can also be characterized in terms of automata which are interesting generalizations
of nondeterministic pushdown automata [8,9]. Moreover, the first language class in the hierarchy
has been shown to be equivalent to the class of languages generated by tree adjoining grammars, a
tree rewriting system for natural language recognition studied by Joshi and others [3,8,9]. Finally,
it was shown in [5] that every language class in CLH is polynomial-time recognizable and that the
entire hierarchy is contained in LOGCFL, the class of languages log-space reducible to context-free
languages [6].

An open problem posed by Weir is whether CLH is a strictly separable hierarchy, i.e., whether the
k-th language class is strictly contained in the (k + 1)-st class, for all k. In this paper we resolve this

'Both authors are presently with the Department of Computer & Information Sciences, University of Pennsylvania, Philadel-
phia, PA 19104. This work was funded in pan by ARO grant DAA29-84-9-0027, NSF grants MCS-8219116-CER, MCS-82-
07294, DCR-84-10413, MCS-83-05221, and DARPA grant N00014-85-K-0018.

1

Pumping Lemma for Control Languages 2

question in the affirmative by proving a pumping lemma for every language class in the hierarchy.
As a corollary, we show that the language Lk = {aln . . . ~ ~ (k + 1) + ~ " 1 n 2 1) for k 2 .1 is not
in the k-th language class but is contained in the (k + 1)-st language class. Our result generalizes
the well-known pumping lemma for context-free languages [1,2], as well as the pumping lemma for
a restricted hierarchy of language classes due to Khabbaz [41.

2 The Control Language Hierarchy

The Control Language Hierarchy, first introduced in [9], was motivated by the observation that
one could obtain non-context-free languages by restricting the derivations of context-free languages
[2,7,81.

Definition 2.1 A Control Grammar (henceforth CG) 6 , is a pair {G, C), where
G = (V, C, II,Z, P, Label) and C C II+. The first component, G, of the control grammar is,
by itself, called a Labeled, Distinguished Context-free grammar (or LDCFG) in [9]. V and C are,
respectively, finite sets of nonterminals and terminals of the LDCFG G, with Z E V the start symbol
of G. The set of grammar symbols, V U C , is denoted by Vz. P is a finite set of distinguished
productions of the form (X + XI . . . Xn, i), where X 4 X1 . . . Xn can be viewed as a standard
context-free production with X E V and the right-hand side X1 . . . X, belongs to Vx*. In addition,
i is an integer (with 1 5 i 5 n) that identifies exactly one symbol Xi on the right-hand side as
being distinguished. II is a finite set of production labels and Label is a one-to-one function from
P to 11, which assigns a unique label to every production. For the sake of clarity, we will write a
distinguished production p = (X - XI . . . Xn , i) with Label (p) = 1 as

The set C g II+ is called the control set of the grammar 6; each string in II+ is referred to as a
control string. We say that grammar G is controlled by control set C. Note that by definition, C
does not include the empty string c.

It may be observed that our definition genemlizes a related formalism described by Khabbaz in
[4]. The two definitions coincide when the underlying context-free grammar for G is resmcted.

Derivations and derivation trees of control grammars are very similar to those of standard context-
free gram-, and are defined inductively as follows. A + A is a derivation in 0 steps of G,

for every nonterminal A E VN. The set of derivation trees corresponding to this derivation is the

singleton consisting of a tree with a single node labeled A, and is denoted by TreeSet(A A).

Inductively, let Y ox4 denote a derivation of G in k or fewer steps, with its associated

derivation trees, T = TrceSet(Y 3 o X 8). Then for every production p = 1 : X -
Xl . . .xi . . . Xn of G, we say that Y '9 uX1 . . . Xi . . . X,P. For every tree A E T, let

6 be the the leaf node labeled X which corresponds to the instance of X used on the left-hand

'In Khabbaz's definition, for every labeled production p = I : X -+ Xl . . . X; . . . X,, the underlying context-
free production X + X1 . . . Xi . . . X, is a linear production; furthermore, either XI . . . Xi . . . X, € C*, or
XI ...Xi-lX;+I ... X, E C* and Xi E V.

Pumping Lemma for Control Languages 3

side of the production. Let Al be the tree obtained from A by adding new leaf nodes labeled
X I , . . . , X i , . . . , X,, and new undirected edges from 6 to all the new leaf nodes except the one
labeled Xi. For this node, we add an directed edge to it from 6, and label the edge with the
production label I . All such trees Al are included in TreeSet(Y '3 axI . . .Xi . . . X, P) .

Following standard terminology, we say that A 3 a , if A a for some finite k 2 0.

Likewise, TreeSet(A a) is the set of all derivation trees for derivations A a. Let r be

any derivation tree in TreeSet(A a). Then a is said to be the yield of I?; equivalently, I? yields
a.

The set of source nodes of I' consists of the root node and internal nodes of l? which are connected
to their respective parent nodes by an undirected edge. Clearly, every source node of I' begins a
unique directed, labeled path which ends at some leaf node of I?; we denote such a path as a c-path.
The corresponding string of labels along a c-path, read top to bottom, defines a control word. We
abbreviate the collection of control words of r by Word@). I' is defined to be a valid derivation
tree for a terminal string w E C* just in case that E TreeSet(2 w) and Words(I') C.

Definition 2.2 The Control Language L(G), generated by CG G = {G, C), with start symbol Z of
G, is

L(G) = {w E C* I there is a valid derivation tree for w in G)

Let C be any family of languages over a finite alphabet. We say that a language L is controlled in
fmnily C iff there is a control grammar 6 = {G, C) such that L = L(G) and C E C.

Following [9], we define a countable hierarchy of families of languages such that the 0-th family
in the hierarchy is exactly the family of context-free languages, and every language in the (i + 1)-th
family is controlled in the i-th family.

Definition 23 The Control Language Hierarchy (CLH) is defined as follows:

CLHO = {L (L = L(G), where G is a standard context-free grammar); i.e. CLHO = CFL,
the family of context-free languages.

f o r a l l k 2 1 ,
CLHk = {L I there exists a sequence of grammars Go, GI , . . . , GI, such that

1. Go is a context-free grammar, and for all 1 5 j 5 k, Gj is an LDCFG.

2. Co = L(Go),

3. for all 1 5 j < k, Cj = L({G,, C,-I)), and

4. L = L({Gk,Ck-l))).

CLH = UkCLHk, for all countable k 2 0.

For all k > 0, if L E CLHk, then we abbreviate the first two conditions in the definition by
saying that the grammar sequence G = Go, GI , . . . , GI, generates L, or L = L(G).

Pumping Lemma for Control Languages 4

Clearly, for any k, the family CLHk is contained in the family CLHk+l; in the sequel, we
resolve an open problem by showing that this containment is proper. In [4], Khabbaz proved a
pumping lemma to establish strict separation of his hierarchy. However, the schema cannot be used
for our purposes, since families at any level k 2 1 in the Khabbaz hierarchy are not closed under
concatenation unlike their counterparts CLHk. Consequently, at each level k 2 1, the family CLHk
properly contains the corresponding Khabbaz family.

3 A Pumping Lemma Scheme for CLH

Let G be an arbitrary LDCFG. Productions in G of the form 1 : X -+ i and 1 : X - for
nonterrninals X , Y are respectively called 6-productions and chain-productions of G. The following
result was obtained in [51:

Lemma 3.1 For any k 2 0, let L = L({G, C)) be a control language in CLHk+l, where C is in
CLHk. Then there is a control grammar ?i = { H , D) such that L = L(?i), D is in CLHk, and
the underlying grammar of LDCFG H has no 6 - or chain-productions.

Given a grammar 7i = { H , D) for L as above, we construct an equivalent grammar G = {G, C)
for L. Let MH be the deterministic finite-state automaton corresponding to LDCFG H as follows.
For every grammar symbol X of H, there is a state qx in M H . For every production 1 : X +

Xl . . .xi.. . X,, of H, there is a transition from state qx to state qx, labeled I . All states of
MH corresponding to nonterminal symbols of H are initial states of M H ; the remaining states are
designated as thefinal states. It should be easy to see that the grammar G = {G, C) with G = H
and C = D n L (M H) , also generates the language L = L(7i). We shall say that the grammar
G is a reduced conbol grammar for L. Since CLHk for arbitrary k is closed under intersection with
regular languages, the following result is obvious.

Lemma 3 3 For any k and any language L E CLHk, there is a grammar sequence Go, G I , . . . , Gk
generating L with the properties that:

Go = (Vo, Co, Po, Zo) is a standard context-free grammar free of 6 - and chain-productions,

for all 1 5 i 5 k , Gi = (&, Xi, H i , Zi , Pi, Labeli) is an LDCFG free of 6 - and chain-
productions,

if, for all 0 5 i 5 k , Li is the language generated by the grammar sequence Go, G I , . . . , Gi ,
then {Gi, Li-) is a reduced control grammar for Li.

The proof is obtained by a straightforward induction and is omitted here.
Following [l] @p. 186). we introduce some auxiliary definitions which simplify the discussion.

A j-factorization of a string w is a j-tuple of strings (u l , . . . , u,) such that w = ul . . . u,, i.e. w

is obtained by concatenating components of its factorization. If the length of w is n, then any integer
i, 1 5 i 5 n, is called a position of w. Informally, a position i of w refers to the i th symbol in string
w. Hence, speceing a set of positions of w can also be described as marking the corresponding
symbols of w; the reader should consider both these phrases as being equivalent

2For example. for every language L at level k 2 1 in the Khabbaz hierarchy, the language LL obtained by concatenating
L to itself, is in CLHk but not in the corresponding Khabbaz family.

Pumping Lemma for Control Languages 5

Given a set of positions, F, of w , any j-factorization O of w induces a partition of F into j
components Fi, 1 5 i < j, such that Fi is the subset of positions in F which belong to the substring
u; in the factorization O. More formally, if = (u l , . . . , u,) , then F/O = (F l , F2, . . . , F j) is
defined such that for all 1 < i < j ,

Fi = { m E F I lg(ul .. .ui-1) < m 5 lg(ul .. . u ;))

We also define the sequence of numbers, ei, such that for all integers i > 0, ej = 2(i+2) + 1 .
Observe that e;+l = 2ej - 1 .

We are now ready to state our main result which is a pumping lemma scheme for the entire CLH
hierarchy; Ogden's pumping lemma for context-free grammars [cf. [I]] turns out to be a special case
of our scheme.

Theorem 3.3 (Pumping Lemma Scheme) For a n y k 2 0, let L = L(Q) be a language in CLHk
generated by the grammar sequence G = G o , G I , . . . , Gk satisfying the conditions of Lemma 3.2.

Then there is a constant n(G) such that for each w E L, and any set of positions F in w , if
(F 1 2 n(Q) then there is an ek-factorization = (~ 1 , 2 1 2 , . . . , v, ,) of w such that

I . at least one triple (F2, - 1, F2, , FZj of positions among all 1 5 j 5 ek- 1 - 1 has the property
that F2, - FZj , FZj+ are all non-empty.

2 . 1 F2 U F3 U . . . U Fek-l (< n(Q), and

3. for all m 3 0 , the string wfm] with factorization

dm] = (2 1 1 , 2 1 2 , . . . , U,,)

also belongs to L, where the strings uj , 1 < i 5 ek are defined by ui = vi i f i is odd, and
ui = vim otherwise.

Proof (of Theorem 33): It should be clear that Theorem 3.3 for k = 0 is simply a restatement of
Ogden's Lemma for CFLs. We use this as the basis for our inductive proof. To avoid confusing the
reader, we shall describe the proof in detail for the case when k = 1. Extensions to higher levels in
the hierarchy are then obtained by changing some of the constants appropriately in our proof.

At the outset, we make some simple 0bse~ations which will be used to complete the proof.

Claim 3.1 Let G be an arbitrary LDCFG with N distinct nonterminal symbols. Then given any
m 2 1 , and a sequence of nonterminals (X I , X 2 , . . . , Xm(N+l)) of G , there exist m distinct pairs of
integers (p i , q i) , 1 5 i 5 m , such that (i - 1)(N + 1) < pi < qi 5 i (N + 1) and X,, = X,,.

The claim is easily proved by applying the pigeonhole principle m times to contiguous seg-
ments of length (N + 1) of the sequence, i.e. to the segment (X I , . . . , X N + ~) , the segment
(X N + ~ , - . . X 2 (~ + 1)) etc-

Now suppose {G, C) is a reduced control grammar with Z as the start nonterminal of LDCFG
G . Let I' be a derivation tree in TreeSet(Z w) for some terminal string w as shown in

Figure 1. Then a tree such as ro shown in Figure 1, is called a recursive subrree of I? if and only if
both its root node and the unique internal node of r (denoted as the foot node of r o) which is at the
frontier of r o , are both labeled by the same nonterminal symbol A; in addition, both are also required
to be source nodes in I'. As shown in the figure, the recursive subtree I', induces a 5-factorization
@ = (u , v , x, y, z) of the string w. Note that the string v y is non-empty by Lemma 3.1.

Pumping Lemma for Control Languages

Root Node

I = = m copies

Figure 1: A Recursive Subtree of r

Claim 34 Let ro be a recursive subtree of a valid derivation tree r for w E L({G, C)), i.e.
Words(r) C. Then the tree obtained from r by replacing ro by a stack of rn > 0 identical
copies of ro (see Figure 1). is also a valid derivation tree for a string in L({G, C)). In particular, if
r derives the string w = UVIYZ as shown then I? derives the string uvmzymz.

Proof (of Claim 3.2): O b s e ~ e that since the root and the foot nodes of ro are also source nodes in
r, every c-path of I? either passes through nodes entirely inside ro or through nodes entirely outside
ro (the c-path which begins at the foot node of ro belongs to the latter category). But Words(r)
C C; hence, all control words which label c-paths in ro are all in the control set C. Therefore,
replacing I?,, by a stack of rn of its identical copies within r produces derivation tree f' which is
also valid, i.e. with word@) C , for the replacement simply produces copies of the c-paths
already in ro without extending any of the c-paths originally in r. Note that if (u, v, x, y, r) is the
factorization of w induced by ro, then the substrings v and y on the frontier of r are replaced by vm
and ym in f' as shown in Figure 1. .

We now proceed to prove Theorem 3.3 for the case k = 1. Let G = {Go, GI) be a control
grammar for L E CLHl as in Lemma 3.2. Let N1 be the number of nonterminals of GI, and
let no be the context-free pumping lemma constant for Go. Then we claim that the corresponding
constant n l G n(G) is given by n l = d12n0(4N1+3) where dl is the maximum length of right hand
sides of productions in GI.

Some preliminary definitions and observations are needed next. Let w be a string in L(G) and let
F be a set of positions of w with I F I> nl . Then for any derivation tree, A, for w, we can define
the following subsets of the set of nodes of A 3. The set of D-nodes is the set of ancestors of some
position in F. The set of B-nodes is a subset of the set of D-nodes with the following property.
Any B-node has at least two immediate sons in A which are both D-nodes. Stated somewhat
differently, any node which is on the path from the root node to some position in F belongs to the

3'he reader may 0b!?e~e that we are following notation from [I], pp.187

Pumping Lemma for Control Languages

m I
I

copies -

m
copies I

I
A

Figure 2: Pumping a c-path from a source node on P

set of D-nodes. The B-nodes are simply those which belong to at least two such paths. Given
these definitions, it is easy to show ([I], pp.187) that

Claim 3 3 For every tree A, if w is the string of terminal symbols at the leaves of A, F is a set of
marked positions of w, and every root-to-leaf path in A has at most i B-nodes, then the number of
positions of w in F is at most dli.

Recall that we chose I F 1 to be greater than n l . Consequently, by the contrapositive of claim
3.3, there is a path in A with at least 2n0(4N1 + 3) B-nodes; without loss of generality, let P be
the path with the maximum number of B-nodes over all such paths. P begins at the root node of
A and ends at some leaf node labeled, say, by the l th symbol of w, denoted as wl.

Consider, P , which is the smallest contiguous part of the path P such that it contains the leaf
node labeled wl and has exactly 2n0(4N1 + 3) B-nodes, i.e. P starts at some B-node, denoted
y and contains the "lowest" 2n0(4N1 + 3) B-nodes of P (see Figure 2). We denote the set of
B-nodes in P by Bp, and the subtree of A rooted at 7 by r. It is easy to see that every path in
I' has at most 2no(4Nl + 3) B-nodes; hence, by claim 3.3, the number of positions on the frontier
of r is at most n l . Since all the strings that will be "pumped" in the rest of the proof are contained
within I', condition (2) of Theorem 3.3 directly follows from this observation.

Let S be the set of source nodes on P. For any B-node in S, it must be an ancestor of some
position from F in w in subtree r, such that the position either lies to the left or to the right of the leaf
node labeled wl. We shall denote the set of B-nodes in S with marked descendents to the left of wl
as Bl; the set B, is defined analogously. The reader can quickly verify that Bl U B, = Bp. Since

Pumping Lemma for Control Languages 8

Bp contains exactly 2no(4N1 +3) nodes, either B1 or B, must contain at least half, i.e. no(4N1 +3),
B-nodes. We shall make use of this principle extensively in the rest of the argument.

We now have three cases depending on the number of source nodes on path P (recall that source
nodes begin c-paths in tree A); Either I S I equals 0, or I S 1 is between 1 and (4N1 + 3) (inclusive),
or (S (is at least 4(N1 + 1).

1. I S 1 = 0: Since none of the internal nodes on P are source nodes, it follows from our
definitions that P forms the "tail" of the c-path beginning at some source node on path P (see
Figure 2).

Without loss of generality, suppose that Br contains at least half of the nodes in Bp. For
every node in Br, we mark the label on the directed edge out of the node (note that every
B-node has such a directed edge out of it which lies on P). These marked labels now serve
as "positions" on the control word. We denote the-set of these positions by I<; the size of
K equals that of Bl, and is clearly greater than no. Hence, by Ogden's lemma (or Theorem
3.3 with k = 0), we can find a 5-factorization, 6, of the control word, such that either
K 1 , K 2 , K3 or K3, K4, K5 are all non-empty with respect to 6. But the factorization 6 of
the control word induces a 9-factorization 3 of w as shown in Figure 3. Statement (1) in
Theorem 3.3 is now immediate, where either Fl , F2, F3 or, respectively, F3, F4, F5 are all
non-empty with respect to '3.

Furthermore, by Theorem 3.2, the substrings and &* can be "pumped"; this corresponds to
"pumping" strings 3 2 , Q4, 3.5, and 3 8 thus proving statement (3) of the theorem. Statement
(2) follows kom the remark made above, i.e. from claim 3.3. Note that if we substitute the set
B, for Br in the above discussion, then a similar argument provides the other two symmetric
cases in statement (1) of the theorem.

2. 1 < I S I 5 (4N1 + 3): An easy counting argument c o n h s that there is at least one source
node on P whose corresponding c-path passes through at least 2no B-nodes on P . Let all
the B-nodes associated with the above c-path be denoted by set B'; define the sets BI' and
B,' for B' analogous to Bl and B, respectively for Bp. Without loss of generality, we may
assume that the set BI' is at least as large as B,'. Clearly, BI' U B,' = B', and hence Br '
contains at least no nodes. The reader may note that if the labels on the directed edges out of
these B-nodes are now marked, then an argument along the same lines as the case above (i.e.
I S I = 0) suffices to prove the theorem (see Figure 2).

Observe that the subtree rooted at this source node is also a subtree of r and hence contains
no more than nl positions in W ; statement (2) , therefore, follows.

3. 1 S 1 > 4(N1 + 1): I f any of the c-paths associated with the source nodes in S contains a
minimum of 2no B-nodes from Bp, then this case reduces to the previous one. Otherwise,
there must be at least 4(N1 + 1) source nodes, such that the parts of their c-paths along P
contain at least one B-node from Bp. If we let B to be the set of such B-nodes, and define
Br and B, analogous to Bl and B, respectively (for Bp), then B = BI u B,. So, without
loss of generality, let Bl be the larger set. Then it is not difficult to see that there are at least
2(N1 + 1) source nodes on P such that the parts of their c-paths (along P) contain at least one
node in B,. Choose 2(N1+ 1) such source nodes, labeled (X I , X 2 , . . . , X2(Nl+l)) in sequence
with the property that for all 0 5 i < 2N1, the source node labeled Xi is an ancestor of the one

Pumping Lemma for Control Languages

copies

m
I

copies i
I

Figure 3: Pumping two recursive subtrees below P

labeled Xi+l on path P. By claim 3.1 (with m = 2), there must be two pairs of nodes, labeled
(Xi,Xj)and(Xk,X,),withl 5 i < j < k < 15 2(N1+1),suchthatXi = X j andXk = X I .
These pairs respectively define two recursive subtrees of A (see the shaded trees in Figure 3),
thereby inducing a el-factorization of w which satisfies Fl , F2, F3, F4, F5 all non-empty (note
that, in this case, we have a stronger condition than (1) in theorem 3.3). Moreover, by claim
3.2, it is possible to "pump" both these recursive subtrees m times independently to obtain a
valid derivation tree for dm]. Condition (2) is satisfied as before, by observing in Figure 3
that all "pumped" portions lie in the subtree I?, which contains at most n l positions from F .

This concludes the proof of the theorem for the case k = 1. It can be easily extended to
levels k > 1 in the following way. Let Nk be the number of nonterminals of Gk, and induc-
tively let n k - ~ be the iteration theorem constant for the control set of L generated by the se-
quence of grammars GO, GI, . . . , Gk-l. Then the corresponding constant nk E n(G) is given
by n k = dk 2nk-1i2k+'[Nk+11-1) where dk is the maximum length of right hand sides of productions
in Gk. The proof then follows along exactly the same lines as above, except that we use claim 3.1

Pumping Lemma for Control Languages 10

with m = 2k. .
Theorem 3.3 has some nontrivial consequences. It is now possible to show that the language

{ a l n . . I n 2 1) for k 2 1 is not in the family CLHk (the proof is obtained by
generalizing the well-known proof [2] that the language {anbncn I n 2 1) is not context-free).
This language can, however, be easily shown to be in CLHk+l. It was shown in [q that the hierarchy
CLH is strictly contained in the complexity class LOGCFL [6]. By the result in this paper, we have
the following:

Theorem 3.4 CLH is an injinite, strictly separable hierarchy properly contained in LOGCFL, i.e.

CFL = CLHO c CLHl c CLH2 c ... CLH c LOGCFL

4 Conclusion

We have exhibited a scheme of pumping lemmas for every language class in Weir's progression.
This generalizes the pumping lemma for context-free languages and those for a hierarchy of language
classes due to Khabbaz. As a consequence, it is shown that Weir's progression forms a strictly
separable hierarchy of language classes which are contained LOGCFL (the class of languages log-
space reducible to context-free languages).

References

[I] M. A. Harrison. Introduction to Fonnal Language Theory. Addison-Wesley, Reading, MA, 1978.

[2] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[3] A. K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer, editor, Mathe-
matics of LAnguage, John Benjarnins, Amsterdam, 1987.

[4] N. A. Khabbaz. A geometric hierarchy of languages. J. Comput. Syst. Sci., 8:142-157, 1974.

[5] M. A. Palis and S. Shende. Upper Bounds on Recognition of a Hierarchy of Non-Context-Free
Languages. Technical Report, Dept. of Comp. and Info. Sciences, University of Pennsylvania,
1988.

[6] I. H. Sudborough. On the tape complexity of deterministic context-free languages. J. ACM,
25(3):405-414, July 1978.

[7] J. W. Thatcher. Tree automata: An informal survey. In A. V. Aho, editor, Cwrents in the Theory
of Computing, pages 143-172, Prentice Hall Inc., Englewood Cliffs, NJ, 1973.

[8] K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, University of Pennsylvania,
Philadelphia, Pa, 1987.

[91 D. J. Weir. Context-Free Grammars to Tree Adjoining Grammars and Beyond. Technical Report,
Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
1987.

	A Pumping Lemma Scheme for the Control Language Hierarchy
	Recommended Citation

	A Pumping Lemma Scheme for the Control Language Hierarchy
	Abstract
	Keywords
	Comments

	tmp.1198350498.pdf.ULCU_

