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Abstract 

In this paper we present a simple and efficient algorithm for generating uniformly 
distributed samples on the unit sphere based on an Archimedes' theorem. The imple- 
mentation is straightforward and may be easily extended to include stratified sampling 
for variance reduction. Applications in image synthesis include solid angle measurement, 
irradiance computation, and rendering equation solution for geometrically complex envi- 
ronments. 
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1 Introduction 

In computer graphics, the Monte Carlo method [4] has been used in solving the rendering 

equations, evaluating the form factors, and elsewhere [5 ,  p. 1821. For Monte Carlo algo- 
rithms, random sampling is a fundamental operation. In image synthesis, an important 

sampling domain is the solid angles, i.e., regions on the unit sphere. Despite a significant 

amount of research in this area, to our knowledge, a uniformly distributed random sampling 

algorithm is not available for arbitrary measurable regions on the unit sphere. Recently, 
Arvo [2] presented such an algorithm for the spherical triangles. 

In this paper, we present a general spherical sampling algorithm based on an Archimedes' 

theorem on the sphere and cylinder. 

2 Archimedes' Theorem 

In his lifetime, the great Greek mathematician Archimedes (287-212 B.c.) had made many 
important discoveries. Among them are the calculation of n, the mechanics law of lever, and 

the hydrostatics law of floating body. The following is a theorem that in accordance with 
Archimedes' wishes was inscribed on his tombstone. It comes from a corollary in his work 

On the Sphere and Cylinder [3, p. 1071. 
Archimedes' Theorem (Global). The area of a sphere equals the area of every right 

circular cylinder circumscribed about the sphere excluding the bases. 
By the method of exhaustion, i.e., using inscribed and circumscribed rectilinear figures 

to "exhaust" the area, Archimedes proved that both areas are four times the area of the 

great circle on the sphere. We know that it is 4nr2 where r is the radius of the sphere. By 
more powerful techniques of calculus, however, this elegant global property turns out to be 

also local. That is, the same property holds for any point and its immediate neighborhood 
on the sphere. I t  is stated in the next theorem. 

Archimedes' Theorem (Local). The axial projection of any measurable region on a 
sphere on the right circular cylinder circumscribed about the sphere preserves area. 

Suppose P is a point on the sphere and M is the closest point to P on the axis of the 
circumscribed cylinder, the axial projection P' of P is the point a t  which ray M P  intersects 

the cylinder; see Figure 1. The axial projection S' of a region S on the sphere is the set of 
axial projections of all points of the region. The above theorem asserts that the areas of S 

and S' equal. 

It should be noted that the axial projection is a bijection for all points on the sphere 
except the two axial poles. For these two points, according to our definition, their axial 
projections are undetermined. We may, however, assume that they are projected to the 
entire corresponding base circles of the cylinder. Since the area of a circle is zero, the above 
theorem should hold if it holds anywhere else on the sphere. 



The proof of the theorem is elementary. We begin with a differential area dS on the 

sphere and its axial projection dS1 on the cylinder; See Figure 2. The differential area dS on 

the sphere is enclosed by differential arcs of two small circles with colatitudes 0 and B + d0 
and two great semicircles with longitudes 4 and Q + d$, where 0 < B < .~r and 0 < 4 < 2n. 

Easily, its axial projection dS' on the cylinder is enclosed by two differential circular arcs with 

heights r cos (0) and r cos (6 + $0) and two differential vertical line segments with longitudes 

q5 and 4 + I@, where r is the radius of the sphere. 

We have the differential area on the sphere 

dS = rd6 . r sin (6)clq + O(dOd4) 

= r2 sin (O)d0d+ + 0 (dB&$), 

and the differential area of its axial projection on the cylinder 

dS1 = r(cos (0) - cos (0 + dB)) - rd@ 

= r2(cos (8) - cos (0) cos (do) + sin ( H )  sin (cl8))d4 

= r2 sin (6)dOd4 + O(dOd$). 

For any measurable region S on the sphere and its axial projection $7' on the cylinder, 
their areas are Riemann-integrable [I, p. 3891. Hence, the theorem immediately follows by 

Equations (1) and (2). 

I t  is noted that the global theorem is a special case of the local theorem where the region 

,$ is the entire sphere and its axial projection S' is the entire cylinder excluding the bases. 

3 Spherical Sampling 

By the Archimedes' theorem, for any two measurable regions S1 and S2 on the unit sphere 

with equal areas, their axial projections Si and Si on the circumscribed cylinder will have 

equal areas. The reverse is also true because the axial projection is a bijection except for 

the two poles and their corresponding base circles which all have zero area. While the 

sphere is not developable, the cylinder is. This naturally leads to a spherical sampling 

algorithm which can be described in one sentence: Generate a random point on the cylinder 
[- 1,1] x [ 0 . 2 ~ ]  and then find its inverse axial projection on the unit sphere. If a random point 

is uniformly distributed on the cylinder, by the above argument, its inverse axial projection 

will be uniformly distributed on the sphere. 
Some final remarks may be in order. 

1. The algorithm may be used to sample or estimate the area of any measurable region 
on the unit sphere to any precision provided a point-in-region test algorithm exists. 

Similarly, it may be used to sample or estimate the solid angle subtended by any 



measurable arbitrarily-shaped object to any precision provided a line-object stabbing 

algorithm exists. For efficiency, bounding boxes may be constructed in the domain 

[- 1,1] x [O,2.ir] for subsets on the unit sphere. 

2. Stratified sampling is trivial over domain [-1,1] x [O, 2 ~ 1 .  I t  is recommended since 
stratification usually reduces variance and generates more evenly distributed samples. 

3. Numerical truncation errors are not uniformly distributed over the unit sphere under 

inverse axial projection. They tend to be greater around the pole areas. One solution 

is to use a random axis for every sample. For stratified sampling under this scheme, 

we may multiply a stratified axial sampling with a stratified cylindrical sampling over 

possibly coarser partition grids. 

Figures 3 and 4 show examples of uniform and stratified samplings on a sphere and 

a spherical triangle. Figure 5 shows samples over the solid angle subtended by a teapot. 

A pseudo-random double-precision floating-point number generator has been used in the 

implementation. 

4 Conclusions 

Based on an Archimedes' theorem, we have presented a simple and efficient algorithm 

for generating uniformly distributed samples on the unit sphere. The implementation is 

straightforward and may be easily extended to include stratified sampling for variance 

reduction. Applications in image synthesis include solid angle measurement, irradiance 

computation, and rendering equation solution for geometrically complex environments. 
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Figure 1: A sphere and a right circular cylinder circumscribed about the sphere. Spherical 

point P and region S and their axial projections Pf  and S f  on the cylinder. 

Figure 2: Differential area dS on the sphere and its axial projection dSf  on the cylinder. 



(a) uniform sampling 

(b) stratified sampling 

Figure 3: Samples on a sphere. 
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(a) uniform sampling 

(b) stratified sampling 

Figure 4: Samples on a spherical triangle. 



(a) uniform sampling 

(b) stratified sampling 

Figure 5: Samples over the solid angle subtended by a teapot. 
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