
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2011

Steganographic Timing Channels Steganographic Timing Channels

Adam Aviv
University of Pennsylvania, aviv@seas.upenn.edu

Guarav Shah
University of Pennsylvania, gauravsh@cis.upenn.edu

Matt Blaze
University of Pennsylvania, blaze@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Adam Aviv, Guarav Shah, and Matt Blaze, "Steganographic Timing Channels", . January 2011.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-11-18.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/957
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/957
mailto:repository@pobox.upenn.edu

Steganographic Timing Channels Steganographic Timing Channels

Abstract Abstract
This paper describes steganographic timing channels that use cryptographic primitives to hide the
presence of covert channels in the timing of network traffic. We have identified two key properties for
steganographic timing channels: (1) the parameters of the scheme should be cryptographically keyed,
and (2) the distribution of input timings should be indistinguishable from output timings. These properties
are necessary (although we make no claim they are sufficient) for the undetectability of a steganographic
timing channel. Without them, the contents of the channel can be read and observed by unauthorized
persons, and the presence of the channel is trivially exposed by noticing large changes in timing
distributions – a previously proposed methodology for covert channel detection. Our steganographic
timing scheme meets the secrecy requirement by employing cryptographic keys, and we achieve a
restricted form of input/output distribution parity. Under certain distributions, our schemes conforms to a
uniformness property; input timings that are uniformly distributed modulo a timing window are
indistinguishable from output timings, measured under the same modulo. We also demonstrate that our
scheme is practical under real network conditions, and finally present an empirical study of its covertness
using the firstorder entropy metric, as suggested by Gianvecchio and Wang [8], which is currently the best
published practical detection heuristic for timing channels.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-11-18.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/957

https://repository.upenn.edu/cis_reports/957

Steganographic Timing Channels

Adam J. Aviv, Gaurav Shah and Matt Blaze
University of Pennsylvania

{aviv, gauravsh, blaze}@cis.upenn.edu

Abstract

This paper describes steganographic timing channels that use cryptographic primitives to hide the presence of
covert channels in the timing of network traffic. We have identified two key properties for steganographic timing
channels: (1) the parameters of the scheme should be cryptographically keyed, and (2) the distribution of input
timings should be indistinguishable from output timings. These properties are necessary (although we make no
claim they are sufficient) for the undetectability of a steganographic timing channel. Without them, the contents
of the channel can be read and observed by unauthorized persons, and the presence of the channel is trivially
exposed by noticing large changes in timing distributions – a previously proposed methodology for covert channel
detection. Our steganographic timing scheme meets the secrecy requirement by employing cryptographic keys,
and we achieve a restricted form of input/output distribution parity. Under certain distributions, our schemes
conforms to a uniformness property; input timings that are uniformly distributed modulo a timing window are
indistinguishable from output timings, measured under the same modulo. We also demonstrate that our scheme
is practical under real network conditions, and finally present an empirical study of its covertness using the first-
order entropy metric, as suggested by Gianvecchio and Wang [8], which is currently the best published practical
detection heuristic for timing channels.

1 Introduction
A network timing channel is a useful mechanism for covertly hiding information within network traffic. Previously
described timing channel encoding schemes make no explicit attempt to hide their presence within network traffic.
As a consequence, a network monitor can detect timing channels by observing the timing of network events.

In this paper, we describe a steganographic timing channel that makes use of cryptographic primitives to covertly
hide the presence of the channel within the inter-packet timings of legitimate network traffic. The goal of a stegano-
graphic timing channel is to use an encoding such that the covertness and security of the channel does not depend
on the secrecy of the encoding algorithm, but rather on a shared secret between the covert channel sender and the
receiver (eavesdropper). Note that this closely parallels a fundamental principle of cryptography - the secrecy of the
ciphertext should not depend on the secrecy of the algorithm, but rather on its input parameter, the cryptographic
key [11].

Two key properties are required to meet these goals: (1) cryptographically keyed parameters and (2) the distri-
bution of output timings should be indistinguishable from the distribution of the input timings. These are necessary
properties (although we make no claims that they are sufficient) for the undetectability of a covert stenographic chan-
nel. The first property ensures not only that the channel contents not be read by an unauthorized entity but also that
its presence cannot be detected without knowledge of the secret. The second property ensures that the distribution of
input events (be it bits, or timings) well matches the distribution of the encoded output. Distribution change detection
schemes have been shown to be an effective means of detecting covert and steganographic channels [3, 4, 8].

Our steganographic channel achieves secrecy protection by employing a shared cryptographic key to produce a
pseudo-random sequence. Without knowledge of the key, a network observer cannot effectively detect the channel or
decode its contents. We also achieve a restricted form of input/output distribution parity. Under certain distributions,
our schemes conforms to a covert uniformness property; input timings that are uniformly distributed modulo a timing
window are indistinguishable from output timings, measured under the same modulo. Our encoding is resistant to
detection schemes that rely on identifying a change from a uniform to a more regular timing distribution, and we
provide analytic reasoning to this effect.

1

Our encoding relies on modifying inter-packet delays in existing network traffic to embed information. The
modulation scheme is built upon the JitterBug encoding – proposed but not analyzed – by Shah et al. [17]. In contrast
with classic steganographic schemes, our channel encoder does not control message events but rather modulates
exiting events. As such, we address many practical concerns, namely the synchronization of the sender and receiver
in the presence of network events. We evaluate the scheme under real network conditions using collected keyboard
timings for ssh, and our evaluation demonstrates that the steganographic covert channel provides robust decoding in
the presence of packet loss and network jitter.

The rest of this paper is organized as follows. Section 2 describes related work. We describe the original
JitterBug encoding scheme in Section 3. The steganographic encoding scheme and its covertness properties are
described in Section 4. We address the practical issues of channel decoding under the presence of network effects
and errors in Section 5. We next describe the entropy detection scheme followed by a discussion of the problems
with its model and previous evaluation in Section 6. Our experimental evaluation is presented in Section 7 and we
conclude in Section 8.

2 Related Work
Timing Channels. Various encoding mechanisms have been proposed for embedding covert timing channels in
network traffic. Cabuk et al. [5] describe the design of a network timing channel in IP network traffic. The simple IP
covert timing channel uses a packet-counting encoding where the reception or absence of a network packet during
a fixed timing interval signifies a bit of information. Cabuk also describes a time replay covert timing channel [4]
where a set of previously recorded inter-arrival times are replayed and the covert receiver maps these to symbols
of information. The inter-packet delay to symbol mapping is assumed to be shared in advance between the covert
sender (performing the replay) and receiver.

Luo et al. [12] describe the TCPScript timing channel that encodes information using a burst of consecutive
back-to-back TCP segments. Manipulation of inter-packet delays has also been used to add watermarks to regular
network traffic. Wang et al. [22, 23] describe a watermark embedding based on slightly modifying the inter-packet
delays of a group of network packets. A decoder can then extract the watermark by observing the changes in
statistical properties of packet timings.

In previous work, the JitterBug covert timing channel [17] was described. This channel embeds bits of informa-
tion by slightly modifying the inter-arrival times of existing network traffic. The inter-packet delays are modified
such that they satisfy certain properties that a decoder can then use to extract the encoded information. A modifica-
tion to the encoding scheme was also presented that can hide the presence of patterns when using visual inspection
of inter-arrival times. However, this scheme alone does not prevent detection against more sophisticated detection
algorithms such as entropy (described below).

Standard countermeasures for timing channels are well explored in the literature [25] and are no different when
attempting disrupt the steganographic timing channel. However, any countermeasure that attempts to limit the
bandwidth of the channel also affects the benign cover traffic, poising a well understood trade-off. Of course,
any targeted countermeasure, would need to first suspect a covert timing channel is being used, which, as we will
demonstrate, can be very difficult.

Detection. Covert channel detection is a difficult problem in general. Detection algorithms rely on the notion of
regularity that is a property of the specific channel encoding. Cabuk et al. [5] propose using the ε-similarity and the
variance in the network inter-packet delays to detect a covert channel. Their method, however, only works for the
simple IP network timing channel.

Berk et al. [3] propose a method for detecting channel encodings in network packet delays assuming the channel
is used at ideal capacity. The distribution of inter-packet delays that achieve this optimal capacity is computed based
on the current network conditions. Now, if the observed inter-packet delays satisfy this distribution, the traffic is
flagged as covert. Again, this technique only works for the specific encoding described in this work.

Gianvecchio and Wang propose using corrected conditional entropy and first-order entropy of inter-arrival times
to detect various kinds of network timing channels [8]. Interestingly, this is the only approach that proposes the use
of a quantitative heuristic for detecting covert channels in general. However, a problem with this specific approach
is that it requires advanced training using a potentially large sample of legitimate network traffic. Moreover, these

2

Figure 1: Steganographic encoding setup.

Figure 2: Timing Window with Error Bounding (ε)
used at decoding for basic JitterBug (Source: [17]).

parameters may vary depending on the characteristics of the network traffic, the application, and the location of the
detector within the network.

Smith and Knight [19] present a measure for the probability of covert channel detection based on the exploit
symbol to noise ratio (SNR). This metric, although novel, is only applicable to covert storage channels. Storage
channels for network protocols attempt to hide information within the packet header fields [10, 14, 16]. Smith and
Knight’s SNR metric observes that a storage channel must use a set of exploit symbols, a subset of the possible
values for the chosen protocol field, to represent the covert data. The exploit symbols are then artificially injected
into legitimate network traffic to disseminate a message. A covertness metric can be derived from the exploit SNR
which is defined as the ratio between the proportion of injected exploit symbols to the proportion at which they
occur naturally in legitimate traffic. A low SNR, therefore, implies high covertness at the expense of reliability,
while a high SNR implies low covertness with a higher transmission rate and reliability. However, in contrast
with a storage channel where there are only a finite set of discrete values for a given protocol field available for
encoding, the steganographic timing channel may use an infinite number of continuous packet inter-arrival times for
performing the encoding. Therefore, Smith and Knight’s SNR metric is not useful for analyzing the covertness of
the steganographic timing channel.

Formal Models of Steganography. One of the earliest model of steganography is described by Simmons as the
“Prisoner Problem” in 1983 [18]. Alice and Bob are prisoners locked up in different cells and wish to plan an escape.
They are allowed to communicate via a courier as long as their messages are innocuous, but the warden is privy to
all messages and wants to incriminate the two prisoners further and thwart any escape. Alice and Bob, sharing a
secret prior to incarceration, succeed if they can plan their escape without rousing the suspicion of the warden. To
solve this problem, Simmons introduced the notion of a subliminal channels; a means of communication that is in
full view of an adversary, yet is unnoticeable. From this model, steganography has been formalized based on the
passive eavesdropper (i.e., the warden) in terms of complexity theory [9], as a public key system [21, 2] and using
information-theoretic models [13, 26, 6].

Most closely related to our approach, information-theoretic formulations are interesting because secrecy is mod-
eled based on the observable changes in the probability distributions of symbols between encoded and un-encoded
messages. For example, Cachin [6] defines a stegosystem to be ε-secure against a passive adversary if the difference
in probability distribution between the cover text and the steganographic text is bounded by ε. A perfectly secure
stegosystem (ε = 0) can be constructed under this model, except that it assumes that the cover text is sampled from
a perfectly uniform distribution, which is unreasonable in practice. As we will discuss in Section 4.1, we assume a
restricted form, that the cover text is uniformly distributed modulo a window, and our encoder produces output that
meets the same requirement.

In general, these models either assume that the input symbol probability distribution is known a priori, or
that the steganographic encoder can arbitrarily generate messages or modify symbols in messages to match the
input distributions. In contrast, our steganographic timing channel can only modulate pre-existing events rather
then generating new events, and thus these models are less applicable due to the semi-passive nature of the timing
channel.

3

3 JitterBug Encoding
The JitterBug timing channel embeds a timing channel within network traffic by manipulating inter-packet delays
of existing network packets. In previous work, the Keyboard JitterBug [17] was described as a hardware keystroke
logger placed on the input line between the keyboard and the computer. JitterBug adds minute delays to keystroke
presses to create a timing channel while the user is typing in an interactive network application such as SSH. These
modified keystroke timings get propagated in the form of encoded inter-packet network delays, creating a network
timing channel. The covert receiver monitors inter-arrival times somewhere along the network path and can decode
and extract information from the channel such as typed passwords sent by the JitterBug. A diagram of the JitterBug
setup is presented in Figure 1.

3.1 Basic Encoding Scheme
In the basic encoding scheme, a sequence of bits {bi} is embedded into network packet timings {ti} by introducing
a delay τi for each packet such that the resulting timings {t′i} encode a bit of information within the modified
inter-packet delays δi = t′i − t′i−1. At decoding:

δi mod w =

{
0± ε (mod w) if bi = 0
bw2 c ± ε (mod w) if bi = 1

where w is the timing window and ε is the decoding error bound. So the delays can be calculated:

if bi = 0 : τi = w − δ̂i (mod w) if bi = 1 : τi =

{
w
2 − δ̂i (mod w) if δ̂i (mod w) < w

2
3w
2 − δ̂i (mod w) else

where δ̂i is the unmodified inter-packet delay.
For example, to encode a bit 0, the inter-arrival time is quantized to a multiple of the window size w. On the

other hand, the encoding of a bit 1 is performed by adding a delay such that the inter-arrival time is w
2 modulo the

window size. Additionally, in order to handle network jitter, the basic scheme employs an error bound of ε, so if the
observed δi is within the bound, it can still be decoded. Figure 2 (Source: [17]) shows the timing window used for
decoding with ε bounding to handle network jitter.

The above timing channel can be detected by visual inspection of network inter-arrival times since encoding
causes clustering around 0 and w

2 (modulo w). To overcome this shortcoming, an extension was proposed to the
basic encoding scheme. Instead of an encoding that relies on changing inter-packet delays modulo the window size
to fixed values, i.e., 0 and w

2 , there can be multiple values that can represent 0 and 1. However, there is no discussion
of any practical encoding scheme based on this idea and, in particular, does not address how the covert sender and
receiver can synchronize with one another.

3.2 Rotating Window Encoding Scheme
As before, {bi} denotes the binary sequence to be transmitted and {ti} is the sequence of input network packet times.
{si} is a pseudo-random sequence of integers that range from 0 to the window size w. The sequence {si} is only
known to the covert sender and receiver and acts as a shared secret.

Like before, the window is divided into two equal parts, but instead of splits being at 0 and w
2 , the window is

split at si and its antipode, si + w
2 (mod w). With this encoding, time delays will not consistently cluster around 0

and its antipode, w
2 , but rather around {si} and its associated antipodal sequence. More precisely, to transmit a bit

bi, the delay added is such that at decoding:

(δi − si) mod w =

{
0± ε (mod w) if bi = 0
bw2 c ± ε (mod w) if bi = 1

where δi = t′i − t′i−1 is the modified inter-arrival times of network packets. Like before, this scheme employs error
bounding during decoding using ε to deal with network jitter.

Although the addition of a rotating windows has an effect on the visual representation of observed inter-arrival
times, i.e., they no longer cluster around multiples of w

2 , the rotating window scheme as described previously does
not provide covertness against more sophisticated detection schemes. Moreover, the practical issues of encoding and
decoding in the presence of noise such as network jitter and packet losses are not addressed. It is also unseen if the

4

previous encoding meets the covert steganographic properties describe previously, in particular the low input/output
distribution parity. In the next section, we present a drop-in replacement for this scheme that is practical in real
network conditions and resistant to timing channel detection algorithms. Additionally we will discuss the properties
of our new encoding scheme.

4 Steganographic Encoding
The simple rotating window encoding scheme rotates the encoding window by a pseudo-random integer known
only to the covert sender and receiver for every subsequent symbol that is transmitted. In the original scheme, these
rotations are chosen in the range of 0 tow−1. In our steganographic scheme, we allow rotations to have an even finer
granularity, and their range is chosen irrespective of the window size. The granularity of rotations is denoted by l,
referred to as the number of rotation splits. l defines the number of divisions or splits by which an encoding window
can be rotated. For example, with l = 100, the encoding window has 100 possible configurations for each symbol
transmission. In addition, the shared pseudo-random sequence of rotations are generated in a cryptographically
secure manner using a shared key between the covert sender and receiver.

Let S be the cryptographically keyed pseudo-random sequence of rotations. Each si ∈ S is chosen in the range
{1 . . . l} and describes a rotation as a fraction of the window w. The encoding of a bit 0 takes place at delays of
w ∗ (sil) (modulo w) and the encoding of a bit 1 takes place at the antipode, w ∗ (sil)+

w
2 (modulo w). For simplicity

of notation, instead of describing si as a whole number fraction si
l , we henceforth assume that si is already in its

fractional form. Now, the encoding and decoding routine is exactly as described in Section 3.2, with rotations being
performed at a much finer granularity. Additionally, decoding can still make use of the ε error bounding to deal with
network jitter.

With splits alone, the encoded output (modulow) will still experience clustering, but instead of clustering around
multiples of w

2 , now the clustering occurs at multiples of w
l . To alleviate this problem, we introduce a uniformly

random value c (s.t. −w
2 l ≤ c < w

2 l) that is added to encoded output inter-arrival times. Therefore, the encoding is
performed such that at decoding:

(δi + si) mod w =

{
0± w

2l + ε (mod w) if bi = 0
bw2 c ±

w
2l + ε (mod w) if bi = 1

And the delays can be calculated as follows:

if bi = 0 : τi = w − (δ̂i + si) + c (mod w)

if bi = 1 : τi =

{
w
2 − (δ̂i + si) (mod w) + c if δ̂i + si (mod w) < w

2
3w
2 − (δ̂i + si) (mod w) + c else

Where, again, δ̂i is the unmodified inter-packet delay.
Now, every encoded inter-arrival time (modulo the timing window) will be uniformly distributed within the win-

dow. The resulting variance is negligible compared to network effects and does not hinder decoding using the error
bound ε or synchronization techniques described in Section 5. Naturally, when si = w, the steganographic encoding
reduces to the rotating window scheme, but as we show, any change in rotation granularity has a considerable impact
on the covertness of the channel.

4.1 Covert Uniformness Property
There are no universally applicable metrics for evaluating the covertness of a timing channel encoding. This has
generally been based on the obscurity of the technique rather than the algorithmic properties (e.g., the use of a secret
key). Watermarking schemes [15] have established some metrics, but the focus is on preserving the watermark
content rather than masking its presence. Without such standards, we evaluated the covertness empirically using the
only quantitative heuristic available to us in the literature, namely entropy.

In the literature, two primary approaches have been used to theoretical define the secrecy of a steganographic
channel. Hopper et al. used complexity theory in [9], and defined the insecurity of a channel in terms of the number
of steps and queries to an oracle that must be made to detect the encoding. However, we apply a more information
theoretic approach, akin to [6], where the secrecy of the channel is based on unobservable changes in input/output
distribution.

5

In Cachin’s model, the encoder can manipulate the symbols within the covertext such that the encoding does
not change the distribution. This is not possible given our channel’s setup because the only action possible is
the modulation of existing timing events. Moreover, there is no way of knowing the input distribution given the
encoder cannot choose the covertext. As such, we can provide a restricted form of input/output distribution parity.
Under certain distributions, our scheme conforms to a covert uniformness property; input timings that are uniformly
distributed modulo a timing window (w) are indistinguishable from output timings measured under the same window.
We acknowledge the limitations of this measure.

Observe that this is a theoretically weaker property then that described by Cachin which considers the distribution
in total, and we make no claims that covert uniformness is a sufficient property for undetectability against any
arbitrary adversary. However, it is at least sufficient against an adversary performing analysis at a granularity modulo
a threshold, and we also argue that this is sufficient in practice and effective against the best known detection scheme
available, namely entropy.

The analysis proceeds by using a model similar to that of Simmons’[18]. A warden can observe the network
timings and wishes to determine if a steganographic timing channel is present, and if so, determine the contents of
the channel. Moreover, the warden can compare timing events to a previously measured legitimate distribution, one
that is known not to contain a steganographic timing channel, and can compare the observed distribution at varied
granularity.

At the highest granularity, greater than w, the warden could see a shift in distribution mean of at most w, since
that is the maximal amount of delay. Note that delays can be added in the range from [0, w], independent of l and
c, and thus the expected delay is w

2 . If the variance of normal network events is greater than w
2 , the shift would be

indistinguishable from normal network events1.
At a granularity less than the window size, our stenographic encoding produces output that is uniformly dis-

tributed modulo w. Observe first that delays are added such that clustering occurs (modulo w) at multiples of w
l .

Secondly with the addition of c, the resulting inter-arrival times become uniform. In other words, the split distribu-
tions provide a discrete uniform distribution within the timing window, and the addition of c makes it continuous. If
the original inter-arrival times are uniformly distributed modulo the window size, then the output inter-arrival times
are indistinguishable from the input at the granularity modulo the window size.

Since our encoding is a modulation scheme and only affects preexisting events by a maximal amount, the highest
order bits of the distribution remain mainly unaffected and are upper bounded by w. In the lower order bits, our
scheme provides a stronger condition, namely covert uniformness. A timing sequences whose inter-arrival times are
uniformly distributed modulo w will retain this property after encoding. Thus, if the warden is unable to predict
the output of the cryptographic pseudo-random sequence, our steganographic encoding is indistinguishable from the
legitimate distribution at high and low granularity.

4.2 Channel Secrecy Property
The bounds on the change in distribution discussed in the previous section provided protection against detection.
In this section we will discuss channel secrecy in the face of an attacker with knowledge of w and l. Given a
sequence of inter-arrival times in which the steganographic encoding exists and with knowledge of w and l, the
warden can attempt to infer the rotation sequence and decode the sequence. However, each inference can assume
two possible values, and thus every encoding can take two possible values, 0 and 1. Without knowledge of the
cryptographically keyed pseudo-random sequence, even with knowledge of w and l, a warden is unable to properly
decode the steganographic channel.

Note that a given rotation value si corresponds to two equal length encoding locations within the window, w ∗ si
(modulow) and its antipodew∗si+ w

2 (modulow)2. It is then sufficient to show that for a given encoded inter-arrival
either such encoding locations are equally likely, i.e., it could encode either a 0 or a 1 with equal probability, without
knowledge of the pseudo-random sequence.

Note that choice of l is critical; l must be even. Otherwise, if w ∗ si + w
2 (modulo w) might corresponds to a

value that cannot possible encode a 0, then the encoding is trivially broken because this inter-arrival obviously would
encode a 1.

1In our empirical analysis (see Section 7), there seems to be sufficient variance, at least across human keystroke events and HTTP GET
requests, such that accurately classifying shifts using entropy detection is very difficult.

2Note that we use si in its fractional form here

6

The intuition behind this is simple. The possible encoding locations within the window are ∀i ∈ [1 . . . l], i ∗ w
l

and for a secure choice of l it should be the case that encoding on one side of w
2 mirrors those on the other. This

is clear, because under a modulo, a valid encoding with the addition of w
2 should still be a valid encoding, i.e,

∀i ∈ [1 . . . l
2], i ∗

w
l = (i + l

2) ∗
w
l where (i + l

2) ∈ [1 . . . l]. If l is odd, then (i + l
2) 6∈ [1 . . . l] and thus a perfect

mirror cannot be achieved. Further, if l is even, then clearly w
2 must be a possible encoding because l

2 ∗
w
l = w

2 .
Thus, a warden with knowledge of w and l is faced with two equally likely rotations for each bit encoding—

one for 0 and one for 1—and cannot distinguish between them without knowledge of the cryptographically derived
pseudo-random sequence3. This property does not just provide message secrecy, it is also critical for protecting the
channel from detection, as discussed previously.

4.3 Choosing a Window and Timing Distribution
We have addressed the two key properties for the steganographic timing channel previously; however, much is
dependent on the distribution (modulo w) of the input inter-arrival times. A natural question then is what types
of streams can be expected to have this property, and for what values of w? A detailed analysis of various timing
distributions that do and do not have this property is beyond the scope of this paper. However, timing distributions
based on human-generated input (such as a keyboard) and, more generally, those based on independent events are
good candidates.

Clearly, other kinds of input streams will not fall into this category. Machine generated clock pulses, for example,
may lack enough low order variations, except perhaps within very small values of w. Keyboard events, however,
have very different properties. They have, at their roots, biologically driven events, namely key presses cause by
human intention. The essential property is that the low order bits of the unmodulated inter-arrival times be uniform.

Polling and quantization effects in the digital domain can also disrupt the uniform distribution property for
analog human event timings. For example, if the keyboard driver polls the keyboard buffer for input events at 5ms
intervals, the distribution (measured after polling) of inter-keystroke times modulo a window of 20ms will show
spikes at multiples of 5ms. Therefore, the covert encoder should be placed such that it can directly modulate before
these events (and hence, their timings) are polled and processed in the digital domain. This ensures that uniformly
distributed output produced by the covert encoder goes through the same distribution changes that affect analog
input timings. In the context of the keyboard, the JitterBug must perform the modulation on raw keystroke timings
prior to any operating system polling.

Note that even for independent events, the choice of w is still critical here; it must be a small fraction of the
normal event inter-arrival times. If w is too large, the inter-arrival times, even of input streams based on independent
events (like keyboard input), become non-uniform (modulo w). A choice of w, on the order of tens of milliseconds,
seems to produce uniform distributions for the input streams like those generated from the keyboard. This does not
imply that choices of w in this range will work for any arbitrary input stream. However, the value of w represents
a trade-off. Too large a value risks violating the uniformness property of the input inter-arrival times, and too
small a value may lead to increased error rates during decoding. Acceptable values for w therefore depend on the
characteristics of the original input stream. Note that we do not propose here a method for deriving the maximum
acceptable value ofw for any particular stream, only the requirements thatw must meet. In our experiments, we used
the same value for w as in the original JitterBug, which was found there to be below the limits of human perception
but sufficiently high to allow good performance over a network.

5 Steganographic Decoding
The use of a shared pseudo-random sequence complicates the decoding over a network in the presence of noise and
errors. There are two broad issues that need to be addressed. First, synchronization of the cipher streams is essential
for both the sender and receiver. There is no direct feedback mechanism from the receiver to the sender that can be
used for resynchronization, so this needs to be performed by other means. Particularly problematic is the possibility
of isolated and bursty deletion errors at the covert decoder due to buffering or packet losses. Insertion errors, falsely
identifying a packet as part of the covert channel stream, can also affect synchronization and must be handled as well.
Second, the mechanism for resynchronization must also handle general network jitter that can affect the observed

3This is analogous to the standard mixing function used in conventional cryptographic stream-cipher encryption where the plain text is
XOR’ed with generated bit-stream.

7

Figure 3: An example of how a deletion error at time ti+2 affects the inter-arrival time, δ′, and the inferred rotation,
vi+1|ṽi+1 when performing synchronization.

inter-arrival times at the receiver. This requires the decoder to distinguish resynchronization errors (caused due to
insertions/deletions) from those caused due to network jitter. Note that during decoding, error bounding can handle
network jitter if the pseudo-random streams are in sync at the receiver and sender. However, this does not directly
assist synchronization in the presence of errors due to insertions and deletions.

Jitter and Synchronization Errors. Ideally, without network effects or errors, the receiver is synchronized in its
shared rotation sequence with the sender, therefore allowing for accurate decoding. In this ideal case, synchroniza-
tion is achieved by maintaining a count at the receiver of seen inter-arrival times. The count is incremented for every
observed packet inter-arrival and is then used as a pointer into the keyed pseudo-random stream, thus ensuring syn-
chronization. Of course, initial synchronization must also be accounted for, but this is easily handled by observing
a large window of inter-arrival times to find the starting point in the rotation sequence and can be done in an offline
manner. They can also be treated as deletion errors and handled via the mechanisms described below.

Inferring Rotations. The receiver can infer the pseudo-random sequence of rotations V , the inferred rotations,
and compare it to S, the set of true rotations. This is done by inspection of the observed inter-arrival times, δi, and
is performed as follows:

vi = w − δi(mod w) if bi = 0 ṽi =
w
2 − δi(mod w) if bi = 1

The continuous random variable c used during encoding may skew the inferred rotations slightly, but this is handled
by inexact matching (described in Section 5) since its effect is negligible compared to network jitter.

The elements of the pseudo-random sequence can be determined based on the knowledge of bi. Since bi is
unknown, the receiver makes two guesses about the potential values of the applied rotation: vi, if 0 was encoded and
its antipode ṽi, if 1 was encoded.

For a sequence of observed inter-arrival times, the receiver generates the set V = {(vi|ṽi)} of inferred rotations.
From the perspective of the sender, the true rotations form the set S = {si}. With knowledge of the true rotations,
the receiver can now compare the set V with the set S to determine if an error occurred. Comparison must be dual
matching (denoted by ≈) because bi could be either 0 or 1, i.e., vi = si or ṽi = si. Note that, if there are no deletion
errors and no network jitter (perfect transmission), then ∀i, (vi|ṽi) ≈ si.

Detecting Deletion and Insertion Errors. When a single deletion error occurs due to packet loss or buffering (e.g.,
two keystroke packets in an SSH session being sent in the same network packet), the inferred rotation sequence will
have two elements missing (compared to what the receiver is expecting). If there was an insertion error, the same
property holds in reverse: two elements will be missing from the true sequence when compared to the observed
sequence. The discussion below will focus on deletion errors, but all the properties also hold true for insertion errors
except that V and S are swapped. Thus, insertion errors can be handled in a similar way. Note that we are ignoring
network effects here.

Figure 3 illustrates the properties of desynchronization due to a deletion error. The covert channel sender,
encodes bits bi to bi+3. However, a deletion error occurs and the packet sent at time ti+2 and the encoded delay is
lost. At this point, the inferred rotation sequence, V , goes out of sync with the true rotation sequence, S.

8

Since vi+1|ṽi+1 is inferred from an inter-arrival time δ′ = ti+3 − ti+1 that corresponds to a deletion, it does
not necessarily have an in-order match in the true rotation sequence S. Essentially, a deletion error causes a gap in
synchronization of length 2. More precisely, a single deletion error that causes encoded bits bi+1 and bi+2 to be lost
will generally have the property:

(vi|ṽi) ≈ si and (vi+2|ṽi+2) ≈ si+3 but (vi+1|ṽi+1) 6≈ si+1 and (vi+1|ṽi+1) 6≈ si+2

There is a chance of a false negative, however, as a deletion error results in a δ′ that causes (vi+1|ṽi+1) ≈ si+1.
Since (vi+2|ṽi+2) 6≈ si+2 still holds, there would still be a synchronization gap of length 2 following si+2. Therefore,
a deletion error can still be detected. Another way of alleviating this issue is to choose the random stream such that
a single deletion error does not cause (vi+1|ṽi+1) ≈ si+1. More so, this analysis can occur offline, post-collection,
so comparisons between observed and calculated sequences can be performed on a large sequence of elements to
eliminate false negatives.

Multiple consecutive deletion errors can be detected based on a similar principle. In this case, the gap in syn-
chronization is greater than length 2. For j consecutive deletion errors, causing bits bi+1 . . . bi+1+j to be lost, we
have:

(vi|ṽi) ≈ si and (vi+1|ṽi+1) ≈ si+2+j but (vi+1|ṽi+1) 6≈ si+1+k ∀k where k ∈ {1 . . . j}

Example: To better illustrate our synchronization error correction algorithm, it is useful to look at a simple
example. Suppose the covert channel sender wishes to send the bit sequence {1, 0, 0, 0, 1, 1}, and the parties have
decided on a pseudo-random sequence {20, 50, 30, 70, 40, 30} and a window size of 100ms. At the covert sender’s
end, the modified inter-arrival times are (modulo the window size) {70, 50, 30, 70, 90, 80}. Suppose a deletion error
occurs at the covert channel sender’s end causing bits b3 and b4 to be lost. The inferred rotations V seen by the
receiver is now: {(20|70), (50|0), (40|90), (40|90), (30|80)}. Note that the third inferred rotation is (40|90) due to
the concatenation of inter-arrival times of the encoding for bits b3 and b4.

However, based on the knowledge of the shared rotation sequence, S, the receiver expects: {20, 50, 30,
70, 40, 30}. The covert channel receiver recognizes a gap in synchronization between V and S at index 3 (elements
30 and 70 are missing) with an additional spurious element ((40|90)) caused by the concatenation of the two inter-
arrival times. Once such a gap in matching is detected, the receiver suspects that a deletion error has occurred and
marks the missing bits. Finally, the decoded bit sequence at the covert channel receiver is {1, 0, ?, ?, 0, 1, 1} where
? denotes bits missed due to deletion errors.

Synchronization with Network Jitter. With network jitter added to the mix, exact matching between the inferred
and true rotation sequences can no longer be performed. Network jitter may cause the inferred rotations to deviate
from their true values, but no packets, and consequently no inter-arrival times, are actually lost. Additionally, this
inexact matching factors out continuous random delay c.

Example: The covert sender is again using the rotation sequence {20, 50, 30, 70, 40, 30}, but this time network
jitter is present. Assume that the network jitter is of the order of 10ms, a fairly conservative value for most paths on
the Internet, the covert channel receiver’s inferred rotations might be: {(23|73), (43|93),
(35|85), (70|20), (44|94), (30|80)}.

By allowing for inexact matching of the inferred rotation sequence with that of the true derived rotation sequence,
the covert channel receiver notices that the observed rotation values are very close to the expected values within the
10ms range. Moreover, the covert receiver notices that the sequences are in sync at (70|20) and (30|80) and is abled
to definitively say that the deviations were caused by network jitter rather than an insertion or a deletion error. In the
presence of errors, a combination of sequence alignment and inexact matching is performed.

Formally, in the presence of network jitter, with j consecutive deletion errors, causing bits bi+1 . . . bi+1+j to be
lost, we have:

(vi|ṽi) ≈ si (vi+1|ṽi+1) ≈ si+2+j but (vi+1|ṽi+1) 6≈ si+1+k ∀k where k ∈ {1 . . . j}

where (v|ṽ) ≈ s if:

s− ε < v < s+ ε or s+ ε < ṽ < s+ ε ε = Inexact matching threshold

9

The parameter ε decides the aggressiveness with which matching is performed and is chosen based on the expected
network jitter. However, setting the value too large may cause the covert receiver to miss deletion errors (false
negatives). On the other hand, if the value is too small, the receiver might falsely detect deletion errors (false
positives) causing the rotation sequence to go out of sync.

Note, the inexact matching parameter, ε, differs from the error bounding parameter, ε. Although they are both
used to handle network jitter, the first is solely for the purpose of synchronization, and the latter is used solely for
decoding. There is no requirement that ε = ε, and in fact, we found that small values of ε (on the order of 3% of the
number of rotation splits) are sufficient while larger values of ε (on the order of 33% of the window size) enhance
the decoding performance.

Finally, under certain conditions, this encoding scheme also allows for partial recovery when deletion errors
occur. Additional details are found in the Appendix.

6 Detection using Entropy
Gianvecchio and Wang [8] propose using the first-order entropy of packet inter-arrival times to detect the JitterBug
timing channel. Below, we describe the technique, the detection model and the evaluation methodology as presented
in their work.

Entropy detection attempts to measure the relative similarity between legitimate traffic and suspected covert
channel traffic. Since timing channel encoding schemes embed information within network timings by modifying
inter-packet delays, they affect the distribution of inter-arrival times. The detection technique relies on observing
such a change in distribution using an entropy heuristic. The entropy calculation is performed by assuming a dis-
tribution from a previously sampled known legitimate traffic. Any deviation from this training distribution causes a
drop in the calculated entropy, and can be used as an indicator of a timing channel.

Calculating the entropy using a finite number of timing samples requires the use of an empirical probability
distribution. This is estimated using the method of histograms. Data is binned into Q bins, where Q is the bin
granularity. For the JitterBug, a fine-grained equiprobable binning strategy (with Q = 65536) is employed.

The entropy threshold is calculated as follows. First, the bin ranges and distributions are calculated using legiti-
mate timing samples from the training set. Given this binning distribution, the first-order entropy can be calculated
on groups of inter-packet delays from the same set. As we are interested in finding a lower limit on the entropy of
legitimate traffic, a cutoff score can be chosen based on a desired false positive rate. For example, if the target false
positive rate is chosen as 0.01, then the 99th percentile calculated entropy score from the training set is chosen as
the threshold.

Detection is achieved by sampling suspected inter-arrival times using the same sample size used during threshold
calculation. When the calculated entropy of the suspected sample falls below the threshold entropy, it is classified
as containing a covert channel. The intuition behind this approach is that if the observed timing samples have a
different distribution compared to the one used for binning, then their calculated entropy is decidedly lower.

To evaluate detection performance with the JitterBug, Gianvecchio and Wang use a data set consisting of 200,000
legitimate SSH traces. The binning distribution is estimated from these legitimate timing samples. For threshold
calculation, entropy is calculated for 100 groups of 2000 samples with a target false positive of 0.01. The same
sample set is then reused to calculate JitterBugged timing samples using an encoding simulator. As presented in
the work, entropy detection works very well with a zero false negative rate. However, as we describe below, the
detection model and experimental methodology suffers from a few problems.

Limitations of the Entropy Detection Model. An important assumption when using measured entropy to detect a
timing channel is that shifts in inter-arrival time distributions are indicative of the presence of a timing channel. This
assumption is not necessarily true because it depends on the network setup as well as the placement of the detector
and encoder. In particular, even if network timings from a single host are observed, there can be high variance
amongst timing distribution for different applications and different users. We demonstrate this phenomenon in
Section 7.3 and Section 7.4. These slight variations can result in significantly high false positive rates. Moreover,
the precise training set used for threshold calculation and, in particular, the sample set used to calculate the binning
distribution, has a significant impact on the effectiveness of entropy rate detection.

10

Limitations of Previous Detection Methodology. Gianvecchio and Wang’s work claims a very low false negative
rate for detecting JitterBug. In practice, the binning distribution and the entropy threshold must be calculated a priori
using previously observed (and legitimate) timing samples. However, as presented in previous work, this distinction
is not clearly maintained. In particular, the evaluation of entropy detection is performed by using covert timing
samples derived from the training set itself.

7 Experimental Results
We experimentally evaluate the steganographic timing channel for its resistance to standard detection techniques and
practical performance. In the interest of performing “worst case” experiments for detection resistance, we allow the
detector access to timing samples output by the steganographic encoder without any added noise (e.g. network jitter).
This effectively simulates a detector at the source of the channel transmission, which is the most favorable position
for the warden (any added network jitter masks the covert timing channel even further). Channel performance is
evaluated using both offline (using simulated network jitter and errors) and online experiments (under actual Internet
conditions).

We use two different datasets consisting of timing samples from actual network traffic. The first dataset consists
of SSH keystroke traces collected from 3 users over a period of nine months. The traces consist of approximately
94,270, 157,840, and 133,160 keystroke timings per user, totaling more than 375,000 keystrokes during roughly
2000 individual SSH session. To perform the collection, we modified a SSH client to record the keystroke timings
as the user typed in an interactive SSH session. During the collection period, each user had different workloads and
usage patterns leading to varied and unique timing sample distributions.

The second dataset consists of timings of HTTP GET Requests. These samples are derived from the IRCache
Squid Proxy HTTP Traces [24] in the Internet Measurement Data Catalog [1]. A timing channel within HTTP GET
requests assumes a more powerful attack model when compared to the Keyboard Jitterbug because embedding must
be performed by an intermediate network node, e.g., a proxy.

In all experiments we use a window size (w) of 20 milliseconds. This value was suggested in previous work [17]
as giving good performance in the presence of network jitter effects while keeping added delays small enough to be
inconspicuous to users.

7.1 Methodology
To simulate a variety of real detection conditions, we measured several different scenarios. The experiments are
performed using both SSH keystrokes as well as the timings of HTTP GET requests.

For SSH, we assume two different usages: a single user workstation and a shared, multi-user workstation. Each
user’s data set is split in half and training is performed using the first half. On the second half of the dataset, we ran
detection tests on the original timing samples as well as the same samples with the steganographic encoding. This
setup allows estimation of both false positive and false negative rates when training is performed a priori.

The datasets for a shared, multiple typist workstation are simulated in two ways. In the first scenario, the detector
observes timings from simultaneous SSH sessions but is unable to distinguish between individual sessions. This also
effectively simulates a workstation where three users are SSHing out simultaneously during the collection period.
The second dataset interweaves individual sessions and the detector observes only isolated user timings at any given
time. This simulates a shared workstation used by multiple users where only a single user is SSHing out at any given
time.

Entropy Training. In all experiments we use a training methodology that mirrors previous work [8] (Section 6).
Unlike Gianvecchio and Wang, we perform our experiments with an a priori distribution and binning analysis to
compute a threshold value, and then evaluate the effectiveness of this threshold for detecting our steganographic
encoding. All experiments calculate entropy based on the first-order entropy and not the higher-order corrected
conditional entropy. As presented in [8], the detection rate of corrected conditional entropy is orders of magnitude
less than that of first order entropy.

To compute the threshold, we train using half the dataset and on average, we trained on 50,000 keystroke timings
for single user sessions, 150,000 timings for multi-user sessions, and 200,000 samples for HTTP GET Requests. To
achieve a realistic detection model, we do not randomize the order of the sessions, i.e., we train on exactly the first
half of the collection period. We choose thresholds based on a 2% false positive rate for single-user sessions, and

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

F
al

se
 N

eg
at

iv
e

(F
N

)

Rotation Splits (l)

User 1
User 2
User 3

Figure 4: False negative ratio for various rotation splits
using three different users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

F
a
ls

e
 N

e
g
a
ti
v
e
 (

F
N

)

Rotation Splits (l)

Isolated Sessions
Simultaneous Sessions

Figure 5: False negative ratio for using collated timing
smaples during simultaneous and isolated sessions for
three different users.

Training Set Testing Set FP Ratio
User 1 User 2 0.00
User 1 User 3 0.27
User 2 User 1 1.00
User 2 User 3 0.64
User 3 User 1 1.00
User 3 User 2 0.32

Table 1: False Positive (FP) ratios for different
pairs of training and testing sets. Target false
positive is set to 0.01.

Network Host RTT w/o Del. w/Del.
ColumbiaU (New York, NY) 5 ms 99.0% 97.2%
UKansas (Lawrence, KS) 43 ms 99.7% 96.8%
UTexas (Austin, TX) 52 ms 99.6% 94.4%
UUtah (Salt Lake City, UT) 67 ms 99.6% 96.4%
UCSD (San Diego, CA) 81 ms 99.8% 97.6%
ETHZ (ETH, Zurich) 111 ms 99.8% 95.0%

Table 2: Measured accuracy of the timing channel to various net-
work hosts with and without simulated deletions. The values are
averaged over 5 runs. Rotation Granularity is fixed at 1000 and
ε = 30 or 4% of the number of splits.

we choose a 1% false positive rate for multi-user sessions and HTTP GET requests. The steganographic encoding is
then performed on the latter half of the dataset to analyze its covertness.

7.2 SSH: Single Typist
In this scenario, the covert channel detector is assumed to be able to identify the source of the interactive network
traffic and can therefore train based on the typing distribution from a single user. As individual users show regularity
and patterns in their typing behavior, we expect entropy detection to work well in capturing the distribution of
legitimate inter-packet delays. Figure 4 shows the false negative ratios for different granularities of rotations for 3
different users. As seen in this figure, higher values of rotation splits lead to higher false negatives.

We also notice a significant difference in performance across different users. In particular, for User 1, a rotation
granularity of around 30 leads to a false negative ratio greater than 0.5. However, for User 3, the false negative ratio
does not go above 0.5 until the number of splits is increased to 250. With a larger l, the shift in the distribution is not
large enough to cause the entropy to decrease by a sufficient margin. Our results indicate that using entropy to char-
acterize user typing behavior (i.e., legitimate SSH timing distribution) is not adequate to detect the steganographic
timing channel.

7.3 SSH: Multiple Users
In this experiment, we evaluate entropy detection when the training set used to calculate the binning distribution and
entropy threshold is from a different user than the one whose traffic is being monitored.

Different training and testing user. In this scenario, the detector is trained using samples from one user and tests
are run on timing samples of a different user. Table 1 shows the false positive ratios for different pairs of training and
testing samples. The entropy threshold is calculated by using a target false positive of 0.01. The false positive rates
are very high, and thus, covert channel detection based on the entropy metric is unusable in this scenario. These
results indicate that entropy detection is highly sensitive to the training dataset for different users using the same

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

F
al

se
 N

eg
at

iv
e

(F
N

)

Rotation Splits (l)

HTTP Trace 1
HTTP Trace 2
HTTP Trace 3
HTTP Trace 4
HTTP Trace 5
HTTP Trace 6

Figure 6: HTTP GET Requests: False Negative ratio for
different rotation splits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

pe
rc

en
t)

Rotation Splits (l)

UPenn
UCSD

UTexas
Columbia

Figure 7: Measured accuracy for different rotation gran-
ularities using simulated jitter to network hosts.

network application. Therefore, the choice of training set can have a significant effect on the accuracy of entropy
detection.

Note that during threshold calculation, the choice of target false positive ratio has a commensurate effect on the
achieved false negative rate. Higher target false positive rates result in lower false negatives. However, this also
causes the actual false positive rate (on the testing set) to be higher. The situation is even worse when the testing
and training timing samples are derived from different users or network applications as shown above. As the target
false positive rate is increased, the observed false negative goes down. But this improvement in false negative rates
comes at the expense of a higher observed false positive rate.

Using an aggregate training set. In practice, the covert channel detector lies somewhere near the network bound-
ary where it can observe network timings of outgoing traffic. For example, the detector could look at all outgoing
interactive SSH sessions for suspected timing channel embeddings. Our experiments in Section 7.3 showed that the
distribution of timing samples exhibit a large variation amongst different users even for the same network applica-
tion.

One way of avoiding this problem is for the detector to train based on aggregate data collected from multiple
users or network applications. From a practical standpoint, the network monitor performing entropy detection may
not be able to distinguish network traffic emanating from the same host for different users. Since the training is
performed a priori, using an aggregate training set is the only practical way of performing covert channel detection
in such a scenario.

Figure 5 shows the performance of entropy detection when training is performed using aggregate timing data
from three different SSH users in isolated or simultaneous sessions. Isolated session simulate a shared workstation
where only a single user is SSHing out at any given time. Simultaneous sessions simulate two scenarios; a shared
workstation where all three users may be SSHing out at the same time, or a detector that observes all SSH packets
without differentiating between their source.

7.4 HTTP GET Requests
With HTTP timing traces, entropy detection fares even worse. A covert channel encoding on HTTP GET requests
timing assumes a more powerful attack model where the attacker controls an intermediate node along the path, e.g.,
a proxy. The attacker intercepts HTTP traffic and delays certain HTTP requests to embed a covert timing channel.

Figure 6 shows the performance of entropy detection on HTTP GET request timings of 6 different sites. As
seen above, entropy detection performs even worse with HTTP traffic than with interactive SSH sessions. With
an increased rotation granularity, the false negative ratio is very high for relatively low number of splits. This is
primarily due to the fact that HTTP requests do not necessarily have a stable distribution compared to interactive
SSH sessions where it is largely a function of user typing behavior. Therefore, an entropy metric is not sufficiently
discriminating in distinguishing between legitimate HTTP traffic and one with our steganographic timing channel.

7.5 Decoding Performance
We evaluate the performance of steganographic timing channels under both simulated and real network conditions.
The bandwidth of the channel is one bit per network packet. However, the decoder must contend with the effects of

13

network jitter as well as synchronization errors due to insertions or deletions.

Effect of Rotation Granularity. For analyzing the effect of different rotation granularities on performance, we
use simulated network jitter. Artificial jitter is added to covert traffic by modelling network effects to different host
on the Internet. We measure jitter statistics to a particular host, and delay packets based on a Gaussian distribution.
Note that even though network jitter does not necessarily exhibit a Gaussian distribution, this experiment allows us
to measure any correlations between the granularity of rotation and channel performance under network jitter.

Figure 7 shows the measured timing channel accuracy for different rotation granularities. Interestingly, rotation
granularity does not significantly impact the performance of the timing channel under network jitter. Therefore, the
steganographic timing channel can use higher rotation granularities which should help synchronization performance
in the presence of insertion and deletion errors.

Real Network Conditions. For a practical evaluation of performance, we also test the steganographic timing
channel under real network conditions. We initiate SSH sessions to various hosts on the PlanetLab network [7].
An SSH replayer simulates keyboard activity over these connections at the timing intervals derived from the covert
embedded timestamps, effectively simulating a steganographic encoding being used by a Keyboard JitterBug. The
decoder runs at the target host and uses the timing of incoming SSH packets to decode information from the timing
channel. Since rotation granularity does not sufficiently impact channel performance, we choose to use a rotation
granularity of l = 1000 and a decoding error bound ε to w/3.

Table 2 shows the measured accuracy of the steganographic timing channel for various Internet hosts. All SSH
connections are initiated from our lab network and measurements are made at the destination node. We use a window
size of 20ms, and even with a very high rotation granularity, the decoding accuracy is very high.

Effect of Synchronization Errors. To test the effect of synchronization errors, in particular deletion errors, we
simulated deletions using the same experimental setup as before. At the sender, we randomly drop packets with a
probability of 2% after encoding but before sending them over the network. This effectively simulates deletion errors
due to OS-level buffering. Our choice of drop rate is very conservative compared to our empirical observations of
deletions for interactive SSH sessions where such drops are very rare. We perform our tests only with deletion errors
as insertion errors are handled using the same mechanisms.

At the receiver’s end, the decoder uses a synchronization algorithm based on the principles described in Section 5.
Our algorithm identifies deletion (and insertion) errors and resynchronizes the observed rotations to the true ones.
It works using an extension of the Smith-Waterman string alignment algorithm [20]. By aligning the expected
rotations with the observed rotations, the algorithm determines a best fit, then inserts synchronizing timestamps to
make up for deletion errors (or remove them for insertions). High network jitter may sometimes cause the decoder
to wrongly assume that a deletion occurred due to a match failure. However, the algorithm handles these false
positives by reverting the added synchronizing timestamps when the resynchronization occurs at some later point
during alignment.

Table 2 also shows the measured accuracy in the presence of isolated deletion errors. We use inexact matching
with ε = 30, i.e, a 3% error is allowed while matching elements in the inferred rotation to the expected rotation
sequence. We found that this value is sufficient in handling the variations in network delays over the Internet.
Although the above results correspond to isolated deletion errors, the algorithm also effectively deals with bursty
deletion errors in the same way.

8 Conclusion
In this paper, we described a practical steganographic timing channel. We identified two key properties for a stegano-
graphic timing channel: it should be cryptographically keyed and the scheme should have a low distribution parity
between input and output. Our scheme provides channel secrecy through the use of cryptographic primitives (a
stream cipher). Without knowledge of the secret key, the channel contents cannot be effectively decoded nor de-
tected. Although we cannot provide perfect input/output distribution parity, our scheme provides it in a restricted
form through the covert uniformness property. Our steganographic encoding always outputs inter-arrival times that
are uniformly distributed modulo a timing window. Consequently, input inter-arrival times that also meet this condi-
tion (as we expect keystroke timings do for reasonable values of w) will be indistinguishable from the output without
knowledge of the cryptographic pseudo-random stream.

14

Our empirical study of the covertness of the scheme shows that the steganographic timing channel is resistant
to detection through the best known practical detection heuristic. In particular, we show that the use of entropy
detection suffers from many practical limitations. Most importantly, the inherent variation in timings of network
traffic, even for the same application with different users, is sufficient enough to cause high false positives.

The steganographic encoding also performs well in practice. Under real network conditions, the decoding accu-
racy is similar to previously described schemes, and it performs well in the presence of errors. Moreover, the use
of a shared rotation sequence not only provides enhanced covertness, but also allows for synchronization between
the sender and receiver without a feedback mechanism. Insertion and deletion errors can be detected and handled,
thus obviating the need for higher level mechanisms such as sequence numbers. Additionally, a high rotation gran-
ularity does not seem to affect decoding accuracy, so the scheme gains covertness without any measurable loss in
performance.

References
[1] Internet data measurement catalog. http://imdc.datcat.org.
[2] M. Backes and C. Cachin. Public-key steganography with active attacks. In J. Killian, editor, TCC 2005, LNCS, volume 3378, pages 210–226. Springer,

2005.
[3] V. Berk, A. Giani, and G. Cybenko. Detection of Covert Channel Encoding in Network Packet Delays. Technical report, Darthmouth College, 2005.
[4] S. Cabuk. Network covert channels: Design, analysis, detection, and elimination. PhD thesis, CERIAS, Purdue University, 2006.
[5] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS ’04: Proceedings of the 11th ACM conference on

Computer and communications security, pages 178–187, New York, NY, USA, 2004. ACM Press.
[6] C. Cachin. An information-theoretic model for steganography. Information and Computation, 192(1):41 – 56, 2004.
[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay testbed for broad-coverage services.

SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.
[8] S. Gianvecchio and H. Wang. Detecting Covert Timing Channels: An Entropy-Based Approach. In Proceedings of the 14th ACM Conference on

Computer and Communications Security (CCS 2007), 2007.
[9] N. J. Hopper, J. Langford, and L. von Ahn. Provable secure steganography. In M. Yung, editor, CRYPTO 2002, LNCS, volume 2442, pages 77–92.

Springer, 2002.
[10] R. A. Kemmerer. A Practical Approach to Identifying Storage and Timing Channels. In IEEE Symposium on Security and Privacy, 1982.
[11] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, IX:5–83, 1883.
[12] X. Luo, E. Chan, and R. Chang. TCP covert timing channels: Design and detection. Dependable Systems and Networks With FTCS and DCC, 2008.

DSN 2008. IEEE International Conference on, pages 420–429, June 2008.
[13] T. Mittelholzer. An information-theoretic approach to steganography and watermarking. In A. Pfitzmann, editor, Information Hiding, 3rd international

Worshop, LNCS, volume 1768, pages 1–16. Springer, 1999.
[14] S. J. Murdoch and S. Lewis. Embedding Covert Channels into TCP/IP. In Information Hiding Workshop, 2005.
[15] F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information Hiding – A Survey. Proceeding of the IEEE, special issue on protection of multimedia

context, 1999.
[16] N. E. Proctor and P. G. Neumann. Architectural Implications of Covert Channels. In 15th National Computer Security Conference, 1992.
[17] G. Shah, A. Molina, and M. Blaze. Keyboards and Covert Channels. Proceedings of the 15th Usenix Security Symposium, August 2006.
[18] G. Simmons. The prisoner’s problem and the subliminal channel. Proceedings of CRYPTO ’83, 1984.
[19] R. Smith and G. Scott Knight. Predictable design of network-based covert communication systems. In Security and Privacy, 2008. SP 2008. IEEE

Symposium on, pages 311–321, May 2008.
[20] T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of Molecular Biology, 147:195–197, 1981.
[21] L. von Ahn and N. J. Hopper. Public key steganography. In C. Cachin and J. Camenisch, editors, Advances in Cryptography: Eurocrypt 2004, LNCS,

volume 3027, pages 322–339. Springer, 2004.
[22] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous peer-to-peer VoIP calls on the internet. In CCS ’05: Proceedings of the 12th ACM conference on

Computer and communications security, pages 81–91, New York, NY, USA, 2005. ACM Press.
[23] X. Wang, S. Chen, and S. Jajodia. Network Flow Watermarking Attack on Low-Latency Anonymous Communication Systems. Security and Privacy,

2007. SP ’07. IEEE Symposium on, pages 116–130, May 2007.
[24] D. Wessels. ”IRCache traces for DITL January, 2007 (collection)”. http://imdc.datcat.org/collection/1-01J0-5=IRCache+

traces+for+DITL+January%2C+2007 (accessed on 2009-03-30).
[25] S. Zander, G. Armitage, and P. Branch. Survey of covert channles and countermeasures in computer network protocols. In IEEE Communications

Surveys, volume 9, pages 44–57. 2007.
[26] J. Zölner, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld, G. Wicke, and G. Wolf. Modeling the security of steganographic systems. In

D. Aucsmith, editor, Information Hiding, 2nd international Worshop, LNCS, volume 1525, pages 344–354. Springer, 1983.

15

http://imdc.datcat.org
http://imdc.datcat.org/collection/1-01J0-5=IRCache+traces+for+DITL+January%2C+2007
http://imdc.datcat.org/collection/1-01J0-5=IRCache+traces+for+DITL+January%2C+2007

A General Correction
Another property of the rotation and synchronization algorithm is that under certain conditions, it allows for partial recovery of
the encoded sequence when a deletion error occurs. From Figure 3, it is clear that δ′ = ti+3 − ti+1 = δi+1 + δi+2. We have:

bi+1 = D(δi+1, si+1)
bi+2 = D(δi+2, si+2)
b′ = D(δi+1 + δi+2, si+1 + si+2) = D(δ′, si+1 + si+2)
Now,
δ′ = E({0, 1} , si+1) + E({0, 1} , si+2)
And so,
if bi+1 ⊕ bi+2 = 0, then (δ′ − si+1 − si+2) mod w = 0
if bi+1 ⊕ bi+2 = 1, then (δ′ − si+1 − si+2) mod w = bw/2c
Therefore,

if b′ = 0, then bi+1 ⊕ bi+2 = 0
if b′ = 1, then bi+1 ⊕ bi+2 = 1

Where,
D is the decoding algorithm,
E is the encoding algorithm,
⊕ is the bit-wise XOR

The above property holds because if two inter-arrival times are both 0 or both w/2 modulo the window size, then their
sum will always be 0 modulo the window size. Similarly, if one inter-arrival time is 0 and the other w/2 modulo the window
size, then their sum will be w/2 modulo the window size. This property allows us to guess the value of the missing bits with a
probability better then guessing by chance individually for each lost bit.

16

	Steganographic Timing Channels
	Recommended Citation

	Steganographic Timing Channels
	Abstract
	Comments

	Introduction
	Related Work
	JitterBug Encoding
	Basic Encoding Scheme
	Rotating Window Encoding Scheme

	Steganographic Encoding
	Covert Uniformness Property
	Channel Secrecy Property
	Choosing a Window and Timing Distribution

	Steganographic Decoding
	Detection using Entropy
	Experimental Results
	Methodology
	SSH: Single Typist
	SSH: Multiple Users
	HTTP GET Requests
	Decoding Performance

	Conclusion
	General Correction

