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Abstract 

The need to visualize and interpret human body movement data from 

experiments and simulations has led to the development of a new three­

dimensional representation for the human body. Based on a skeleton of joints 

and segments, the model is IlEDipulated by specifying joint positions with 

respect to arbitrary frames of reference. The external form is modelled as 

the union of overlapping spheres which define the surface of each segment. 

The properties of the segment and sphere model include: an ability to 

utilize any connected portion of the body in order to examine selected 

rrovements without computing oovements of undesired parts, a naming mechanism 

for describing parts within a segment, and a collision detection algorithm 

for finding contacts or illegal intersections of the body with itself or 

other objects. Several display algorithms are possible, including inexpensive 

hidden surface rerroval. The spherical body model can also be easily combined 

with planar polygon object environments. 
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l. Introduction 

Human movement data is collected or generated in many different 

disciplines. Measurements of "body positions or joint locations during 

movement are recorded for further study in physiology, anthropology, 

kinesics, biomechanics, dance, and engineering. Computer programs may 

simulate body movements to obtain position data in otherwise dangerous 

environments such as vehicle crash studies (10,15,23), or where effective 

automatic observation techniques are lacking such as in dance ( 2 6) . 

When observational data must be compared with simulated data (for 

example, to validate the simulation) it may be useful to visualize the 

movements on a computer JIDdel of the "body. While conventional graphs may be 

adequate to diagram movements of individual body parts, a global impression 

can be best achieved by displaying all body JIDvements s:imul taneously. A 

visual animation of the body in motion is essential whenever the mass of 

data collected or generated is too great to assimilate piecemeal, or when 

the movement complexity begins to involve positions of other body parts or 

the envi.rDnment. 

Visualizing human movement on a computer graphics display requires a 

computational model of the body which is realistically formed, jointed, and 

three-dimensional. Dissatisfication with existing "body models and "stick 

figure" displays led to the development of a new human model for a computer 

with certain distinct advantages in display realism, movement definition, 

contact and collision detection, and cost-effectiveness in a real-time 

animation play reck environment. 

Our original motivation to develop a human body model came not from 

engineering considerations, but from an investigation of human movement itself. 
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While investigating techniques for the representation of human movement 

information in a computer, we were led to interaction with professional 

rrovement analyists, recorders (notators), and performers. These people are 

primarily interested in a human body animation as a visualization of notated 

rrovement, in both a verification rrode and a demonstration or tutorial rrode 

(26). In either case, the constraints which arose from discussions on the 

form and movement of the body took the following forms: 

The three-dimensionality of the body, both in space and m substance, 

must be visible and unquestionable. 

The movements must be displayed in real-time for teaching 

purposes, although slower rates are acceptable for 

verification of notated movements or study of transient effects 

(for example, in crash studies). 

The model could be positioned with respect to any rectangular 

coordinate system and, in particular, any body part could be 

treated as a reference segment from which other movements 

are computed. 

Any connected subset of the body could be animated, that is, 

the movements could be obeserved in a "logical window" of 

body parts and not even computed for others out of the set. 

The presence of environment objects as well as other people 

must be allowed, displayed, and used for collision detection. 

Collision detection should be simple and should return cqncise 

information on the location of any interference or contacts. 

The first and last conditions especially preclude the use of stick-figure 

models since the surfaces of the body are extremely important in movement 

interpretation and collision detection. 



3 

Besides these criteria we imposed our own graphical design 

consideration that the display generation process should be as device-independent 

as possible, yet support a variety of fundamentally different graphic 

displays. In particular, we wish to use video raster devices as well as 

line-drawing refresh cathode ray display tubes. Moreover, the efficiency of 

the display algorithms should not be undermined by this flexibility. We feel 

that we have achieved this goal with our model; indeed it is the first 

proposed for a raster device that promises to be suitable for low cost graphic 

display hardware. Each of these points will be addressed in the following 

sections. After discussing existing or potential models based on various 

object representation schemes, we will describe our model and how it can be 

used, among other things, to generate different visual displays, name 

particular body parts and surfaces, and locate collisions. 



2. Modelling Schemes 

Representing the form of the human oody with computer data structures 

1s not a simple task. A variety of models are in use among the set of 

possible representation structures, but each has certain faults to balance 

its advantages. Our rr:odel fits this description, too, but we intend to show 

that whatever disadvantages it has are certainly less severe than those of 

the others. 

We can categorize the schemes for modelling complex three-dimensional 

objects into two broad groups (2), then further divide these into specific 

representations based on different primitives: 

I. Surface representations 

A. Surface points 

B. Planar polygon surface patches 

C. Curved surface patches 

(bicubic or other mathematical formulations) 

II. Volumetric representations 

A. Polyhedral decomposition 

B. Object algebras 

C. Cylinders 

D. Ellipsoids 

E. Spheres 

A surface representation maybe either a collection of surface points or a 

partition into a number of primitive patches. In a volumetric representation, 

on the other hand, the surface is approximated by the visible portions of 

primitive solid objects which may arbitrarily overlap and combine. 

A surface point representation is used in two human models by Fetter ( 9) , 
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one having 300 :pJints, the other, 3000. Subsets of the body have been 

digitized as planar polygons by Parke (21) and Catmull (6). The advantages 

of planar :pJlygons are their ability to model detail and the ease of display 

of the edge network by line-drawing devices. Outweighing these factors, 

however, are the very large number of such :pJlygons which WJuld be required 

to JIDdel the human body, the cost of hidden line removal or surface shading, 

and perhaps most im:pJrtantly, the unrealistic surface deformations caused by 

joint :rrovements. For example, in an animation of finger flexion in a :pJlygon­

surface hand (6), the finger>s become thinner as they bend. No provision is 

made in the graphical data structure to modify the plane vertices as the 

movements are executed, and specification of the appropriately interpolated 

transformations which might provide each vertex with a realistic movement 

would be non-trivial. 

Representing curved surfaces by a partition into bicubic or other 

mathematical curve patches (24) solves some of the problems posed by polygonal 

patches. An experimental human model constructed of curved patches has been 

animated by Wessler (30). The number of patches can be drastically reduced 

and the surfaces are inherently s:rrooth, avoiding the intensity smoothing 

which gives :pJlyhedra the appearance of uniform curvature (5,12). Hidden 

surface re:rroval is, however, no easier ( 7) . Otherwise a grid network must 

be displayed and this may be taxing on the observer who must interpret the 

image and perhaps on the display unit, too. The joint deformation problem is 

potentially solvable, since the patches will adjust to changes in their 

boundary curves, but certain representations could produce singularities or 

strange shapes if deformed past certain limits. 
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The failures of surface partitioning schemes are partially rectified by 

using a volumetric representation. Ryan (25) constructs a rncdel based on 

six-sided polyhedra (usually rectangular prisms). Object algebras such as 

described by Braid (4) or Goldstein (ll) include in the primitive set curved 

solids such as cylinders, ellipsoids, and spheres, although by their 

generality do not lend themselves to computationally simple display 

techniques. 

Models are in use which are based on cylindrical volumes : Evans uses 

them in the Comb:iman model ( 8) , and Potter and Wilmert in the Cal span 

rodel (22). Cylinders are a natural component in an object such as the body 

where many axes already exist, although "blobby" parts such as the head or 

hand may be hard to rodel. A rather small number of cylinders is therefore 

sufficient. The real difficulty occurs when the cylinder caps are SJJDOthed 

at the joints. The Cal span model takes special pains to achieve rounded 

corners, but the best resul is are nevertheless obtained only from side or 

front views. Hidden parts of the cylinders are not· removed either. 

The cylinder end problem can be solved by abandoning cylinders for 

ellipsoids. Herbison-Evans (13) uses such a model to produce animated 

cartoons of human figures. He shows that hidden parts of the ellipsoid 

can be reJIDved with a modest amount of computation since ellipsoids 

orthogonally project into ellipses. That advantage, however, precludes using 

a perspective projection which is often an important depth cue. Not all 

body parts are well approximated by ellipsoids either, and surface shading 

would also be costly. 

The projection problem is solved if a primitive is used whose form is 

unchanged from any view or perspective. The only primitive meeting this 
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criterion is the sphere since its projection is always a circle or disk. If 

the oody is decomposed into overlapping spheres, non-cylind_rical parts can 

be modelled as easily as cylindrical ones. Directionality is rightfully a 

property of sets of spherical primitives and is not imposed by the 

representation itself. Although the number of spheres required to represent 

the oody is greater than the number of cylinders, there are compensating 

savings in display computation and hidden surface removal. Joint deformation 

and smoothing problems also disappear. Since this is our proposal for a new 

body model, we will describe its properties in detail. 
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3. The Spherical Model 

Because of the difficulties of the other m:x:lelling methc:ds, we are 

representing the human body as a collection of overlapping spheres. These 

are associated with a 11 skeleton11 structure of segments and articulating 

jo:ints. The desir>able properties of this JIDdel :include its ability to 

handle joint deformations, generate solid-appear:ing displays, allow for 

automatic decomposition of objects into spheres, and permit efficient 

collision detection. A modest number of spheres suffices for a complete 

lx:>dy JIDdel. Our present model consists of about 310 spheres (Fig. l), but 

60 have been used for a satisfactory renderin~ More spheres 

may be added for increased smoothness or anatomical accuracy. 

The skeletal structure of the body is used as a framework for the set 

of spheres so that the problems associated with pure surface representations 

are avoided. In fact, if a sphere is placed exactly at a joint of the body, 

then the two adjoining lx:>dy segments join smoothly regardless of their relative 

orientation. Unlike cylindrical approximations, the sphere model can be 

easily refined to any desired degree, and because spheres have no inherent 

directionality, they are better than cylinders for modell:ing shapes such as 

the head. 

When a sphere is projected onto the two-dimensional viewing plane it 

always appears as a disk or circle. In an orthogonal projection the radii 

remain fixed, while in a perspective projection the radii decrease in inverse 

proportion to the depth. In no case is the circular boundary affected. There 

are efficient methods for drawing disks or circles (l ,14). 

The spherical representation offers economical hidden surface removal 

and shading effects on a raster display. After transformation into the 
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viewing coordiante system Cl9), hidden surface rerroval may be effected by a 

variety of methods. The simplest is a variant of the depth-priority 

algorithm (18). Each sphere is written into a frame buffer as a solid disk, 

and the depth value of its frontmost point is stored as well. As each 

sphere is processed (the order is arbitrary), only those picture elements 

with a lesser (closer) depth are inserted, thus parts of spheres which are 

hidden are ove:rwri tten in the frame buffer by the spheres in front. By 

changing the gray value of the disk according to its depth in space from the 

observer to make closer spheres lighter and distant spheres darker, depth 

cueing and shading effects are generated. As long as the l::ody decomposition 

is fine enough, overlapping spheres will tend to be close in depth and 

therefore have nearly identical gray values. The result is a quite 

smoothly shaded picture (Fig. 2). Notice that the surface of each sphere 

need not be shaded to appear curved, it is sufficient to render the disk 

uniformly. 

An anti-aliasing algorithm for disks can be used to soften the edges 

and effectively double the apparent resolution. Our algorithm computes the 

pixel area covered at each disk boundary and shades that pixel value ln a 

proporitionalamount. Figure 3 shows the result of anti-aliasing the display 

of Fig. 2. Since the resolution of the Ramtek display used to produce these 

images is only 240 rows by 320 points (the body covering only about half that 

height in these figures) we are effectively using a very low resolution (and 

therefore less expensive) graphics display. 

An alternative display technique, but which involves more computation, 

is an adaptation of Watkins' hidden surface algorithm (29). The display is 

produced a scan line at a time by computing only the frontmost, visible 



figure 1. Human body m:xlel drawn with circles. 



Figure 2 . Human body mod.el drawn 'lt7i th solid disks. 



Figure 3. Human body model drawn with solid disks and anti-aliased. 
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portions of the spheres intersecting the current horizontal cutting plane. 

A modification of this technique has been programmed in an attempt to generate 

outline drawings of the body model ( 2 0) for a vector drawing display. The 

idea is to use the structure of the body to decide when a sphere boundary 

should be ignored or treated as a visible edge. Thus an arm positioned 

across the front of the body should appear in outline and properly occluding 

the body edges, yet visibly connected to the body (Fig. 4). More work needs 

to be done on this algorithm to improve output quality; its cost, however, 

probably precludes it from use in real-time animation anyway. 

For a vector drawing display each sphere is drawn as a circle. In spite 

of the fact that no hidden surface are re.rroved, depth cueing on the circle 

intensities and animation combine to produce an excellent three-dimensional 

effect. Since circle drawing generates a sizable number of graphic 

commands, a display with a built-in circle generator is preferred. One such 

graphic display, the Vector General 3404 (28), not only provides such a 

circle generator, but also allows the circles to be positioned in any depth 

plane and intensity controlled automatically. 

As with most surface or volume representations, the most difficult 

step is data entry. We have implemented an algorithm for the decomposition 

of curved surface objects into overlapping spheres (20). Starting with any 

number of cross-sectional outlines of a portion of the object, the algorithm 

provides a set of spheres to fit the surface (as described by the outlines) 

within some tolerance. The maximum and minunum sizes for the spheres can 

also be specified. The algorithm has been used to construct part of our 

human body model and could be employed to produce other models with different 

body frames. For example, two skull x-rays were used to digitize three cross-

sections. (Fig. 5). One particular decomposjT~~- illustrated in Fig. 6. 

---------



Figure 4 • H1.1(l1a11 body in outline. 



Figure 5. Skull cross-sections. 
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4. The Body Model 

In order to position the model for a display a segment structure is 

used as a "skeleton. 11 This consists of a nwnber of body segments connected 

by joints where each segment is conceptually a three,·dimensional mass of 

arbitrary shape defined by a set of spheres, and each joint is the point 

where tw segments connect. Sliding joints, such as in the human shoulder, 

are not permitted since the joint must remain fixed relative to each of the 

adjacent segments. Each joint may connect only two segments, but a single 

segment may have connections through any nwnber of joints. The current 

model uses 20 segments and 19 joints without articulating fingers and toes. 

The model may be easily extended, however, since all structural para_meters 

are in generalizable arrays. The stage or ground is considered a segment 

so that the model may be related to the environment. 

The segments are organized into a tree structure with segments as 

nodes and joints as edges. One segment is designated as the reference 

segment and becomes the root of the tree. An important feature of this 

organization is the ability to deql with a connected subset of the tree. By 

specifying a subset of the set of segments as a logical window (as opposed 

to the viewing window of the actual display) the user can restrict the model 

in order to examine some particular body area. Only segments within the 

logical window or which lie along a path from the reference segment to some 

segment within the logical window are retained. 

The shape and size of each segment is described independently of the 

other segments. For each segment we associated a local coordinate system, 

which is rigidly embedded within the segment and moves together with it. 

The origin of a local coordinate system is at the center of gravity of its 
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segment and coordinate systems are all oriented so that with the hl.lJTk'311 

standing upright and feet flat, toes ;forward, hands at sides and palms 

toward thighs, the z~axis points upward, the x-axis points forward, and 

the y-axis points to the left. Using these local coordinate systems, joint 

locations and the shape of the segment can be determined. Each joint ,is 

completely specified by giving its coordinates in the coordinate systems of 

the adjacent segments. The external surface shape of a segment is the union 

of surfaces of the spheres, each defined by a center and radius in the local 

coordinate system. Adjacent segements cannot physically address the same 

spheres, but the spheres from one segment may arbitrarily overlap those from 

another. 

With each local coordinate system we can associate a table specifying 

the directions for back, front, top, bottom, right, and left for the segment 

itself. Thus for the right hand segment "back" is -y, "top" is -z, and 

"left" is x. This allows any point on the surface of the segment to be 

"named" by a local direction independent of the segment 1 s orientation in 

space. Such a feature is very useful for describing points or collision or 

contact in the model. 

In addition to local direction naming, a sphere can be optionally named 

as a specific subpart of a segment (perhaps restricted to a certain direction). 

Thus we could label the spheres at each joint or name exterior features such 

as nose, ear, heel, or fingernail. In each case we can indicate the central 

directionality of each feature in a table: for example, the sphere for a 

fingernail w:::mld be associated with the "back" direction of its segment. 

When a new position is desired, the angles at each joint and the position 

ll1 space of the reference segment are specified. Because all the segments 
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are part of a tree wi,th the reference segment a~ the root~ this information 

unambiguously determines the position and orientation in space of each body 

segment. To actually compute the global coordinates of the spheres, which 

are only defined in their local segment coordinate systems, transformations 

are chained along the paths of the tree, To facilitate this process 

hoiiDgeneous coordinates are used, Translations (from segment center of 

gravity to joint) are represented as 4 x 4 matrices so that transformation 

chaining can be achieved by matrix multiplication, The result of chaining 

transformations out to a segment is a single 4 x 4 rratrix which when 

multiplied by the local coordinates of a point in the segment will yield the 

global coordinates. Once a position for the body is established, the 

transformation for a segment can be used for all the spheres defined for that 

segment. 

The only exception to the application of the final transformation to 

the whole segment occurs if the segment itself is twisted along some axis as 

happens in the lower legs, forearms, and torso. In that case the sphere 

centers are transformed by a rotation proportional to the distance of their 

centers along the axis, that is, one end is not rotated about the axis at all, 

while the other end is rotated the full aiiDunt. The effect will be visible 

only when the segment is not perfectly circular in cross-section along the 

axis. 

When successive positions of the body must be computed, as in an 

animation, some computation is avoided if the orientation of some joint lS 

unchanged. The associated segment-to-segment transformation does not change 

either, so when chaining from the reference segment outward, the 

transformations need to be recomputed only after the first changed joint 
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orientation is encountered, From that joint onward, the rerna.inder o:f the 

tree path must be updated, 
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5. Collision Detection 

One problem, which is nontrivial in rrost object representations lS the 

detection and localization of collisions (intersections) or contact between 

parts. Moreover, some collisions are nlegal1' in the sense that two adjacent 

segments will intersect to a varying degree about the comnon joint. These 

problems can be easily solved within the proposed model. 

First, consider collisions between the model and itself. For adjacent 

segments we can define joint stops to give numerical limits to the segment 

orientation at a joint. For convenience this can be taken to be a cone, but 

more complex dependencies could be used. Illegal collision of adjacent 

segments therefore only requires a simple angle check, or at worst a function 

evaluation for a complex joint stop function. 

The power of the segment and sphere model solves the case of non-adjacent 

segments. Let D denote the distance between the closest surfaces of two 

spheres defined as the distance between their centers less the sum of their 

radii. If D is zero, the spheres intersect at only one point, if D is 

negative the spheres share some non-zero volume, and if D is positive the 

spheres are disjoint. The collision detection algorithm follows easily. 

We associate a sphere or box with each body segment which encloses all spheres 

in its definition. To check whether two segments intersect, check whether 

their enclosing spheres or boxes overlap. If not, their individual spheres 

cannot intersect. Otherwise check whether any sphere of one of the segments 

(the one with fewer spheres) intersects the enclosing sphere or box of the 

other. If not, the segments cannot intersect. Otherwise check each sphere 

in one segment against each sphere of the other. Any intersections are 

determined at this point. These can be used as feedback to the simulation 
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program? or else simply printed in a, textua,l report u:;:;ing the direction 

and subpa,rt narning ta,bles and cha.nging the distance va,lue to indica,te conta,ct 

or overlap. 

It is a straightforward process to extend collision detection to one 

model against another spherically represented object or body. What is 

perhaps rnore surprising is that the process can be easily extended to check 

sphere intersections with object surfaces described by planar. polygons. 

Sphere to plane distances are easy to compute. Should a sphere intersect a 

plane the problem reduces to testing a circle against a polygon. If the 

sphere intersects or lies within the minimum enclosing circle (or box) of the 

polygon, further tests determine whether the circle intersects any edge. If 

so, then we are done; if not, then the circle either lies totally within or 

totally outside the polygon. If outside, the original sphere does not 

intersect; if inside, the sphere does intersect. The resulting list of 

sphere-polygon intersections or contacts can now be used in the same fashion 

as the sphere-sphere collisions. 
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5. Applications 

We are using the hl.liTB.Il :txxiy JTPdel in two research projects ; one to 

transform rnovement notation into a graphic anirration (26), the other to 

combine the human rnodel with existing cockpit design and crash simulation 

systems. These two applications complement each other in the sense that the 

first involves simulation of all potential skeletally-mediated body movements, 

while the second manipulates the body in response to external physical 

forces or environmental constraints, 

The rnovement simulation system involves the compilation of a well­

structured symbolic movement notation, Labanotation (16), into a set of 

"prirnitive11 movement concepts: directional rnovernents or positions, rotations 

or twists, surface facing orientations, paths in space or shape configurations 

of body parts, and contacts or relationships between the body and itself, 

other people, or its environment (27). Instances of these concepts are 

presented as instructions to a simulator modelled as a collection of parallel 

processors, one for each joint of the body, and an additional processor for 

movements of the whole body. A monitor synchronizes and schedules the 

processors and supervises changes to the body position data base ( 3) . The 

simulation output is a sequence of "snapshots" or frames of the body model 

performing the notated movements. By storing the joint angles in a data 

file, the IIDdel may be anirrated in real-time on a vector drawing display such 

as the Vector General 3404, since the necessary circle generator and 

transformation chaining are provided in firmware. Implementation of the 

simulator and the real-time display is currently in progress. 

For the other applications, we are integrating the outputs of two systems 

with the body model. A cockpit design and evaluation program ( 2 5) provides 
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a planar polygon environment, while a crash simul~tqr provides hypotheticql 

movements of a vehicle occupant under various deceleration conditions (10). 

A typical cockpit is shown in Fig. 7, shaded to better illustrate the 

surfaces. Four frames from a typical sequence (fig. 8) of a simulated crash 

(head-on at an oblique angle, with the occupant restrained only be a lap belt) 

may be drawn on a raster display. By registering the initial configuration 

of the body in the vehicle seat (fig. 9), both may be displayed simultaneously 

throughout the simulated period (17). During this interval, a listing of the 

body collisions and contacts at any one time may be obtained from the 

algorithm previously described. Moreover, this listing indicates the specific 

body areas and object surfaces affected, since the planar surfaces are named 

by the vehicle designer. 

Although the integration of body and vehicle may eventually be used to 

control the simulation, a more likely short-term goal is the presentation of 

the simulation data in a readily intepretable form. By generating each 

frame of the simulation and recording it on videotape, a permanent visual 

record may be obtained of any simulated movements. During the recording 

process, the real time between each frame may be extended to slow the actual 

motion. With enough care in the positioning of the observer for the computer 

generated sequence of images, actual experimental data from high-speed 

photography may be superimposed, allowing the simulation designer to verify 

the accuracy of the simulation program. 
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6. Conclusions 

The conceptual simplicity of the spherical decomposition of the human 

l::ody provides many advantages to the user in hidden surface removal, collision 

detection, part: naming~ and device independent display. While a fast vector 

drawing device would be used pr:i.narily for preview or outline animation, we are 

particularly hopeful that the raster-based display will provide, for the first 

time, the possibility of saving computer simulation data on video tape or 

cassettes so that animation playback can be done offline without typing up 

large computers or expensive display devices. 
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