View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarlyCommons@Penn

- %
cnn - y University of Pennsylvania

Libraries ,_
 UNIVERSITY 0f PENNSYLVANIA Scholarlycommons
Technical Reports (CIS) Department of Computer & Information Science
1-1-2002

Testing the Electronic Throttle Control

Hyoung Seok Hong
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Na Young Lee
University of Pennsylvania

Martin Leucker
University of Pennsylvania

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Hyoung Seok Hong, Insup Lee, Na Young Lee, Martin Leucker, and Oleg Sokolsky, "Testing the Electronic
Throttle Control", . January 2002.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-02-11.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/174
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76392263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/174
mailto:repository@pobox.upenn.edu

Testing the Electronic Throttle Control

Abstract

In this report, we summarize our approach for testing the Electronic Throttle Control (ETC) system. We
reformulate the ETC model based on the MATLAB/SIMULINK model provided by the Berkeley group. We
specify the ETC model using the hybrid modeling language called CHARON. From the CHARON model, we
generate test sequences based on the control-flow and data-flow criteria. These are transformed into test
cases which may be used to test an implementation of the ETC system.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-02-11.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/174

https://repository.upenn.edu/cis_reports/174

Testing the Electronic Throttle Control*

Hyoung S. Hong, Insup Lee, Na Young Lee, Martin Leucker, Oleg Sokolsky
Department of Computer and Information Science,
University of Pennsylvania, USA
{hshong, lee,leeny,leucker,sokolsky}@saul.cis.upenn.edu

Abstract

In this report, we summarize our approach for testing the Electronic Throt-
tle Control (ETC) system. We reformulate the ETC model based on the MAT-
LAB/SIMULINK model provided by the Berkeley group. We specify the ETC
model using the hybrid modeling language called CHARON. From the CHARON
model, we generate test sequences based on the control-flow and data-flow cri-
teria. These are transformed into test cases which may be used to test an
implementation of the ETC system.

Contents
1 Introduction 2
2 Electronic Throttle Control (ETC) System 3

3 Test sequence generation from Charon model 4
3.1 Detailed CHARONmodel 4
3.2 Modecoverage e 5
3.3 Transition coverage 6

4 Testing using generated test cases 7
4.1 Testing the overall system 9
4.2 Testing the manager controller 11
4.3 Testing the servo controller 11

5 Summary 11

*This research was supported by in part by NSF CCR-9988409, NSF CCR-0086147, NSF CISE-
9703220, ARO DAAD19-01-1-0473, DARPA ITO MOBIES F33615-00-C-1707, and ONR N00014-
97-1-0505.

1 Introduction

The Electronic Throttle Control (ETC) system is identified as one of the challenging
problems in the DARPA Mobies project!. It aims as a typical example to prove the
benefits of formal methods.

In this report, we show how formal methods can be employed to (semi)-auto-
matically test an implementation of the ETC system. Therefore, we reformulate the
ETC model based on a given MATLAB/SIMULINK model provided by the Berkeley
group?, using the hybrid modeling language called CHARON [3, 1]. CHARON provides
means for simulating a hybrid system and is currently being extended for automatic
testing facilities of the modeled system.

From the CHARON model, we generate test sequences based on control-flow
and data-flow criteria. The control-flow criteria include both mode and transition
coverage. Each test sequence represents a path in the specification consisting of
modes and transitions traversed when a test is executed. From a test sequence, we
can generate a test case consisting of sequence of inputs that can be applied to the
implementation to follow the same sequence of modes and transitions specified in
the path. The test case also includes a sequence of outputs expected during testing.

Test sequences
Test generator

IModel in CHARON

Converter

Emplementation

Test cases
Test execution

Output
Test evaluation

output

Figure 1: Overview of test case generation

Figure 1 shows our approach to model-based testing. The first step is to generate
test sequences from a model specification (in CHARON). The second step is to
convert each test sequence to a test case counsisting of an input sequence and an
expected output sequence. This conversion needs input and output formats required
by the implementation to be tested. The third step is test execution. The final step
is to compare the output from test execution with the expected output from the
test case. Note that the third and the fourth steps may be interleaved.

In this report, we show how to generate test sequences from the ETC model
specified in CHARON. These are converted into test cases that can be applied to
any ETC implementation; for example, the one provided by the Berkeley group.

!DARPA ITO MOBIES F33615-00-C-1707
2http://vehicle.me.berkeley.edu/mobies/

[->~{ Which_mode D
—»{ Which_driving_cruise)
Inputs Manager - —

—»IWhlch_hmltmg_rev > Servo controller | current)
| > [Which_limiting_traction

>

Figure 2: Block diagram modeled in MATLAB

Indeed, we apply these tests to check the given ETC code.

The rest of the report is organized as follows. In Section 2, we briefly describe
the ETC system. Section 3 explains how the ETC model is specified in CHARON and
how to derive test sequences according to control and data flow coverage criteria.
Furthermore, we show how to obtain test cases. In Section 4, we describe how to
apply the computed test cases. We summarize our approach and results in Section 5.

2 Electronic Throttle Control (ETC) System

In an automobile, there is a gas pedal linked with a throttle plate and we can
regulate engine airflow by adjusting the gas pedal. By using the ETC system
instead of a mechanical one, the throttle plate will be actuated electronically. The
desired throttle position is determined by the pedal position, but also by further
inputs and operating conditions. It enables to design automotive functions such as
cruise control and stability control.

According to the MATLAB model shown in Figure 2, the output from the system
is the motor current. It is determined using the throttle position sensor signal, the
throttle plate feedback control and further inputs such as cruise control activation
(summarized as inputs in the figure).

The ETC controller is composed of two parts: the controller manager and the
servo controller. The controller manager determines the current mode based on
input values. It can choose between driving mode and limiting mode. As long as
the monitored values of angular velocity and torque are below their set points, it
can stay in the driving mode. Otherwise, it will turn into the limiting mode.

In the driving mode, there are two concurrent modes: the cruise control mode
and the human control mode. In the limiting mode, there are also two concurrent
modes: the revolution limiting mode and the traction control mode, depending on
the values which have to be limited.

As mentioned before, the manager’s duty is to determine the right mode. The
servo controller determines the actual value of the current considering the input
values and the mode fixed by the manager. Thus, the servo controller has four

concurrent modes that correspond to the four modes of the controller manager. For
the driving mode, the servo controller chooses its output to be the larger of the
values from the cruise control mode and the human mode. If the limiting mode, the
servo controller chooses its output to be the smaller of the values from the revolution
limiting mode and the traction control mode.

3 Test sequence generation from Charon model

CHARON [3, 1] is featured by its ability to formally specify the hybrid behavior of the
system. Furthermore, it supports the simulation of the modeled system as well as the
formal verification of properties of the specified design [2]. The goal for this report
is to test code to identify whether its behavior is consistent to that of the design.
Therefore, we first model the ETC system in CHARON. Based on the CHARON
specification, we generate test sequences, which characterize the interesting inputs
of our system, according to given coverage criteria. We used both control-flow and
data-flow coverage criteria to generate test sequences. Control-flow coverage criteria
include mode and transition coverage. The data-flow coverage criterion used is the
all-use criterion, in which all the paths traversed by a variable are represented.

Each generated test sequence records transitions traversed by the model during
an execution. Each sequence contains information such as active modes, values of
the variables as well as transitions that were taken to move from one mode to others,
based on the CHARON specification. Using this information, we can convert a test
sequence into the corresponding test case later.

We show the detailed design of the ETC system in CHARON in Section 3.1. In
Section 3.2 and Section 3.3, we show how to apply mode/transition coverage criteria
to generate test sequences.

3.1 Detailed Charon model

In CHARON, the architecture of the hybrid system is given as a set of agents, and
its behavior is given by a set of transitions, which may be guarded and rely on some
events.

Figure 3 shows the structure of the CHARON model of the ETC system. It has
two concurrent agents, controller manager and servo controller. The modes and
transitions are enumerated (e.g., ml, m2, t1, t2, and so on) so that they can be
identified in the test sequences.

In Figures 4 and 6, we show tables that contain the information of each mode
of manager controller and servo controller, respectively. Each mode consists of
submodes, variables and constraints. We separate variables according to their types,
i.e., we distinguish read and write. In Figures 5 and 7, we list the possible transitions
of the manager and servo controller. Note that we deal with guarded transitions.
The guard comprises a Boolean combination of algebraic equations built-up from

4

Manager Servo Controller

Driving m1

mode Inactive m9 Output
110 19
2 | tl

{ Limiting m2
t11

t4 13 t12

I
bl Bae

Rev_limit m4

tl4 113

t6 t5

0l

Figure 3: Models and Transitions of the ETC model

the variables defined in the originating modes. This combination has to be satisfied
for the transition to take place.

3.2 Mode coverage

From the CHARON model, test sequences in terms of mode coverage were generated
using two different top agents: manager controller and servo controller.

Test sequences in terms of mode coverage are generated starting from the top
mode to other reachable modes: driving mode, limiting mode, revolution limiting
mode, traction control, cruise control, and human control mode. Each mode is
further divided into active and inactive state. Every notation for each mode is
followed by the assigned value shown in Figure 3. We used a model-checking-based
procedure to determine our test sequences which is explained in [4].

Figure 8 shows the generated test sequences, which are represented as a sequence
of transitions, more specifically, transition names. FEach sequence starts from the
initial, inactive mode. In the last column, we list the expected output after executing
the transition sequence. To take a transition, its guard must be satisfied. Therefore,
we have to compute a sequence of input values that satisfy the respective guards.
Thus, this input sequence will result in the desired transition sequence. It is obtained
in a straightforward manner. For example, for the sequence t1, t3, t11 (the first
line shown in Figure 8), we have to find values satisfying the guards “we>weMax or

Mode in CHARON | Mode variables variables | constraints
read write
ManagerMode we, te Dod
driving(sub) ml we, te Do_d=true
limiting(sub) m2 we, te Do_d=false
RevLimitingMode we, Do_d Do.rl
inactive(sub) m3 we Do_rl=false
active(sub) m4 we Do_rl=true
tractioncontrolMode te, Dod Do_te
inactive(sub) mb te Do_tc=false
active(sub) m6 te Do_tc=true
V, prndl,
CruiseControlMode bm,kESWl_tCh’ Do_cc
cruiseswitch,
coastswitch
V, prndl,
inactive(sub) m7 bra.kesm.tch, Do_cc=false
cruiseswitch,
coastswitch
V, prndl,
active(sub) m8 bra-kesm'tch, Do_ce=true
cruiseswitch,
coastswitch

Figure 4: Modes of Controller Manager in CHARON

te>teMax”, “we>weMax and Do_d=false ”, and “Do_rl=true”. The second guard
requires “we>weMax”, which also fulfills the first guard. Taking transition t1 sets
Do_d to false (see Figure 5), which fulfills the second clause of the second guard.
The action issued when taking transitions t3 will set Dol to true, and thus, we
can take transition t1l afterwards (see Figure 7). We conclude that it remains to
set “we > weMax” to raise the desired transition sequence. The other test cases
are determined in a similar manner. In Figure 8, we choose slightly larger values
for the test cases to satisfy the guards as examples.

Note that the expected output of the system (determined by the value of the
variable MotorAmps) is obtained by looking at the constraints of the ServoCon-
troller (see Figure 6).

3.3 Transition coverage

Test sequences are developed in the similar manner in terms of transition coverage
by combining two different top agents, manager controller, and servo controller.

“ transitioanronj t04| guard J action Jl
1 | m2

t1 m we>weMax or te>teMax | Do.d = false

t2 m2 | ml we<hxweMax and Do.d = true
te<hxteMax

t3 m3 | m4 we>weMax and Dol = true
Do_d=false

t4 md | m3 we<hxweMax or Dol = false
Do_d=true

t5 m5 [m6 | te>teMax and Do.d=false| Do_tc = true

t6 m6 | md | te<hsteMax or Do.d=true| Do_tc = false

V>30 and prndl=3 and
o7 m7 | ms8 brakeswitch=false and Do.cc = true

cruiseswitch=true and
coastswitch=false

—(V>30 and prndl=3 and
t8 m8 | m7 bra?tesm'tch:false and Do.cc = false
cruiseswitch=true and

coastswitch=false)

Figure 5: Transitions of Controller Manager in CHARON

By enumerating every transition that passes through the designated transition, we
generate test sequences in terms of transition coverage. The procedure to generate
test cases is similar to that of mode coverage as described in the previous section.
We show the results in the Figure 9. Note that, unlike the case of mode coverage,
we obtain input sequences of length 2 in the case for transition coverage. Thus, we
have to determine two input values. These are shown in Figure 9, by giving two
rows for the corresponding traunsitions (namely, t2, t4, t6, t& t10, t10, t12, t14).

4 Testing using generated test cases

In this section, we describe how to apply the generated test cases to test an im-
plementation. More specifically, we want to test whether the implemented code is
consistent with the model, i.e., if the model and implementation produce the same
sequence of output for the input sequence determined in the previous section.

The Berkeley group provided an executable implementation based on the MAT-
LAB design of the ETC system, to which we apply our test cases.

We start with explaining our so-called black-bozx testing approach in Section 4.1,
before pointing out more detailed so-called gray-box testing plans in Sections 4.2
and 4.3. For an introduction to basic notions on software testing, please consult [5].

Mode in CHARON mode | variables variable Constraints
read write
Motor- max ——
Amps.cc, max(MotorAmps_h,
Motor- MotorAmps_cc)
Amps_h, min ==
ServoControllerMode Motor- MotorAmps min(MotorAmps.1l,
Ali?lls_tc, MotorAmps._tc)
Am(;):_l;l MotorAmps ==
Dod ’ (Do_d ? max : min)
DoCruiseControlMode Do._cc MotorAmps_cc
inactive(sub) m9 Do.cc
active(sub) ml0 Do_cc
DoRevLimitingMode Do.rl MotorAmps_rl
inactive(sub) mll Do.rl
active(sub) ml2 Do.rl
DoTractionControl Do._tc MotorAmps_tc
inactive(sub) ml3 Do_tc
active(sub) ml4 Do_tc
post_tad,
Sliding ml5 | tavd, taad, | MotorAmps_h diff, alges
post_tps

Figure 6: Modes of Servo Controller in CHARON

[| transition | from [to | guard action I
t9 m9 | ml0 | Do_cc=true | MotorAmps_cc=1
t10 ml0 [m9 | Do_cc=false | MotorAmps.cc=0
t11 mll | m12 | Do_rl=true MotorAmps_rl=0
t12 ml2 | mll | Dorl=false | MotorAmps.rl=7.4
t13 ml3 | ml4 | Do_tc=true MotorAmps_tc=0
t14 ml4 | m13 | Do_tc=false | MotorAmps_cc=7.4

Figure 7: Transitions of Servo Controller in CHARON

Mode | Test sequence Guard Test case Expected Output
MotorAmps
ml initial mode
m32 t1,£3,811 we>weMax we=weMax+1 0
m3 initial mode
m4 t1,t3,t11 we>weMax we=weMax+1 0
mb initial mode
mb6 t1,t5,t13 te>tcMax te=tcMax+1 0
m7 initial mode
V>30 and
prndl=3 and V=31, prndl=3,
brakeswitch=false| brakeswitch=false
m8 t7,t9 and cruis- cruis- max{MotorAmps_h,1)
eswitch=true eswitch=true
and coastswitch=false
coastswitch={alse
m9 initial mode
ml0 t7,t9 same as m7 same as m7 max(MotorAmps_h,l)
mll initial mode
ml2 t1,63,t11 we>weMax we=weMax-+1 0
ml3 initial mode
ml4 t1,t5,£13 te>tcMax te=tcMax+1 0
ml5 initial mode MotorAmps_h

Figure 8: Test sequences generated in terms of mode coverage

4.1 Testing the overall system

The provided implementation consists of a set of libraries realizing the manager
and the servo controller. However, to send the computed input value(s} to the
given system, simple terminal program has to be developed. It may be started as
a subprocess in the testing cycle and gets the desired test case as input. It sets
the given input values by preparing a corresponding input record (matching the
data structures used in the implementation) and calling the corresponding input
function in the libraries. Then, it reads the output value(s) and returns it to the
calling process. In this way, the overall system can be tested.

We can, indeed, test whether the expected output shown in Figures 8 and 9 is
produced by the system.

Transition | Test sequence Guard Test case Expected output
MotorAmps
t1 t1,t3,t11 we>weMax we=weMax+1 0
t2 t1,t3,t11 we>weMax we=weMax+1 0
we<hysteresis* —weMaxsh.1
t2,t4,£12 weMax and tc< v:e::z(h a‘x’;l '1 MotorAmps_h
hysteresisxtcMax c=tehlaxh-
t3 t1,t3,t11 we>weMax we=weMax+1 0
t4 t1,t3,t11 we>weMax we=weMax+1 0
we<hysteresis* —weMaxxh-1
t2,t4,t12 weMax and te< v:e::v%ll ax’;} '1 MotorAmps_h
hysteresisxtcMax c=tevaxn-
t5 t1,t5,t13 te>tcMax te=tcMax+1 0
t6 t1,t5,t13 te>tcMax tc=tcMax+1 0
we<hysteresisx —weMaxsh-1
£2,16,t14 weMax and tc< v:e::wil axsil -1 MotorAmps.h
hysteresisxtcMax c=tellaxkh-
V>30 and
prndl=3 and V=31, prndl=3,
brakeswitch=false | brakeswitch=false
t7 t7,t9 and cruis- cruis- max(MotorAmps_h,1)
eswitch=true eswitch=true
and coastswitch=false
coastswitch=false
t8 t7,t9 same as t7 same as t7 max{MotorAmps_h,1)
—{ V>30 and
prndl=3 and
brakeswitch=false
t8,t10 and cruis- same as t7 MotorAmps_h
eswitch=true
and
coastswitch=false)
t9 t7,t9 same as t7 same as t7 max(MotorAmps_h,1)
t10 t7,t9 same as t7 same as t7 max(MotorAmps_h,1)
—(V>30 and
prndl=3 and
brakeswitch=false
t8,t10 and cruis- same as t7 MotorAmps._h
eswitch=true
and
coastswitch=false)
t1l t1,t3,t11 we>weMax we=weMax+1 0
t12 t1,t3,t11 we>weMax we=weMax-+1 0
we<hysteresis* —weMasxshe1
t2,t4,£12 weMax and tc< ‘:’e::’?\d ax"il _1 MotorAmps_h
hysteresisxtcMax c=teakd-
t13 t1,t5,t13 tc>tcMax te=tcMax+1 4]
t14 t1,t5,t13 tc>tcMax tc=tcMax-+1 0
we<hysteresis* —weMaxsh-1
t2,t6,t14 weMax and tc< we::”i{ axn;\ ‘1 MotorAmps_h
hysteresisxtcMax te=tcMax+h-
Figure 9: Test sequences generated from the transition coverage criteria

10

4.2 Testing the manager controller

While we test a global snapshot of the system according to the employed test cov-
erage criteria, the insight to the system might be enhanced by taking a slightly
different approach. Since we did not employ any coverage criteria which requires
continuously changing input values, the expected output is always a single value
determined by the remaining inputs that are on their initial values.

Given an implementation that is structured in the same way as the MATLAB
or CHARON model, we are able to test the manager (or servo) controller separately.
More specifically, we can obtain test sequences and test cases by limiting our pro-
cedure in previous section to the manager controller. The expected output values
of the manager controller will be indeed the requested mode according to the mode
coverage criteria.

Implementing a terminal program similar to the one for the whole system, but
targeted to the manager controller, allows automatic testing of the manager con-
troller. We can easily check whether the manager determines the right mode, given
the significant input values.

4.3 Testing the servo controller

In the same manner as before, we can limit our studies to the servo controller.
Thus, we can obtain test sequences in the way described before for various coverage
criteria. The input sequences will now range over mode values, since these are input
values for the servo controller.

For this case, we can use the terminal program provided by the Berkeley group.
It takes input sequences built-up by mode selections and cutputs whether the con-
troller has indeed chosen the selected mode.

In other words, our approach subsumes the one currently employed by the Berke-
ley group for testing their code.

5 Summary

In this report, we presented our approach for testing an implementation of the ETC
system. The general idea of our approach is based on a formal model. Given test
coverage criteria, we automatically compute test sequences for the given formal
specification, based on model checking techniques.

The estimated test sequences are transformed to test cases, which are sequences
of input values for both the formal model and the implementation under test. We
now compare the output sequences for the model as well as the implementation to
detect flaws of the latter.

We applied this methodology to the ETC system. Therefore, we specified a
formal model in the hybrid modeling language CHARON, which is the basis for our
test generation. We employed both control and data-flow coverage criteria for the

11

ETC system. Since the data flow criteria produced no further test sequences, we
concentrated on the control coverage criteria in our presentation.

Given the computed test sequences, we derived test cases. Furthermore, using
again our formal model, we computed the expected output sequences for the given
test cases.

We described how to test a given implementation, explaining the general pro-
cedure for testing an overall implementation. Furthermore, we pointed out that for
the ETC system and the applied coverage criteria, a test of the components of the
system is helpful, and thus, we promote so-called gray-bozx testing approach.

Considering the code made available by the Berkeley group, we mentioned the
small modifications for integrating this code into our testing approach. We finally
related our approach to the test efforts of the Berkeley group by explaining how
their approach fits into our framework.

We described testing facilities and provided means of debugging the ETC system.

References

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivan¢ié¢, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling of embed-
ded systems. Lecture Notes in Computer Science, 2211:14-77, 2001.

[2] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid systems
via predicate abstraction. In Hybrid Systems: Computation and Control, Fifth
International Workshop, 2002.

[3] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications of
hybrid systems in CHARON. In Proceedings of Hybrid Systems: Computation
and Control, Third International Workshop, volume 1790 of LNCS, pages 6-19.
Springer-Verlag, 2000.

[4] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory
of test coverage and generation. In J.-P. Katoen and P. Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems 8th International
Conference (TACAS’02), volume 2280 of Lecture Notes in Computer Science,
pages 327-341. Springer Inc., 2002.

[5] P. C. Jorgensen. Software Testing: A Craftsman’s Approach. CRC Press, aug
1995.

12

	Testing the Electronic Throttle Control
	Recommended Citation

	Testing the Electronic Throttle Control
	Abstract
	Comments

	tmp.1182535135.pdf.BXQfk

