- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
December 1981

Program Optimization Based on a Non-Procedural Specification

Kang-Sen Lu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Kang-Sen Lu, "Program Optimization Based on a Non-Procedural Specification”, . December 1981.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-81-143.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/717
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/717
mailto:repository@pobox.upenn.edu

Program Optimization Based on a Non-Procedural Specification

Abstract

This dissertation deals with two related problems: development of a methodology for achieving memory
and computation efficiency of computer programs, and the use of this methodology in very high-level
programming and associated automatic program generators.

Computer efficiency of programs has many aspects. Usually additional memory saves computation by
avoiding the need to recompute certain variables. Our emphasis has been on reducing memory use by
variables sharing memory space, without requiring recomputation. It will be shown that this also reduces
computation overhead. The most significant savings are due to sharing memory in iterative steps. This is
the focus of the reported research.

The evaluation of memory use of the many possible alternatives for realizing a computation is highly
complex and requires lengthy and expensive computations. We have developed a heuristic approach,
which has been very effective in our experience, and which is practical and economical in use of the
computer. Basically it consists of evaluating global memory usage altertnatives on each level of nested
iteration loops, starting with the outside level and moving inwardly. Thus we neglect the rare impact of a
nested iteration loop on the memory usage calculated for an outside iteration. This has lead to the
principle of maximizing size of loop scopes in a program as a means to attaining a more efficient
program for present-day sequential computers.

The automatic design of efficient programs is also essential in use of very high level languages. The use
of very high level languages offers many benefits, such as less program coding, less required proficiency
in programming and analysis, and ease in understanding maintenance and updating of programs. All
these benefits are conditioned on whether the language processor can produce satisfactorily efficient
program.

The dissertation reports the design and implementation of a new version of the MODEL language and
processor which incorporates algorithms for producing more efficient programs. The dissertation
describes briefly the MODEL non-procedural language and the analysis, scheduling, and code generation
tasks.

Keywords
program optimization, automatic program generation, very high level language compiler, MODEL

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-81-143.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/717

https://repository.upenn.edu/cis_reports/717

UNIVERSITY of PENNSYLVANIA

PHILADELPHIA 19104

The Moore School of Electrical Engineering D2

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

Automatic Program Generation Project
Program Optimization

Based On

A Non-Procedural Specification

By
Kang-Sen Lu

December 1981

Prepared Under Contract N00OO1l4-76-C-0u416
From Information System Program
Office of Naval Research
Arlington, Va.

UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
____ REPORT DOCUMENTATION PAGE BEFORE CSERUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Program Optimization Based On a Non-procedural Technical Report

Specification. 6. PERFORMING ORG. REPORT NUMBER
. School Re
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Kang-Sen Lu . NOOOJu4-76-C-Qul6
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

University of Pennsylvania, Moore School of
Electrical Engineering, Phiadelphia, PA 19104
Department of Computer Science

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Qffice of Naval Research December 20, 1981
Information Systems Program, Code 437 T3. NUMBER OF PAGES

Arlington, Virginia 22217 279 pages

14.

6. DISTRIBUTION STATEMENT (of this Report)

MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 15. SECURITY CLASS. (of thie repert)

Unclassified’
1Sa. DECL ASSIFI CATION7 DOWNGRADING
SCHEDULE

General Distribygtion

17

DISTRIBUTION STATEMENT {of the sbstract entered in Block 20, it different froen Report)

. SUPPLEMENTARY NOTES

19.

KEY WORDS [Continue on reverse aide il necessary and identity by block number)

Program Optimization, Automatic Program Generation, Very High Level
Language Compiler, MODEL

20.

ABSTRACT (Continue an reverse eside if neceseary and identity by dlock number)

= This dissertation deals with two related problems: development of
a methodology for achieving memory and computation efficiency of computer
programs, and the use of this methodology in very high-level programming
and associated automatic program generators.

Computer efficiency of programs has many aspects. Usually additior}al
memory saves computation by avoiding the need to recompute certain vari-
ables. Our emphasis has been on reducing memory use by variables sharing

DD 55", 1473 eoimion oF 1 Nov 65 15 0BSOLETE

S/N 0102-014- 6601 | UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (ﬁon Data Entersd)

UNCLASSIFTED

JLCURITY CLASSIFICATION OF THIS PAGE(When Datas Entered)

memory space, without requiring recomputation. It will be shown that this
also reduces computation overhead. The most significant savings are due
to sharing memory in iterative steps. This is the focus of the reported
research. ’

The evaluation of memory use of the many possible alternatives for
realizing a computation is highlily ¢omplex and requires lengthy and expensive
computations. We have developed a heuristic approach, which has been very
effective -in our experience, and which is practical and economical in use
of the computer. Basically it consists of evaluatmg global memory usage
alternatives on each level of nested iteration loops, start:.ng with the
outside level and moving inwardly. Thus we neglect the rare impact of a
nested iteration loop on the memory usage calculated for an outside iter-
ation. This has lead to the prmc:.ple of max:.m:.zmg size of loop scopes
in a program as a neans to attaining a more efficient pmgram for present-
day sequential computers.

The automatic design of efficient programs is also essential in use
of very high level languages. The use of very high level languages
offers many benefits, such as less program coding, less required proficiency
in programming and analysis, and ease in understanding maintenance and up-
dating of programs. All these benefits are conditioned on whether the
language processor can produce satisfactorily efficient program. -

The dissertation reports the design and implementation of a new version -
of the MODEL language and processor which incorporates algorithms for
producing more efficient programs. The dissertation describes briefly
the MODEL non-procedural language and the analysis, scheduling, and code
generation tasks.

UNCLASSIFIED

PROGRAM OPTIMIZATION
BASED ON
A NON~PROCEDURAL SPECIFICATION

Kang-Sen Lu B §_~ - i
A DISSERTATION

in

Computer and Information Science

"7 Presented to the Graduate Faculties of the University of Penmsylvania’
in-Partial Fulfillment of the Requirements for the Degree of Doctor of
Philosophy. ' '

1981

e
\\.‘1 Tw ‘V\ ’P\(‘ WWLS

Supervisor ofrD%ffercaticn

A, C b

Graduate Group @Gafrperson

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor,
Professor Noah Prywes, for his support and patient guidance during the
period of this research. His advice and encouragement have made

completion of this dissertation possible.

Professor Amir Pnueli deserves special thanks for the many
valuable discussions during his intermittant visiting research in the

University of Pennsylvania.

I also would like to thank Maya Gokhale and Wu-Hung Liu for their

dedicated reading of the drafts, and suggestiions for improvements.

Finally, I w@sh to express my gratitude to my wife, Yu—-Chen, for
her encouragement, support, and understanding throughout the entire

research.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 OBJECTIVES OF THE RESEARCH « ¢ o o s o o ¢ o o o o
1 [] 2 CONTRIBUTIONS * L) L] L] L] [) L] * [) [] L] L] L] L] L] L] L] L]
1.3 ORGANIZATION OF THE DISSERTATION « « o o o o o o o
CHAPTER 2 SURVEY OF RELATED WORK

PROCEDURAL HIGH-LEVEL LANGUAGES .
EXAMPLES OF HIGH-LEVEL LANGUAGES

COMPILER OPTIMIZATION . . « « .
VERY HIGH-LEVEL LANGUAGES . . « .«

GENERAL PURPOSE VHLL « « o o o o
PROBLEM ORIENTED VHLLS . « « «
VHLL OPTIMIZATION =« ¢ ¢ o o o o
SOURCE-TO-SOURCE TRANSFORMATION
AUTOMATIC PROGRAM SYNTHESIZING SYSTEMS

[} []]
L] L]
N -

L]
L] L . L] [[] L] L]

[]
S WN -

PO N
L]
WNDNNNDNNE - -
.

L]
[) L] L] L] L] e o . L]

[] L L] L] L] [] [] L] *
L[] L] L] L[] L] o ° L] L]
[] [] L] L [L N L] L]
L] [] . L] L[] o e L] L]
[] [] L] L] L e o L] L]

E

CHAPTER 3 SYNTAX AND SEMANTICS OF THE MODEL LANGUAGE

STRUCTURE OF A PROGRAM SPECIFICATION
DATA DESCRIPTION STATEMENTS
DATA mEs * L] * L] L] [] L] [] [) ° L] *
DATA STRUCTURES L] L] * L] L] L] L L L]
1/0 RELATED DATA AGGREGATES . . .
ASSERTIONS [] L . L] [) [] L] L] [) L] L] L] L]
SIMPLE AND CONDITIONAL ASSERTIONS
SUBSCRIPT EXPRESSIONS .« o ¢« o o
COMROL VARIABLES L L] L] * L] L] L] L] L]

.
o o
wWwN -

WLWWLLWLWWWLWW
.
SLWLWLNoONDNDND -
.

.
[S

L d
L] L] L] L] L] . L[] L] []

®

o @6 o o o & o o o
e o ¢ o o o o o o
e 6 o o ¢ o o o o
e o ¢ o 6 o o o o
e @ o o o o o o o
e o o o 6 o o o o

CHAPTER

o)

PRECEDENCE ANALYSIS

mmDUCTION L] . L] L] [] [) L] [) L] L] L] L] L) L L] L] L]
REPRESENTATION OF PRECEDENCE RELATIONSHIPS . .

L] * 1 DICTIOMY . ° . . L L] L [) L] L] . * L] L] L L] L]
2.2 THE ARRAY GRAPH ¢ o ¢ o ¢ ¢ o ¢ o ¢ o ¢ o &
L] L] 2 L] 1 DAIA STRUCTURE OF EmES L d ° L] L] L] L] L L] L] L]
«2.2.2 DATA STRUCTURE OF SUBSCRIPT EXPRESSION LIST

CREATION OF THE DICTIONARY (CRDICT) « « « o o
CREATION OF ARRAY GRA.PH * L [] L] L] [] [) L] L] L] L]

ENTER HIERARCHICAL RELATIONSHIPS (ENHRREL)

ENTER DEPENDENCY RELATIONSHIPS (ENEXDP) .
FINDING IMPLICIT PREDECESSORS (ENIMDP) . . .
DIMENSION PROPAGATION (DIMPROP) ¢ « « o o &
FILLING MISSING SUBSCRIPTS IN ASSERTIONS (FILLS

o o
[
N -

® o o o

N R N N R Rk K
L]
NoumEsSspsLNNNDNDNND-

)

UB

- iii -

[~ 00

:
:

RANGE PROPAGATION

5.1 INTRODUCTION « o ¢ o o o o o ¢ o e o o o o o o o o 101
5.2 LANGUAGE CONSTRUCTS FOR RANGE SPECIFICATION . . . 103
5.3 DEFINITIONS ® @ & & o 6 ° e % & s & e ¢ o & o o o 106
5.4 DISCUSSION OF RANGE PROPAGATION .« « o o ¢ « o« o o 108
S5.4.1 CRITERIA FOR RANGE PROPAGATION .« « o« o « o « o o 108
S5.4.2 PRIORITY OF RANGE PROPAGATION .« « ¢« ¢ « « o o o 110
5.4.3 REAL ARGUMENTS OF RANGE FUNCTIONS =« « « ¢ o « o 115
5.5 RANGE PROPAGATION ALGORITHM (RNGPROP) .« « « « o« o 121
5.6 DATA DEPENDENCY OF RANGE INFORMATION o « « « « o« o 131
CHAPTER 6 SCHEDULING
6.1 OVERVIEW OF SCHEDULING ¢ « o o « o o o o o o o« o o 133
6.1.1 A BASIC APPROACH TO SCHEDULING ¢ « ¢ o o » o o o 134
6.1.2 EFFICIENT SCHEDULING ¢ ¢ o o ¢ o ¢ ¢ o o ¢ ¢ o o 136
6.103 QUTLINE OF THE CHAPTER ¢ ¢ ¢ o ¢ o o ¢ o ¢ o o o 138
6.2 ANALYSIS OF MSCC ¢« o ¢ o ¢ o » o o s o o o o o o o 138
6.2.1 CYCLES IN THE ARRAY GRAPH e o o o o o s o o o o 138
6.2.2 ENCLOSING A MSCC WITHIN A LOOP « « o « o ¢ o « o 140
6.2.3 DECOMPOSING A MSCC THROUGH DELETION OF EDGES . . 145
6.2.4 OTHER APPROACHES TO DECOMPOSING AN MSCC 148
6.2.5 A SIMPLE SCHEDULING ALGORITHM . « o o ¢ ¢ o o o 149
6.3 MERGER OF COMPONENTS TO ATTAIN HIGHER EFFICIENCY . 151
6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE 152
6.3.2 MERGER OF COMPONENTS WITH SUBLINEARLY RELATED
RANGEc-oc-ao.oooutnooo00000155
6.4 MEMORY EFFICIENCY e e o o & 9 o e o o o o o o o 158
6.4.1 EVALUATION OF MEMORY USAGE « ¢ « ¢« ¢ o« o o o o o 161
6.4.2 MEMORY PENALTY ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ ¢ o o o ¢ ¢ o o 1.64
6.5 A HEURISTIC APPROACH TO MEMORY-EFFICIENT
SCHEDULING o« « o ¢ ¢ ¢ o o 2 o o o ¢ o o o o o o« o 168
6.6 THE SCHEDULING ALGORITHM ¢ « o o o o o ¢ o s o o o 174
CHAPTER 7 CODE GENERATION
7.1 OVERVIEW OF THE CODE GENERATION PROCESS + « o « o 197
7.2 THE MAJOR PROCEDURES FOR CODE GENERATION . « « « « 199
7.201 CODEGEN - THE HAIN PROCEDURE ® e o & & ¢ o6 o o o 200
7.2.2 GENERATE - INTERPRETING SCHEDULE ELEMENTS . . . 201
7.2.3 GENDO - TO INITIATE THE SCOPE OF ITERATIONS . . 202
7.2.4 GENEND - TO TERMINATE THE SCOPE OF ITERATIONS . 204
7.3 GEN_NODE - CODE GENERATION FOR ANODE o 207
7.3.1 PROGRAM HEADING =« ¢ ¢ o o o o ¢ ¢ o o o o o o o 207
7.3.2 ! FILES L] - L] * L3 [] L] * L J [] L] L 2 * L] *® L) L] L] ® L L] 207
703.3 RECORDS....................209
7.3.4 FIELDS o o ¢ o o o ¢ o« o o o o o 8 s o 8 o » o o 209
703-5 ASSERTIONS ¢ « ¢ ¢ ¢ o o o ¢ o o o o o o o o o o 210

NN NN
[]
R Y

e o o o o
. o
W N -

SNN SN NN NN
.
WO~ WM

[] []
[] []
——
[]
[y

CHAPTER 8

APPENDIX A

A.l
A.2

GENASSR - GENERATING CODE FOR ASSERTIONS
TRANSFORMING CONDITIONAL EXPRESSIONS .

SCAN (IN) o o o o o o o o o o o o o «
EXTRACT COND(ROOT ,COND,LEFT,RIGHT) . .
PRINT - TRANSFORMING THE ASSERTION INTO STR
FORM * L] (] * L] L] L] L] L] [] L] [] L] L] * o
GENIOCD - GENERATING INPUT/OUTPUT CODE
PACKING AND UNPACKING « « o o o o o »
PACK - PACKING THE OUTPUT FIELDS . .
GENITEM - UNPACKING THE INPUT FIELDS .
FIELDPK - PACKING AND UNPACKING FIELDS
GENERATING THE PROGRAM ERROR FILE . . .
GPL1DCL - GENERATING PL/I DECLARATION .
DECLARE STRUCTURE - DECLARING A STRUCTURE
DCL_STR(N, LEVEL, SUX) o o ¢ « o ¢ ¢ o & »
CGSUM - CODE GENERATION CONCLUSION « « « . .

e o o o

NG

L] L] . L]

L]
L]
.
L]
L]
L]
.
L]

[] L] L] [] [] L] L] []
. L[] [] L] L[] L] [] [] L] L] []
[] L] L] L] L] L] L] L] L L] []

SUGGESTED FUTURE RESEARCH

ELIMINATING REDUNDANT COMPUTATION .+ ¢ ¢ o o o &
ELIMINATING UNNECESSARY COPYING OF DATA . . .
ELIMINATING MULTIPLE EVALUATIONS OF CONDITIONS

MODIFYING SPECIFICATION TO IMPROVE EFFICIENCY .

EXAMPLES OF MODEL SPECIFICATIONS

EXAMPLE OF TABLE LOOK=UP « ¢ o o ¢ ¢ o ¢ o ¢ o o
EXAMPLE OF MERGE OF FOUR FILES ¢« ¢ ¢ ¢ o o ¢ o o

mDEx L . [) [] L] . L] [] L] o o L L] L] L] L] * L] L] . L L] (] L] L] L] L] L] L

B IBL IOGRAPHY L L L L 4 L L4 L] . L] L] L] L d L] L] L] L] L] L L L] L L] L L [] [)

e e e o o 6 ¢ o o o o

210
211

211
213

215
217
222
223
224
225
226
227
228
228
230

231
231
232
233

236
249
269

274

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figuré
Figure
Figure

Figure

LIST OF FIGURES

4.1 Organization of the dictionary « « ¢« ¢« « o+ &

4.2 Tree representation of data structure

4.3 Precedence relationship of a data structure

4.4 The edges in an output sequential file . .

4.5 The data dependency of an assertion .
5.1 Example of Range Propagation « « « + &
5.2a A range array with real arguments . .
5.2b Flowchart of 5.28 ¢ « ¢ o ¢ o o o o o

S5¢3 Real argument lists of node subscripts

5.4 Transposition of real arguments of a range

array

5.5 The order of real arguments in the real argument

1list

6.1 Example of cycles in the Array Graph « « ¢ « ¢ ¢ o o o

6.2 Remove I-k edges in a 100D ¢ ¢ o ¢ o ¢ o ¢ ¢ o o ¢ o o

6.3 Closure of a set of components « « ¢« « ¢ o o o ¢ o o o

6.4 Example of indirect sublinear indexing in subscript

exprQSSion L d * L] . L[] L] L . L 4 * L] ® [. L] * L d L4 L L] * L]

6.5 Two schedules for copying a file « « ¢« ¢« o« o o ¢ ¢ « &«

6.6 Effect of window dimension on the outer loop

dimensions on the inner loops .+ « «

6.7 Example of computing memory penalty

6.8a An Array Graph to be scheduled . . «

6.8b The outer level loop structure « « « «

over

6.9 Various components of the scheduling algorithm .

7.1 Overview of the Code Generation Phase

7.2 Components of Generating PL/I Code « « « o o o &

69
78
81
88
92
114
116
116
119
120
121
140
147

154

156

160

163
167
173
173
177
198

199

Figure
Figure
Figure
Figure
Figure
Figurg
Figure
Figure
Figure
Figure
Figure
Figure

Figure

A.l
A.2
A.3
A4
A.5
A.6
A.7
A.3
A.9
A.10
A.1l
A.12

A.13

Diagram for the Example of LOOKUP + « « ¢ + &
MODEL specification for LOOKUP ¢ ¢ o ¢ o o o o
Array Graph of the LOOKUP specification . . .
Schedule~1 for the Example of LOOKUP « « « « o«
Generated PL/I Program for Schedule-l
Schedule-2 for the Example of LOOKUP « « ¢« « &«
Generated PL/I Program for Schedule=2 . « « «
Block Diagram of the Merging Example ¢« « o o «
MODEL specification for merging two files . .
Array Graph for Merging two files « + ¢« ¢ « &
MODEL specification for merging four files .
Schedule for the MERGE4 Example « « « ¢ ¢ o o«

Generated PL/I Program for the MERGE4 Example

- vii -

236
237
238
241
242
245
246
250
252
253
255
259
261

LIST OF TABLES

Table 4.1 Attributes in the Dictionary e o o o a o o 0o 0 0 e s 90 s 10

Table 7.1 The Various cases of program I/0 control « « « + « « « o 220

- viii -

CHAPTER 1

INTRODUCTION

l1.1 OBJECTIVES OF THE RESEARCH

This dissertation deals with ¢two related problems:
a) development of a methodoloéy for achieving memory and
computation efficiency of computer programs, and b) the use

of this methodology in Very High-Level programming Languages’

(VHLL) and associated automatic program generators.

There are many aspects to computer efficiency of
progr#ms and we had to be selective in choosing to focus our
research on the aspects that we considered most important.
Optimization of computer efficiency of programs concerns the
two ma jor aspects of reducing computation time and reducing
usage of memory space. We have selected the memory space
reduction aspect for two reasons. First, the excessive wuse
of memory has been the major disadvantage in use of VHLLs,
especially where interpreting techniques have been wused 1in

the language processor. Second, as will be shown, reduction

2
of memory space also reduces computation overhead. Further
we have not considered techniques which save memory through
recomputing of some variables as the impact of such
techniques on computing time may be enormous. The potential
for reducing use of memory exists through both global and
local analysis of a program. Among the many methods for
reducing memory use, we have emphasized global methods for
reducing memory use particularly through sharing memory
space by variables in iterative steps of the progranm. This
approach represents the potential for the most siginificant
savings in memory. In summary, the dissertation concernas
reduction in wuse of memory in performing computations
specified in a VHLL, particularly through sharing of memory

in program iterations.

In most VHLL systems, memory use is determined
primarily on a dynamic basis at run time. This 1is
particularly typical of interpreters for VHLLs. The
dissertation will show that a global analysis of the VHLL
can lead to prescheduling the use of memory and compiling a
program which wuses memory efficiently. The use of this
method can eliminate the most important drawback on wuse of

VHLLs, i.e., the inefficiency in performing the computation.

The evalhation of the many possible global and 1local
alternatives of memory use for realizing a computation 1is
highly complex and requires lengthy and expensive

computations. We have developed a heuristic approach, which

3
has been very effective in our experience, and which 1is
practical and economical 1in use of the computer. We have
genetally.used the principle of maximizing size of 1loop
scopes 1in a program as a means for attaining a more
efficient program for pgesent' day sequential computers.
Further, program design decisions are based o;’evaluation of
memory usage alternatives on each global 1level of nested
iteration loops 1in a program, starting with the outside
level and moving inwardly. Thus we neglect the rare 1impact
where memory usage in a local nested iteration loop requires
reversing the more global design of the outside 1iteration

loop.

In a VHLL the user can specify the computation more
abstractly, 1.e. without concern for the efficiency of the
algorithm for performing the computation. This contrasts
with programs written in lower level languages. Therefore
starting with the higher 1level specification allows the

global optimization of the program.

The MODEL VHLL and processor havevﬁeen chosen in this
dissertation to study the optimization problems. The MODEL
language is non-procedural. It includes the use of arrays
and records data structures which are used widely in both

mathematical systems and in data processing. Yet the

language is simple enough.

4

The result of the researcﬁ has been the 1incorporation
of novel optimizatioq techniques in the MODEL automatic
program generator. The new system automatically designs and
generates high 1level 1language programs, in PL/I, with
efficient loop control and economical memory usage, without
the user’s concern for efficiency of memory allocation. The
resulting system demonstrates that an efficient
implementation of computations based on a very high-level
non-procedural specification is possible and therefore that

the use of VHLL can be made practical.

Apart of the questions of incérporating efficienc&
while generating a program automatically based on a VHLL
specification, there are the more basic methods of analysis
for 1improving efficilency of programs. These have been the
other objective of this research, i.e. to develop
analytical methods for determining how a conventional
program can be made more efficient and to offer methods to

determine program design decisions.

1.2 CONTRIBUTIONS

This dissertation addresses the problem of generating
efficient programs based on a very high-level non-procedural
specifications of the programs. The program optimization
uses appropriate algorithms for 4implementing required

computations. Program loop optimization and memory

optimization are the major concern of the research.

More specific achievements include the following

results:

l.

2.

Methods for semantics analysis of a program specification
to develop the information needed for program generation.
This 1includes precedence relationships among program
events and indicated order of nesting of loops.

Criteria for including events of computations in loops of
programs. The approach is to maximize scope of loops as
means for reducing memory use and computation time.
Repeating program events or computations which satify the
following conditions may be included in the scope of a
loop: a) the same or related range of 1iterations,
b) continuity of dependencies among the events in the
scope of a loop, ¢) compatibility of a "distinguished
dimension" in the many dimensions of repeating events,
and d) a conditioned block of events of related ranges
can be placed within a loop to further extend the 1loop
scope.

A method for determining whether memory space for an
array dimension has to be physical or virtual, 1i.e.
whether memory can be shared.,

A method for evaluating "memory penalty" of selected loop
scopes as a basis for cholice of the most economic loop

design.

1.3 ORGANIZATION OF THE DISSERTATION

The dissertation is divided into seven 'chapters. The
introduction 1is given in this chapter. Chapter 2 surveys
related research, in the fields of programming languages,
automatic programming, and program optimization. Chapter 2
is divided 1into respective sections which deal with
procedural High-Level Languages (HLLs), VHLLs, aand program
synthesis, including their efficiency considerations. The
reading of this chapter may be omitted by reader familiar

with the state of the art in programming.

Chapter 3 describes the syntax and semantics of the
MODEL language. Since 1its denotational semantics can be

found in [SANG 80], the description is from the user’s point

of view and this chapter can be used as a user’s guide.

Chapter 4 describes the semantic analysis done by the
MODEL processor. This includes checking for various aspects
of 1inconsistency and incompleteness of the program
specification, and correcting the tolerable incompleteness.
Most 1importantly, this chapter describes the internal
representation of the programspecification, including
discovering the precedence relationships among the program

entities, by an Array Graph.

Chapter 5 discusses the range propaéation method which
classifies all the array dimensions and assertion subscripts

into range sets according to their respective ranges (i.e.

7
number of repetitions) and corrects omission of subscripts.

The range sets will be the candidates for loop construction.

Chapter 6 discusses the major contribution of the
research, the scheduling algorithm, whose function is to
synthesize a computation procedure. The algorithm generates
design of an optimized program. The program optimization is
achieved by maximizing the loop scopes, selecting loops of
the least memory use, and merging the loops of related

ranges.

Chapter 7 discusses the code generation. Code
generation 1is a process which takes the program schedule as

input and generates a PL/I program ready for compilation.
Suggested future work is presented in Chapter 8.

The detailed documentation of the system is rather
lengthy and has not been included in this dissertation. A
report documenting the entire MODEL system has been prepared
by the author separately from the dissertation. Also
program listings further document the research. The system
has been subject to extensive experimentation and examples
of specifications and resulting automatically generated

programs are given in the appendix.

CHAPTER 2

SURVEY OF RELATED WORK

It has been stated that "almost anything in computer
science can be made relevant-to the problem of helping to
automate programming™[FELD 72]. Therefore any survey of
programming language defelopment must be in some respect
incomplete. An excellent overall discussion of the trends
in software development research can be found in [WEGN 79].
The survey of the recent research in this chapter emphasizes
the fields of programming languages, automatic programming,
and program optimization, which are the major interests of
this thesis. The survey includes a review of the impact of
problems of efficiency on programming and the relevance of

the reported research to these problems.

Among the approaches suggested to date to improve the
quality of the software development are: modularity, strict
type che;king, data abstraction, higher level operations and
general data structures, non-procedurality, and domain

specific languages. Each of these has been successful in

9
some aspects. In the following we classify programming
languages and systems 1into three categories,. namely
procedural high-level languages, very high-level languages,
and automatic program synthesizing systems. From each
category a few representative languages which incorporate

some of these concepts will be briefly reviewed.

2.1 PROCEDURAL HIGH-LEVEL LANGUAGES

Procedural high-level languages provide control
statements for the user to compose efficient programs. The
user specifies the computation in a procedural way, which is
usually tedious and prone to error. The need for a
flowchart to help the programmer analyze and document the
program logic shows that procedural programming could easily
confuse even the program designer. The structured
programming discipline has been advocated 1in writing
programs, and linguistic features such as type checking and
abstraction mechanisms were suggested ¢to further reduce

errors by programmers.

2.1.1 EXAMPLES OF HIGH-LEVEL LANGUAGES

The programming language PASCAL and its derivatives are
examples of procedural HLLs. They emphasize type checking

at compilation time to catch erromeous uses of data as early

10
as possible. The type of an object is characterized by the
set of values that the object can assume, and the set of
operations that may be performed on the object. Primitive
data types are predefined 1in the programming language.
Users may define new data types from primitive data types or
from other user-defined data types. Since it is required to
associate types with variables and parameters of
subprograms, objects with distinct properties are clearly
distinguished in a program by their data types and the
distinction is enforced by the compiler. It has Dbeen
claimed that requiring typed objects contributes to program
reliabiliti. Many programming languages have followed the
spirit of PASCAL 1in strict type checking. For example,
MESA[GEMS 77], and ADA [ADAA 79] are typed languages.
Although type checking is claimed to be a powerful tool for
increasing software reliability, it 1is realized that the
benefit from the linguistic mechanisms do not come
automatically. A programmer must learn to use them
effectively. Also 1t 1s not always desirable to remain
within the type checking system because sometimes the
violation 1s logically necessary, especially in the area of
systems programming. .For example, a compile-and-go system
will have to co;vert the type of a generated object code
from data into procedure. The answer has been to make those
occasional type violations as explicit as possibdble.
Therefore, these type violations are 1less dangerous since

they are clearer to the reader.

11

Abstraction has 1long been suggested as helpful in
programming methodology. Many conventional languages have
supported procedural abstraction with functions and
subroutines. The class concept of SIMULA has pioneered in
data abstraction. Parnas[PARN 72] also pointed out that the
criteria of decomposing a software system should not be
based on the steps of the algorithm, but instead, a module
in a decomposed system should be characterized by its
knowledge of some design decisions which it hides from

others. Its ‘interface or definitfion should be chosen to

reveal as little as possible about its inner workings.

The programming language CLU[LSAS 77] was designed to
support the use of abstractions in program construction. In
CLU, each object has a particular type. A type defines a
set of operations that create and manipulate objects of that
type. The basic data abstraction mechanism of CLU 1is the
cluster which 18 wused to define abstract data types. The
clusfer provides a representation for objects of certain
type and an implementation for each of the operations. The
type checking done for assignments and argument passing
ensures that the behavior of an object 1is 1indeed

characterized completely by the operations of its type.

The language ADA[ADAB 79] has been designed with the
concern of program reliability and maintenance. Program
variables are required to be declared with their types.

Automatic type conversion 1s prohibited. Thus, compilers

12
can ensure that the types of objects satisfy their 41intended
use. Modules in ADA allow the specification of groups of
logically related entities. 1In their simplest form modules
can represent pools of common data and type declarations.
In addition, modules can be wused to describe groups of
related subprograms and encapsulated data types, whose inner
workings may be concealed and protected from their uses. A
module 18 generally provided in two parts: a module
specification and a module body with the same identifier. A
module specification may contain the specification of
subp;pgramsvwhich are visible to the other program wunits.
The implementation of the subprograms is declared in the
module body, and it is not accessible outside the module.
As a consequence, .a module with a module body can be used
for the construction of a group of related subprograms,
where the logical operations accessible to the user are

clearly isolated from the internal entities.

Because of the distinction between abstractions and
implementations, data abstractions ease progranm
modification, maintenance, understanding, and verification.
However, the quality of any program depends upon the skill
of the designer. 1In a programming language supporting data
abstraction the skill 1is reflected in the choice of
abs:raétions. Abstractions should be used to simplify the
connections between modules and to encapsulate decisions

that are likely to change.

13
2.1.2 COMPILER OPTIMIZATION

The concern over the inefficiency of compiler generated
code dates back to the early introduction of high-level
programming languages. Program optimization techniques have
been 1incorporated 41into compilers to p¥oduce more efficient
code. The efficiency of a program may be measured using
various #spects, such as the execution time of the code, the
size of the code, or the 8ize of the data area. The
emphasis in program optimization may depend on the
characteristics of respective computer architecture or

programming language.

Optimizﬂtion techniques for high-level 1languages such

as FORTRAN or PL/1 emphasize code optimization, i.e.

producing better object code than the most obvious one for a
given source program. The efficient utilization of the
. registers and instruction set of a machine can 1improve
program efficiency significantly. Most issues in this area
are highly machine Aependent- Optimization techniques which
are not machine dependent include identifying common
subexpressions and moving loop invariant computation outside

of the loop.

Code optimization techniques are generally applied

before or during the code generation phase of a compilation

process of a HLL program. The major 1issues 1in the code

generation phase are deciding what instructions to use, in

14
what order to execute, and where to store the intermediate
results 1in temporary storages. Bruno and Sethi[BRSE 76]
showed that the problem of generating minimal 1length code
for a one~accumulator wmachine 1s NP-complete problem.
However, 1f there are no identified common subexpressions in
an arithmetic expression, it is possible to generate optimal
code in linear time[AHJO 76]. In the presence of common
subexpressions, some heuristic algorithms may be used to
produce code that in the worst case is three times as long

as optimal[AHJO 77].

Many optimization techniques‘ have been found éo VBe
machine independent. These {nclude constant subsumption,
common subexpression suppression, code hoisting, and dead
code elimination. These techniques usually need information
that can only be obtained by a global analysis of the
program. The global flow analysis finds the related
definitions for a use of a variable and the related uses for
a definition of a variable. A formal discussion of the
global analysis can be found in [SCHA 73]. [AHUL 78]
contains a rather complete survey of code optimization

techniques.

Recent research interest in compiler design has shifted
to the automation of the <code generation phase. A
table~driven approach has been proposed by Susan
Graham{GRAH 80]. The description of machine instructions, is

encoded in a table used by the code generator where the

15
function of each instruction is represented by a tree. The

input to the generator is a subprogram in a tree

representation. When a subtree in the program matches some
instruction tree, the corresponding instructions are
emitted. Thus, the task of code selection is reduced to a

symbolic pattern matching problem. The advantages of this
approach 1include the ease in modifying the code generator
for a new machine and thorough search of the instruction set

even 1f the target machine has an asymmetrical instruction

gset.

The Production—-Quality~Compiler-Compiler (PQCC) project-
at Carnegie~Mellon University has aimed at building a truly
automatic compiler writing system[LCHN 80]. The system
generates a compiler from descriptions of both the source
language and the target computer. The emphasis of the
investigation 1s on the code generation phase. In order to
keep the PQCC system general ' only the optimization
techniques which can be parameterized for different machine
architectures are 1included 1in the system. The machine
dependent optimizations are isolated in such a way that only
the tables may contain machine dependent information but the
procedure code which operates with the tables is machine
independent. The objective of the project has been to
obtain simultaneocusly the retargetability and a high level

of optimization of a compiler.

16
2.2 VERY HIGH-LEVEL LANGUAGES

The major features of VHLLs are non-procedurality, high
level operations and abstract data structures. A
non~-procedural description specifies a task in terms of 1its
behavior 1independently of any specific way of accomplishing

the task.

2.2.1 GENERAL PURPOSE VHLL

SETL[KESC 75] emphasizes non-procedural task
specifications 1in terms of mathematical sets; APL[IVER 62]
has many coavenient high level operations on arrays. There
are also special-purpose VHLLs being developed in the areas
of simulation (SIMULA[DAMN 70], GPSS[BOKP 76]), and business
data processing (SSL{NUNA 71], BDL[HHRW 77]). The
non-procedurality of VHLLs presents problems of
implementation and optimization which are more difficult
than in High-Level Languages(HLL). This 1is because the
choice of feasible execution algorithms must be made
automatically. In addition, the abstract data structures
requires the choice of suitable data representation also to

be made automatically.

The programming language SETL trys ¢to ease the
programming problem by wusing powerful operations on very

general data structures such that the issues of problem

17
formulation can be separated from those of program
efficiency. Sets and tuples as well as other primitive data
entities can be manipulated in the SETL ianguage.
Existential quantifier and universal quantifier canm be wused
to construct a boolean expression similar to predicate
calculus. 1In addition, universal quantifier can be used to
form a loop over the elements of set entities such that. the

knowledge of data representation of sets is not necessary in

describing the algorithm.

Program optimization is particularly important in VHLLSs
and there are many techniques that can be applied to improve
efficiency. For example, the data structures of sets and
tuples are not specified by the user in a program written in
SETL. It may be a bit vector or a linked list or something
else. The simplest translation of such a 1anguage'wiil
yield very inefficient programs. For this reason the need
to optimize a program written in a VHLL is especially
important. Also, the information that an optimizer needs is
much more accessible in the abstract, problem-oriented

specification of a VHLL than in the detailed code sequences

of a language of lower level.

A npon-procedural language LUCID[ASWA 77] has been
designed as a formal system in which programs can be written
and their proofs carried out. The statements of a LUCID
program can be interpreted as true mathematical assertions

about the results of the progranm. For example, an

18
assignment statement in LUCID can be considered as a
statement of identity, or equation. A variable in LUCID has
a history which 18 an infinite sequence of data objects.
Special functions FIRST and NEXT can be used to reference
the first element and the sequence starting from the second

element of the history of a variable respectively.

In general, a LUCID program defines the histories of a
set of variables by relating their histories with a set of
equations. The wuse of PFIRST and LAST functions allow
basically the specification of one level loops. In order to
allow nested loops, a function LATEST 1s introduced. It
cldtters up the program; consequently, BEGIN-END blocks to

nest ilterations are introduced into the language.

Although MODEL is not a language intended for automatic
program verification, the spirit of the language is similar
to that of LUCID in that the computations are specified with
non-procedural mathematical assertioas. In 1973, Ramirez
ugsed a data definition language[RAMI 73] as a tool to
generate data conversion program automatically. Although
the aim of his research was to save programming work in a
§pecia1 application, the concept of wusing data and
computation descriptions to specify data processing tasks
generally was introduced. Rin extended the work of Ramirez
and developed an 1initial version of a non-procedural
programming language called MODEL, 1limited ¢to wuse 1in

bugsiness transactions processing[RIN 76]. For each

19
transaction processing program, the programmer had to
describe only the structure of input and output files and
assertions describing relations between 1input and output
data. The language processor analyzed the MODEL statements
and generated a corresponding PL/I program. The programs
generated by MODEL processor include: (1) proper input and
output statements to get data in and out of the main memory
and optionally some packing and unpacking statements if data
is stored in variable format on external storage, (2) a list
of assignment statements enclosed by very simple iteration
control__gtatemgngs. The language processor analyzed the
precedence relation between statements in a specification.
For this purpose it used a directed graph. An executable

program was generated from the graph.

Shastry considered MODEL as a general purpose
language{SHAS 78]. He analyzed the subscript expressions
occurring in array element references, where the subscfipt
expressions could be first order polynomials. By the
technique of splitting nodes in the graph, he transformed a
cyclie graph 1into an acyclic one if the specification was
sequenceable. He also conducted extensive analysis of
consistency and completeness of the program specification to
detect errors before the progran was generated.
Inconsistency could be due to 1ianvalid subscript range
specification or due to inconsistent use of subscript names.

Incompleteness <could be due ¢to the omission of the data

20
description statements for some data names or the omission
of an assertioﬁ that defined a field of an output file. Any
cycle in the array graph which corresponded to a set of

simultaneous equations was considered not sequenceable.

The capability of automatic applying of numeric methods
to s8olve a system of equations was incorporated into the
MODEL processor[GREB 81]. It has froved useful ’1n
applications of econometric forecasting and modelling.
Recent development of the MODEL system further extended the
capability of the system. Modularity and execution of
subspecificﬁtions in parallel or inndisttibﬁted computation
are currently under development. The proposition of
extending the MODEL system for distributed computation 1is -
discussed in [PNPR 81]. The use of data flow computer to

perform the computation in MODEL system is being explored.by

[GOKH 81].

One objective of use of VHLLs 1s to decrease the
involvement of computer users in the complexity of computer
characteristics. Although the introduction of HLLs has
relieved programmers of the painstaking struggle with
particular computer architectures, HLLs are still very far
from the language that problems are discussed and solution
methods are presented. Software development 1s still a
laborious and difficult task to undertake. One of the
approaches to ease the work of software development 1is

through - the wuse of VHLLs. VHLLs wusually offer use of

21
abstract data structures, high level operations and
non~procedurality. In this way the user can concentrate
.naturally on the problem statement without considering
implementation related decisions that become entangled with
the problem logic. In some cases the level of the languages
1s sufficiently high, requiring only a high level
specification of the computations, which can be prepared by

non-programmers.

It has been suggested that most of the conventional
programming effort goes 1into selection of proper data
representations and data manipulation algorithms to perform
the computations efficiently[SCH 75]. Sometimes the
consideration of program efficiency may cause the sacrifice
of program readability and comprehension. In turn, it
affects the ease of program testing and maintenance. The
use of VHLLs offers many benefits such as less coding work,
less required proficiency in programming and in algorithm
analysis, and ease 1in wunderstanding and wupdatiang the
program. All these benefits are conditioned on whether the

language processor can produce satisfactorily efficient

programs.

Users of MODEL need not be concerned with physical
representations of the data. MODEL processor allocates
memory for each data structure in the specification. When
all the elements along some dimension of an array can share

the same program variable, we say that dimension of the

22
array is virtual. Otherwise, the dimension of that array is
physical. Virtual array dimensions save memory space. In
addition, users do not have to specify program controls such

as loop control or I/0 control.

Recently Rajeev Sangal [SANG 80] has 1investigated the
possibility of iatroducing modularity in non-procedural
languages such as NOPAL, a non-procedural 1language for
automatic testing, and MODEL. The wuse of abstract data
types 1s suggested as an approach to modularity. The
abstract data types are specified 1in modules. A module
consists of a header, data declarations for th;
representation of the abstract data type, and a set of
module functions which are the allowed operations on the
abstract data type. The functions are also defined within

the framework of non~-procedural languages.

2.2.2 PROBLEM ORIENTED VHLLS

Many problem statement languages have been developed to
automate the s8ystem design of very 1large information
systems. They allow the statement of requiremeﬁts for an
information s8ystem without stating the procedures that wil}
be used to implement the system. The computer programs can
be used to analyze the problem requirements and report the

logical 1inconsistency and incompleteness to the system

designer. For example, Accurately Defined Systems(ADS), a

23
product of the National Cash Register Company[LYNC 69],

congsists of a set of forms and procedures for a systematical
approach to the system definition. An ADS requirements
statement includes the descriptions of (1) inputs to the
information system, (2) historical data stored by the
information system, (3) outputs produced by the information
system, and (4) actions required to produce these outputs
and the conditions wunder which each action is performed.
The ADS Analyzer can perform a number of checks, ranging
from simple syntax checking to more complex 1logical
consistency and completeness cﬁecking. It also produces a
number of summary reports such as a dictionary of all data
element occurrences, indices to all data elements and
processes, data dependency matrices and precedence
relationships among data elements and processes, and
graphical displays of the ADS forms. The use of ADS can
save the system designer considerable time during the
specifiéation of logical system design because the ADS
Analyzer can provide them feedback before tﬁe physical

design or coding starts.

SODA Statement Language(SSL) was developed by
Nunamaker[NUKO 76]. It 1is designed for the total design
process from non-procedural problem statement through
software design and hardware selection to final
implementation and performance evaluation. An SSL problen

statement is composed of a collection of Problem Statement

24
Units(PSU). A PSU consists of three components: data
description, processing requirements, and operational
requirements such as information on volumes, frequency of
output, and timing of 4input and output. The problen
statement analyzer £finds the precedence relationships
between the data and processes, then uses the matrix algebra'
and graph theory to check the .consistency and completeness
of the problem statement. Another program called SODA/ALT
determines the number of CPU and the size of core memory in
the hardware system under the constraints of operational
requirements. It then selects a program module and file
design from feasible alternatives with the concern of
reducing the total transport volume by grouping operations

into modules and data sets into files.

Business Definition Language(BDL) is a very high-level
programming language used 1in the domain of business data
processing. The concepts in BDL were derived from mimicking
a model of business organization. For example, the
documents in BDL, which serve as input and output ¢to a
program as well as ;nternal representation of inf;rmation,
correspond to the business form; steps 1ian a bfogram
correspond to the organizational units of the system being
described. 1In a Form Definition Component, the user defines
the format and structure of the forms used in the program.
The Document Flow Component 1is wused to describe the

interconnections of the steps in the same way as that used

25
to describe the business organization. The computations on
the documents are described in the Document Transformation
Component. The documents are routed among the various units
of the organization or stored in files and computations on

the elements of forms can be done in the basic steps.

The Requirements Language Processor(RLP) [DAVI 79]
developed at GTE Laboratories aimed to automate the
requirements phase of the software development. It 1is a
t#ble—driven compiler which allows the requirements to be
written in a language that is designed specifically for the
application area of the product. The RLP will accept the
requirements of the s8system as input, produce formatted
documents, report any incompleteness, inconsistency,
ambiguity and redundancy in the requirements, and finally
’cteate a machine readable model of the specified system
which is in the form of a finite-state machine. The FSM
system model generated by the RLP can be used to help
automate latter phases of software development [DAVI 80].
For example, the customer can apply a Feature Simulator over
the system model to verify the system’s behavior before
design or implementation is initiated. Furthermore, a Test
Plan Generator and an Auiomatic Test Executor can be used to
automate the certification testing of the system based on

the system model [BAFI 79].

26
2.2.3 VHLL OPTIMIZATION

In a very high-level language such as SETL, programs
are written 1in terms of general d;ta structures and thelr
related operations. The compiler has to select the internal
data representation and decide on the efficient algorithm to
implement those high level operations. The optimization on

this level emphasizes algorithm optimization which may have

very significant effect on program execution and therefore

1s essential to the practical use of the language.

The design of very high-level languages emphasizes ease
of use rather than efficient implementation. They usually
allow use of high 1level operations on abstract data
structures. However, the compilers have to tramslate high
level operations into corresponding lower 1level operations
aand select data representations for abstract data
structures. There may be many alternative algorithms that
can be wused to implement a high level operation. As is
known, no amount of code optimization can compensate for a
bad algorithm. The difference 1in performance between a
clever and a naive program implementation can be quite
significant. Therefore, optimization techniques applied to
languages are essential if large programs writtem in these

languages are to be rum routinely.

In the language SETL, the objects being manipulated

include finite sets, ordered n-tuples, and sets of ordered

27
n-tuples usable as mappings. It is the responsibility of
the compiler to choose both the data structures which will
represent the abstract objects 1n a program and the
corresponding code sequences which will realize the abstract
operations to be performed on these objects. For practical
reasons, the choice 1s typically 1limited ¢to the most
representative data structures and the <criteria which
influence the choice of data structure are collected through
an empirical study of wmanual translation. The optimizer
performs global program analysis to check whether the

criteria are satisfied.

Since the objects manipulated in SETL programs tend to
be very complex data structures, 1t is desirable to pass a
pointer rather than physically copy the data when an object
is assigned to or made part of another variable. The SETL
language takes value semantics for the assignment operation,
i.e. the effect of assignment iIs to physically transfer
some value from a source to a target variable instead of
renaming the object being assigned as in CLU. This may
cause problems in modification to the existing objects. The
cases where a minor change to an existing object can be
safely accomplished by modifying that object is discussed in
[SCH 75]. Another major issue in optimizing a SETL program
18 to properly select the dafa structure. The decision may
be based on the relationships of inclusion and memberships

between objects in the program. The technique to discover

28

these relationships is described in [SCHW 75].

In a business~oriented automatic programming system
such as PROTOSYSTEM=1 and SODA the optimization concentrates
on the reduction of number of I/0 accesses. The method to
reduce the number of accesses is through merging of daﬁa
sets and computations. By aggregating the data sets which
have the same key field into one physical file, many related
data items can be accessed from a single data file when they
are needed for processing, rather than having to access them
from several different files. There are ¢two ways to
aggregate computations such that the number of accesses can
be reduced. When several computations require the same
input data sets, it i1s desirable to group all of them into
one computation. The benefit 1is that a record to be
accessed need be read once for all the computations, rather
than once for each computation. The aggregation of two
computations may be advantageous when the output of one is
"fed as the input to the other. In this case, the need forA
the latter computation to read output records of the former\
is eliminated. If the output of the former computation 1is
not further used by any other computations, the writing out

of the data set can be eliminated, too.

In the MODEL system, programs are optimized by
selecting efficient 1loop control and memory allocation
schemes based on a non-pfocedural specification. A part of

the program design module has knowledge about what

29
alternative loop structures are feasible to implement the
required computa;ion and another part of the module will
evaluate the quality of each alternative in terms of the
overhead of loop control statements and the amount of memory
space for program data. A phenomenal program improvement
can be achieved by maximizing the 1loop scopes 1in the
program. The consideration of merging two 1loops 1is not
limited to the case that they iterate same number of times.
When the instances of one loop correspond to a subset of
those of another loop, we may still merge the two loops into
one. This feature of allowing loops with different number
of iterations to be merged makes the efficient
implementation of 1ist 1like data manipulations possible.
Although the optimizatio# techniques that we have developed
are used primarily for the MODEL system, with some
preprocessing it 1is possible to apply them to other
array—oriented VHLL such as APL. For APL, the necessary
preprocessing 1s to rename the program variables when the
same variable names are served for different uses such that
an APL program will ©become a non-procedural progranm
specification. After an APL program has been transformed
into a program specification, it can be submitted to the

MODEL system to generate an efficient program.

30

2.2.4 SOURCE-TO-SOURCE TRANSFORMATION

Some systems perform a source-to-source transformation

on the program representation to 1improve or refine a

program. The motivation for the program transformation
systems 1s to encourage users to write programs which are
easy to read, understand, and update, without having to
consider program efficiency. These programs are transformed

in a systematic way into a more intricate but effiecient

form.

From the view point of ease of program maintenance,
programmers should be encouraged to write programs that are
easy to read and easy to change. It is advisable, therefore
to adopt a discipline in the programming style. However,
such a program may suffer a heavy penalty in program running
time. In practice, it is often necessary to trade progranm
comprehensibility for program efficiency. The technique of
source-to=-source transformation aims to overcome this
dilemma by manipulatiné a program in its source

representation into an efficient version.

Early attempts of source-to-source transformation made
the program improvement visible to the wuser [SCAN 72].
Optimizing programs at the source level usually also
requires that the optimization techniques are machine
independent. Some of the program transformation system

emphasize program optimization and others emphasize progranm

31

refinement.

Burstall and Darlington[BUDA 77] described a system
which can convert program structure from recursion to
iteration and transform data structures from abstract to
concrete. The program to be transformed is presented as a
set of recursion equations. Transformations rules such as
definition, instantiation, unfolding, folding, and
abstraction can be used to add new definitions of functions
into the set. Heuristic strategies for applying the
transformation rules are wused to help avoid fruitless
search. The process of producing new definitions for
functions continues and hopefully the more efficient
versions of the function definition will be generated by the
system. The same program transformation technique can also
be wused to help abstract programming. The user 18 required
to define a single representation function which maps the
lower data type onto the higher, then programs written in
terms of higher level primitives can be rewritten 1in terms

of the lower level primitives by the system.

The Program Develpoment System (PDS) developed at
Harvard University aimed to s8implify the work of program
maintenance [CHTH 79)] [CHHT 81]. The system takes an
abstract algorithm as input and applies a set of
user~defined transformation rules to the abstract
algorithms, then produces an efficient program which

realizes the algorithm. Since the 1mp1ementation decisions

. 32
which are program efficiency relevant can be incorporated in
the user-defined transformation rules, programs can be
designed and modified in their abstract forms. The same
program efficiency counsiderations willi be maintained by
applying the program transformation again. A transformation
rule consists of a syntactic pattern part, optionally
augmented by a semantic predicate, and a replacement part.
Since both the program to be transformed and the
transformation rules are coanverted to a tree representation,

the transformation process is basically subtree matching and

replacement.

Two classes of program transformation techniques
discussed by Kuck[KKPL 81] aim to transform FORTRAN programs
into a form which exploits the computer architecture capable
of parallel processing. A collection of techniques based on
simple rewriting transformations remove unnecessary
dependency relationships between program statements. When a
program is to run on a machine with parallel processing
capability, reducing the number of dependencies usually
leads to a reduction in the program’s ruanning time. Sharing
the same variable for different values 1s adequate for
sequential programs. However, it imposes unnecessary
sequentiality constraints on parallel programs. The
renaming transformation which assigns differeant names to
different wuses of the same <variable and the expansion

transformation which changes a variable used inside a 1loop

33
‘into a higher dimensional array remove the sequentiality
constraints caused by sharing the memory space. Another
class of transformation aims to reconfigure the 1loop
structures in a program such that the scope of recurrence
loop is reduced and the possibility of doing vector
operations 1is iancreased, which 1in turn speeds up the
execution. A technique <called 1loop distribution breaks
l;ops into smaller ones as long as possible. On the other
hand, in a virtual memory environment merging two loops
which reference the same set of vectors is helpful to reduce

unnecessary page swap.

In order to facilitate futthér the use of the MODEL
language 1in the areas of mathematical computation and data
processing, operations on higher level data structures and
matrix operations are proposed as an extension to the
system. The technique of source-to-source transformation
has been studied for implementing those features. A
statement containing high 1level operations 18 replaced
automatically by a set of statements containing only lower
level operations. This extension essentially increases the
level of abstraction in specifying computations and

potentially reduces the number of mistakes made by the user.

34

2.3 AUTOMATIC PROGRAM SYNTHESIZING SYSTEMS

Automatic programming systems usually synthesize
programs from problem specifications in particular
application domains. They can be divided into the
knowledge-based approach and the formal-model-based
approach. Knowledge—-based automatic programming systems
such as PSI[GREE 77] and OWL[SZHM 77)] contain a great deal
of information about some application domain. They accept
very high~level problem descriptions, check for comnsistency
and completeness, and use knowledge about the application
domain to translate the problem description into a
procedural program which satisfies the problem requirement.
Formal-model~based automatic programming systems such as
PROW[WALE 69] derive program from 1logic theorem proofs.
They accept the problem specification and the primitive
operations in the form of logic formulas. Then the theorem
proving techniques are wused to synthesize the required

programs.

PSI is a knowledge~based automatic programming system
developed at Stanford University. It consists of a set of
closely interacting modules or experts. A discourse expert
is responsible for conducting a dialogue with the user in
natural language. A domain expert interprets terms with
domain-specific meanings and provides help to both the user
and the model-building expert regarding possible algorithms

and information. structures to be used. A trace

35
expert [PHIL 77] allows the user to specify a program with
the trace of the program execution. The model-building
expert[MCCU 77] <contains high~level general programming
knowledge and rules for assemblying fragments of program
description coming from the domain expert into a complete
program model. After the program model is built up, it is
passed to the coding' expert[BAKA 76] which produces an

efficient target language program with the help of the

efficiency expert.

The synthesis phase of the PSI system constructs
programs from high level program models with a coding expert
and an efficiency expert. The coding expert uses rule-based
programming knowledge to produce alternative algorithm and
data structure choices. The progranm optimization is
performed by the efficiency expert which estimates
space=time costs for every partially developed ©program
passed from the coding expert[BAKA 76]. The estimation is
performed with an exact mathematical analysis on the number
of times that each statement is executed. For statements
within loops, the efficiency expert computes the average
number of executions by summing the probability of execution
over all possible loop instances. The branch probability of
a conditional test and the execution probability of a loop
instance which are essential to the estimation of execution
frequency are either assumed by the efficiency expert or

from user’s comment. For every statement in the partially

36
developed program, the efficilency expert computes 1its
execution frequency, space usage, and single execution time.
Then the space-time product is used as the cost function.
The alternative with the smallest cost will be picked as the

best choice.

The OWL system 1is the top-part of a automatic program
generation project at MIT. It aims to be a knowledge-based
man-machine 1interface which can accept the problem
description in natural language and produce a data
processing specification. 1Its application domain is in the
area of Management Information Systems. The bottom part of
the project, PROTOSYSTEM-I, obtains a problem statement
written in SSL from the top part. It analyzes the
specification, performs the system design, and generates

PL/I code and JCL for the required system.

The formal-model-based automatic programming system

started with the 1idea of deriving programs automatically
with a mechanical theorﬁm prover. [GREE 69], [MANN 71],
[LEWA 74] 1In order to construct a program, the user first
formulates the relation between the input and the output
variables of the program. Then the system proves a theorem
induced by this relation and extracts the program from the
proof directly. Since the program 1is derived form its
logical specification, it does not require debugging or

verification. For example, the PROW system by Waldinger and

Lee accepts the specification of a program written 1in the

37
language of predicate calculus, decides the algorithm for
the program, and then ptoduceé a LISP program which 1is an
implementation of the algorithm. The instructions of LISP
are axiomatized and stored as axioms in PROW. The input and
output relationship of the program 1s expressed as a
well-formed formula in the first order predicate calculus.
A logic theorem is constructed from the progranm
specification and a theorem prover is invoked to generate a
proof of the theorem. The desired program is then extracted

from the proof of the theorenm.

‘ 38

{7~ L s e
p
o F Az
/ S
4

CHAPTER 3

SYNTAX AND SEMANTICS OF THE MODEL LANGUAGE

3.1 STRUCTURE OF A BROGEAM sPECIFICATIQNx bipe we Ho
s i ' PRy

:/ f
A program gﬁéqﬂ/;cation writtegfin the MODEL 1language ;?

consists of / thnee major parts; ptogram hgader, data ‘%Lﬁe
i"‘ o W /?r‘ {?\

s e
di§%5§%>— .Jggd sfgtsuogﬁﬂ The fprogram header specifies/Q%ﬁﬁlA

B
[N e

the name f the program and :h# xternal files wﬁ;qh storeq*f fx

the input] tput d £ . :
e inmput/ or dutput data of the program The data &

description staltements zéﬁga/gﬁéqa/Zo specify the data

structure of the 1nput or output files and the structure of

d;:m,k J ot
the intermediate esultsy? The assertions are used to define

the values of the lntermediate or output variables specified .7££

Qe

in the data description statements. Although the user is
encouraged to group statements together and order the parts

in the sequence mentioned above, the statements in a program

specification can be put in any orderz;}/égwfwggz’”wggglfﬁq;?
Lhé/g statem n;&wfmfg 1gie1evant -0 uﬁe»”ﬁﬁépiag”'aﬁszﬁjl,//
jﬁééiflﬁfgi!pgi,lhatifiﬂgne“ rez:ggﬁmwﬁszwe” cailwwﬁovzkﬂamx

.,

P ¢

oy - o P /
Aﬁm@ppioqédﬁra&/ pré%?amﬁtﬁg Zldﬁf In this section we
discuss the statements in the progrgﬁ} header. We will

/
discuss 1in section 3.2 the data descfiption statements, and

in section 3.3 the syntax .fniwﬁfgf semantics of the 7%i
assertions. We will discuss 1in seC;:::Mﬂ;;A the use of)
control vartables. |l At ¢ 7
| lan
g}écts {Z;ff
call¥ into Ahe Lo
The syntax rules of the MODEL statemeg}s will be defined /
with extended otation. ngntif ;; ‘enclosed by the ;45”
~angle brackets (<’ and ‘>’) are non-terminal symbols. The ///
metasymbols used include: ‘i? C ? ;/ :§é;
le ::=, it is read as ‘is-defined-by’. . ‘?:_
2. [+¢¢], a pair of square brackets is wused to enclose a %~
string which is optional.
3. I,'a vertical bar 1s used to separate alternatives.
4., {...}*, a pair of braces followed by an asterisk is used
to enclose a string which can repeat any times (including
zero) . &/wgﬂﬁﬁ; Y f
The program header cons;fsgwmgfi three types of o
statgyents, namely che\bﬂg§uie ﬁFaF??Ef“ th?fsource f} Tjéfz
statement, and the tag&ég ftf;?ggatement.) iy i -+
"

Module Statement

40
The syntax rule for the module statement is as follows.
{module=-gstatement>::=

MODULE : <identifier)> ;

The user-chosen identifier is used as the name of the

program being specified.

Source File Statement

The syntax rule for the source file statement 1s as
follows.
{source-file-statement>::=

SOURCE [FILES | FILE] : <identifier> { , <identifier>
}*

The source file statement consists of a list names of
files which serve as the input files of the program. The

source files are assumed stored in external storage devices.

; ' o
el of e
Target File Statement At A ébﬂj? 7

The syntax rule for the target file statement 1s as
follows.
{target-file-statement)>::=

TARGET [FILES | FILE] : <identifier> { , <identifier>

}*

The target file statement 1lists the names of files
which serve as the output files of the program. The output

files are assumed to be on external storage and they serve

41

to retain the computation result for future use.

3.2 DATA DESCRIPTION STATEMENTS .x

In a non-procedural programming language every wariable%? /¥?

,,/

S e
can only have a single value. Therefore, different variable

names should be declared for different data involved in the
computation. The data structures in external files, or the
schemata of files, can be. described in MODEL with data A
description/(féé;kements. ;ogicallywuxalaagdmxé;L&h&&&mﬁ&&
- e P ~ The wuser must also

M"'::M B ——~_
declare the data types o the componegg) of Q variablg)in /;%él

" i €
N a5 ———

data description statements. The MODEL language has been
designed to reliev he user of concern for I/0 control. 1In
- f)”“h)éﬁ .
general* I/O éadfﬁe a complicated part of a programming
A\

language.’ ; few simple mechanisms have been included in the
data description statements to easeh the I/0 programming
task. Examples 1include the ability to escribe file
organization and to 1indicate a key /?1Z:jgi2 r direct ,iﬁ

accessing a record. In section 3.2. 1 we will discuss the

way to specify the data type of a variable, in section

A e ey A

3.2.3, the mechanisms used for I/O/Z§Z$€}ﬂ programming.

3.2,2, the way to describe ﬂ/:a aggregates) and in section /j(ﬂ

3.2.1 DATA TYPES s P

The smallest unit of data in a program is a/ field. A

N—

field may contain a datum of some type(fﬁiﬁsgté§>by the
St it T

MODEL language. The available data types includes picture, é#f

character, bit string, and numbers. It 1is the user’s

< e

responsibility to select a data type for each field.

Field Declaration Statement

The syntax rule for a field declaration statement is as

follows.
{field-declaration-statement> ::= "y,
L
{identifier> [IS] <field> <data-typed> ; ’

i R e
<field> ::= FLD | FIELD fﬂ,
<data-type> ::= <type> <{leng-spec> ;pﬁﬂ%}iaxf
<leng=-spec> ::= (<min-lengthd> [: <max-lengthd>]) / 7

Vi

{min-length> ::= <{integer>

{type>::= {pic-desc> | <string=-spec> | <num=-spec>
{pic=-desc)> ::= <pic~-type> ’ <stringd> ’
{pic—-type> ::= PIC | PICTURE

{string—-spec> ::= CHAR | CHARACTER | BIT | NUM | NUMERIC
<{num-spec> ::= <num-typed> [<fixfltd>]
{num~type> ::= BIN | BINARY | DEC | DECIMAL

{fixflt> ::= FIX | FIXED | FL | FLOAT | FLT

{max-length> ::= <integer>

43

A character string may be of fixed length or variable
length. For a fixed length character string the length in
byte units should be specified in the type declaration. A
variabie length character string 1s specified through
declaring the range of the possible length of the string.
When a field X of variable length string occurs in an input
file, its 1length should be specified by an associated
control variable called LEN.X.
Example:

A IS FIELD CHAR(6) ;

B IS FIELD CHAR(O0:10);

)The field A is a string of six characters and the field
B 1is a variable length character string with maximum length
ten. The actual length of the field B should be specified

by a control variable called LEN.B in some assertion.
1
The available operations “for manipulating character

strings include lexicographif comparison, concatenation, and

extracting substring. The discussion for the character

string is also applicable to the bit string data type.

The data types for numeric data 1include picture,
floating point decimal, floating point binary, fixed point
decimal, and fixed point binary. The operations applicable
to numeric data are arithmetic operations, comparison, and
conditional definition. It should be noted that the picture

and character typed variables have a printable

representation. Therefore, 1it 1is suitable for data

44
contained in reports. Other numeric data types are
generally used for the data stored in the computer system.
The PL/1 target language 1incorporate extensive type
conversion and therefore the user is generally relieved of

this concern.

3.2.2 DATA STRUCTURES

Usually there are two ways to group logically related
data fogether to form data structure. An array contains
homogeneous data elements ~ and a structure contains
heterogeneous data elements. In MODEL a generalized data
aggregate can be used to specify arrays and structures. The
data aggregate 1s <called a group or " a record in MODEL

language.

Group Declaration Statement

) The syntax rule for the group declaration statement {is
as follows.
{group-declaration-statement)> ::=

{identifier> [IS] <group> (<member-list>) ;
{group> ::= GRP | GROUP
{member-list> ::= <member> { , <{member> }*
<{member> ::= <{identifier> [(<ocecspec>)]

(occspec) t:= * | <minoced> [: <maxoce)]

* {minocc> ::= <{integer>

45

<maxocec> ::= <{integer>

In the gfoup declaration statement an identifier 1is
declared as a data group which contains a 1list of menmbers.
Each member may optionally repeat some number of times. If
a member repeats, it 1is considered as an array of one
dizigiigg\more than the group containing 1it. There are
three ways t6 specify the number of repetitions over a
dimension of an array. I1f the number of repetitions 1is a
constant, then the constant can be specified along with the
array name. When the number of repetitions is not fixed but
the user knows the maximum of it, he can specify ; rangé for
the number of repetitions in the group statement. If the
user does not know the maximum, i.e. where the maximum is
an unknown large value, he can denote the range by an
asterisk. When the number of repetitions is not a constant,
it can be defined through some <control variables with
keyword prefix such as SIZE or END (refer to sectionmn 3.4) or
definition may be omitted if it can be detected based on an

end~of-file indication.

The members of a data group can be fields, or some

other data groups. A data group may be declared as an array

of arrays. In order to(?éfefence a unit datum of i1it, the
e

ugser has to supply as many subscripts as the number of array

dimensions. Thus the member field becomes a

multi-dimensional array.

46
Example:
A IS GROUP (B, C(10)) ;
B IS FIELD CHAR(6) ;

C IS GROUP (D(5), E(1:50), F(*)) ;

where 1identifier A 1is declared as a data group
containing two members B and C. Let us assume that A is a
zero dimensional variable. Since C repeats, it 1is a one
dimensional array. Identifier C contains three members, D,
E, and F. The member D repeats five times, and the member E
may repeat a number of times from one to fifty. The member
F has a unknown number of repetitions, so an astefisk is
specified as 1its number of repetitions. All the members of

data group C are two dimensional arrays.

3.2.3 1I/0 RELATED DATA AGGREGATES

In a MODEL specificatioﬂ,' the user describes the
structures of the data files with data description
statements. The MODEL processor generates I/0 statements
automatically for the source and target files of the program

based on the information in data description statements.

The record declaration statement 1is syntactically
similar to the group declaration statement. The only
difference is that the keyword GROUP is changed to RECORD.

A record corresponds to a wunit of data which can be

47

physically transferred between external file and main

memorye.

The file is the highest-level data structure which
could be declared in a MODEL specification. It is not
allowed to have a structure above the file. A file
structure may consist of substructures declared with group,
record, or field statements. A well structured file
declaration will have the file entity on éhe top level. 1Its
immediate descendants (i.e. members) can be declared either
as groups or records. 'The groups may contains groups,
records, or fields. Finally on the lowest level in the file

structure the data should be declared as fields.

File Declaration Statement

The syntax rule for the file declaration statement 1is
as follows.
<file~declaration~statement> ::=

{identifer> [IS] FILE [NAME] <file-desc)>

(<member-1list>) ;

{file~desc> ::=

[REY [NAME] [IS] <identifer)>]

[ORG [IS] <org-type>]

{org-type> ::= SAM | ISAM

A file may have the KEY attribute specified. In that
case, the records in the file are accessed by a part of the

record contents. If a file is keyed, there can only be one

48

record type 1in the file structure and one of the field in

the record should be declared as the key for accessing the

record. Two types of file organization are supported by the

MODEL language, namely the sequential files and the index

sequential files. A record in an index sequential file can

be accessed faster than in a sequential file 1if direct

accessing is necessary.

Example:

MODULE: MINSALE;

SOURCE: TRAN, INVEN;
TARGET: SLIP, INVEN;

TRAN IS FILE (SALEREC(*));
SALEREC IS RECORD (CUST$,STOCK$,QUANTITY);
CUST$ IS FIELD(CHAR(S));
STOCK$ IS FIELD(CHAR(8));

QUANTITY IS FIELD(CHAR(3));
INVEN IS FILE (INVREC)

KEY STOCKS
ORG ISAM;
INVREC IS RECORD(STOCKS$,SALPRICE,QOH);
STOCK$ IS FIELD(CHAR(8));
SALPRICE IS FIELD(NUMERIC(5));
QOH IS FIELD(NUMERIC(S5));

SLIP IS FILE (SLIPREC(*));
SLIPREC IS RECORD (CUST$,STOCK$,QUANT,PRICE,CHARGE);
CUST$ IS FLD (CHAR(12));
STOCK$ IS FIELD(CHAR(16));
QUANT IS FIELD (PIC’(11)29°);
PRICE IS FIELD (PIC’(11)2Z9°);
CHARGE 1S FIELD (PIC’(11)29°);

3.3 ASSERTIONS

Data description statements define the data structures

of the variables 1involved in a computation. However, the

49
values of the variables are defined either automatically by
input files or manually by assertions. Basically an
asgsertion 1is an equation. On the 1left hand side of the
equal sign there should be either a simple variable or a
subscripted array name which references an array element.
On the right hand side there can be any arithmetic or
logical expression whose value 1s wused to define the
variable on the left hand side. The current restriction is
that the assertion can only be used to define the value of a
field. Operations on the higher level data structures are

proposed to be translated into basic operations [PNPR 80].

3.3.1 SIMPLE AND CONDITIONAL ASSERTIONS

There are two kinds of assertions which can be used to

define the value of a variable, namely simple assertion and

conditional assertion. The assertions have the same syntax

as an assignment statement and a conditional statement in
the PL/I language, respectively. All the arithmetic and
logical operations can be used in composition of
expressions. In addition, the conditional expression of

ALGOL language can be used in composing the expression.

Simple Assertion

The syntax rule for the assertion is as {ollows.

{assertion> ::= {simple—-assertion> | <{conditional-assertion)>

50
{simple—-assertion) ::= {variable> = <expression> ;

{variable)> ::= <simple-variable> | <subscripted-variable>

The variable name on the left hand side of an assertion

is called the target variable of the assertion as 1its value

is defined by the assertion. All the variables on the right

hand side are called the source variables of the assertion

since their values are used to calculate the value of the
target variable. In the exﬁmples shown below, a conditional

expression is used to define the value of variable M.

Example:
1) A=3B + 5 ;
2) X(I,J) = 4 * 1 + J ;

3) M = IF OK THEN 5 ELSE 0 ;

Conditional Assertion

The syntax of the conditional assertion is similar to
that of an IF statement in PL/I.
{conditional-assertion> ::=

IF <boolean-expression> THEN <assertion)>

[ELSE <assertion)>]

The counditional assertion has two branches, one after the
keyword THEN and the other after the keyword ELSE. These
two branches are selectively executed according to the truth
value of a boolean expression. Since the purpose of an
asgsertion i3 to define the value of a variable, there can

only be one target variable in an assertion. In any case

51
ghe two branches should define the same target variable.
Therefore, the target variable 1in any branch of a
conditional assertion should always be the same. It should
be noted that the ELSE branch of a conditional assertion 1is
optional. If it is omitted, the target variable may be

undefined in some cases.

Example:
1) IF I < 5 THEN A(I) = B(I) ;

ELSE A(I) = B(I) + 2 ;
2) IF END.X(J) THEN B = X(J) ;

3.3.2 SUBSCRIPT EXPRESSIONS

The variables used in assertions are either simple
variables or subscripted variables. A specific element of
an N dimensional array can be referenced with the array name
followed by N subscript expressions. In the following we
will discuss how the subscript expressions are fgrmed and

how they are used in composing the assertions.

Subscript expressions are composed of ordinary
variasles, subscript variables, and constants with
arithmetic operations. The subscript variable is a special
kind of variable. It does not have structure and it does
not hold one specific value. 1Instead, a subscript variable

assumes 1integer values 1in a range from one up to some

52
positive integer. If the range for a subscript variable 1is

fixed in the whole program specification, then the subscript

variable is called a global subscript. Oq the other hand,
if the range for a subscript variable 1s to be determined
for each assertion, the subscript variable is called a local
subscript. There are ten system predefined local subscripts
named SUBl1, SUB2, ..., up to SUBl0., There are two types of
global subscripts. One of them has the form of qualifying
the name of a repeating data structure prefixed with the
keyword FOR_EACH. The other 1s created by declaring an

identifier as a global subscript with the subscript

statement.

Subscript Declaration Statement

The syntax rule for the subscript declaration statement
is as follows.
{subscript-declaration-statementd> ::=

{identifier> IS <subscriptd> [(<occspecd>)]

.
b4

<subscriptd ::= SUBSCRIPT | SUB

-

-

The subscript expressions are classified into the
following types according to their forms. 1In the following,
let I denote a subscript variable, ¢ and k denote

non-negative integers, and X denote an indirect indexing

vector(refer to section 4.2.2.2.) Subscript expressions may

be classified as follows:

1) I,

53
2) I-I,

3) 1I-k, where k>1,

4) none of the other types,
5) X(1)

6) X(I~-c)~k, where c+k=1,

7) X(I-c)-k, where c+k>l.

The range of a global subscript variable in an
assertion may be declared in a subscript declaration
statement. If not declared, the range is derived from an
array dimension 1in which the subscript variable has been

used in a type 1, 2, or 3 subscript expression.

Example:
1) I IS SUBSCRIPT (10) ;

B(I) = A(I) ;

A global subscript I 1s declared in the subscript
declaration statement and the range of the value of I is
from one to ten. In the assertion, the global subscript
I will assume the integer values in the range declared in
the subscript declaration statement.

2) FACT(SUBl) = IF SUBl=1 THEN 1

ELSE SUBl1 * FACT(SUBl-1) ;

The range of the local subscript SUB1 will be the
same as that of the first dimension of array FACT because
the subscript SUBl occurred in the term FACT(SUBLl) is in

a form of type 1 subscript expression.

54

The use of subscript variables allows us to define all,

the elements of an array in one assertion. . In the second
example above, the whole vector FACT is defined by the same

assertion. -

For multi-dimensional arrays, subscripting array
variables may become tedious. We have adopced'the following
convention to allow users to omit subscripts 1in array
references. When all the array references in an assertion
have the same leftmost subscript expression, which is a type
1l subscript and when the subscript is not otherwise referred
to in the assertion, then the subscript can be omitted ffom

the assertion systematically. For example, the following

three assertions are equivalent.
al: A(I,J,K) = 2 * B(I,J,K) + C(I,J) ;
a2: A(J,K) = 2 * B(J,K) + C(J) ;

a3: A(K) = 2 * B(K) + C ;

3.4 CONTROL VARIABLES

Sometimes it is necessary to refer to attributes of the
data, such as the number of repetitions, the length, or the
key for accessing a record in an index sequential file. In
order to allow reference to such attributes, a number of

control variables are included in the MODEL language. Since

the control variables are always related to some variable,

they have a form of a qualified variable, with the name of

55
the variable as the suffix and one of several reserved
keywords as the prefix. In the following we will assume
that X is a variable name declared in some data description
statement. The control variables which can be formed from X

are discussed below.

SIZE.X

If X is a repeating member of some data structure, the
user can specify the range by defining the value of a
control variable called SIZE.X. It should be noted that X
may be a multi-dimensional array. SIZE.X defines only the
.range of its rightmost dimension. The ranges of the other

dimensions have to be defined separately.

SIZE.X is a variable of integer type. Its value 1is
used to specify the number of repetitions of the rightmost
dimension of array X. If X(I1,I2,...,In0) is an n
dimensional array where Il occurs on the most significant
dimension and In on the least siénificant dimension, then
the control variable SIZE.X(I1,I2,...,Ik) should be a k
dimensional array with 0<=k<n. The first dimension of
SIZE.X has the same range as the first dimension of array X,
the second dimension has the same range as the second
dimension of array X, and so on. The value of SIZE.X cannot
be-a function of any subscript Ii with k<i<=n, For every
n~-1 thple (1I1,I12,.+¢,In-1) which corresponds to a possible

combination of the leftmost n~1 subscripts for array X, the

56
number of elements of array X with this tuple as their
leftmost n-1 subscripts is specified by the array element

SIZE.X(I1,I2,...,1Ik).
Example:

A IS GROUP (B(3)) ;
B IS GROUP (C(*)) ;
¢ IS FIELD ;

SIZE.C(l) = 4
SIZE.C(2) = 2
SIZE.C(3) = 3

we we Ve

SIZE.C c

R T I T IR
T e eam T
21 1D e 1 |

In the example above, array C 1is two dimensional.
There are three 1instances of B in data group A and each
instance of B contains a number of elements of array C.
Correspondingly the range of the first dimension of array C
i3 a constant three and the range of the second dimension
which may depend on the subscript value of the first
dimension is specified in vector SIZE.C. SIZE.C(1l) equals
to four implies that there are four elements of array C in
the first instance of B, the value of SIZE.C(2) specifies

the number of elements of array C in the second instance of

‘B, and so on.

END.X

57
If X is a repeating member of a data structure, END.X

can be used to specify the range of the rightmost dimension

of array X as alternative to the use of SIZE.X.

END.X is a boolean array. If X(Il,I2,...,In) is an n
dimensional array, then the associated coantrol array
END.X(I1,I2,¢¢.,In) is an n dimensional array, too. The
range of array dimensions of END.X are the same as the
corresponding array dimensions of X. The value of ‘END.X
determines the range of the rightmost dimension of array X
in the following way. For every n-1 tuple (Il1,I2,...,In-1)
which is a possible combination of the 1leftmost n-1l
subscripts of array X, there exists a sequence of elements
in END.X array with the same left n-1 subscript values, i.e.
{END.X(Il,eee,In=-1,In)| 1<=In}. If END.X(Il,es.,In-1,m) 4is
a boolean true and .all the elements of
{END.X(Il,ee.,In=1,In)| 1<=In<m} are false, then there are
exactly m elements in array X with (Il,...,In-1) as their

leftmost n-1 subscripts. The values in END.X may depend on

the values in array X, i.e. the number of repetition may

depend on the data in X.

Example:

For the same array C mentioned above, we may use a two
dimensional control array END.C to specify the range of the

second dimension of array C as follows.

A IS GROUP (B(3)) ;

58

B IS GROUP (C(*)) ;

C IS FIELD;

END.C(SUB1l,SUB2) = IF SUBl=1 THEN (SUB2=4)
ELSE IF SUBl=2 THEN (SUB2=2)
ELSE IF SUBl=3 THEN (SUB2=3) ;

c
LD e e e
e e T
e, 1 60,0 1 60, |

END.C
TR A S B

In the first row of END.C the first boolean true comes
in the fourth element, therefore, the fourth element is ﬁhe
last element in the first row of array C. Similarly, the
second element of thé second row of END.C is true implies
that there are oanly two elements in the second row of array

c.

Example:

We will show how the END control variable can be wused

to specify a varying number of repetitions by finding the
greatest common divisor of two positive integers M and N.
Euclid’s algorithm is used here.

MODULE: TEST ;

SOURCE: IN ;
TARGET: OUT ;

59
IN IS FILE (INR) ;
INR IS REC(M,N) ;

OUT IS FILE (OUTR) ;
OUTR IS REC(GCD)

WK IS GROUP (WKG(*))
WKG IS GROUP (WK1,WK2) ;
(M,N,GCD,WK1,WK2) IS FIELD NUM(4) ;

we

WK1(SUBl) = IF SUBl=1 THEN M
ELSE IF WK1(SUB1-1)>WK2(SUBl-1) THEN
WK1(SUBl-1)-WK2(SUB1-1)
ELSE WK2(SUBl-1) ;

- WK2(SUBl1) = IF SUBl=1 THEN N
ELSE IF WK1(SUB1-1)>WK2(SUBl-1) THEN
WK2(SUB1-1)
ELSE WK1(SUBl-1) ;
END.WKG(SUB1) = WK1(SUBl)=WK2(SUBl) ;

IF END.WKG(SUBl) THEN GCD = WK1(SUBL1) ;

POINTER.X

If X is a record of a keyed input file F, the instances
of the record X can be selected and ordered according to the
value of a control variable POINTER.X. The control variable
POINTER.X has the same number of dimensions and the same
shape as the array X. For every value 1in the <control
variable POINTER.X, a record instance in the file F with
that key value will be presented 1in the corresponding
element of array X. In order to wuse POINTER control
variable for selecting add ordering the records in a keyed
file, one of the fiel& in records should be declared as a
key in the file declaration statement. The content of the

POINTER control variable 1is used as the key to access the

60

corresponding record from the keyed file.

A keyed file may either have sequential or index
sequential organization. If the file 1s index sequential,
the records stored in the file may be 1in any order.
However, 1f the file is actually a sequential file, then the
records have to be sorted in an ascending order according to
the key field and the keys used to access the records should
also be sorted in the same order. This is an implementation

restriction. Without this restriction we can not read all

the records we want from that file in one pass.

When a keyed file is declared as a source and a target
file, the target file will be an updated version of the
source file. Effectively only the records being selected
may be modified. For the rest of the file they are kept
intact in the target file. This mechanism makes the wupdate
of sequential or index sequeﬁtial file much easier to
specify. Since a key valué may occur more than once in the
POINTER array, the corresponding (one) record will be
accessed, possibly updated, and written out several times.
In order to make sure every update to the same record is
effective, the updates have to be done sequentially. We can
envisage that a new version of the keyed file is created

after one record is updated and every update is done on the

most recent version of the file.

Example:

61

In the following MODEL specification a source file
INVEN 1is declared as a keyed file. STOCKS in the record
INVREC is the key field of INVEN file. Since the control
variable POINTER.INVREC 1is equal to the field STK in file

TRAN, the INVREC records will be ordered according to the

values in the STK field.

MODULE: MINSALE ;
SOURCE: TRAN, INVEN ;
TRAN IS FILE (SALEREC(*)) ;
SALEREC IS RECORD (CUST$,STK QUANTITY) 3
CUST$ IS FIELD(CHAR(S)) ;
STK IS FIELD(CHAR(8)) ;
QUANTITY IS FIELD(CHAR(3)) ;

INVEN IS FILE (INVREC(*)) 5)
KEY STOCKS$
ORG ISAM ;
INVREC IS RECORD(STOCKS$,SALPRICE,QOH) ;
STOCK$ IS FIELD(CHAR(8)) ;
SALPRICE IS FIELD(NUMERIC(S5)) ;
QOH IS FIELD(NUMERIC(S)) ;

POINTER.INVREC = TRAN.STK ;

FOQUND.X [J . ’F? é(/_

-

vx

If X i3 a record in a keyed file, then it is accessed
through the value of a POINTER control variable. It may
happen that the key value used to access the record does not
match with any record. The accessing would fail. The user
may test the value in a control variable called FOUND.X to
find out whether a record with some specific key exists or
not. This informaton may be used to decide whether a new

record should be added into the file or an old record should

be updated. The control variable FOUND.X has the same shape

;?“59653

62

as array X and POINTER.X. 1Its data type 1is boolean.

LEN.X

If X is a field in some record and its data type is
variable 1length character string, then the actual length of
X is specified by the control variable LEN.X which 1is wused
to disassemble the input or output records. Corresponding
to every element of array X, there is an element in LEN.X.
The values in the array LEN.X are integers. We can use any
integer type expression to define LEN.X. The only
restriction 1is that the content of LEN.X should not depend

upon any data physically positioned in a record after the

data field X.

NEXT.X

If X is a field in an 1input sequential file, the
control variable NEXT.X can be used to denote the same field
in the next physical record of the file. Although the next
record wusually means the record with a subscript value one
larger than the current record, it may not be true when the
current record is the 1last record in some group. The
problem is caused by the fact that the user is dealing with
structured data but the real data in the exterﬁal file is 1in
a linear form. Sometimes the information used to transform
a sequence of records into a structured form can only be
conveniently expressed in the way that the records are

physically contiguous. For example, we may want to compare

63
the value of a key field in two adjacent records to
determine whether a record is the last record in a group or
not. The fact that the current record and the next record
may or may not be in the same group causes trouble in

referencing the next record.

Example:

Suppose the records in a transaction f£file contain a
customer number and some relevant information and the
records are sorted according to the value of the customer
number field. We may wuse the following specification to

describe the data structure.

TRANSACTION IS FILE (CUSTOMER(*)) ;
CUSTOMER 1S GROUP (TRANS REC(*)) ;
TRANS_REC IS RECORD TCUSTO&_NO,INFORMATION) ;
CUSTOMER_NO IS FIELD (PIC’99999999°) ;

I IS SUBSCRIPT ;

J IS SUBSCRIPT ;

END.TRANS_REC(I,J) =

CUSTOMER_NO(I,J)"“=NEXT.CUSTOMER_NO(I,J) ;

The term NEXT.CUSTOMER NO(I,J) in the 1last assertion
can not be replaced by CUSTOMER_NO(I,J+1l) because there may
not be a record with this pair of subscript values. The
restriction in using the control variable NEXT.X is that the
position of X field in a record should be fixed, 1i.e. the
fields to the left of the field X can not be variable length
strings or repeating with a variable number of times.

Otherwise, the field X in the next record may not be located

64

correctly.

SUBSET.X G’
ay § ¢
Ag(/f /
If X 18 a records in an output file, then the control

variable SUBSET.X can be wused to selectively omit some
records from an output file. The SUBSET.X control variable
is a boolean array of the same shape as the array X. When
an element in the SUBSET.X has a value of boolean true, the
corresponding record X will be put into the output file. On
the other hand, if the element has a value of boolean false,
the corresponding record will not be put into the output
file. It should be noted that the use of SUBSET control
variable doées not affect any other computations. Only a

subset of records X may be omitted from the output file.

65

CHAPTER 4

PRECEDENCE ANALYSIS

4.1 INTRODUCTION

A MODEL specification consists of many data description
or assertion statements. In principle, the data description

statements specify the structure of data entities such as

file, group, record, and field. The assertions specify the
relationships between the data entities. The data entitles

and the assertions are referred to here as program entities.

On the other hand, 1in an executable program there are

program events such as I/0 activities, computations, or

getting data ready, The events in a program generated by
the MODEL system correspond to entities in the
specification. For example, a file entity corresponds to an
event of opening a file or closing a file; a record entity
corresponds to reading a record or writing a record; and an
assertion entity cortespoﬁds to computing a target variable.
The sequence of the program events is not given by the user.

Instead, 1t 1is determined by the MODEL processor under the

66
constraints of precedence relationships among the program
events. In this chapter we discuss the analysis for
recognizing the precedence relationships between progranm

events and representing them in a directed graph.

Based on the specification we can find the wunique
. \
symbolic names assigned by the user to data entities.

Additionally the MODEL processor automatically assigns a
unique name to every assertion. Similar to other compilers,

the MODEL processor maintains a symbol table called

dictionary which contains all the symbolic names of program

entities and their attributes.

The dictionary is created by a procedure CRDICT which
finds all the entities in the program specification and
stores their names into the dictionary. Except for some
special cases: described ©below, there is a correspondence
between each statement in the specification and an entity in

the dictionary.

Attributes of a symbol such as the type (file, group,
field, ..., etc), the number of dimensions, the structural
relation of it to other symbols are stored in the dictionary
during the process of precedence analysis, and later during
dimension analysis. This 1information 1is wused later to

determine the execution sequence.

¢ 67

Various types of relationships among program entities

have direct 1implication on the execution sequence of their
corresponding program events. The precedence relationships
among the program events are found based on the analysis of

the program entities. For example, a hierarchical

relationship exists when one data entity contains another,
such as when a file contains a record, a record contains a

field, ..., etc. A dependency relationship exists between a

field and an assertion when the field 1s either a source
variable of the assertion or its target variable. There are
also relationships between data entities and their
associated contfol variables. The events and their
precedence relations are represented by a directed graph

called an Array Graph.

The Array Graph is created by two procedures, ENHRREL
and ENEXDP. The ENHRREL routine analyzes data description
statements and finds the precedence relations caused by the
hierarchical relations between data entities. The ENEXDP
routine analyzes assertions and finds the precedence
relations from the dependency relations among data fields
and assertions. It also finds the precedence relations
among data entities and their associated control variables.
Since the Array Graph contains the complete precedence
information, 1t 1is wused to check the completeness and
consistency of the specification and to determine the

computation sequence.

68
4.2 REPRESENTATION OF PRECEDENCE RELATIONSHIPS

4.2.1 DICTIONARY

Every program entity has a full name which wuniquely

identifies it. Most of the entities have a single component
full name. When two data eﬂtities share the same name, it
is necessary to qualify the name with their respective file
names to distinguish them. Two data entities within one
file are not allowed to share the same name. A file name
may have at most two instances denoted as '‘NEW or OLD
followed by an 1identifier. Thus a data eantity may have a
full name of three componenis: NEW or OLD, file name, and
data name. Control variables have one component more than
the associated data entities, i.e., a reserved key name.
The full name and the attributes of each program entity are

stored in the dictionary.

In order to use memory efficiently, memory space for
the entries of the dictionary are allocated dynamically.
Pointers to the dictionary entries are stored in a vector
DICTPTR and the total number of pointers in the vector is
denoted as DICTIND. With this arrangement, we can allocate
memory plecewise and access the information randomly. Since
each program entity corresponds to a node 1in the Array
Graph, we will‘call its entry number in the dictionary node
number. The organization of the dictionary. _is shown 1in

Fig. 4.1 and the attributes in the dictionary are listed in

Table 4.1.

node# DICTPTR

1
2

69

TN 516 o ATTRR(T)

——ATR) [. JATTRm(2) "]

—AmTRm . | ATTRe(N) |
DICTIND

N o

Fig. 4.1 Organization of the dictionary

70

Table 4.1 Attributes in the Dictionary

XDICT - 1Is the full name of the entity.
XNAMESIZE - Is the number of characters in XDICT field.
XUNIQUE - Is the smallest name by which the entity can be
identified wuniquely. If the file name component of
a full name is not necessary to identify the entity
uniquely, then XUNIQUE is set to the name without
file name component; otherwise, XUNIQUE is set to
XDICT.
XDICTYPE - Specifies the type of the entity. Following are
the possible values:
ASTX - An assertion.
GRP - A group.
FILE - A file.
RECD - A record.
MODL - The specification name.
SPCN - A special name prefixed with a keyword such
as END, SIZE, LEN, POINTER, NEXT, SUBSET,
ENDFILE, and FOUND.
$SUB -~ User or system declared subscripts, including
the standard subscripts: SUB1, SUB2, «..,

SUBl1O.

$$ System added subscripts: $1, $2, .., $10.
$$I - System loop variables: $Il, $I2, ..., $I10.
XMAINASS - Contains a pointer to the storage of the

statement which defines the entity.

71

Table 4.1 Attributes in the Dictionary (Coantinued)

XNRECS - This count is meaningful only for file entities and
holds the number of different record types contained
in the file.

XPARFILE -~ Holds the node number of the pareht file entity
for all input and output data items.

XPAREC - For data items below the record 1level this field
holds the nodé number of their parent record entity.

XINP - Is ‘1°B 1f the entity is 1in input file, and ‘0’B
otherwise.

XOUP - Is ‘1’B if the entity is in output file, and ‘0’B
otherwise.

XISAM - Is ‘1’B if the entity is an ISAM file, and ‘0’B
otherwise.

XKEYED - Is ‘1‘’B if the data entity is in a file for which a
key name was specified.

XLEN_DAT - The length in bytes of the data entity.

XREPING - Is ‘1’B if the data entity is repeating.

X§ARYREP - Is ‘1’B if the data entity has a varying number
of repetitions.

XMAX REP - The maximal number of repetitions which was
declared for the data gnticy. If no maximal
repetition is declared, XMAX REP is set to 1.

XVARS - Is ‘1°’B if the entity contains a descendant below
the record 1level and the descendant has a variable

\

structure.

72

Table 4.1 Attributes in the Dictionary (Continued)

~

XSUBREC - Is ‘1’B if the data eatity is a member of some
record type.

XISSTARRED - Is ‘1’B if the data entity is repeating and has
a undetermined repetition.

XFATHER - The node number of the data entity which 1is one
level above the current entity in the data
structure.

XSON1 - The node number of the leftmost descendant of the
current entity.

XBROTHER = The node number bf‘ghe 1mﬁediate right neighbor
of the current entity in the data structure.

XENDB - The node number of the control variable END.X if the
currnt eantity 1is X.

* XEXISTB - The node number of the comntrol variable SIZE.X if
the current entity 1is X.

XVIR_DIM - The conceptual (virtual) dimensionality of the
entity.

XSUBSLST - A pointer to the node subscript 1list associated
with the entity.

X$SUCCESSORS = The number of edges in the XSUCC_LIST.

XSUCC_LIST - A pointer to the list of edges emanating from
the current entity.

X$PREDECESSORS - The number of edges in the XPRED_LIST.

XPRED_LIST - A pointer to the list of edges coming into the

current entity.

73
4.2.2 THE ARRAY GRAPH

The Array Graph is a directed graph which represents
the precedence relationships among program events. The
nodes in the Array Graph are the program events and the
edges are the precedence relationships. One program event
in the Array Graph will correspond to one program entity.
Thus the nodes in the Array Graph correspond to the program
entities in the dictionary. The edges between nodes are
stored 1in edge 1lists associated with those nodes. The
attribute SUCC_LIST of a node contains a 1ist4 of edges
emanating from it and the attribute PRED_LIST contains a
list of edges terminating at this node. We can thus find

the successors as well as the predecessors of any node.

The nodes in the Array Graph are compound nodes, 1i.e.,

an entire array of data is represented by one node. Also
each assertion 1s represented by one node, independently of

how many array elements 1t defines. The range of each

dimension of a compound node is stored in the node subscript

list associated with the node. The edges in the Array Graph
are compound edges which denote arrays of relations between
two compound nodes. With each edge are also stored the
types of subscript expressions used in the relations betwéen
the source and the target node of,the edge. The meaning of
the Array Graph is made more precise by considering the

corresponding Underlying Graph (UG), where every array

element 1s represented by one node. An assertion node in

74
the Array Graph may be expanded in the UG into as many nodes
as the elements of the array which it‘ defines. Edges- are
drawn between the simple nodes. The UG may be an enormous
graph which 1is impractical to analyze. Soﬁetimes the actual
number of array elements is not known until run time. Thus
it 1is impossible to create the UG of the specification. In
contrast, the Array Graph 13 more compact and easy to

analyze.

4.2.2.1 DATA STRUCTURE OF EDGES

Every edge from a node S to a node T has a wuniform
format:
t
T(Ul, «¢e¢, Uk) <=== S(J1l, ee.,im)
where t is the type of the edge,
k is the dimensionality of node T,
m 1s the dimensionality of node §,
Ji, 1<{=i<{=m, are subscript expressions appeared on
the ith dimension of node S.
Ui, 1<=i<=k, are the node subscripts associated with

the node T.

The subscripts Ul, ...,Uk of the target node T are
stored in the attribute XSUBSLST of T in the dictionary.
Therefore they are not specified in the edge. In the later

discussion, a type &4 subscript expression Ji will be

75
indicated by an ‘*’ in the ith dimension of the source node.

An edge is represented by the following data structure:

13

SOURCE : The source node of the edge.

TARGET : The target node of the edge.

EDGE_TYPE : The type of the edge.

DIMDIF : The difference between the dimensionality of
the target node and the source node.

SUBX : A pointer to the subscript expression list

(Jl,uoo,Jﬂ)o

4.2.2.2 DATA STRUCTURE OF SUBSCRIPT EXPRESSION LIST

A subscript expression Ji can be classified into one of
the following seven categories according to its composition
(refer to section 3.3.2). Type 4 subscript expression 1is

referenced later as a general subscript expression. Types

5, 6, and 7 subscript expressions are added for the
efficient implementation of some list type
functions [PNPR 80]. They are basically of the form X(I)
where X is a variable but used to subscript another variable
B in B(X(I)). This form of subscript expression is referred

to as indirect 1indexing. The array used in indirect

indexing must be integer valued with non-negative entries.
The system will analyze indirect subscripts only if the
indirect indexing array X(I) is sublinear, namely if it is:

a) Monotonic, i1.e., 1f I>J then X(I) >= X(J).

e

76

b) Grows more slowly than I, i.e., X(I) <= I.

The s8system can test the 1indirect 1indexing array
automatically to determine if it 1is sublinear by the
following simple criteria. In the assertion that define the
indirect indexing array X(I), the value of the right hand
s8ide must be either 0 or 1 for I=1 and must be equal to
X(I-1) or X(I-1)+1 for I>l. Thus the system will examine
the assertion to check 1f it is in the form:

X(I) = IF I=1 THEN (1 | O)
ELSE (X(I-1) | X(I-1)+1) ;

An element in a subscript expression list is defined by
the following data structure:

NXT_SUBL : A pointer to the next element of the list.

LOCAL_SUB$: If the subscript expression is of the form
Uq{-c] or X(Uq[-c])[-k], thean LOCAL_SUB$ is q, i.e.
the ordinal number of the subscript Uq as it appears
in T(Uk,...,Ul).

APR_MODE : The type of subscript expression.

INXVEC : The node number of the indirect indexing vector

X if the APR_MODE is 5, 6, or 7. Otherwise, O.

4.3 CREATION OF THE DICTIONARY (CRDICT)

The procedure CRDICT analyzes the statements of the

specification and enters all the program entities ianto the

e

77
dictionary. To find all the data entities we start from the

top. level of data structures and then trace down the

structures. The structures whose root is a file 1listed in
the SOURCE FILE or TARGET FILE statements of the program
header are considered external files, i.e. input file or
output file. If a data structure 1is not part of any input
or output file, it is considered an interim variable which
is computed as any variable in an output file but not

written to the external storage.

Corresponding to eachlinput or output file, there i3 a
file entity entered into the dictionary. If a file named F
is served both as a source and a target file, then two file
entities named OLD.F and NEW.F will be entered into the
dictionary. Starting from the file entity we can find 1its
immediate descendants from the file description statement,
and the descendants’ names will be prefixed by the file
entity’s name. If the root of a data structure 1is not a
file, we will congsider INTERIM as its file name and all the

decendants will be put into dictionary, too.

As we analyze a data s:ru;ture, we also construct a
tree representation for 1it. For every data node we store
pointers to its father, leftmost son, and younger (li.e.
immediate to 1its right side) brother 1in the attributes

XFATHER, XSONl, and XBROTHER respectively., We will

illustrate this with an example in Fig. 4.2.

78

X IS GROUP (Y,Z) ;
Y IS FIELD

we

Z2 IS FIELD

we

XFATHER(Y)

x x
" "

XFATHER(Z)

<
1

XSON1(X)

N
"

XBROTHER(Y)
Fig. 4.2 Tree representation of data structure

After all the data entities are entered into the

.dictionary, a s8implified name 1is derived for every data

entrye. If the file name component can be omitted from the
full name without causing any ambiguity, the simplified name

is the reduced name. Otherwise the simplified name 1is the

same as the full name.

Other types of program entities sucﬁ as module name,
assertions, and subscript variables are defined by a
specific type of statement respectively and there 1s a
one-to—-one correspondence between the statements aand the
entities. We can retrieve these types of statements from

the associative memory and enter the entities into the

dictionary.

79

Finally we will put coantrol variables into the
dictionary. For each type of qualifier keyword, we find
from the program specification all the qualified names with
that qualifier. Next we search the dictionary for the
suffix name. If the suffix is a declared data entity, the
full name of the control variable is formed from the full
name of the associated data entity. Otherwise, the

qualified name 1s an unrecognizable symbol and is reported

as such to the user.

4.4 CREATION OF ARRAY GRAPH
4.4.1 ENTER HIERARCHICAL RELATIONSHIPS (ENHRREL)

The data stored in external sequential files are simply
a string of bits. The use of data description statements
allows the user to treat them as structured. Therefore, the
system has to transform the data files from a linear form to
the structured form which is described by the wuser. For
this purpose, we envisage that there are two program events

corresponding to each data entity, one for opening the data

and the other for closing the data. The sequential order of

data in the external file requires these opening and closing
events be arranged in a strict order. The precedence
relationship among these program events can be established
as follows. If a data entity contains some members, then

its opening event precedes the opening event of 1its first

80
member and 1its <closing event follows the closing event of
its last member. In addition, the closing event of its ath
member precedes the 6pening event of its n+lth member. 1In
the case that a data entity is repeating, then the <closing
event of {its n-1lth instance precedes the opening event of
its ath instance. Fig. 4.3 shows the precedence
relationship of a sequential file. Because the data node B
is repeating, there is an edge from the n-1th instance of
the closing event of node B to the nth instance of the
opening event of node B. The edge 1is shown as a dashed
line. The existence of this feedback edge causes a cycle 1in
the Array Graph and this cycle ensures us that the reading
of an 1instance of the field D will be followed by the
reading of an instance of E. It should be noted that the
subscript expression associated with the edge from the event
C.B to the event 0.B 1is of the form I-1 which allows us to

remove it and break the cycle during the scheduling phase.

node

The

avai

81

A IS FILE (B(*),C(*)) ;
B IS RECORD (D,E) ;
C IS RECORD (F,G) ;
D,E,F,G ARE FIELD ;

* 0.X: opening event for data X

C.¥: closing event for data X

Fig. 4.3 Precedence relationship of a data structure

We envisage that for each field entity there is a third
which corresponds to the available event of the data.
opening event of an 1input field must precede 1its

lable event, an& the closing event of an output field

82

should follow its available event.

This view assures us that we can always read the input
files sequentially and store them in the main memory before
any computation starts. If there are variable structures,
i.e., structures of varying field length or varying number
of repetitions, then we may have to include some assertions
in the reading ©process. Afterwards we <can do all the
computation internally conforming with the constraint of
data dependency which is implied by the assertions. At the
end, all the fields in the output files are available and
the 1informations for coatrolling the variable structure are
available, too. We then take the data from main memory,
assemble then into records, and write the records

sequentially.

Actually we have in the Array Graph only one node,
instead of :he"open, close, and available nodes mentioned
above, for each data entity, as this helps compiler
efficiency. For 1input files, we can view the nodes as
corresponding to the opening events. For output files, the
nodes corresponding to the <closing events. The records
stored in a sequential file have to be accessed in a strict
order. Therefore, there is a precedence relationships among
the data entities of an input or output file to assure that
the records are accessed in the proper order. On the other

hand, a record 1is composed of fields. The membership

relation between a record and its constituent fields implies

83
a precedence relationship, i.e. no field in an input record
will be available wuntil the record is read in. Similarly
all the fields in an output‘ record should be available

before the record can be written out.

We will use the following definitions 1in discussing

tree structures.

Definition For a data entity G, SON1(G) denotes its leftmost

son.

Definition For a data entity G, RSON(G) denotes its

rightmost son.

Definition For a data entity G, CEB(G) denotes the closest

elder brother of G, i.e. the data entity which is to

the immediate left of G among all the brothers of G.

Definition For a data entity G, CYB(G) denotes its closest

younger brother, 1i.e. the data entity which is to the

immediate right of G among all the brothers of G.

Definition For any tree with node G as the _root, RDM(G)

denotes the rightmost node on the frontier of the tree.

Definition For any tree with node G as the root, LDM(G)

denotes the leftmost node on the frontier of the tree.

The precedence relationships in different file types is

discussed in the following.

84

1) Input sequential file. Since the records in a sequential
file are read 1in one at a time, the precedence
relationship needs to assure that the records are read in
the order they are present in the input file. A record

may be composed of many fields. Therefore, after a

record 1is read, it should be unpacked to get all the

fields. 1If the records in a file are not unpacked in the
order they are read, then we will need memory space to
store the records. "Therefore, it 1is advantageous to
unpack the records when they are read in. This implies
that all the fields in a sequential file Qill become
‘"available in the order they occur in the external file.

Three kind of edges are drawn among the data nodes in an

input sequential file.

a) Assume that a data node G 1s n dimensional. If
SON1(G) exists and is m dimensional where m may be
either n or n+l, then the following edge is drawn.

SONI(G)(Jl,e0e0e,Jm) <~-la- G(Jl,...,Jn)

b) Assume that a data node G 1is n dimensional and
FATHER(G) 1is k dimensional where k may be either n-l
or n depending on whether node G repeats or not. 1f
CEB(G) exists and RDM(CEB(G)) is m dimensional, then
the following edge is drawn.

G(Jl,ee.,Jn) <=1b- RDM(CEB(G))(Jl,eee,Tk,*,00.,%)

c¢) Assuming that a data node G is n dimensional. If it

is repeating, then the following edge 1s drawn.

G(JI’OCO’J) <-1c- RDM(G)(J].,...,J "1,*,--.,*)
n n

2)

85

If a data unode 1in an input sequential file
corresponds to the opening event of that data, we can
interpret the above edges 1in the following way. The
edges of ¢type 1la say that a higher level data instance
should be ready before all of the data instances
corresponding to the first member of it can be read. The
edges of type lb say that all the brothers within the
same instance of their father should be read in the order
they are declared in the data structure. The edges of
type 1lc say that if a data node is repeating, then one
instance of it 1is not ready to be read, until the last

field in the previous instance of it is read.

Output sequential file. The records of an output
sequential file should be written out in a strict order.
There may be several fields in a record, therefore, we
may have to pack the fields before writing. Packing the
fields when they become available is convenient for the
code generation but poses extra restrictions on
scheduling the assertions. For example, suppose a record
node R contains three fields A, B, and C. If we insist
that fields A, B, and C should be available 1in that
order, the user would not be able to define the value of
A in terms of C. Therefore, at or above the record level
the precedence relationship requires that the records be

written in strict order but below record 1level the

- ‘ 86
precedence relationship will only require that the
. constituent fields of a record are ready before the
record 1s written. Therefore, fields in a record do not
have to be computed in the order they are packed into the

recorde.

Three kinds of edges are drawn among the data
entities above and 1including the record 1level of an
output sequential file.

a) Assuming that G is an n dimensional data entity above
the record level and RSON(G) , f{.e. the rightmost son
of G, is m dimensional. The following edge 1s drawn
from RSON(G) to G.

‘ G(Jl,¢es,Jn) <=2a- RSON(G)(Jl,.e.,Jn,*)
| b) If node G has a younger brother, then an edge will be
drawn from node G to LDM(CYB(G)). Let G be an n
dimensional node, FATHER(G) be a k dimensional node,
and LDM(CYB(G)) be a m dimensional node. The edge to
be drawn is as follows.

LDM(CYB(G))(Jl,cee,Jk,e0e,Jm) <=2b= G(Jl,ecss,Tk,*)

¢) If node G is repeating, then the following edge 1is
drawn from G to LDM(G). Let G be an n dimensional
node and LDM(G) be a m dimensional node.

LDM(G)(JI,...,J‘II,.-.JE) <-2c- G(Jl,ooo,Jn-l)

- If we 1imagine that a data node in an output
sequential file corresponds to the closing event of that

data, then the edges mentioned above have the following

87
interpretation. An edge of type 2a says that a data
instance can be writtenm out only after all the data
instances corresponding to its last son are written out.
An edge of type 2b says that all the instances of an
elder brother within the same father instance should be
written before any instance of its younger brother can be
written. An edge of type 2c says that i1if a data node is
repeating, then an instance of it cannot begin to be
written until the previous 1instance 1is completely

written.

Below the record level in an output file, the
precedence relationships assures that a record will not
be written out until all of its constituent fields are
available. Bowever, the relative order 1in which the
fields are computed is not restricted. We will simply
draw edges from all the descendants of a record node to
it. Fig. 4.4 1illustrate the edges in an output

sequential file.

3)

88

A IS FILE (B(*),C(%*)) ;
B IS RECORD (D,E) ;
C IS RECORD (F,G) ;
D,E,F,G ARE FIELD ;

Fig. 4.4 The edges in an output sequential file

An input ISAM file. 1In an ISAM file, there is only one
type of record. The dimensionality of the record node IR
is the same as that of the associated coantrol variable
POINTER.IR. Since the record instances are accessed with
the keys, it is possible to read the records in the order

of the keys. If the ISAM file is a pure source file to

the program, the keys in the POINTER.IR array can be used

in any order. On the other hand, if the ISAM file is

4)

5)

89
used as a source and target file, the records should be
processed in a sequential way, therefore, the keys in the
POINTER array should be used sequentially to access the
records. Below the record level, wé can have the similar

precedence relationship as in a SAM file because we may

have to unpack the fields.

An output ISAM file. If an ISAM file is a pure target
file, the output records will be added to the file. 1If
it is a source and target‘file to the program, them only
the selected records may be updated. In order to assure
that each updated record inclydes the effects of previous
updates, we will have to update and write out a record
before the next record is read in. Therefore, the keys
in the POINTER array should be wused sequentially.
However the fields in an output record can be computed in
any order. Below record level the precedence
relationships only reflect the membership of the fields

within the record.

Interim variable. There are no I/0 actions concerning
interim variables. They are stored in main memory and
referenced as fields. Therefore, there iQ no relative
precedence relationship among the interim fields. But we
gtill draw edges which reflect the membership among the
data entities to facilitate range propagation (refer to
Chapter 5). Since an interim variable is considered to

be part of an output file except that it will not be

90
written out, the edges are drawn from the descendants to

the ancestors.

4.4.2 ENTER. DEPENDENCY RELATIONSHIPS (ENEXDP)

Two types of assertions, namely simple assertion and
conditional assertion, may be used to define the values of
interim variables and output variables. The execution of an
assertion depends on the availability of all of its source
variables, and its execution makes the target variable
available. This 1is because a data entity must be defined
before it is referenced and a data entity becomes available

after the assertion 4in which 1t is the target variable 1is

executed.

Procedure ‘ENEXDP examines all the assertions twice. 1In
the first pass, it checké whether the target variable of an
assertion defines a sublinear function and can be used as an
indirect indexing vector or not. An indirect indexing array
should be defined by an assertion of the following form.

X(I) = IF I=1 THEN (O | 1)

ELSE (X(I-1) | X(I-1)+1) ;

During the second pass, it analyzes every assertion aad
enters the precedence relations caused by explicit data
dependency into the Array Graph. Given a simple assertion,

the 1left hand side of it 1is scanned to find the target

91
variable. Then the expression on the right hand side 1is
scanned to find all the source variables. For a conditional
assertion, the THEN parts, ELSE parts, and the conditional
expression parts are scanned in that order to find all the
source and the target variables. The source variables in a
conditional assertion are found in the coanditional
expressions, the THEN parts, and the ELSE parts. For every
source variable an edge is drawn from it to the assertion
node. It should be noted that one assertion defines one
target variable only and no more than one target variable

can appear in a conditional assertion.

The edge from the source variable to the assertion 1is
of EDGE_TYPE 3 and the edge from the assertion to the target
variable 1is of EDGE_TYPE 7. The DIMDIF is the
dimensionality difference of the target node and the source
node of the edge. The types of the subscript expressions of
a source variable are stored in the subscript expression
l11ist associated with the edge. It should be noted that the
subscriptA expressions of the target variable define a
mapping from the node subscripts of the target variable to
the node subscripts of the assertion. Because the edge
corresponding to the occurrence of the target variable 1is
drawn from the assertion node to the target variable,
instead of from the target variable to the assertion node,
the mapping should be 1inverted to form the subscript

expression ‘1ist of the edge. In Fig. 4.5 the data

»

92
dependency of an assertion is shown. ©Notice that there 1is a
list of subscripts associated with every node in the graph.
For example, variable A 1is a two dimensional array.
Subscripts <A,1> and <A,2> correspond to the first and
second dimension of array A. The edge leading from node A
to al has a subscript expression list associated with it.
The subscript expressions are ordered in the way they are

used in the subscript variable A(I,J-1).

al: C(I,J) = A(I,J-1) + B(I,u4) ;

<A,2> <B,1> <B,2>

(I,J-1) 3AT,%)

<al,I> | <al,J>

@'- <c,1> <C,2>

Fig. 4.5 The data dependency of an assertion

In addition to the explicit data dependency found in an
assertion, there exists some implicit data dependency

between the data entities and their associated control

93
variables. Let TRGT denote the name of a data entity and
NODE denote the name of the assoclated control variable
which 1is composed of a keyword PREFIX followed by the name
of the data entity.

1. If PREFIX = ‘POINTER’, then verify that TRGT is a keyed
record and draw an edge.

TRGT <=5- POINTER.TRGT, DIMDIF = 0 .

2. If PREFIX = ‘SIZE’, then verify that TRGT is repeating
and draw an edge.

TRGT(I) <-13- SIZE.TRGT, DIMDIF = 1 .

3. 1f PREFIX = ’END',.then verify that TRGT is repeating
and draw an edge.

TRGT(I) <-14- END.TRGT(I-1), DIMDIF = 0O .

4., If PREFIX = ‘FOUND’, then varify that TRGT is a keyed
record and draw an edge.

FOUND.TRGT <-15- TRGT, DIMDIF = 0 .

5. If PREFIX = ‘NEXT’, then verify that TRGT is a field in
an input sequential file and draw an edge.

NEXT.TRGT <-16- TRGT, DIMDIF = 0 .

6. If PREFIX = ‘SUBSET’, then verify that TRGT 1is an
output recorde. If it is an output record, then draw
the following edgef

TRGT {-17- SUBSET.TRGT, DIMDIF = 0 .

7. If PREFIX = ‘LEN’, then we draw an edge.

TRGT <-20- LEN.TRGT, DIMDIF = 0 .

94

The subscript expression lists of these edges are for

the moment empty. They will be constructed by the procedure

FILLSUB later according to the EDGE_TYPE.

4.5 FINDING IMPLICIT PREDECESSORS (ENIMDP)

Many efforts have been made to make MODEL language
tolerate some incompletenesses and inconsistencies in the
specification. When incompletenesses and inconsistencies
are found, warning messages or error messages are sent to
the user. If practical, the MdDEL processor tries to

correct the specification in a reasonable way.

If an interim field is not defined by any assertion, an
error message 1is sent to inform the user. It is probable
that the user forgot to write the assertion. Therefore, the
system should request an assertion from the user. However,
if a field in a target file 1is not defined explicitly, the
MODEL processor will ¢try to find an implicit source to
define that field. The MODEL processor tol;rates this kind
of 1incompleteness and saves the wuser work of writing

assertions for merely copying fields from a source file to a

target file.

Given a field in a target file which is not explicitly
defined by any assertion, we will search for a field with

the same name in another file according to the following

95
order of priority. 'The idea 1is to make some reasonable
assumption so that the undefined field will get a value.
Rule 1: If the undefined field is in a file which is both a

source and target file, then the value 1in the
éorresponding field in the o0ld record 1is taken as
the value for 1it.
Rule 2: If Rule 1 does not apply, then the processor tries
to find a same-named field in other source files.
If one is found, it is assumed to be the séurce. If
more than one is found, then the processor
arbitrarily picks one as the source and prints a
message to indicate that there was ambiguity.
Rule 3: If the above are unsuccessful, the processor tries
to find a field with the same name in other output
" files. If one is found, it is taken as the source,
and if more than one is found, then one is taken
arbitrarily, with a corresponding message to the

user regarding the ambiguity.

In the above cases where an 1implicit predecessor 1is
found successfully, an assertion which defines the target
variable by the implicit predecessor is generated as 1f 1t

were entered by the user.

~w

96

4.6 DIMENSION PROPAGATION (DIMPROP) ’

The source and the target variables in an assertion may
be arrays. In .order to reference an element of an N
dimensional array, the user should subscript the array name
with N subscript expressions. A subscriptless dialect of
the MODEL language allows the user to omit subscripts in
assertions in certain cases which do not lead to ambiguity.
Therefore, the number of subscript expressions following an
array variable does not necessarily indicate its actual
dimensionality. Furthermore, the declaration of a
multi-dimensional interim array may be simplified by
omitting the data description statements for the higher
level groups. = The omission of subscript expressions in
asgsertions and the omission of the higher 1level data
description can be viewed as incompleteness or inconsistency
of the specification. However, they are tolerated by the

MODEL processor, and a process called dimension propagation

is used to resolve inconsistencies of the dimensionality for

the interim variables and missing subscripts in assertions.

All the nodes in 1input and output £files should be
declared precisely, wusing data description statements.
Their number of dimensions can therefore be derived directly
from the data description statements. Associated with every
edge there is a field DIMDIF which denotes the dimension
difference between the source and the target nodes of the

edge. The number of dimensions of a node can be propagated

s |

97

along the edges of the Array Graph.

The dimension propagation algorithm is briefly
described in the following. Let N denote the set of nodes
in the Array Graph, array C store the current number of
dimensions, and array D store the initially declared anumber
of dimensions for each node in N. A queue Q keeps all the
nodes whose calculated dimension could possibly be changed.

Algorithm 4.1 Dimension Propagation -

Input. Array Graph.
Output. VIR _DIM: An attribute 1in the dictionary which
contains the number of dimensions of a node.

1. For each node n in N, let C(n) be D(n) and put node n 1in
Q.

2. If Q is empty, then exit.

3. Pick a node n from Q, remove it from Q. Let dim be 0.

4., For every incoming edge from node s to n, let dim be the
maximum of dim and C(s)+DIMDIF.

S. For every outgoing edge from node n to t, let dim be the
maximum of dim and C(t)-DIMDIF,

6. If dim<=C(n), go to step 2.

7. Else, the node n has a new updated dimension. Let C(n)
be dim.

8. For every incoming edge from node s to n, append s to Q.

9. For every outgoing edge from node n to t, append t to Q.

10. If more than N*N nodes have been taken from the queue,

then halt and 1ssue an error message — there exists a

propagation cycle.

If the process converges, then every node will havé a
finite dimension. However, it is possible that a cycle in
the graph causes an endless increase in the dimensions.

Consider for example the following specification.

(F, H) ARE FIELD

-we

I IS SUBSCRIPT ;

IF I=1 THEN H(I)

;3 ELSE H(I) = F+1 ;

[
.

5
IF I=1 THEN F(I) 6 ; ELSE F(I) = H+1 ;

. The first assertion implies that the dimension of H 1is
larger by 1 than that of F, f{.e. C(H)>C(F). The second
assertion states that C(F)>C(H). Applying our algorithm to
this specification will result in endless 1loop of
alternately incrementing C(H) and C(F). In this case the
systeﬁ will send out an error message indicating that the
dimension propagation process is in an 1infinite cycle and

also print out the nodes involved in the cycle.

4.7 FILLING MISSING SUBSCRIPTS IN ASSERTIONS (FILLSUB)

In the dimension propagation phase we have determined

the number of dimensions of every node. If the number of

dimensions of a node is larger than its apparent number of

%

99
dimensions, it is necessary to add the respective subscript

and data structures. This is performed in the following

three tasks.

Task 1: Generate the node subscript list.

If the node X is a data node, its node subscript 1list
is (displayed here from last‘to first):
(FOR_EACH.Ak, , FOR_EACH.Al)

where Ak, «.., Al is the list of the repeating ancestors of

X 4in a top down order. If X itself is repeating thanm Al is

equal to X.

If the node is an assertion node, then it has already
been assigned a partial subscript list by ENEXDP. This is
the 1list of apparent subscripts in the assertion, i.e. all
the subscripts appearing either on the L.H.S. or the R.H.S.
of the assertion. Let the assertion be of the form:

al: A(Ik, eeey, Il) = £(oese) ;

Let the R.H.S. contains the subscripts Jl, ..., Jm not
appearing on the L.H.S. and hence assumed to be reduced.
Then the partial list assigned to al 1is (Ik, +¢., Il,Jm,
eeey,J1) and its apparent dimensionality is determined to be
d=k+m. As a result of the dimension propagation process we
may have recomputed a new dimensionality ¢ for al where
c>=d. This will cause n=c~-d new subscripts to be added to
the subscript 1list of al which now appears as:

(Sn, ss ey $1’Ik’-.011,Jm,ooo¢,J1)

%

100

where $1, «.., $n are the name of the new subscripts.

Task 2: Fill in Missing Subscripts in the Assertions.

Consider an instance of a subscripted variable A(I1j,
eeey Il) in an assertion. The calculated dimension VIR DIM
for array A yields a value d which should be greater or
equal to j. If n-d-j)O we should add n new system generated

subscripts $§1 to $n, modifying the instance into A($n, ...,

" 81,13, eee, Il). It should be noted that the new subscripts

are always added on the leftmost dimensions of the array

variables.

Task 3: Fill in the Subscript Expression List for the Edges.

All the edges except types 3 and 7 have beeu' generated
with an empty subscript expression list. Using the edge
type and the dimensions of its source and target nodes, we
generate a subscript expression 1list for each edge. Edges
of type 3 and 7 have a partial subscript expression 1list
based on their apparent appearance in the assertion. It may
be necessary to expand this partial 1list. If n missing
subscripts have been added to the variables in an assertion,

then it is necessary to add n subscript expressions to the

edges which correspond to the instances of the variables in

the assertion.

[

101

CHAPTER 5

RANGE PROPAGATION

5.1 INTRODUCTION

The structures of variables are declared 1in data
description statements. Every variable 1is conmsidered an
array of some dimensions. The number of elements in an
array variable 1is determined by the dimensionality of the
array and the sizes of each of the array °: dimensions. The
size of an array dimension is <called the range of that
dimension. The range information allows us to allocate
memory s8space for the array variables and generate iteration
control statements which will define every element in the
arrays. The use of subscripts in assertions makes it
possible to define multiple elements of an array through one
assertion. We can instantiate an assertion by fixing its
subscript values. Then every 1instance of the assertion
defines one single data element. The ranges of the
assertion’s subséripts restrict the number of 1instances of

an assertion, which in turn defines the number of times that

¥

102
the assertion will be executed. The ranges of array
dimensions and assertion subscripts are used in the later

phases to synthesize the program.

Much 1information 1s not given explicitly 1in the
specification. For instance users are allowed in assertions
to use free subscripts for which the range i{s not specified.
Also the range specifications of some array dimensions may
be omitted. Therefore an algorithm is needed to derive

ranges for certain assertion subscripts and array

dimensions.

There is yet another reason why we want to analyze the
subscript ranges. A criterion for placing a number of
assertions in the scope of oﬁe loop is that they all have
subscripts of the same range. From the point of view of
program optimization it is preferred to have the loop scope
as large as possible. It is important therefore to identify
the subscripts of the same range. By propagating the
specified range information to all the assertion subscripts
and array dimensions we not only find the ranges which have
been incompletely specified, but also identify the ranges

which are equal.

e

[S P

103
5.2 LANGUAGE CONSTRUCTS FOR RANGE SPECIFICATION

A multi-dimensional array is declared as a hierarchical
data structure with the most significant dimension specified
at the top level. The range of a dimension may not depend
on the subscript value of less significant dimension. The
range of an array dimension may be specified in MODEL 1in
several alternate ways as follows:

(1) Through a data description statement. A constant number
of repetitions of a data structure may be specified in
the data description statement which describes the

parent structure.

(2) By defining the value of a SIZE qualified control

varfiable (Refer to section 3.4.). For example, 1if group
X repeats M times and M is a variable itself, we may use

the following assertion to specify its range:

SIZE.X = M

we

A SIZE‘dualified variable is an interim variable of
at most one dimension 1less than that of the suffix
variable. Its value is used to define the range of the
last dimension of the suffix variable (i.e. X).
Consider an N dimensional repeating group X. Assume
that the ranges of all its dimensions except the least
significant one are defined elsewhere. By definition,
SIZE.X is at most an N~]1 dimensional array and the range
of its dimensions is exactly the same as the range of

corresponding dimensions of data structure X. Since the

104
values 1in array SIZE.X can be different from one
another, the array X may not have a regular (i.e.
rectangular) shape, but have "jagged edges." This can be
stated formally as follows:

X(S ’s ’...’S ’...’s) is in X 1ff
1 2 k n

SIZEOX(S ,.-.,S) is in SIZE.X &
1 k

1 <= S <= SIZE.X(S ,¢¢¢,S5)
n 1 k

(3) By defining the. value of an END qualified control
variable. The END érray is of boolean <types It
determines the range of the least significant dimension
of the variable named in the suffix. Given an N
dimensional array X, the associated control array END.X
has the same structure as array X. ;The range of the Nth
dimension is defined as the smallest positive integer Ln
which satisfies the following conditions.

END.X(S ,e¢¢s,S ,Ln) = TRUE &
1 n-1

END.X(S ,e¢¢.,S »S) = FALSE,
1 n-1 n

for 1 <= § < Ln.
n
(4) By using a subscript declaration statement to define a
global subscript. The constant number of repetition can
be specified in the statement. For example:

I IS SUBSCRIPT (20) ;

105

(5) By system default. A repeating data structure which is
a rightmost decendant and which 1is above or at the
record level, may be assigned the end-of-file as 1its

range if the user does not specify a range for it.

The mechanisms of SIZE and END arrays are not totally
redundant. There are some essential differences between the
SIZE and END arrays. First, the END array can define a
minimum range of one, whereas the SIZE can define a range of
zero. This is because the END array must have at least one
value of boolean true. Secondly, the range specified by
SIZE array is finite. But the range specified by END array
may be infinite (through a user error in the range defining
assertion, when there is no first boolean true condition).
This i1is not checked by the system. Thirdly, the range
specified by array SIZE.X(Il,..,Ik) may not depend on the
array element X(Il,..,In), while END.X(Il,...,In) may depend
on X(Il,eee,In). For example, let X(1l),...,X(k) be all the
instances of an one dimensfional array X whose range is
specified by SIZE.X=k. In the program, the value of SIZE.X,
i.e. k, must be computed before we compute any of the
elements of X. If END control array is used, the range 1is
specified by END.X(1l), ¢«. , END.X(k), and we only have to

ensure that END.X(I-1) is computed before X(I) for 1<I<=k,

106

5.3 DEFINITIONS

éubscript variables belong to a special <class of
variables. While an ordinary variable can assume only a
unique value, a subscript variable canm take on a range of
positive integer values. Subscript variables can be used as
indices in array element references or in the same way as
ordinary variables to compose complicated expressions. The
meaning of subscripts 1s the same as their meaning in

mathematical usage.

The following definitions are wused in discussing

subscripts.

Definition Let X be an N dimensional array represented 1in

the Array Graph by a node. Let 1 be a positive
integer. The tuple <X,i> is referred to as a node
subscript. It denotes the ith dimension of the node of
array X. Let al be an assertion node, and I a
subscript variable referenced in the assertion al. The

tuple <al,I> i3 referred to as a node subscript for I

associated with the assertion node al. If <n,d> 1is a

node subscript, then R(<n,d>) denotes its range.

Node subscripts are grouped into range sets. Every

range set contains the node subscripts which have the same

range. However no two dimensions of the same node can be

107
put 1into one range set even if they have the same ranges
because every range set will later correspond to a level of
nested loops in the generated program and no two dimensions
of the same node can correspond to the same level of nesting

loops.

Definition The range of a subscript that has been declared

as a global subscript 1is the same in all assertioans

where 1t 1is used. There can only be one range

associated with a global subscript.,

Definition The range of a subscript that has not been

declared as global 1is fixed within the scope of the
assertion where it is used. It will be called a local

subscript. A symbol used as a local subscript can have

different ranges in different assertions.

There are two types of global subscripts in MODEL. One
is specified by wuse of the qualifying keyword FOR_EACH in
the prefix and a repeating data structure name in the
suffix. The other 1is explicitly declared in a subscript
deélaration statement. (Refer to section 3.3.2.) The
FOR_EACH type global subscript always has the range of the
repeating data group named in the suffix associated with it.
A user declared global subscript can have 1its range
specified in the subscript declaration statement. By wusing

global subscripts in assertions, the wuser can specify

108

explicitly the range of assertion subscripts.

Local subscripts are all of the form SUBn where n 1is a
positive 1ianteger. Users do not have to declare local
subscripts (in subscript statement). The use of 1local
subscripts in an assertion is like that of formal parameters
in a function definition. They can be chosen arbitrarily
within the scope of an assertion. This gives the user
freedom to reuse the subscript names in different

assertions.

5.4 DISCUSSION OF RANGE PROPAGATION
5.4.1 CRITERIA FOR RANGE PROPAGATION

In this section we discuss the conditions for
propagatiﬁg the range of a suﬁscript from one node to
another. A node subscript refers to either an array
dimension or an asse;tion subscript. If two node subscripts
are related through some dependency relation and one of them
does not have an explicit range specification, we propagate

the range from one to the other.

Let us consider first a simple assertion :
B(I) = A(I) . Three entities are 1involved : the source
variable A, the target variable B, and the assertion itself.

All of them are one dimensional objects. The assertion

states that the kth instance of the assertion corresponds to

109
the kth instance of array B for all k in the range of B’s
dimension. There 1is a bijective mapping between the
instances of the assertioﬁ and the instances of the array B.
It is therefore very natural to believe that the range of
the target variable B 1is the same as the range of the
assertion. Additionally, from the subscript expression I in
the term A(I) we can derive that the range of the assertion
can be taken from the range of the array A. In short,
whenever a simple subscript variable is used as a subscript
expression it strongly suggests that we may propagate the

range from one node subscript to another.

-

When a subscript expression of the form I-k is used 1in
an assertion,_ where 1 1s a subscript variable and k is a
positive integer, there exists a one~to-one mapping between
values of <certain elements indexed by I and I-k. The
mapping may be interpreted in two possible ways : assume
the ranges of the arrays indexed with I and I~k subscripts
are the same, or assume that the variable with the I~k
subscript expression has k instances fewer than the variable
with I subscript. We have decided to adopt the simpler
assumption, that 1s, the ranges are the same. Therefore we
will propagate ranges between the node subscripts indexed by

subscript expression I and I-k.

It should be noted that we do not intend to modify or
ignore a user specified range of a node subscript. The

analysis mentioned above is used for two purposes. One 1is

110
to derive a range for a node subscript which does ﬁot have
an explicitly specified range. Second is to determ;ne if 1t
is possible to put two node subscripts into the same range
set when both of them have user specified ranges and the
ranges are the same. When two node subscripts have user
specifiedvtanges, we are interested in finding out whether
their ranges are equal. Since there is no simple way to
determine i1if two functions are equal in general, we will
only check the assertions which define the range arrays by

the other range array.

5.4.2 PRIORITY OF RANGE PROPAGATION

User specified ranges are associated with repeating
data structures or declared global subscripts. The range
specified for a data node is interpreted as the range of its
least significant dimension. Ranges of node subscripts can
be propagated along a path in the Array Graph from one node
to another based on the following relations between
respective node subscripts.

1. The two node subscripts are both global subscripts and
have the same global subscript name.

2. One of the node subscripts corresponds to a dimension of
a data node and the other corresponds to the samé
dimension number of the associated control variable.

3. The two node subscripts occur on the corresponding

«

111

dimeﬁsions of two data nodes in the same data structure.

4. One node subscript is associated with an assertion node

and the other 1is associated with a source variable of
the assertion.

5. One node shbscript is associated with an assertion node

and the other i1s associated with the target variable of

the assertion.

There may be several alternative paths (and directions)
for propagating a range, and the range derived for a node
subscript may depend on the choice of a path. The choice of
path may also affect the efficiency of the generated
program. Therefore, we will propagate ranges according to a
priority order which attempts to obtain the highest

gfficiency. The priority order is as follows.

When a giobal subscript is used in several assertions,
the ranges of the respective node subscripts (in these
assertions) are the same. We may consider all the node
subscripts with the same global subscript name as a group.
Whenever any element in the group has its range defined, we
will propagate the range to other elements in the same

group. This type of propagation will have the top priority.

Next consider the data nodes and their assoclated

control variables such as SIZE.X, END.X, POINTER.X, LEN.X,

ceey etc. The dimensions of the control variables

correspond to the dimensions of the variable named in the

112
suffix from left to right. The corresponding dimensions of
a data node #nd its associated control variables should have
the same range. Similarly the corresponding dimensions of a
data node and 1its higher level nod?s in a data structure

should have the same range.

If the range specification of 1local subscripts in
assertions or array dimensions are not given explicitly, we
will derive them by analyzing the respective subscript
expressions 1in assertions. It is preferable to propagate
the range from a target variable to an assertion rather than
to propagate the range from a source variable to an
assertion. Therefore, the range propagation between an
assertion node and its target node or between a data node
and its associated control variable will have the second

priority.

Globally it is preferred to propagate the range from a
variable 1in an output file backward to a variable in an
input file than reversely. Thus we will assign the third
priority to the propagation from an assertion node backward
to its source variables and the fourth priority to the
propagation from a data node forward to an assertion node in
which it is referenced as a source variable.

Example Let array A be an input file with 20 elements, array
C an output file with 10 elements and array B one

dimensional interim array. The assertions

al: B(I) = A(I) ;

113

a2 C(1I) = B(I) ;

may lead us to assign either 20 or 10 as the range for
array B, depending on the point of view taken, As far
as the correctness is concerned, it does not make any
difference whether 20 or 10 1is used as the range of
array B. But a smaller range would mean potentially
less memory space and leﬁs computation time. Therefore
the latter 1is more desirable. The range may be
evaluated as follows. Since no global subscripts are
used here, no propagation corresponding to the top
priority can be achieved. The propagation €£from an
assertion nodé to the target v;ri;ble 1s- second
priorit?, therefore, the range of <C,1> and <B,1> should
be propagated to <a2,I> and <al,I> respectively. The
range of subscript <B,1> will be that of <A,1> or <C,1l>
depends on whether we 'give higher priority to the
propagation from <A,1> to <al,I> or from <a2,I> to
<B,1>. Since the latter has the higher priority, the
range is propagated from array C all the way back to the

assertion node al. (Refer to Fig. 5.1.)

114

al: B(I) = A(I) ;

a2: C(I) = B(I) ; R(<A,1>)=20
R(<al,I>)=?
R(<B,1>)=?

R(<a2,I>)=?

R(<C,1>)=10

Fig. 5.1 Example of Range Propagation

In summary, we have divided the range propagation 1into
four priority 1levels., The - top 1level is based on use of
global subscripts. The second 1level 1is based on the
relation between data node and 1its associated control
variables or between the assertions and their target
variables. The third level is to propagate the range from
-an assertion backward to 1ts source variables, and the
fourth one 1is to propagate the range from a data array
forward to the assertions in which it 1is referenced as a

source variable.

115
5.4.3 REAL ARGUMENTS OF RANGE FUNCTIONS

Every node subscript will iterate over its range by a
loop <control statement in the generated program. A node in
the Array Graph having N node subscripts associated with 1{t
will have an N level nested loop enclosing it. Every loop
controls the iteration of a corresponding node subscript.
We will show that the range specification of the node
subscripts may have influence on the order that the 1loops

can be nested and on the order of subscripts in referring to

a range array.

When the ranges of the dimensions of an array are all
constant, the array has a regular shape. We can access all
of the array elements by iterating the subscripts 1in any
order. For example, 1f we have a recéangulat array A, we
can access all of the array elements either row-wise or
column-wise. However, if some of the dimension ranges of an
array are specified by range arrays, it is no 1longer true
that we can nest the loops in any order. 1In Fig. 5.2(a) two
arrays A and B are both three dimensional arrays. The
tanges‘ of the third dimension of both arrays are specified
by the SIZE.A array. In Fig. 5.2(b), a part of the
flowchart for the specification 1in 5.2(a) 1is shown. The
point is that the loop corresponds to node subscript <A,3>
should be scheduled 1inside the loops of <A,1> and <A,2>.
Becagse the loop control statement for <A,3> references the

range array SIZE.A and the value of SIZE.A depends on the

116
values of subscript <A,1> and <A,2>.

A 1S FIELD;

B IS FIELD;

B(I,J,K) = A(I,J,K) ;
SIZE.A(I,J) = £(1,J) ;

Fig. 5.2(a) A range array with real arguments

DO <A,1D;
DO <A,2>;
DO <A,3> = 1 TO SIZE.A(KA,1>,<A,2>);
A(<A,1>,<A,2>,<A,3>);
B(<A,1>,<A,2>,<A,3>) = A(KA,1>,<A,2>,<A,30);
B(<A,1>,<A,2>,<A,3>);
END;
END;
END;

L

Fig. 5.2(b) Flowchart of 5.2(a)

A simple solution would be to require that the 1loops
enclosing an array are nested according to the hierarchical
order of the array dimensions. Thus, the dimension being
declared on' the top level of the data structure will be
scheduled on the outmost level. Because the range of a
dimension is not allowed to depend on the subscript value of.
any lower level dimension in the data structure, in the
example above when the loop of <A,3> is to be scheduled, the
loops of <A,1> and <A,2> would have been scheduled on the

outer levels. However, this requirement is unnecessarily

117
strong. For example, 1if we follqw this scheme, then all the
two dimensional arrays will have to be computed row-wise.
With this restriction we may lose the opportunity to

generate an optimal program.

A generalized solution would be to treat the range
arrays as functions and find the real arguments of the range
fuanctions. For example, an N dimensional range array
SIZE.X(Il,see,In) may be considered as a function which maps
an N tuple of integers Il, ..., In to an integer value which
is the range of the n+lth dimension of array X. Every
subscript of the range array may be viewed as corresponding
to an argument of the function. We will use the terms range
array and range function 1interchangeably. Some of. the
function arguments may not affect the function value, namely
the range does not vary with the value of these subscripts.
The rest of the arguments which do play roles in determining

the actual value are called real 'atguments of the range

function.

By analyzing the assertion which defines a range array,
we can find all the real arguments of the range array. If
the range of a node subscript <n,d> is specified by a range
array and the range array has some real arguments, the real
arguments of the range array should correspond to some other
node subscripts of node n. In the generated program the
loops which correspond to the real arguments should be

scheduled on the outside level of the loop which corresponds

118
to the node subscript <n,d>. For example, consider the
specification in Fig. 5.2(a). The range array SIZE.A has
two real arguments, i.e. <SIZE.A,1> and {SIZE.A,2)>. Since
the node subscript <A,3)> references the range array SIZE.A
and the node subscripts <A,1> and <A,2> correspond to
{SIZE.A,1> and <SIZE.A,2> respectively, node subsctipts

<A,1> and <A,2> will be stored in the real argument list of

node subscript <A,3). It is shown in Fig. 5.3. The loop
iterated on <A,1> and <A,2> will be scheduled on the outside
of the 1loop on <KA,3>. Similarly, we can find the real

argument lists for <al,K> and <B,3)>.

F

it

. O

Example We will show how transposing an

A <SIZE.A,15{ <SIZE.A,2>
1 l
i }
I)
l |
! |
! [
®_ <A,1> <A,2> 1 <A,3>
: ' T '
1
] i !
I | !
! |
| ! i
- L | l
Ial <al,I> <al,J> [L<al5K5
| | 1
| | !
! l '
l ' '
l i |
1 { |
(iii)"‘ <B,1> <B,2> [<B,3>

<A,1>

<A,2>

<al,I>»

<al,J>

Fige. 5.3 Real argument lists

B(1,J,K) = A(J,I,K) ;

SIZE.A(M,N) =-h(M,N) ;

~

<B,1>

<B,2>

of node subscripts

array

Let us examine the following assertions.

effects

119

the

mapping between the real arguments of the range arrays.

Assuming that R(<KA,1>) 1is equal to R(<B,2>) and R(<A,2>)

120
is equal to R(<B,1>). The range for subscript <B,3> is
obtained from R(<A,3>) which 1is given by SIZE.A.
SIZE.B(N,M) should be equal to SIZE.A(M,N). All we need
is a permutation of subscripts to make the range array
SIZE.A the same as SIZE.B. A possible flowchart for the

loops enclosing node A and B 1s shown in Fig. 5.4.

DO <A,1> ;
DO <A,2> ;
DO <A,3>= 1 TO SIZE.A(<KA,1>,<A,2>) ;
A(<A,1>,<A,2>,<A,3>)
END ;
END ;
END ;

DO <B,1> ;
DO <B,2> ;
DO <B,3>= 1 TO SIZE.A(<B,2>,4<B,1>) ;
B(<B,1>,<B,2>,<B,3>) ;
END;
END ;
END ;

Fig. 5.4 Transposition of real arguments of
’ a range array

It should be noted that the order of the node subscripts
{B, 1> and <B,2> in the range array reference
SIZE.A(<KB,2>,<B,1>) 1is significant 41in the 1loop control
statement for <B,3>. Therefore, in the real argument list
associated with the node subscript <B,3> we should store the

real arguments 1in the order of <B,2> followed by <B,1l>.

(Refer to Fig. 5.5)

SI@—-<SIZE.A,1> L <STZE.A,2>
| |
1 |
|]
! I
| |
C‘\j—— <A,1> <A,2> - <A, 3>
> |
\ <A,1l>
\ |
\/\ | '-<A’2>
/ |
7/
Z \ |
lal <al,r> | <al,> H o <alie |
! ! | \
| | ! <al,J>
| [{ <al,I>
P | |
’ | | 1
<B,1> - <B,2> - <3,3>
~
<B,2>
<B,1>

5.5

The

steps.

Fig. 5.5 The order of real arguments in the
real argument list

range

First

of all, we locate the node subscripts

propagation

algorithm

RANGE PROPAGATION ALGORITHM (RNGPROP)

consists of

121

three

which

122
have user specified ranges (Algorithm 5.1). In the second
step we propagate the explicit range specifications by
partitioning the node subscript set into taﬁge
sets (Algorithm 5.2). In the third step, we will propagate

the real argument list(RAL) among the node subscripts in the

same raange set (Algorithm 5.3).

The data structure used are as follows. The total
number of node subscripts 1is denoted by $ALLSUBS. Every
node subscript is assigned a unique sequence number. A
vector TERMC(DICTIND) of integer denotes the kind of range
specification used for the leagt significant dimension of
each node. It can have the values of 1-4 to denote the
following conditions:

1: the data structure has a constant number of repetition.

2: the range 1s specified by an END array.

3: the range is specified by a SIZE array.

4: the range is implied by reading an end of file.
The vector LTERMC provides the same 1information for node
subscripts as TERMC for the nodes. The contents of TERMC
and LTERMC are computed by Algorithm 5.1.

Algorithm 5.1 Find User Specified Ranges

Output:

TERMC: The type of user specified'range of every node 1in
the Array Graph.

LTERMC: The type of user specified range of every node

subscript.

123
l. Initialize the vectors TERMC and LTERMC to 0.
2. For each node n, in turn do:
If attribute VARYREP=(0, then TERMC=l.
If attribute ENDB>0, them TERMC=2.
If attribute SIZEB>0, then TERMC=3.
3. For every node n, in turn do:
If TERMC(n) is not equal zero, find the node subscript
<{n,d> which corresponds to the least significant
dimension of node n. ;Set the LTERMC entry of the node

subscript to TERMC(n).

Three arrays, HEADER, SETNEXT, and LRANGEP are used in
step 2. Each of them has $ALLSUBS number of entries.
HEADER(I) gives the sequence number of the header element of
the block to which the 1Ith node subscript belongs.
SEfNEXT(I) links the Ith node subscript to the next node
subscriﬁt in the same block, 1f any. When the Ith node
subscript is the header of a block, then LRANGQP(I) shows
the range of the Ith subscript. Algorithm 5.2 partitions
the set of all the node subscripts. Initially every node
subscript forms a block by itself. Then whenever we find
that two node subscripts could have the same range and no
range conflict would occur, we will merge their blocks.
This merging process will continue until no further merging
can be done. Since every node subscript cam only be in one
block at any moment, this is in fact a disjoint-set wunion

problem[AHU 74]. The blocks formed 1in Algorithm 5.2 are

124

called range sets.

Algorithm 5.2 Propagation of Range Specification

Inpﬁt:

LTERMC: The type of user specified range for every node
subscript.

Output:

RANGE: A field in the LOCAL_SUB data structure of every
node subscript. It contains the range set number
where the node subscript belongs.

$RNGSET: The total number of range sets.

SET$RNG: The node number of the header of a range set.

Data structures:

$ALLSUBS: The total number of node subscripts.

- HEADER($ALLSUBS): The node number of the header of the
R ' range set of a node subscript.

SETNEXT($ALLSUBS): For every node subscript, it points to
the next node subscript of the same range set.

LRANGEP(S$ALLSUBS): If a node subscript is not the header of
any range set, the value is -1. Else, if the node
subscript has a user specified range, the value 1is
the data node number of the range. Otherwise, the
value 1is 0.

l. Initialization.

Make every node subscript a block by 1itself. For all
. values of I from 1l to $ALLSUBS do:
HEADER(I)=I,

.

. SETNEXT(1)=0, /* NO NEXT ELEMENT */

125
LRANGEP(I)=node of the range /* IF IT HAS A DEFINED
RANGE */

=0, /* OTHERWISE */
Merge blocks of the same global subscript name:
For every node subscript with sequence number I, check
whether it has a global subscript name. If it is a
global subscript of the form FOR_EACH.X or user declared
subscript X, 1let J be the sequence number of the node
subscript which is associated with the least significant
dimension of node X. Call procedure UNION(I,J) to merge
the blocks containing these two subscripts.
Propagate ranges between data nodes and control arrays
or target nodes and assertion nodes:
For every edge in the Array Graph with edge type not
equal to 3 check the type of the subscript expr?ssions
associated with the edge. These edges connect data
arrays to the associated control arrays and the assertion
nodes to their target variables. For every subscript of
the source node, find the corresponding subscript in the
target node. If the APR_MODE of the subscript expression
is 1 or 2, merge them using procedure UNION.
Propagate ranges from assertion to source variable:
Scan all the edges of ¢type 3 which connect a source
variable to an assertion. The range'is to be propagated
backwardly. If the subscript of the source node has a
defined range, no merge will be done. Otherwise check if

the APR _MODE of the subscript expression is 1 or 2. If

126

yes, call procedure UNION to merge it with the
corresponding subscript of the target node.

S. The same as step 4. Except that no merge will be done 1if
the subscript of the target node has a defined range.

6. Check the header of each block. If it does not have a
user defined range, check the elements of‘the block. 1If
there exists an element which is associated with a data
node at or above record level and being the rightmost
node in an input file structure, we may use end-of-file

as the default raage.

7. Assign a range set number to every block of the

partition. If a node subscript belongs to the kth block,
put k 1into the RANGE field in the data structure
LOCAL_SUB of the node subscript. Also store the node
number which gives the range information of the block 1in
SET$RNG(k) entry.

Procedure UNION(I,J)

Input:

I1,J: The subscript sequence numbersiof two node subscripts
for which the range sets will be merged.

OQutput:
Modify the data structure HEADER, SETNEXT, and
LRANGE to reflect the merging of the two range sets.

l. If both subscripts I and J are in the same block, exit.,

2. If the blocks containing subscript I and J have different

raunges, exit.

3. Put HEADER(I) into A.

127
4. Put HEADER(J) into B.
5. Change the HEADER entries of all the elements in the same
"block as J to A.
6. Append the list with the header B to the 1list with the
header A.
7. Replace LRANGEP(A) by LRANGEP(B) if LRANGEP(A)=0.

80 Set LR.ANGEP(B) to -10

Step three examines all the range sets. If the range
of a range set 1is specified by a range array, a RAL 1s

computed for every node subscript in the range set.

Algorithm 5.3. Propagation of Real Argument List

Input: |

LTERMC: Type of wuser specified range of every node
subscript.

RANGE: A field in the LOCAL_SUB data structure of every
node su§script. It contains the range set number
where the node subscripf belongs.

OQutput:

RALP: A field in the data structure LOCAL_SUB of every node
subscript. For every node subscript whose range is
of types 2, 3, or 4, it points to a 1list of real
arguments of the range function.

Data structure:

The real argument list pointed to by RALP consists
of a 1list of elements which are stored in the data

structure RAL. The fields 1in the RAL are as

128

follows.

$RAL: The number of real arguments.

RSPOS($RAL): The subscript position of a real argument in

the range array.

MSPOS(SRAL): The subscript position of the corresponding

l.

real argument in the node subscript list.

For each node subscript which has a user specified range
and the termination criterion is not constant, form the
RAL for it and put it into a candidate queue. (Refer to
Algorithm 5.4)

Iterate step 3 to step 7 until the candidate queue
becohes“empty; "

Get a node subscript from the queue. Let 1it be the
subscript S of node X. Propagate the RAL of S to other
node subscripts in step 4, 5, 6, and 7. If any node
subscript gets 1its RAL newly defined, put it ianto the
candidate queue such that 1its RAL can be propagated to
other subscripts.

For each outgoing edge from node X, propagate the RAL of
subscript S from node X to the target node. (Refer to
Algorithm 5.5)

For each incoming edge into node X, propagate the RAL of

subscript S from node X back to the source node. (Refe;

to Algorithm 5.6)

If subscript S references a global subscript, propagate

its RAL to the global subscript.

If subscript S is a global subscript, then propagate 1its

129
RAL to all.the subscripts which reference its name.

8. Stop.

Algorithm 5.4. Find RAL from a range specifying assertion

Suppose the range of the subscript-<X,n> 1is specified
by an assertion. Let the range array be SIZE.X or END.X.
The algorithm tries to find the RAL for subscript <X,n>.

1. Put all the subscripts of the target variable of the
agssertion which defines the control variable SIZE.X or
END.X into a list.

2. If the target variable is END.X, delete the subscript on
its least significant dimension from the list.

3. Repeat for each of the subscripts in the RAL to check
whether 1t is referenced on the right hand side. If yes,
it is a Real Argument. Otherwise, delete it from the
list.

4. The resulted list is the RAL of the subscript <X,nd.

Algorithm 5.5. Propagation of RAL forward along an edge

Assume S1 is a subscript of node X and there is an edge

E from node X to node Y. The algorithm propagates the RAL

of S1 to some subscript of node Y.

l. If the subscript expression of S1 is not type 1 or type

2, exit.

2. Let the corresponding subscript of node Y be S2. If RAL
of S2 is defined, exit.

3. If the ranges of S1 and S2 are different, exit.

-*

4.

5.

130
For each subscript in the RAL of Sl, check its subscript
expression type. If any one of them is not type 1, exit.
Find their corresponding subscripts in node Y and form a
new 1list. If the ranges of the corresponding subscripts
are not the same, exit.

The newly formed subscript list is the RAL of S2.

Algorithm 5.6. Propagation of RAL backward along an edge

of

3.
4.

Assume S1 is a subscript of node X and there 1is an edge
from node Y to node X. The algorithm propagates the RAL
Sl to some subscript of node Y.

If there is no subscript of node Y corresponding to

subscript S1, exit.

Let the corresponding subscript of node Y be §2. If RAL

of 82 is defined, exit.

If the ranges of S1 and S2 are different, exit.

For every subscript Xi 1in the RAL of 81 find 1its

corresponding subscript Yj of node Y.

4.1 Let the subscript position of Xi 1in the 1local
subscript list of node X be 1.

4.2 Check the LOCAL SUB$ field in the data structure
EDGE_SUBL assocliated with edge E. If the jth
LOCAL_SUB§ is equal to i, the jth node subscript YjJ
in the local subscript list of node Y corresponds to
Xi.

4.3 Check the APR_MODE corresponding to subscript Yj ia

edge E. 1If it is not 1, exit.

131
4.4 Check the RANGE field of the node subscript Yj and
that of subscript Xi. If they are different, exit.
5. Form a subscript list which contains those subscripts
Yj’s of node Y. It is the RAL of subscript S2.

Algorithm 5.7. Propagate RAL between Global subscripts

Suppose subscript S1 of node X and subscript S2 of node

Y have the same global subscript name. The algorithm

propagates the RAL of Sl to S2.

l. If the RAL of S2 i3 defined, exit. _

2. For each subscript T in the RAL of S1, get its range, say
RT. Check all the subscripts of node Y. If there is one
and only omne subscript U which has the same range as
subscript T, then subscript U 1s the corresponding
subscript of T. Otherwise, exit.

3. Form a subsctipé list which contains those subscripts U’s

of node Y. It i1is the RAL of S2.

5.6 DATA DEPENDENCY OF RANGE INFORMATION

In section 4.4.2 we have mentioned that range arrays
cause 1implicit data dependency relationship. The edges of
type 13 and 14 in the Array Graph represent this type of
dat# dependency. However, it 1s not enough if we only have
the edges from a range array SIZE.X or END.X to the node X.
For every node in the Array Graph, no matter whether it is a

data or an assertion node, as 1long as one of 1its node

132
subscripts 1is in a range set where the range is deined by a

range array, an edge should be drawn from the range array to

that node.

We can tell the range of every aode subscript only
after the range propagation phase. Therefore, the correct
time to add this type of data dependency relationshiﬁ is
after we have found all the range sets. If a range set has
a range array as its range specification, then there will be
edges emanating from the range array and terminating at
every node in the range set. Subscript expressions of type
1 are associated with the edges emanating from a SIZE range
array. Subscript expression of type 2 1is associated with
the 1least significant dimension of an END range array and
type 1 subscript expressions are associated with the other

dimensions of the END range array.

133

CHAPTER 6

SCHEDULING

6.1 OVERVIEW OF SCHEDULING

Through the ghases of data dependency analysis,
dimension propagation, and range propagation we have
analyzed the user’s specification and checked the
consistency and completenets of the specification. In a
non-procedural programming language, the execution sequence
is not specified 1in the program specification. The
objective in this chapter is to determine the order of
execution 1in performing the specified computation. We havg
collected the needed information in the counvenient form of
the. Array Graph. The Array Graph coantains all the program
activities as nodes and the data dependency telatiénships as
edges. The next step toward constructing a program is
ordering the program activities represented by the nodes of
the Array Graph under the <constraints posed by: a) the

edges of the Array Graph, and b) considerations of

computation efficiency. As stated in chapter 1, efficient

‘y

134
scheduling is one of the main contributions of the reported
research. This method of synthesizing the program is called

scheduling here. It is followed by the actual program code

generation.

Two rules which are frequently accepted in programming,

except 1n cases where memory 1limitations are extremely

severe, will be followed here as well. The first is that
every 1input file 1is to be read only once. This rule will
reduce the number of input activities which are wusually
relativély slow. If necessary we may store the input data
in the memory for repetitive use. However, sometimes the
memory price may be very high due to the large capacity of
external storage. The second rule is that no values are to
be recomputed. This means that once an element has been

computed it will be retained as long as it 1is needed for

later reference.

6.1.1 A BASIC APPROACH TO SCHEDULING

A correct but often 1inefficient realization of a
computation can be obtqined through the following scheduling
method. Our eventual approach will be partly based on this
simpler basic approach. The acyclic portions of an Array
Graph may be scheduled very siﬁply as follows. A
topological sort algorithm can be applied to obtain a linear

ordering of the nodes in the graph in accordance with the

‘e

135
edge constraints. Multi-dimensional nodes are then enclosed
within nested 1loop controls. Every loop 1iterates the
respective node over the 1nstaﬁces éf one of the distinctive

node subscripts of the node.

When there are cycles in the Array Graph, a topological
sort will not succeed. Superficially, a cycle in the Array
Graph means a circular definition which does not allow us to
determine a 1linear order for the computation. Actually
since the Array Graph masks some of the details of the
relationships in the corresponding Underlying Graph (see
Chapter 4), there may be a cycle in the Array Graph where
there are no cycles in the corresponding Underlying Graph.
Also iterative solution methods can be applied to perform
the computations even where there are cycles 1in the
Underlying Graph. We have to apply a deeper analysis of the
nodes and subscript expressions used in assertions in the
cycle. The cycles that are found to be really not circular
can be resolved to generate a linear schedule. The method
employed is briefly described as follows. The Array Graph
is decomposed into subgraphs. Each subgraph is a most
strongly connected component (MSCC). A MSCC in a directed
graph 1is a maximal subgraph in which there 1s a path from
any node to any other node. The deeper analysis 1is then
applied to the MSCC components in the Array Graph. The
analysis described in section 6.2 consists of search of a

dimension that is common to all the nodes in the MSCC. 1If

136
an edge 1s found in the MSCC which has an I-k type subscript
expression associated with {it, fhe edge may be deleted.
This sometimes results in an acyclic subgraph which can be
topologically sorted. If this method is not successful then
other analysis methods, or alternatively an iterative

gsolution method may be applied.

6.1.2 EFFICIENT SCHEDULING

In general, a schedule which satisfies the <constraint
of the data dependency relationship is not unique, if one
exists. Therefore, there is a degree of freedom to select a
schedule which meets efficiency requirements as well. We
want to have a schedule with the fewest number of 1loops or
with the léast amount of working storage for the program
variables. Although we will use here the results of the
basic ;cheduliug approach mentioned above, our method of
scheduling consists essentially of a process of repeated
merging of ©basic MSCCs 1in the Array Graph. As will be
shown, in this way we can reduce the use of memory and

computation time.

Non-proéedural programming uses as many variables as
the values that occur during the program computation. If we
simply allocate separate memory space to each variable, as
may be done in the basic approach, we will most probably get

a program which uses a large amount of memory space and in

137
some cases may not be executable. Therefore, we are here
primarily concerned with memory efficiency of the program.
Our approach 1is to examine the effect on use of memory due
to merging of ‘blocks of nodes of the same or related
subscript ranges and form iteration loops for the selected
subscripts enclosing the merged blocks. We will select
mergers of ©blocks of nodes which reduces the use of memory

the most.

In some cases we have an alternative of maximizing the
scope of one loop at the cost of reducing the scope of one
or more other loops. The choice of which 1loop scopes are
maximized 1is based on comparison of memory requirements of
the alternatives. The alternative that requires least

memory space for program variables will be selected.

The repetitions indicated by the node subscripts are
controlled by 1loop statements. The execution of 1loop
statements takes some CPU time. If the 1loop s8copes in a
program are small, i.e. 1f they contain fewer nodes, theﬁ
there will be more loops in the program and the overhead
spent on the 1loop control statements will be increased.
This 1is another reason why it is desirable to maximize the

loop scopes in the generated programs.

3

138
6.1.3 OUTLINE OF THE CHAPTER

The material in sections 6.2, 6.3, and 6.4 forms a
background to understanding the optimization in the
scheduling algorithm. In section 6.2 we will discuss the
analysis of MSCCs. The algorithm of our optimizing
scheduler is based on deeper analysis of cycles. A similar
approach was wused previously in an earlier version of the
MODEL processor. Some changes discovered in the course of
the presently reported research have been added. The merger
of components 1is discussed in section 6.3. There are two
bases for merging of components: when components have the
same subscript ranges a;d when they have related range (this
is explained 1later). In section 6.4 we will introduce the
memory penalty concept which will be used to evaluate the
use of memory in a partially designed schedule. The memory
penalty 1is the ﬁemoty cost associated with a candidate
subschedule. The scheduling algorithm 1is presented 1in

section 6.5.

6.2 ANALYSIS OF MsScCC
6.2.1 CYCLES IN THE ARRAY GRAPH

A cycle in the Array Graph means that a variable
definition depends directly or iandirectly oumn itself. An

Array Graph is a compact representation of an Underlying

s t

139
Graph. It does not show the details of precedence
relationships 1in the Underlying Graph. Therefore, the
apparent c¢ircularity may be deceptive and ﬁgt be reflected

in the Underlying Graph. 1In this case a correct computation

may be realized for an Array Graph cycle.

Consider for example the assertion in Fig. 6.1 which
defines the factorial function. Because of the recursive
definition there is a cycle in the Array Graph. But there
is no cycle of precedence relationship in the corresponding
Underlying Graph. Therefore, there exists a precedence

ordered sequence for computing all the factorial values.

a(I): F(I) = IF I=1 THEN 1 ELSE I*F(I-1) ;

(a) ‘Assertion

(b) Array Graph (¢) Underlying Graph

Fig. 6.1 Example of cycles in the Array Graph

 t

140

A MSCC in the Array Graph may or may not represent a
circular definition. If it is not truly circular, we may be
able to perform the respective computation by wusing an
iteration 1loop. In section 6.,2.2 we will discuss the
conditions under which a MSCC can be enclosed in a loop. If
these conditions are met, we will find the loop parameter to
bracket the entire MSCC. Once such loop is found, since the
loop 1indices are ascending, the precedence relationships
between the respective loop instances is assured.

Therefore, as shown 1in section 6.2.3 we delete edges with

I-k subscript expressions and the MSCC may be decomposed.

If the above method fails, there are other approaches to

schedule a MSCC which will be discussed in section 6.2.4.

6.2.2 ENCLOSING A MSCC WITHIN A LOOP

The objective of iterative computations of a single
data or an assertion node 1is to define all the elements
corresponding to the values of node subscripts associated
with the node. In general, the values of every node
subscript can be stepped iandependently of other node
subscript values. Therefore, a node with N node subscripts
would have an N level nested loops enclosing 1it, and each

level of the nested loop corresponds to one distinctive node

subscript. We will associate with every 1loop a 1loop

variable with values which are stepped up by one from one to

’

141
the upper bound of a subscript range. All the nodes inside
the scope of a loop will be executed once for every possible
value of the loop variable. Generally i1f a node does not
have a node subscript corresponding to a loop variable, the
repetition would be redundant. We want to treat an entire
MSCC in some manner as a single node, i.e. to compute all
the elements of the nodes in the MSCC iteratively. We
require however that all the nodes of a MSCC have a node
subscript with which a loop brackets the MSCC. If one of
the nodes does not have such a node subscript then the
activity represented by the node, such as input/output, may
be repeated, which will cause an erromeocus computation. All
the distinguished dimensions must then have the same range.
It should be noted that the loop variable i3 stepped up each
iteration by one, and no computation of a loop instance can

depend on any computations in later loop instances.

Given a MSCC in the Array Graph, we will first check 1f
all th? nodes 1in the MSCC have more than zero dimensions.
If every node does have at least one dimension to schedule,
we will then check the subscript expressions on the edges of
the MSCC to see if the entire MSCC can be enclosed within a
loop. The edges in the Array Graph represent relationships
between some elements of the nodes at the ends of the edges.

The subscript exptessions‘associated with edges reveal more
precisely the precedence relationships between specific

elements. In the following we examine the subscript

s

]

142
expressions associated with an edge to determine {1f the

nodes at the end of the edge can be scheduled within the

scope of a loop.

Definition Let A be a node of n dimensions. Then A denotes

the set of all the ianstances of node A, 1i.e.

A= {A(Il,...,In)| 1<=Ik<=R(<KA,k>), for 1<=k<{=n }.

Definition Let A be a node of n dimensions. Then A(Ii=Cl;
I1j=C2; +ss) denotes the set of all the instances of
node A with the ith subscript Ii being Cl and the jth

subscript IJj being C2, ... etc.,

Consider an edge from node A(Jl,¢..,Jm) to node B(Il,«..,In)
in the Array Graph:
B(IlyeeesIk,e0e,In) === A(El,ece,Ep,ecee,Em)

where J’s and 1°s are the node subscripts of node A and B

respectively, and E’s are the subscripting expressions of A.

Consider the subscript expressions of types 1, 2, 3, and 4.

1) If a subscript expression Ep is of type 1 and equals to-
Ik, then every element in B(Ik=c) depeands only on the
elements in 5(J§-c). Since B(Ik=c) does not depend on
any element in A(Jp=d) with dd>c, the Underlying Graph
dependencies are satisfied 1f node A, followed by B, are
bracketed by a loop where the parameters of the iteration
are the pth dimension of A and the kth dimension of B.

These are referred to as a distinguished dimension of A

or of B.

A

143

2) If the subscript expression Ep is type 2 or 3 and equals
to Ik-a, then for any positive integer c every element in
B(Ik=c) depends oaly on the elements in A(Jp=c-a). Since
the parameters of the bracketing loops are in asceanding
order (in step of 1) then this assures that A(Jp=d) is
computed before B(Ik=c) with d<c. Thus it is allowed to
schedule node A and B into one loop, with Ik and Jp the
distinguished dimensions.

3) 1f th; subscript expression Ep is type 4, then -for any
positive 1integers ¢ and d every element in B(Ik=c) may
depend on elements in A(Jp=d). We will be conservative
and assume that every element in B(Ilk=c) depends on at
least one element in A(Jp=d) with d>c. Therefore, it {is
impossible to designate the pth dimension of A and the
kth dimension of B as the distinguished dimensions fot' a

loop.

Example Given an assertion al as follows. Let A and B be

square arrays. There is an edge from array node A to

assertion node al.

al(I,J): B(I,J) = A(g,J);
where g is a type 4 subscript.
Consider the node set {A,al}. Consider scheduling this
set into omne 1loop with <A,1> and <al,I> as their
distinguished dimensions. Let SA be {A(J1,J2)|J1=2}
and SB be {al(I,J)|I=1}. SB is in the first instance

of the loop and SA is in the second 1instance of the

« 144
loop, therefore SB precedes SA. Consider next the
element al(l,2) of SB. We can fiand an element A(2,2)
in SA which precedes al(l,2) because of the type 4
subscript on <A,l> dimension. SB and SA then precede
each other, in the Underlying Graph, and therefore can

not be scheduled.

Example Given the assertion a2 below.
a2(1,J): Y(I,J) = X(1,J) + X(J,I1);

X i3 a square array and subscripts <X,1>,- <a2,1>, aad
‘ <a2,J> have the same range. We want to schedule the
node set {X,a2} 1in one loop with <X,1> and <a2,I> as
the distinguished dimensions.
All the subscript expressions being used with node X
are not type 4. AHowever, in the term X(J,I) a
subscript J occurs on the distinguished dimension of X,
i.e. <X, 1>. Since <a2,J> does not correspond to the
distinéuished dimension of node a2, it may be scheduled
in an inner level loop and iterates faster than <a2,I>,
therefore some array elements of X will be referenced
before defined. Thus we should not form a loop with

these designated distinguished dimensions.

. From the examples above we know that the subscript
expression on the distinguished dimension of a node must not

. be a general expression and it should <correspond to the

145
distinguished dimension of another node in the same loop,

otherwise the loop <can not be formed. Since the 1loop

instances are strictly running upward starting from one and

all the subscript expressions on the distinguished

dimensions are of the form I or I-k, no reference goes to
the later loop 1instances, therefore, no data dependency
relationship is violated. 1In fact, by constructing the loop

we have divided the whole computation into many smaller

" . tasks where every task corresponds to a loop instance. It

should be noticed that the formation of an outer 1loop doés
not exclude the possibility that the original computation
involves an unsolvable cycle. What we are assured 1is that
the outer 1loop divides the original problem into smaller

ones and which can be solved easier.

6.2.3 DECOMPOSING A MSCC THROUGH DELETION OF EDGES

Counsider now the case where an MSCC is scheduled in one
loop based on the tests described in the previous
subsection. The nodes in the MSCC have each a distinguished
dimension which corresponds to the loop variable. Also the
subscript expressions associated with the distinguished
dimensions are of the form either I or I-k. We will show in
the following that where the parameter of the 1loop 1is
stepped up from one by a step of one then edges which have a

subscript expression of type 2, i.e. I-k, are superfluous

146

and can be removed.

Consider an edge of the form B(eoeygIlynee) (===
A(ese,I-k,...) where I-k and I occur on the pth and the qth
dimension of nodes Avand B, respectively. If node A and B
are scheduled in the 1loop of I, then the elements in
é(Jp-I-k)'have been evaluated in the I-Fth loop instance and
the elements in Q(Iq-l) ar;& evaluated 1in the Ith loop
instance. Since the values of loop variables are ascending,
therefore every element of A(Jp=I-k) precedes all the
elements of B(Iq=I). This 1implies that the precedence
relation represented by the above edge 1s superflous as it
is enforced by the order of evaluation of the respective
elements. In short, when two nodes are scheduled in a loop
of loop variable I, the precedence relationship presented by
subscript expression I~k 1is subsumed by the order of loop
execution. This is illustrated in Fig. 6.2, showing the
Array Graph of a Factorial function which is defined with
recursion. The recursion causes a cycle of two nodes {al,

FAC}.

147

al: TFAC(I) = IF I=1 THEN 1 ELSE I#*FAC(I-1) ;

al |(<al,I>) al

3|(I-1) 7 KD 7

__/ o

Fig. 6.2 Remove I-k edges in a loop

These two nodes can be scheduled in a loop iterating
over node subscript <al,I)>. The kth 1instance of the
assertion al is evaluated in the kth loop 1instance and it
references the k-lth instance of the array FACT, which has
been evaluated previously in the k-1th loop 1nstaqnce.
Therefore the edge associated with subscrift expression I-1

can be removed. There is no further a cycle 1in the Array

Graph.

148

6.2.4 OTHER APPROACHES TO DECOMPOSING AN MSCC

.There are a number of methods for scheduling a MSCC 1in
an Array Graph. We have been primarily interested in the
cases that a cycle can be implemented by a 1loop with the
parameter that runs upward from one. However, not‘all the
cycles can be implemented with this simple 1loop nechanism.
Thus 1if the above approach fails it will be necessary to
apply other methods. Consider first the case where the
array elements may be evaluated in a sequence which does not
follow the Fatural ascending order of subscripts. Consider
for example the following specification which defines A, a

vector of 50 elements.

Example
A(I) = IF I=25 THEN X
ELSE IF I<25 THEN A(I+2)+X

ELSE A(I-1)+A(I~-25) ;

A possible PL/I program to compute array A 1is as
follows.
A(25) = X ;

DO I = 23 TO 1 BY -2

ve

ACL) = A(I+2)+X ;
END ;
A(26) = A(25)+A(1) ;
DO I = 24 TO 2 BY =2

we

A(I) = A(I+2)+X ;

149
END ;
DO I = 27 TO 50 ;
A(L) = A(I-1)+A(I-25) ;

END ;

When the subscript expressions are first order polynomials,
we can divide an array nodes into many parts and compute the

parts of the array separately [SHAS 78].

A cycle in the Array Graph may also be considered as a
set of simultaneous equations and numerical methods such as
Jacobl and Gauss~Seidel iterations can be applied to solve
the system of equations [GREB 81]. Since splitting nodes in
the Array Graph, as suggested by Shastry, is complicated to
apply, the MSCCs which can not be decomposed may be treated
similar to simultaneous equations and solved iteratively.
In this dissertation we will refer only to -the cases that a
MSCC can be decomposed as described above. The other

methods are described in the references.

6.2.5 A SIMPLE SCHEDULING ALGORITHM

The methods of scheduling an MSCC in a 1loop and
attempting to decompose a MSCC may have to be applied
repeatedly, depending on the outcome of each application.
This section describes a simple scheduling algorithm which

incorporates repeated application of the methods described

-y

150
earlier. It generates a correct schedule based on an Array
Graph. However it does not include the consideration of

program efficiency.

The algorithm consists of two mutually recursive
prﬁcedures, SCHEDULE_GRAPH and SCHEDULE_COMPONENT. Given
any Array Graph as input, SCHEDULE_GRAPH procedure finds the
MSCCs in the Array Graph. The MSCCs are then sorted into a
sequence {M1,M2,...,Mn} which retains the partial order of
the precedence relationships between the MSCCs.
SCHDULE_COMPONENT procedure then schedules each component
separately. If Si 1is the schedule of component Mi, the

sequence {S1,S2,...Sn} is returned as the schedule of the

original graph.

The input to procedure SCHEDULE_COMPONENT is an MSCC,
say Mi. If Mi i3 a single node component and there is no
unscheduled node subscript associated with 1it, the node
itself 1s returned as the schedule of the component.
Otherwise, the component may be schedulable in a loop. The
procedure tries to find a loop variable which satisfies the
requirements discussed in the previous section. If a 1loop
variable 1is found, say 1, it then deletes the edges in
component Mi with subscript expression I-k and marks the
distinguished dimensions of the nodes in Mi as scheduled.
Let Mi’ denote the resulting graph. Then it calls the
procedure SCHEDULE_GRAPH to produce a schedule for the graph

Mi’. After SCHEDULE_GRAPH returns the schedule of Mi’, a

151
loop with loop variable I and loop body, the schedule of Mi’
is formed by SCHEDULE_COMPONENT and returned as the schedule
of Mi. If no loop variable can be found, SCHEDULE_COMPONENT
sends a warning message to the user and calls the procedures

described in section 6.2.4 to decompose the MSCC.

6.3 MERGER OF COMPONENTS TO ATTAIN HIGHER EFFICIENCY

The basic scheduling algorithm, described above,
consists essentially of topological sorting of the nodes or
MSCCs in the Array Graph and of the enclosing of these
entities within the scope of nested loops for the respective
dimensions. 1In contrast, the scheduling algorithm offered
here considers the Array Graph globally and progressively
merges components into the scope of a selected 1loop which
reduces the most the use of memory and computiﬁg time. The
scope of the loopg in the schedule is thus progressively

enlarged.

Given an Array Graph as input, we can construct a
component graph where every MSCC is a component node and an
edge 1is drawn from component A to component B if and only 1if
there exists an edge in the original Array Graph which leads
from a node in the component A to a node in the component B.
The component graph 1s an acyclic graph. Note that the
MSCCs in an Array Graph are not further divisiple. The

merger process starts with the MSCCs in the Array Graph as

¥

152
the basic components, and through merger it creates larger
components progressively. A loop scope can be the union of
some MSCCs. In this section we will discuss the merging of

MSCCs in an Array Graph into the scope of one loop.

6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE

The condition for scheduling a set of component in one

loop 1s that every component in the scope of a loop have a

distinguished dimension corresponding to the loop variable.

There are several condition on designating distinguished
dimension of a node in an Array Graph or a Component Graph.
First the distinguished dimensions of the components must be
in the same range set and have a common range which
specifies the number of iterations of the loop. The loop
variable is stepped up by one 1in successive 1iterations.
Therefore also the order of execution of elements of each
component will be evaluated in this order. The second
condition 1is that an evaluation of each 1instance of a
component in a loop instance should not refer to values

computed in later loop instances.

Further, components to be merged ianto the scope of a
loop may not depend on any other compoment which does not
have a distinguished dimension and which in turn depends on
one 0of the components to be merged. The rule is that a set

of components which can be scheduled in one loop should be

153

equal to 1ts closure. The closure of a set of components __.

includes all the components which are reachable from any

component in the set and whigh also reach any component in
the set. For example, consider the component graph in
Fig. 6.3. The components Cl, C2, and CA have a common
dimension I. Still they can not be merged into the scope of
a loop with the loop variable I. The closure of the set of
components {Cl, C2, C4} includes component C3. Since C3
does not iterate with subscript I, it caan not be scheduled
in the loop of I. Component C4 can be scheduled only after
component C3. Therefore, at most we can merge components Cl

and C2 or C2 and C4 into the scope of a loop.

¥

4

154

The set

Fig. 6.3 Closure of a set of components

The search and selection of a distinguished dimension
for each component in a set is similar to the analysis of
subscript expressions in MSCCs described in section 6.2. We
showed there that the subscript expressions associated with
edges terminating at a component can not be type 4 and that
subscript expressions associated with the edge should

connect the distinguished dimensions of the components at

the ends of the edge.

i

155

6.3.2 MERGER OF COMPONENTS WITH SUBLINEARLY RELATED RANGE

In the previous subsection, we considered merging
components with distinguished dimensions which have exactly
the same range as the loop variable. Every node 1is then

executed once Iin each loop instance.

There 1is a large class of cases where subscript
expressions are explicitly related, i.e. where we use an
indirect subscript X(I) and X 1is a function of I.
Statements with such an indirect subscript may in some case
be conditionally executed in the scope of a 1loop for the
parameter 1I. We will require that the in&irect subscript
expression X(I) have values which grow monotonically and
slower than that of the loop variable I. This feature of

sublinearity was already mentioned in section 4.4.2. As

explained in [PNPR 80], use of indirect sublinear subscript
is important in many instances, such as selecting a subset
of records from a sequential file or merging two sequential

files into one.

In section 4.4.2 we have discussed the criterion for
recognizing a vector which can be wused for indirect
indexing. The values of elements of an indirect 1indexing
vector grow slower than the subsc?ipt value of the elements.
The range of its dimension will be called here the major
range, while the range of {its content will be called

subrange relative to the major range. For _example, the

"156
variable X in Fig. 6.4 satisfies these criteria., X is used
in the subscript expression of the first dimension of node A
and therefore R(<X,1>) 1is a major range and R(<KA,1>) is a

subrange relative to R(<X,1>).

X(1) = If I=1 THEN 1
ELSE IF <condition is true> THEN X(I-1)+1
ELSE X(I-1) ;

B(I) = A(X(I)) ;

Fig. 6.4 Example of indirect sublinear indexing
in subscript expression

A subrange relative to a major range may be the major
range of some other subranges. Therefore, the sublinear
relationship between the ranges may form a tree with the
maximal major range at the root. We merge major ranges and
subranges in a bottom up order. By progressively merging
each subrange with the next level major range finally we
will obtain a loop which 1iterates in the maximal major
range, and where all of its subranges are nested inside the
loop. Such merger of subranges may not always be possible.
For example, 1if type 4 subscript expression 1is used in the
distinguished dimensions of a component, the precedence
relationship will preveat us from scheduling this component

into the scope of a loop.

157

When a set of components with a subrange and a major
range are merged into the scope of a loop, the major range
will be used as the loop range and the value of elements of
the 1iandirect indexing vector will be checked to evaluate
only the elements which are within the subrange. An
instance of the subrange is executed for each stepping up by
1l of the indirect indexing vector. The computation of the
indirect index shpuld precede the computation of any node
within the subrange. This introduces an additional

precedence relationship.

~ We will treat subscript expressions'of types 5, 6, and
7 similar to types 1, 2, and 3, respectively, in checking
the consistency of subscript expressions of the
distinguished dimensions as discussed in section 6.2.1l. If
a check of the subscript expressions of the distinguished
dimensions fails, i.e. some type 4 subscript expressions
are used or the subscript expressions do not connect
distinguished dimensions of the components, we will treat
these indirect subscript expressions of type 5, 6, and 7 as
type 4. If the check succeeds, we will add edges in the
Array Graph from the indirect indexing vector to the nodes
referencing 1it. This 1is similar to the addition of edges

from a range array to the nodes referencing the range array.

158
6.4 MEMORY EFFICIENCY

In some cases the same memory space may be shared by a
number of variables, thereby wusing memory storage more
efficiently. Small savings of memory space are unot worth
the cost of the analysis. For example, sharing memory space
among few scalar variables does not save much memory space.
Our approach will concentrate on having elements of the same
array share the memory space. Since the range of each array
dimension is 1in general 1large and there are several
dimensions, the saving should be considerable. It should
also be noted that memory space is statically allocated to
the variables ian the produced program. Compared with
dynamic memory.allocation, static memory allocation has the
advantages of simplifying the program control in that there
is no need to allocate memory space at run time. This also

facilitates efficient random access of array elements.

Three alternative approaches to allocating memory are

used:

l. Physical Dimension

If all the elements along some array dimension have
different memory spaces assigned to them, the memory
space allocated is proportional to the range of the
array dimension. This method of allocating memory will
be referred to in the following as the

physical dimension. e e

2. Virtural Dimension .

[]

159
If all the elements along some array dimension share
the same memory space, a single element memory space
serves for the entire array dimension. We will refer

to this method of allocation as virtual dimension.

3. Window of width k
In some cases there 1is 'no need to store all the
elements in an array dimension in main memory. But an
array reference of the form A(I-k) makes it necessary
to keep k+1 array elements 1in main memory at any
moment. This type of memory allocation will be

referred to as window of width k+1.

For every array dimension we have to decide how the
memory space 1is to be allocated. The memory allocation
decision is related to the program execution sequence.
Different program schedules may require different memory
allocation approaches. For example, Fig. 6.5 shows two
different schedules for copying a file. The one which reads
all the records into the main memory then writes them out
takes more memory space than the other one which copies the

file, record by record.

— Schedule-1
DOI;
READ(A(I)) ;
END 3
DO I
B(I) = A(I) ;
END
D0 I ;
WRITE(B(I)) ;
END 3

O

160

(<A,15)

(<al,I>)

(<B,1>)

L §chedule42 -

DO I ;s
READCA(I))
B(I) = A(I)
WRITE(B(I)) 3

END 3

Fig. 6.5 Two schedules for copying a file

In the following we will show how the memory allocation

decisions are influenced by the program schedule and how the

memory space requirement

evaluated.

the program variables 1is

161
6.4.1 EVALUATION OF MEMORY USAGE

We will first consider in what units we should allocate
memory space. If a data structure or substructure 1s used
as an argument of a function or an operation, the whole
structure mnust be passed between program modules. The
relative position of 1its constituen} elements becomes
important to the computation. Therefore we can not allocate
memory space to its elements separately. On the other hand,
economic allocation of memory space requires that the unit
be as small as possible. We will require that all the
operations operate on fields. Operations on higher level
structure must be therefore transfo;med into operations on
elementary data structure. The memory space will therefore

be allocated in the unit of fields.

The array dimensions above the unit data structure will
be considered as lggical array dimensions for which there
may not be corresponding physical dimensions in the
allocated memory sSpace., One of the three approaches-
mentioned above may be used to allocate memory space. Since
a virtual dimension requires 1less memory space than a
physical dimension, we would not physically allocate memory
space to an array dimension unless it is necessary based on
the logic of the specification. In the following we will
discuss the conditions when an array dimension has to be

physical or window of width k.

3

162

The values of data structures may be produced by some
program activities such as reading an input file or
evaluating an expression, and consumed by some other
activiﬁies such as writing an output file or referencing an
expression. If the production and coansumption of the
elements along an array dimension does not proceed in a
planned ﬁrder then all the array elements that are produced
can not be discarded. All must be stored simultaneously in

main memory.

Given a program schedule we can check whether the
pfogram activities which produce or consume the values along
an array dimension are all in one loop. If not, that array
dimension should be a physical dimension. If all the
definitions and references of an array are in the same loop,
we should further check whether any type 2 or 3 subscript
expressions are used, because the occurrence of I-k type
subscript implies the necessity of keeping previous k
elements while computing a new array element. Thus the
memory space for the array dimension should be a window of
width k+l. It should be noted that 1If an array has 1its
distinguished dimension wusing either a finite window or a
physical dimension memory allocation scheme, all the 1loop
for array dimensions which are scheduled nested inside the
current loop have to be of physical dimensions. This 1is
illustrated 1in Fig. 6.6, where a two dimensional array A is

computed by a nested loop. Suppose the outer loop iterates

163
over the first dimension of A, i.e. <A,i>. The presence of
subscript expression I~1 requires a memory allocation scheme
of window of width two for <A,1> dimension. Since the array
element of A is computed row by row and the computation of
array elements 1in one row depends on the value of array
elements in the previous row, therefore, we will have to

allocate two rows of memory space for array A.

al: A(I,J) = IF I=1 THEN £(J)
ELSE g(A(I-1),J) 3

‘(a) MOLEL specification

mMI; Array A
DO J s
‘ al(I,d) 3 AL - - =-S5
"END -———>|AID
- o s - _ ‘ | ‘—-
(g) Schedule (c) Memcry requirement |

Fig. 6.6 Effect of window dimension on the outer loop

over dimensions on the inner loops

After the memory allocation approach for every array
dimension has been determined, we can estimate the memory
space requirement, which will serve as a measure of the

program quality. Given an N dimensional array A, we can

164
define the required memory space M for a node subscript

<A,1i> as follows.

M(<A,1>) = 1 if the ith dimension 1is virtual,
= k 1f using window of width k,
= upper bound of R(<KA,1>) if physical.

If an array dimension is not physical, the upper bound of
its range is not used in calculating the memory requirement.
The upper bound is needed to estimate the memory space for a
physical dimension. Sometimes the range of an array
dimension 1s specified by an assertion and the wupper bouna
is not known until run time. In that case we can only
assume the upper bound 1is infinity unles§ ﬁhe user has
specified an upper bouﬁd of the range 1in the data
description statements. The memory space for array A is the
product of M(<A,i>)‘s for all the dimensions of A. The
total memory requirement of a program 1s the sum of the

memory space used by every array variable.

6.4.2 MEMORY PENALTY

Analysis of the loop scope leads to the selection of
the memory allocation scheme for the respective array
dimension. The memory penalty of a loop is defined as the
memory cost of the arrays included in the loop scope. The
memory cost 1s the difference in memory requirements between

the ideal case (virtual dimension) and the memory

L]

165
requirements 1f the loop is formed. In order to evaluate
the memory penalty of a loop, we first find all the nodes
whose memory allocation scheme 1is influenced by the

construction of the considered loop.

Whenever an Array Graph edge crosses the loop boundary,
a source or target node of the nodes in the loop will be
outside of the loop. Either one of the two nodes may
require wusing the physicalimemory allocation scheme. For
example, if an edge from a data node to an assertion node
crosses the 1loop boundary, (i.e. the data node is in the
scope of the loop while the assertion node is outside), the
data node is defined in one loop and referenced outside 1it.
fherefore, its array dimensions have 'to be physical.
Similarly 1if the edge crossing the loop boundary is from an

assertion node to a data node, the dimension of the target

node has to be physical.

Each node under consideration may fall into one of the
following three <categories and the memory penalty can be
computed accordingly.

1. A physical dimension for a distinguished dimension. This
category 1s recognized by the existence of an edge which
crosses a loop boundary. The memory requirement in {ideal
case is taken as that of a virtual dimension. The memory
requirement for a loop is computed by multiplying the
upper bounds of all the unscheduled dimensions and the

dimension that is considered for a loop., The difference

1

166
is the penalty of the loop for this array.
A virtual dimension for the distinguished dimension. In
this case the loop boundary is not crossed by gdges aand
all the subscript expressions on 1its distinguished
dimension are type 1 subscripts. The memory penalty for
a virtual dimension should be zero.
A window of width k+l1 for the distinguished dimension.
Similar to the virtual dimension category. No edges
would cross the 1loop boundary. | However subscript
expressions of the form I-k on 1its distinguished
dimension are allowed. The other unscheduled dimensions
are considered to be physical dimensions. The penalty is

computed similar to the first category.

Example Consider the memory penalty of a - loop shown in

Fig. 6.7. The ranges of subscripts I and J are 10 and
20 respectively, and every data element occupies one
unit of memory space., The memory requireménts in ideal
cagses for node A, B, C, and D are 1, 1, 1, and 1
respectively, The memory requirements if the loop is
formed will be 10, 40, 1, and 200 respectively. Arrays
A and D have to be physical and the first dimension of
array B needs a window of width 2. The memory penalty
for this loop is the difference of 251 and 4, i.e. 247

units of memory space.

167

loop on I
———————— - -
A) (D MP(A) 10 -1 =8

:- |
| ! =
: 1
I (I !
‘ |
@_I,J) : MP(B) = 2 % 20 = 1 # 1 = 39
I (I-1,5)
@(I,J) : MP(C) = 1 %1 -1%1.2=0 . .
: : '
l (1,7 !

|
a
| @(I,J) : MP(D) = 10 % 20 - 1 ® 1 = 199
i
W [| -

Fig. 6.7 Example of computing memory penalty

Information about the wunscheduled dimensions may be
used to compute the penalty more accurately. For example,
some array dimensions must be physical dimensions because of
the use of type 4 subscript expressions. During the process
of scheduling, we can accumulate such informatiomn to speed

up the memory penalty evaluations.

4

168

6.5 A HEURISTIC APPROACH TO MEMORY-EFFICIENT SCHEDULING

In general, there is a large number of schedules which
can realize the computation of a program specification. The
schedule with the minimal total memory requirement will be

called an absolute optimal program. In principle it should

be possible to enumerate all the possible schedules for an
Array Graph, as there is a finite number of thém, and then
evaluate the memory requirement of each schedule. We would
thus be able to find the absolute optimal schedule. For
several reasouns this method is not practical. The progran
events being scheduled are low level activities represented
by nodes, i.e. statements and variables, and an Array Graph
may easily consists of several hundred or even thousands of
nodes. Also the nodes 1in the Array Graph nay be
multi-dimensional and the number of combinations of possible
nested loops is very large. Further, the constraints on the
feasible schedules are complicated. Thus enumerating all
the feasible schedules would be prohibitive, and an
exhaustive examination of all the feasible schedules to find

the absolute optimum is not acceptable.

Instead we have adopted the heuristic approach as
follows. Given an Array Graph as input, we first construct
an acyclic component graph with the MSCCs in the Array Graph
as nodes. Our objective is to repeatedly merge components
in the component graph into blocks which correspond to 1loop

scopes. This process will be applied repeatedly to the

169
levels of nested loops. On the first application it will
produce the outer 1level 1loops. The blocks are formed by
merging as many codponents as possible which have the same
or related ranges. The process 1s repeated for each lower
level of the nested 1loops, based on the subgraph that
cct;esponds to the higher level loop. This process may not
result in the absolute optimal program as the outer 1level
loop scopes are determined without the analysis of the
effects of inner loop structures on the use of memory space.
However considering the effect of inner loops on memory
usage 1s a complex process and it represents a large
increase in the number of alternatives that must be
evaluated. The scope of the major loops in a program are
maximized 1in our proposed approach and there is no, or
little, effect of inner loops on memory wusage. Thus this
heuristic approach represents a good compromise between the

amount of analysis 1involved and the payoff 1in reducing

memory usage.

On each level of loops, the scheduling process consists
of a trial scheduling for every range set 1in the
corresponding Component Graph. A loop for the range R will
enclose only the components which have dimensions in the
range set assoclated with range R. The range sets related
to R (through sublinear indirect indexes) will later be
merged with the blocks of range R. The maximum loop scope

for every range R is the range set of R.

170

The trial scheduling of each range set consists of
finding the <closure of the range set and an attempt to
schedule nodes in the set which may be within the scope 6f
the respective 1loop. We first merge 1into a block the
components in the range set which do not have any
predecessors in the’closure of the range set. Progressively
we will merge into the block other components which depend
on those 1in the block, as far as possible. The merger
involves selection of a distinguished dimension {in each
component, as described above. At the end we evaluate the
memory penalty of the loop scope obtained by the trial
scheduling. The 1loop with the smallest penalty will be
scheduled finally. This process will be repeated with the
unscheduled portion of the graph until all the components in

the Component Graph are scheduled.

There are many possible orders for merging components
in the closure of a range set, to form the scope of a loop.
For example, we may arbitrarily pick a component in the
middle of the Component Graph and merge it with its neighbor
components or start with a component on which no other
components depend and merge the components backward.
However, considering all the possible orders of mergers will
further 1increase the number of alternatives that must be
evaluated. The ordér of mergers is unimportant in the case
where the whole range set can be scheduled in one loop, i.e.

it is the case that all the array dimensions may become

171
virtual. No matter in what order we merge the components,
we will finally get the same loop scope. Again, we selected
the forward merging of the Component Graph as a good

compromise between quality of the schedule and the amount of

analysis.

It 1is necessary next to order the blocks associated
with outside 1level 1loops 1in an execution sequence order.
The memory cost will be the same for any order that
maintains the precedence relations between these blocks. We
choose to order the blocks by topological sorting. For

every outer level loop we mark the distinguished dimensions

of the blocks as scheduled.

We apply the scheduling algorithm recursively . to each
inner nested 1level 1loop by considering only the subgraph
which contains the nodes in one loop scope. The resulting

schedule will be the body of the outer level loop.

Wé will 1llustrate this process ﬁith an example of
scheduling the Array Graph shown in Fig. 6.8. Every node is
a MSCC by itself, and the initial Component Graph is in fact
the Array Graph. The candidate ranges are R(<A,1>) and
R(<B,1>). Assume that the repetition numbers are 500 and
200, respectively. The range set of R(<A,1>) contains three
nodes: A, al, and C. The closure of {A, al, C} is 1itself.
If we schedule the whole set into one loop, the penalty will

be making array B physical. On the other hand, the trial

172
scheduling of the range set of R(<B,1>) contains two nodes:
B and al. If this set is scehduled in one loop, the penalty
will be making both array A and C physical. We will select
the loop of R(<KB,1>) since the size of array B 1is greater
than the sum of the sizes of array A and C. We mark the
component B and al as scheduled. There are two components
left to be scheduled. We have no altermative but to
schedule each of them in a separate 1loop. The resulting

schedule is shown in Fig. 6.8(b).

173

Fig. 6.8(a) An Array Graph to be scheduled

DO I

®

END 3
Do J 3
END :
DO I ;
END 3

Fig. 6.8(b) The outer level loop structure

174
6.6 THE SCHEDULING ALGORITHM

The scheduling algorithm, called SCHEDULE, is
documented below. The overall process 1s illustrated in
Fig. 6.9. The solid lines show procedure calls and the
dashed 1lines show passing of parameters and returns. The
SCHEDULE process starts with construction of a reduced form
of the Array Graph, which will be modified in the course of
scheduling and is also easier to manipulate. It then calls
a recursive | procedure SCHEDULE_GRAPH. This procedure
accepts an Array Graph as input and returns a schedule as
output. SCHEDULE_GRAPH calls on a number of procedures to
perform its tasks. It calls first the procedure STRONG to
construct a Component Graph out of the reduced Array Graph

(or subgraphs of it in recursive calls).

Next, the major iteration in SCHEDULE_GRAPH schedules
the outer loop scopes. This iteration repeats until all the
components in the Component Graph have been scheduled. This

major iteration loop finds first all the candidate ranges.

Next there is a nested iteration for trial scheduling
of all the candidates ranges. It consists of calls to four
procedures. Procedure INDRSUB is called first to find the
range sets of each candidate range. If a candidate range
has some subranges related to it, the sets of the subranges
will also be included in the major range set. CLOSURE is

then called to get the subgraph for the closure of the range

, 175
set. Then MAX SCHED is called to do a trial scheduling.
MAX SCHED accepts as input a subgraph which consists of the
closure of a respective range set and returns as output a
loop scope which contains components in the closure of the
range set that have been trial scheduled. The trial
scheduling consists of repeated mergers into a loop scope of
the components in the closure of the range set which do not
depend on any other components. As a component is merged
into the 1loop scope, it 1is deleted from the subgraph of
closure of the range set. The merger repeats until no more
components can be scheduled. Procedure EVALUATE is then
called to compute the memory penalty assoclated with the

loop scope.

At the end of the nested iterations for all the
candidate ranges, SCHEDULE_GRAPH selects the loop scope with
the smallest penalty. It will eventually form a part of the
final schedule. ‘The components in the selected loop scope

are first merged into a single component and then marked off

in the Component Graph.

The above major iteration loop is repeated, as noted
above, wuntil the Component Graph is empty. The outer loop
scopes are thus all found. The corresponding components are
topologically sorted. It 1is necessary then to find the
nested loop scopés, 1if any, £for each outer 1loop scope
subgraph. As SCHEDULE_GRAPH selects the next component in

the topological sorting, it calls the procedure EXTRACT to

176
extract these subgraphs, which correspond to the selected
loop scopes. Each of these subgraphs must be internally
scheduled. EXTRACT calls SCHEDULE_GRAPH recursively, to
schedule each of the subgraphs. A component that 1is not

within a loop scope needs not be further internally

scheduled.

177

r==Array Graph =~
- STRONG -
K-Component Graph-
--Range Candidate-)
LE_ 2 TNDRSUB
: . [K---Range Set-=-r1 NI FEE
_ i ﬁﬂ_l . - »
' ST : -
[] | -
! 1
] '
5 ['
E %« we-<Range Set---)l
] g > CLOSURE
3 ci" X--.-Closure --n--
R & :
: 1
1]
i]
Nt =
s . ecewaClosure = - .
EXTRACT MAX SCHED
K - Trial Schedule- -
- - Trial Schedule->
COND_GRAPH 7| EVALUATE

-Memory Penalty---

Fig. 6.9 Various componenfs of the scheduling
algorithm

Global Data Structure for SCHEDULE

178

The reduced form Array Graph, constructed by the SCHEDULE

procedure, counsists of a 1list of elements of type GNODE,

with the following fields:

NXT_GNODE - A pointer to the next element in the 1list.
(At the generation of the reduced form Array
Graph all the GNODEs form a single 1list.
During the process separate lists will link
the GNODEs in each MSCC.)

NODE_ID - The node number of the element in the
dictionary.

SUXL - A pointer to a list of edges connecting this
element to its successors. Initially this is
identical to the SUCC_LIST 1list. As the
process proceeds, some of the edges are

removed from this list.

The components in the reduced Array Graph are found by the
procedure STRONG. STRONG modifies the list connecting the

nodes in the Array Graph to form separate 1lists for each

MSCC.

The initial number of components in a Component Graph

is denoted as COMP_CNT. Every component 1s assigned a

.. component number from one to COMP_CNT. The component graph
is defined in the following four vectors.

1) NODELST(COMP_CNT). Points to a list of GNODE elements in

the Array Graph which belong to the respective component.

2) ACOMP(COMP_CNT). A boolean value showing whether the

179
component exists 1in the component graph or not. Ia the
course of the process, when a component is merged 1into
some other component, 1ts corresponding ACOMP bit is
reset.

3) iNCMP(COHP_CNT). A boolean value showing whether a
component has been scheduled or not. Once a component
has been scheduled, its corresponding bit will be reset.
Thereby it will not be scheduled again.

4) CEDGES(COMP_CNT). Points to a 1list of edges which
originate from the component and end at its successor
components. Every element in the 1list has two fields.
One field contains the component number of its successor
and the other is a pointer which points to the next edge.

A subgraph of the Component Graph can be represented by a

bit vector 1like INCMP. If a component is in the subgraph,

its correspoanding bit will be set. Otherwise, the
corresponding bit will be reset. 1In the following, all the
subgraphs of the Component Graph will use this

representation.

The finally generated program schgdule is structured as
a 1list of schedule elements. There are four types of
schedule elements: node~-element, for—-element,
simul-element, and cond-element., A node—element corresponds
to a primitive program event in the generated program such
as the computation of an assertion, opening a file, reading

a record. A for—element corresponds to a loop 1in the

A)

180
program. The body of the 1loop is also represented by a
schedule 1list and pointed to from the for-element.
Similarly, a simul-element corresponds to an iterative
computation for a simultaneous block and points to a list in
the body of the 1iteration. The cond~element is used to
represeat a conditionally executed block which corresponds
to the scope of a subrange. It will point to the respective
body 1list.
1) A node-element 1s a structure NELMNT, with the following
fields:
NXT_NLMN =~ Pointer to the next element in the
schedule.
NLMN_TYPE - Equal to 1, denoting this is a
node-element.
NODES$ - The node number.
2) A for-element {38 a structure FELMNT, with the following
fields:
NXT_FLMN - Pointer to the next element in the
schedule.
FLMN_TYPE - Equal to 2, denoting this is a for-element.
ELMNT_LIST- Pointer to a program schedule which is the
body of the loope.
Fd&_NAME -« The dictionary node number of the 1loop
variable.
FOR_RANGE - The dictionary node number where the range
of the loop variable is specified.

3) A simul-element is a structure SELMNT which is used for a

181

simultaneous equation block. It has the same structure

as FELMNT with FLMN TYPE equal to 3.

4) A cond~element 1is used for a conditionally executed

block. It has a similar data structure as FELMNT except

that the field FLMN_TYPE is always equal to 4.

Algorithm 6.1 SCHEDULE_GRAPH

Input .

G: /A pointer to the reduced Array Graph which 1is
represented by a GNODE list.
L: The nesting level L.

Output.

A program schedule for the input graph G.

Data Structures.

GSIZE(COMP_CNT): The number of nodes in a component.

MINFREE(COMP_CNT): The minimum of the number of

unscheduled dimensions associated with any node in a

component.
SUBRNGR($RNG_SET,$RNG_SET): A boolean matrix which shows
the subrange relationships. If the jth range set is

a subrange of the ith range set, then SUBRNGR(1i,]J)
will be set to ‘1’B.

RNG_VEC($RNG_SET): For each range set, it indicates the

node number of the indirect indexing vector which
reduces the major range into this range set, if any.

l. Call procedure STRONG to find out all the MSCCs 1in the

182
Array Graph G and then construct a Component Graph with
each MSCC as a node. Initially all the components are
put 1in the Componént Graph and the corresponding ACOMP
and INCMP bits are set to ‘1°B.
For each component, compute the corresponding element of
the vector GSIZE, which is the number of nodes in the
component, and the corresponding element in the vector
MINFREE, which is the minimum of the number of
unscheduled dimensions associated with any node 1in the
component., Also compute the SUBRNGR matrix by scanning
the indirect subscript expressions used in the
assertions, and the vector RNG_VEC which gives for each
range set number the node number of the indirect
subscript, if any.
If a component has MINFREE=(Q, it is not to be scheduled
in ‘any loop. We will mark it off from the Component
Graph by setting the corresponding INCMP bit to ‘0‘B.
This component will be a single component block.
Repeat step 5 to 11 to schedule all the outer level
loops, wuntil all components in the Component Graph have
been marked off.
Select the ranges of node dimeﬁsions which are not yet
scheduled and where the respective range does not have
real arguments of unscheduled subscripts. The selected
ranges can be scheduled in the outer level loops. The

ranges of those node dimensions will be the candidate

raunges.

6.

10.

11.

12.

183
Repeat step 7 to 10 for each range candidate. Steps 7
to 10 consist of a trial scheduling of a range candidate
Ri.
Call procedure INDRSUB. This procedure computes a
subgraph S which contains all the components which are
ian the range set of Ri or the range set of a subrange of
Ri. S is represented as a bit map similar to INCMP.
Call procedure CLOSURE to find the subgraph
S’=mclosure(S).

Call procedure MAX_SCHED with subgraph §° and range

candidate Ri as input parameters to form a loop scope Li

which contains a subgraph of S°. Li is represented as a
bit map similar to INCMP.

Call procedure EVALUATE to compute the memory penalty of
Li.

Choose the loop Lj with the smallest memary penalty.
Merge all the components in LJj into one component, say
Ck, by modifying the 1list pointed to by the NODELST of
Ck to 1include all the GNODEs in the other merged
components. ACOMP, INCMP; and CEDGES vectors are also
modified to reflect the new component. Then set
INCMP(k) to ‘0’B to mark the whole loop scope off from
the Component Graph.

Do a topological sort over the tesultiﬁg components of
the component graph where each component corresponds to
either a single node or a loop scope in the schedule to

be returned.

184

13. Schedule each component separately. If there 1s no
distinguished dimension £for the nodes 1in a merged
component, a node-element will be formed for the
component., Otherwise, <c¢call the procedure EXTRACT to'

form a for-element for the component.

Algorithm 6.2 STRONG

Input.
G: A pointer to an Array Graph.
Output. .

NODELST: A list of components which are the MSCCs of the
input graph. Every component is répresented by a
list of GNODE elements which belong to the
component.

l., Clear the stack, the component count, the 1list of
components NODELST, and the variable COUNT. For each
node v in the graph G set

DFNUMBER(v) = 0
2. For each node v in the graph G such that DFNUMBER(v)=0

‘call SEARCH(v) to add the components reachable from v to

the component list NODELST.

3. Return the component list as the result.

Algorithm 6.3 SEARCH -

Input.
v: A node in a graph which is not examined yet.

Qutput.

4.

185
The NODELST for all the MSCCs reachable from node v.
Set COUNT to COUNT+1 and DFNUMBER(v), LOWLINK(v) to
COUNT. Push v on the stack.
Repeat the following substeps for each node w, a direct
descendant of v.
2.1 If DFNUMBER(w)=0, <call SEARCH(w) and then let
LOWLINK(v)=min(LOWLINK(v),LOWLINK(w)).
2.2. Else, 1f DFNUMBER(w)>0 and w is on the stack, then
let LOWLINK(V)-min(DFﬁUMBER(w),LOWLINK(V)).
If LOWLINK(v)<DFNUMBER(v) then return.
Else, LOWLINK(v)=DFNUMBER(v). Node v is a root of a
strongly connected component. All the elements (above
and including v) on the stack are successively popped
off the stack and linked into a list - a subgraph which
is defined as a component. This component is placed on
the top of a 1list of components pointed to by the
variable COMP_LIST. In addition a wunique component
number 13 assigned to each node w 1in the current

component.

Algorithm 6.4 INDRSUB(RANGE,GI)

Input .

RANGE: A candidate range (a range set number).

Qutput.

GIl: A subgraph which contains all the components in the
range set of RANGE and the components in the range

sets of the subraﬁges of RANGE which can be included

A

l.

3.

7.

186
in the loop scope of RANGE.

Construct a subgraph GI which contains all the
components in the Component Graph which have an
unscheduled dimension with the range RANGE. GI 1is
repfesented in a bit vector similar to INCMP. Set
GI(k)="1’B if the kgh component is in the range set of
RANGE. The edges from these nodes are given in CEDGES.
If RANGE has no subranges, return GI as the result.
This information stored previously in SUBRNGR matrix,
which shows the subrange relationships.
Otherwise, repeat step 5 to 8 for each immediate
subrange RNGIK of RANGE.
Call INDRSUB recursively with RNGIK as input parameter
and GIK as the output parameter. GIK will contain the
components which can be scheduled in the loop of RNGIK.
Call procedure CLOSURE to compute the closure of GIK 1in
the Component Graph. Then put the closure into GIK.
Set the union of GI and GIK into GI. (Note that this
may be reversed in step 8.)
Call MAX_ SCHED procedure to do a trial scheduling for
subgraph GI.
If the subgrpah GI can not be scheduled completely, then
at least one node, and possibly more, will have to be
physical. Also the range specification of the subrange
may become necessary. Therefore we decided that in this
case it 1is not worthwhile to merge the range set of

RNGIK with the range set of RANGE and GIK is taken out

. 187
of GI.

9. Return GI as the result.

‘Algorithm 6.5 CLOSURE(COMPS)
Input.
COMPS(COMP_CNT): A bit vector with a set of components
marked by ‘1‘B. Other components are marked by
‘0°B.
The algorithm also uses the global data structures
(ACOMP and CEDGES).
Output. .)
CCOMPS: A bit vector with the closure of the set of
:
components in the input marked by ‘1°B. Other

. components are marked by ‘0’B.

v l. Create a bit vector NACOMP (size COMP_CNT) with the
components in ACOMP marked except the components in
COMPS are merged into one component. This also involves
creating a vector NCEDGES similar to CEDGES except
reflecting the merger of the components in COMPS.

2. Find all the MSCCs in the new component graph
(consisting of the new vectors NACOMP and NCEDGES).

3. Locate the MSCC which includes the components in COMPS.

4. Construct CCOMPS, a bit vector (size COMP_CNT), with all
the components in the MSCC marked. This is the closure

- set of the input.

Algorithm 6.6 MAX_SCHED

3

A

188
Input.,

INCMP: A bit vector where a set of yet unscheduled
components 1is marked by ‘1°B. Other scheduled
components have a value ‘0’B. Note that these
unscheduled components are the basic MSCCs found by
STRONG. The function of MAX SCHED is to schedule as
many of the marked components as possible.

MERGCMP: A bit vector with the closure of a range set
marked by ‘1’B.

RANGE: The candidate range (range set number).

Qutput.

COMPS: A bit vector with the components, which have been
trial scheduled in a loop, marked by ‘1’B.

POSITION: A vector (size is DICTIND- the number of nodes
in the dictionary). The position in each scheduled
node of the distinguished dimensions that
corresponds to the loop parameter.

l. Initialize the POSITION entries to O.

2. For each component i, if INCMP(i)="1’B (i.e. it is not
yet scheduled), MERGCMP(i)="1’B (i.e. it 1s in the
closure set), then search the CEDGES vector and set
PREDCNT(Li) to number of predecessors in MERGCMP. If
PREDCNT(1i)=0 then put component 1 1into a 1list of
candidates to be trial scheduled.

3. Repeat steps & to 8 until the 1list (referred to in step
2) 1is empty. The function of steps 4 to 8 is to merge

one component from the 1list into the loop scope

3

189
represented by COMPS.

Remove a component, say Ci, from the 1list. Search

through the NODELST of Ci, if there exists a node v with

POSITION(v)>0 (1.e. its distinguished dimension has

been determined in a previous 1iteration), then set

FIRSTNODE=v, and go to step 7.

Else, arbitrarily pick any node of the component. Let

it be denoted by v. Set FIRSTNODE=v.

Search the subscript list of node v wuntil finding a

dimension j that has not been scheduled in a loop scope

(i.e. IDWITH=0) and its range is the same as the RANGE

parameter. If found, then POSITION(v)=j. If none found

then this component should not be scheduled in the loop
scope. Therefore go to next iteration (i.e. end of

step 9).

Propagate the distinguished dimension of node v repeatly

until all the nodes in Ci have their distinguish?d

dimensions defined. During each propagation step:

7.1 Propagate the distinguished dimension forward aléng
the edges originated from mnode v to all the nodes at
the terminating end of the edges.

7.2 If the node to which a distinguished dimension 1is
propagated d;es not belong to Ci then do not further
propagating the distinguished dimensién from this
node forwards.

7.3 1f propagation is not possible to any node 1in Ci

because of type 4 subscript expression then the

“

LY

190
current iteration may be terminated, i.e. go to end
of step 9.

8. The current component can be merged into the 1loop
scope. Set COMPS(i)="1’B.

9. Search through the list pointed by CEDGES(1i). For
every edge from Ci to Ck set
PREDCNT(k)=PREDCNT(k)~-1. 1f PREDCNT(k)=0,
INCMP(k)='1"B, and MERGCMP(k)=‘1‘B, then put Ck into

candidate list.

Algorithm 6.7 EVALUATE

Function: Given a loop scope, compute the resulting penalty
in use of memory. This procedure is called after
each trial schedule for a range candidate and again
after the final schedule was selected.

Input.

COMPS: A bit vector of size COMP_CNT with the bits
correspondning to components in a loop scope equal
to ‘1’B.

EVAL_SET: A bit denoting whether EVALUATE is called to
evaluate memory penalty of a trial schedule or for
the selected schedule, in which case the selected
memory allocations are recorded in STOTYP.

Outpute.

PENALTY: The memory penalty of the loop scope, in bytes.

Data structure.

SRCPHY, TGTPHY: When an edge in an Array Graph crosses a

P

2.

191
boundary of a loop scope then, depending on the type
of the edge, the memory allocation for the data node
at the origin or terminating ends of the edge may
have to be physical. The SRCPHY bit vector denotes
for each type of edge (there are 28 types) whether
the memory allocated to the node at the origin end
of the edge (the source node) must be physical.
Similarly, the TGTPHY vector refers to the node at
the terminating end of the edge (the target node).

MRAL: The memory requirement, in bytes, after the 1loop
is formed.

MRIC: The memory requirement in the ideal case.

STOTYP: A field in the data structure LOCAL_SUB. For a
virtual dimension, STOTYP=0. For a window of width
k+1l dimension, STOTYP=k+l. For a'physical dimension
with upper bound u, STOTYP=-u.

Repeat steps 2 to 6 for every edge in the Array Graph.

Each iteration computes the effect of the edge on use of

ﬁemory.

If the source and the target nodes of the edge are in

COMPS, this is an internal edge, then go to step 6 to

examine the subscript expression of the edge to

determine its effect on use of memory.

If both the source and the target nodes of the edge are

not in COMPS, then this edge has no effect on memory

useage. Go to end of iteration, at end of step 6ﬂ

If none of the above then this edge crosses the 1loop

*e

6.

192
boundary. In this case, if SRCPHY(EDGE_TYPE)=1, then
the distinguished dimension of the source node must be
physical. 1f TGTPHY(EDGE_TYPE)=1, then the
distinguished dimension of the target node must be
physical. The respective node numbers and the
requirements for physical memory allocation are stored
in a 1list. Also 1in this <case go to the end of the
iteration (at end of step 5).

If the subscript expression 1is of the form 1I-k and
SRCPHY(EDGE_TYPE)=1, then the memory allocation for the
distinguished dimension of the source node must be a
window of width k+l. This is also stored in the list.
PENALTY is initialized to zero.

Repeat steps 8 to 11 for every node in the above 1list.
These nodes have either a physical or window of width
k+!l memory allocation. An iteration computes the memory
requirement for a respective node.

In the case of a physical distinguished dimension,
compute MRAL, as the product of all the ranges of the
unscheduled node subscripts. In the case of a window of
width k+1 for the distinguished dimension, compute MRAL
as the product of kk+1 and the ranges of the other
unscheduled node subscripts.

To compute MRIC it is necessary to scan each unscheduled
node subsacript. If its storage type STOTYP is 0, then
the ideal memory requirement for this dimension is one.

If STOTYPK0, the memory allocation has previously been

* e

193
determined as physical, then the ideal memory
requirement 1is =STOTYP (u). MRIC 1is the product of
these ideal ranges.

10. The penalty for the array node ND_PENALTY=
(MRAL-MRIC)*(length of node element in bytes).

l11. PENALTY=PENALTY+ND_PENALTY.

12. If EVAL_SET="1’B then if the distinguished dimension is
physical then STOTYP in every unscheduled dimension is
equal to the minus of its range, 1if the distinguished
dimension is a window of width k+l1 then STOTYP of the
distinguished dimension 1is k+1 and for the other
unscheduled dimensions STOTYP 1is the wminus of their
respective range.

Algorithm 6.8 EXTRACT

Function: To obtain the for-element for a loop, including
the schedule elements for the body of the loop
scope.

Input.

SUBGRAPH: A pointer to a reduced Array Graph of the
component scheduled into one loop scope.

SVPOSITION: A vector with an element for every node 1in
the SUBGRAPH. Each element has the value of the
dimension number of the distinguished dimension of
the respective node.

L : The nesting level.

Output.

»

1.

2.

3.

4.

Algorithm 6.9 COND_GRAPH(TOP_RANGE,GRAPH)

194

A for—-element which is the schedule of the 1input

graph.
Allocate a for-element. Set FOR_NAME to loop parameter
name and FOR_RANGE to the range set number of the loop
parameter.
If the current loop range has some immediate subranges,
then call procedure- COND_GRAPH and upon return go to
step 7. COND_GRAPH takes over all further scheduling of
a body of a loop which contains conditionally executable
nodes due to use of indirect subscripting.
Delete all the edges from the graph with distinguished
dimension subscript expressions of type 2 or 3. The
precedence expressed by these edges is assured by the
order of the iterations.
Set IDWITH of the distinguished dimension of all the
nodes in the subgraph ¢to L, the nesting level of the
current loops ‘
Call SCHEDULE_GRAPH, with SUBGRAPE and L+l as the
parameters, to get the schedule of the resulting graph.
Set ELMNT_LIST in the for—-element structure to point to
the schedule returned from step 5.

Return the for-element as output.

Function : To obtain the schedule elements of the body of a

loop scope, which includes cond~elements.

Input .

4

195
TOP_RANGE: The range set number of the highest level
major range in the SGRAPH.
SGRAPH: A graph to be scheduled within an 4{iteration
block of the range TOP_RANGE.
Output. A schedule for SGRAPH.

l. Scan all edges in SGRAPH. If an edge has a subscript
expression in the distinguished dimension of types 2, 3,
6, or 7, and either the source or the target nodes ‘have
the TOP_RANGE range, then delete this edge from SGRAPH.

2. If node X is the 1indirect 1indexing vector served to
reduce the range TOP_RANGE to a subrange RNGIK, then
draw an edge from X to all the nodes in the range set of
RNGIK.

3. Call procedure STRONG to form a Component Graph for
SGRAPH, consisting of ACOMP and 1INCMP, CEDGES, and
NODELST. ACOMP and INCMP are bit vectors (the size 1is
the number of MSCC found by STRONG). These vectors are
all of the value ‘1°B.

4. For every subrange RNGIK of TOP_RANGE, merge all the
components in the range sets of RNGIK or its direct and
indirect subranges into one component. Set the INCMP
vector elements of the merged components to ‘0’B.

5. Repeat steps 6 to 9 until all the elements in INCMP are
‘0’B. Each iteration merges a group of components with
TOQP_RANGE range.

6. Call CLOSURE with INCMP to obtain the closure set

MERGE_CMP.

10.

11.

12.

13.

14.

k3

196
CALL MAX SCHED with INCMP, MERGE_CMP, and TOP_RANGE. It
returns CCOMPS.
Merge the components in CCOMPS into one component,
updating NODELST, CEDGES, ACOMP, and INCMP.
Set the element of INCMP' corresponding to the merged
schedule to ‘0’B.
Repeat steps 12 to 13 for the components in ACOMP.
Select the next component in ACOMP in a topologically
sorted order. Let this component be COMPI.
Let RNGIK be the range of the component éOMPI. If
RNGIK=TOP_RANGE, then mark the distinguished dimension
of each node in the component as scheduled and call
procedure SCHEDULE_GRAPH to get a schedule for this
component. Go to step l4.
Otherwise, allocate a cond—-element to this component.
Call procedure COND_GRAPH recdtsively with RNGIK and
COMPI as the input parameters to get a schedule for the -
conditional element.
Return the schedule elements obtained as the final
schedule of SGRAPH. Note that the order of the schedule
elements was determined by the selection of components
in a topologically sorted order im step 1ll. The
schedule elements are obtained either in step 12 or 13,

depending on whether they are cond—-elements or other

r

elements respectively.

s

197

CHAPTER 7

CODE GENERATION

7.1 OVERVIEW OF THE CODE GENERATION PROCESS

Code Generation is the last phase of the processor. It
uses the data structure generated in Array Graph
construction, specification analysis, and program
scheduling. As shown 1in Fig. 7.1 the code generation
process accepts two inputs: the program schedule created in
the scheduling phase and attribute tables produced in the
analysis phase. Recall that the program schedule 1s an
ordered sequence of schedule elements described in section
6.6, The nodes referenced in schedule elements can be found
in the dictionary. The attributes of the respective nodes
are in the dictionary. They are described in the section
4.2.1. The output 1s a complete PL/I program ready for
compilation. The executable PL/I code is written out to the
"PLLIEX" file. The PL/I "ON" conditions are written to the
"PL1ON" file and the PL/I code for declaring the objecthdata

items is written to a "PLIDCL" file.

2

198

Program
Schedule ™«

\s

PL/I

CODE GENERATION F = = =3prooram

-
- -

Attribute _~
Tables 7 _ z et

Fige 7.1 Overview of the Code Generation Phase

Fig. 7.2 shows the overall organization of the code
generation process, consisting of the main proceduré CODEGEN
which in turn calls on the other procedures ¢to perform
certain tasks. The PL/I execution code 1is generated by the
GENERATE procedure which examines the elements of the
schedule one at a time, and invokes the procedures that are
indicated by types of program events. The GPL1IDCL procedure
generates the data declarations. GENERATE calls GEN_NODE to
generate statement for node elements of the schedule. The
GEN_NODE calls on GENIOCD for input—-output operations and on
GENASSR for assertions. GENERATE also calls GENDO and
GENEND for generating iteratiomn control structures for
for-elements, and on COND_BLK and COND_END for generating
conditional block statements for cond-elements. These
prdcedures are briefly reviewed in section 7.2. They are
described in greater detail together with other auxiliary

tasks in the subsequent sections that follow.

199

Program - -
Schedule ~ -

PL/I
Attribute _ - —
Tables

GENERATE GPL1DCL

GENMO GENEND
GEN NCDE 4
COND_BLX - COND_END
Files used: B
PL1EX
PL1ON
PL1DCL

Fig. 7.2 Components of Generating PL/I Code

7.2 THE MAJOR PROCEDURES FOR CODE GENERATION

200
7.2.1 CODEGEN - THE MAIN PROCEDURE

CODEGEN starts with opening the output £iles PLI1EX,
PLION, and PLIDCL. It next generates code that will handle
program errors. Most of these errors are due to input data
errors discovered by data type coaversions in the program.
The user can also define additional error counditions. The
statements written to the PL1EX file are as follows:

ALLOCATE ERROR, ACC_ERROR ;
ACC_ERROR = ‘0’B ;
ALLOCATE $ERR_LAB ;
$ERR_LAB = END_PROGRAM ;
The declarations written to the PLIDCL file are as follows:
DCL (ERROR, ACC_ERR, NOT_DONE) CTL BIT(1l) ;
DCL $ERR_LAB LABEL CTL ;
Finally the ON condition code is sent to the PLION file as
follows:
ON ERROR
BEGIN
/* write erronous input record to ERRORF file */
WRITE FILE(ERRORF) FROM($ERROR_BUF) ;
ERROR = “1’B ; /* set error flag */
GO TO $ERR_LAB ; /* go to end of loop where */
END ; /* error was detected */

ERROR_RESTART:

201

CODEGEN next passes the entire program schedule to
GENERATE, which will generate the portions of the program
for the schedule elements. When this is completed CODEGEN
passes the attribute tables to GPLIDCL to generate data
declarations. Finally CODEGEN calls on MERGEPL1 to merge

the three output files.

7.2.2 GENERATE - INTERPRETING SCHEDULE ELEMENTS

This recursive procedure scans the schedule given by
the 1list of schedule elements, LIST, for a loop nesting
leveléLEVEL. To start with, CODEGEN passes the whole
schedule at 1level 0., In subsequent calls GENERATE will
receive a schedule of a loop scope at each nesting 1level.
GENERATE calls 1lower level procedures to process the
different types of schedule elements as follows:

l. Scan each element of the list LIST. For each element
perform steps 2 fo 4,

2. If the element is a node-element call GEN_NODE which will
generate the code for the schedule element.

3. If the element is a for-element do the following:
3.1 Call GENDO to produce a code for opening a loop.
3.2 Call GENERATE recursively with the 1list of the

elements within the loop’s scope and level = LEVEL+l,

3.3 Call GENEND to generate the termination of the loop.

4., If the element is a cond—element do the following:

‘o

202

4.1 Call COND_BLK to produce the code for opening a
conditional block.

4.2 Call GENERATE recursively with the 1list of the
elements within the condition block and 1level =
LEVEL.

4.3 Call COND_END to generate the termination of the

conditional block.

7.2.3 GENDO - TO INITIATE THE SCOPE OF ITERATIONS

This procedure produces the code for a control
statement initiating an iteration loop. The loop variable
name FORNAME and the termination criterion are taken from
the fields FOR_NAME and FOR_RANGE in the for-element being

scanned.

The following instructions are 1intended £for recovery
from a program error. They always precede each loop control
statement:

ALLOCATE ERROR, ACC_ERROR ;

/* reset accumulative error flag */

ACC_ERROR = ‘0’B ;

ALLOCATE $ERR_LAB ;

$ERR_LAB = LOOP_ENDc ;
The "c" following LOOP_END is a unique number assigned to
the loop. The purpose of these statements 18 to ensure that

an error occurring within the 1loop scope will cause the

XS

203
control be directed to LOOP_ENDc which 1is a 1label

immediately preceeding the end of the loop.

A]
The DO-statement itself is constructed next. Two basic

forms for the loop control statements are used:
1)

DO name = 1 TO upper [WHILE (condition)] ;
2)

name = 0 ;

DO WHILE (coﬁdition) 3

name = name+l ;

"name" is the loop variable. "conditioan" is the termination

condition.

If the termination criterion given is that of a fixed
upper limit or given through a SIZE variable, the first form
is used and "upper" 1is either a constant number or a

variable of the form SIZES$X.

If the range is specified by an END.X c;ntrol variable,
the second form of loop control is used. In this case we
use NOT_DONE in the condition and the following statements
are generated before the beginning of the loop:

ALLOCATE NOT_DONE ;
NOT_DONE = “1°B ;
NOT_DONE will be reset to ‘0°B whenever the appropriate

END.X variable is set to ‘true’.

T

204
If there is an end-of-file condition associated with
the 1iteration, either as the main termination condition, or
because this is an iteration on an input record or group
above the record level which are last in their peer group,
we add:
“ENDFILES$file

to the condition "condition".

7.2.4 GENEND - TO TERMINATE THE SCOPE OF ITERATIONS

This procedure produces the code needed at the end of
the loop scope. Since at times, we use k+l locations to
store a window of size k+l of an array, it is necessary on
each 1iteration to shift the window by one element position.
This is done at the end of the {teration. The size of
respective window 1is originally stored in STOTYP of the node
subscript of each array node. GENERATE passes the node
numbers of arrays using window dimensions in a list called
PREDLIST to GEN_END. Based on this 1list GEN_END generates
statements to shift the window by one element position. The
actual range declared for a window dimension is k+l. In
each iteration we compute (or read) A(e.., k+l, «..) and may
refer to the previous element as A(eee, k, " cee)de When an
iteration is completed we transfer A(..., I+l,...