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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES OF THE RESEARCH

This dissertation deals with two related problems:

a) develop.ent of a methodology for achieving memory and

computation efficiency of computer programs, and b) the use

of this methodology in Very H1gh-Level programa1ng Languages'

(VULL) and associated automatic program generators.

There are many aspeets to computer efficiency of

programs and we had to be selective in choosing to focus our

research Oft the aspects that we considered most important.

Optimization of computer efficiency of programs concerus the

two major aspects of reducing computation time and reducing

usage of memory space. We have selected the memory space

reduction aspect for two reasous. First, the excessive use

of memory bas been the major disadvantage in use of VRLLs,

especially where interpreting techniques have been used in

the language processor. Second, as will be shown, reduction
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of memory space also reduces computation overhead. Further

we have not considered techniques which save memory through

recomputing of 80me variables as the impact of such

techniques on computing time may be enormous. The potential

for reducing use of me.ory exists through both global and

local analysis of a program. Among the many methods for

reducing memory use. we have emphasized global aethods for

reducing me.ory use particularly through sharing memory

space by variables in iterative steps of the prosraa. This

approach represents the potential for the most s1ginificant

savings in aemory. In summary. the dissertation concerns

reduct10n in use of ae.ory in performing co.putationa

specified in a VHLL, particularly through sharing of memory

1n program iterations.

In most VRLL systems, memory use 18 determined

priaarl1y on a dynamic basis at run t1a.. This 1s

particularly typical of interpreters for VRLLs. The

dissertation w1ll show that a global analysis of the VBLL

can lead to prescheduling the use of memory and compiling a

program which uses memory efficiently. The use of this

method can eliminate .th~ most important drawback on use of

VHLL. J 1.e., the 1neff1elency in performing the· computation.

The evaluation of the many possible global and local

alternatives of memory use for realizing a computation 1s

highly complex and requires lengthy and expensive

computations. We have developed a heuristic approach, which
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has been very effective in our experience. and which 1s

practical and economical in use of the computer. We have

generally used the principle of maxia1z1ng size of loop

scopes in a program as a means for attaining a more

efficient program for present day sequential computers.
"

Further, program design decisions are based on evaluation of

memory usage alternatives on each global level of nested

iteratioD loops in a progra., starting with the outside

level and moving inwardly. Thus we neglect the rare impact

where memory usage in a local nested iteration loop requires

reversing the more global design of the outside iteration

loop.

Iu a VHLL the user can specify the computation more

abstractly, i.e. without concern for the efficiency of the

algorithm for performing the computation. This contrasts

with programs written in lower level languages. Therefore

starting with the higher level specification allows the

global optialzatlon of the program.

The MODEL VHLL and processor have been chosen in this

dissertation to study the optiaization problems. The MODEL

language 1s Don~procedural. It includes the use of arrays

and records data structures which are used widely in both

matheaatical system. and in data processing.

language 1s siaple enough.

Yet the
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The result of the research has been the incorporation

of novel optimization techniques in the MODEL automatic

program generator. The new system automatically designs and

generates high level language programs, in PL/I t with

efficient loop control and economical memory usage, without

the user's concern for efficiency of memory allocation. The

resulting system deaonstrates that an efficient

implementation of computatioDs based on a very high-level

non-procedural specificatioD 1s pO.8ible and therefore that

the use of VBLL can be made practical.

Apart of the questioDs of incorporating efficiency

while generating a program automatically based on a VHLL

specification. there are the more basic methods of analysis

for i.proving efficiency of programs. These have been the

other objective of this research, i.e. to develop

analytical methods for determining how a conventional

program can be made more efficient and to offer methods to

determine program,des1gn decisions.

1.2 CONTRIBUTIONS

This dissertation addresses the problem of generating

efficient programs baaed on a very h1gh~level noa-procedural

specifications of the prograas. The program optimization

U8e8 appropriate algorithm. for implementing require'd

computations. Program loop optimization and memory
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optimization are the major concern of the research.

More specific achievements include the following

"

results:

1. Methods for semantics analysis of a program specification

to develop the information needed for program generation.

This includes precedence relationships among program

events and indicated order of nesting of loops.

2. Criteria for includ1ng events or eOBputatious in loops of

programs. The approach is to maximize scope of loops as

means for reducing memory use and computation tlme.

Repeating program events or computations which satify the

following conditions may be included in the scope of a

loop: a) the same or related range of iterations.

b) continuity of dependencies among the events in the

scope of a loop, c) compatibility of a "distinguished

dimension" in the aany dimensions of repeating events,

and d) a conditioned block of eV~Qts of related ranges

can be placed within a loop to further extend the loop

scope.

3. A aethod for determining whether memory space for an

array dimension has to be physical or virtual. i.e.

whether memory can be shared.

4. A aethod for evaluating "memory penalty" of selected loop

scopes as a basis for choice of the most economic loop

design.
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1.3 ORGANIZATION OF THE DISSERTATION

The dissertation 1s divided into seven chapters. The

introduction is given in this chapter. Chapter 2 surveys

related research, in the fields of programming languages,

automatie programming, and program optimization•. Chapter 2

1s divided into respective sectious which deal with

procedural Hlgh~Level Languages (HLLs). VHLLs, and program

synthesls. including their efficiency cODsiderations. The

reading of this chapter may be omitted by reader familiar

with the state of the art in programming.

Chapter 3 describes the syntax and seaantics of the

MODEL language. Since its denotational seaantics can be

found in [SANG 80], the description 1s from the user's point

of view and this chapter can.be used as a user'. guide.

Chapter 4 describes the semantic analysis done by the

KODEL processor. This includes checking for various aspects

of inconsistency and incompleteness of the program

specification, and correcting the tolerable incompleteness.

Most importantly, this chapter describes the internal

representation of the programspeciflcation, including

discovering the precedence relationships among the program

entitles, by an Array Graph •

Chapter 5 discusses the range propagation method which

classifies all the array dimensions and assertion subscripts

into range sets according to their respective ranges (i.e.
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nuaber of repetl~1on8) and corrects oaission of subscripts.

The range sets will be the candidates for loop construction.

Chapter 6 discusses the major contribution of the

research, the scheduling algorithm. whose function 1s to

synthesize a computation procedure. The algorithm generates

design of an optimized program. The program optimization 1s

achieved by maximiz1na the loop scopes, selecting loops of

the least memory use. and .erging the loops of related

ranges.

Chapter 7 d1s~u8ses the code generation. Code

generation is a proeess which takes the program schedule as

input and generates a PL/l program ready for compilation •

Suggested future work 1s presented in Chapter 8.

The detailed documentation of the system 1. rather

lengthy and has not been included in this dissertation. A

report documenting the entire MODEL system has been prepared

by the author separately fro. the dissertation. Also

program listings further document the research. The system

has been subject to extensive experimentation and examples

of specifications and resulting automatically generated

program. are given in the appendix.
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CHAPTER 2

SURVEY OF RELATED WORK

It has been stated that "almost anything in computer

science can be made relevant-to the problem of helping to

automate programming"[FELD 72]. Therefore any survey of

programming language development must be in 80me respect

incomplete. An excellent overall discussion of the trends

1n software development research can be found in [WEGN 79].

The survey of the recent research in this chapter emphasizes

the fields of programming languages, automatic programming,

and program optimization, which are the major interests of

this thesis. The survey includes a review of the impact of

problems of efficiency on programming and the relevance of

the reported research to these problems.

A.oug the approaches suggested to date to i.prove the

quality of the software development are: modularity, strict

type checking, data abstraction, higher level operations and

general data structures. non-procedurality, and domain

specific languages. Each of these has been successful in
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some aspects. In the following we classify programming

languages and sys tems into three c.ategories t. namely

procedural h1gh~level languages. very high~level languages,

and automatic program synthesizing systems. From each

category a few representative languages which incorporate

80me of these concepts will be briefly reviewed.

2.1 PROCEDURAL HIGH~LEVEL LANGUAGES

Procedural high~level languages provide coa~rol

statements for the user to compose efficient prograas. The

user specifies the computation in a procedural way, which is

usually tedious and prone to error. The need for a

flowchart to help the programmer analyze and document the

program logic shows that proce~ural programm1~g could eas1ly

confuse even the program des1gaer. The structured

programming discipline has been advocated in wr1t~ng

programs, and linguistic features such as type checking and

abstraction aechanisms were susgested to further reduce

errors by programmers.

2.1.1 EXAMPLES OF HIGH-LEVEL LANGUAGES

The programming language PASCAL and its derivatives are

example. of procedural HLL.. They emphasize type checking

at compilation time to catch erroneous uses of data as early
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as possible. The type of an object 1s characterized by the

set of values that the object can assume, and the set of

operations that may be performed on the object. Primitive

data types are predefined in the programming language •

•
Users may define new data types from primitive data types or

from other u8er~defined data types. Since it 1s required to

associate types with variables and parameters of

subprograa., objects with d1stinct properties are clearly

distinguished in a program by their data types and the

distinction is enforced by the eompiler. It has been

claimed that requiring typed objects contributes to program

reliability. Many programming languages have followed the

spirit of PASCAL in strict type checking. For example,

MESA[GEHS 77]. and ADA [ADAA 79] are typed languages.

Although type checking 18 claimed to be a powerful tool for

increasing software reliability, it 18 realized that the

benefit from the linguistic mechanism. do not come

autoaatically. A programmer must learn to use thea

effectively. Also it 1s not always desirable to remain

within the type checking system beeause 80metimes the

violation 1s logically necessary, especially in the area of

systea. programming_ For example, a comp11e~and-go system

will have to convert the type of a generated object code

fro. data into procedure. The answer bas been to make those

oceastonal type violations as explicit as possible.

Therefore, these type violatioDs are les8 dangerous since

they are clearer to the reader.
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Abstraction has long been suggested as helpful in

programming methodology. Many conventional languages have

supported procedural ab8tract~on with functions and

subroutines. The class concept of SIMULA has pioneered in

data abstraction. Parnas[PARN 72) also pointed out that the

criteria of decomposing a software system should not be

based on the steps of the algorithm. but instead. a module

in a decomposed syst.a should be characterized by its

knowledge of 80me design decisions which it hides from

otherse Its -interface or definition should be chosen to

reveal as little &s possible about its inner workings.

The programming language CLU[LSAS 77] was designed to

support the use of abstractions in program construction. In

CLUJ each object has a particular type. A type defInes a

set of operations that create and manipulate objects n£ that

type. The basic data abstraction mechanism of CLU 1s the

cluster which 18 used to define abstract data types. The

cluster provides a representation for objects of certain

type and an implementation for each of the operations. The

type checking done for assignments and argument passing

ensures that the behavior of an object is indeed

characterized completely by the operations of its type.

The language ADA[ADAB 79] has been designed with the

concern of program reliability and maintenance. Program

variables are required to be declared with their types.

Autos.tie type conversion 1s prohibited. Thus, compilers
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can ensure that the types of objects satisfy their intended

use. Modules in ADA allow the specification of groups of

logically related ent1ties. In their simplest form modules

can represent pools of common data and type declarations.

In additiou, modules can be used to describe groups of

related subprograms and encapsulated data types, whose inner

workings may be concealed aad protected from their uses. A

module 1s generally provided in two parts: a module

specification and a module body with the same identifier. A

module speelfication may contain the specification of

subprograms which are visible to the other program units.

The implementation of the subprograms 1s declared in the

module body, and it 1s not accessible outside the module.

As a cODsequence, a module with a module body can be used

for the construction of a group of related subprograms.

where the logical operations aece$sible to the user are

clearly isolated from the internal entities.

Because of the distinction between abstractions and

implementations, data abstractions ease program

modification. maintenance, understanding, and verification.

However, the quality of any program depends upon the skill

of the designer. In a programming language supporting data

abstraer10Q the skill 1s reflected in the choice of

abstractions. Abst~act1ou8 should be used to simplify the

connectioQs between modules and to encapsulate decisions

that are likely to chauge.
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2.1.2 COMPILER OPTIMIZATION

The concern over the inefficiency of compiler generated

code dates back to the early introduction of ~lgh-level

programming languages. Prograa optimization techniques have

been incorporated into compilers to produce more efficient

code. The efficiency of a program may be measured using

various aspects. such a8 the exeeution time of the code. the

size of the code. or the size of the data area. The

e.phasis in program optimization may depend on the

~haracter1st1c8 of respective computer architecture or

programming language.

Optimizrtion techniques for high-level languages such

as FORTRAN or PL/I emphasize code optimization. 1.e.

producing better object code than the most obvious one for a

given source program • The efficient utilization of the

. registers and instruction set of a machine can improve

program efficiency significantly. Most issues in this area

are highly machine dependent. Optimization techniques which

are Dot machine dependent include identifying common

•

subexpress10ns and moving loop invariant, computation outside

of the loop.

Code optimization techniques are generally applied

before or during the code generation phase of a compilation

process of a HLL program. The major issues in the code

generation phase are deciding what instructions t9 use. in
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what order to execute, and where to store the intermediate

results in temporary storages. Bruno and Seth1[BRSE 76]

showed that the problem of' generating minimal length code

for a one-accumulator machine 1s NP-complete problem.

However. if there are no identified common subexpressions in

an arithmetic expres's1on, it 18 possible to generate optimal

code in linear time[ARJO 76]. In the presence of common

subexpres81ons, 80ae heuristic algorithms may be used to

pr~duce code that in the worst case 1s three times as long

as optimal[AHJO 77].

Hany optimization techniques have been found to be

machine independent. These include constant 8ubsumption,

common subexpress10n suppressioQ, code hoisting, and dead

code elimination. These techniques usually n.ed information

that can only be obtained by a global analysis of the

program. The global flow analysi. finds the related

definitions for a use of a variable and the related uses for

complete survey of code optimization

a definition of a

global analysis can

contains a rather

techniques.

variable.

be found

A formal discussion of the

in [SeRA 73]. [AHUL 78]

aecent research interest in compiler design has shifted

to the automation of the code generation phase. A

table-driven approach has been proposed by Susan

Graham[GRAH 80]. The description of machine in8truction8~is

encoded in a table used by the code generator where the
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function of each instruction 1s represented by a tree. The

input to the generator 1s a subprogram in a tree

representation. When a subtree in the program matches some

instruction tree, the corresponding instructions are

emitted. Thus, the task of code selection is reduced to a

symbolic pattern matching problem. The advantages of this

approach include the ease in modifying the code generator

for a Dew machine and thorough search of the instruction set

even 1f the target machine has an asymmetrical instruction

set.

The Production~Quality~Comp11er-Comp11er(PQCC) project­

at Carnegie-Mellon University has aimed at building a truly

auto.atic compiler writing system[LCHN 80]. The system

generates a compiler from descriptions of bo·th the source

language and the target computer. The emphasis of the

investigation is on the code generation phase. In order to

keep the PQCC system general only the optimization

techniques which can be parameterized for different machine

architectures are included in the system. The machine

dependent optimizations are isolated in such a way that only

the tables may contain machine dependent information but the

procedure code which operates with the tables i8 machine

independent. The objective of the project has been to

obtain simultaneously the retargetabil1ty and a high level

of optimization of a compiler.
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2.2 VERY HIGH-LEVEL LANGUAGES

The major features of VHLLs are non-proeedura11ty. high

level operations and abstract data structures. A

non-procedural description specifies a task in terms of its

behavior independently of any specific way of accomplishing

the task.

2.2.1 GENERAL PURPOSE VHLL

SETL[KESC 75] emphasizes non-procedural task

specificat1oa. in terms of mathemat1eal sets; APL[IVER 62]

has many cem••nient biah level operations on arrays. There

are also .pecial-purpose VHLLs being developed in the areas

of 81.ula~loQ (SIMULA[DAMN 70]. GPSS[BOKP 76]). and business

data processing (SSL[NUNA 71]. BDL[HHKW 77]). The

non-procedura11ty of VRLLs presents pr~blems of

implementation and optimization which are more difficult

than in High-Level Languages(HLL). This is because the

choice of feasible execution algorithms must be made

automatically. In addition. the abstract data structures

requires the choice of suitable data representation also to

be aade auto••tically.

The prolramming language SETL try. to ease the

programmlQI problem by using powerful operations on very

geueral data structures such that the issues of problem
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formulation can be separated from those of program

efficiency. Sets and tuples as well as other primitive data

entities can be manipulated in the SETL language.

Existential quantifier and universal quantifier can be used

to construct a boolean expression similar to predicate

ealeulus. In addition, universal quantifier can be used to

form a loop over the eleaeuts of set entities such that. the

knowledge of data representation of sets 1s not necessary in

describing the algorithm.

Program optimization 1s particularly important in VHLLs

and there arema11ytecha.iquesthatcanbeappliedtolmpro.ve

efficiency. For exaaple, the data structures of sets and

tuples are not specified by the user in a program written in

SETL. It may be a bit vector or a linked list or something

else. The simplest translation of such a language will

yield very inefficient programs. For this reason the need

to opti81ze a program written in a VHLL 1s especially

important. Also, the information that an optimizer needs 1s

much more accessible in the abstract, problem-oriented

specification of a VHLL than in the detailed code sequences

of a language of lower level.

A non-procedural lauguage LUCID[ASWA 77] has been

des1gmed as a formal system in wbich programs can be. written

and their proofs carried out. The statements of a LUCID

prograa can be interpreted ~s true mathematieal assertions

about the results of the program. For example, an
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assignment statement in LUCID can be considered as a

statement of identity, or equation. A variable in LUCID has

a history which 1s an infinite sequence of data objects.

Special functious FIRST and NEXT can be used to reference

the first element and the sequence starting from the second

element of the history of a variable respectively.

In general, a LUCID program defines the histories of a

set of variables by relating their histories with a set ~f

equationse The use of FIRST and LAST functions allow

basically the specification of one level loops. In order to

allow nested loops, a function LATEST is introduced. It

clutters up the program; consequently, BEGIN~END blocks to

nest iteratioGs are introduced into the language.

Although MODEL is not a language intended for automatic

program verificatiou, the spirit of the language 1s similar

to that of LUCID in that the computations are specified with

non-procedural aathematical assertioQs. In 1973, Ramirez

used a data definition ~anguage[RAMI 73] as a tool to

generate data conversion program automatically. Although

the a1m of his research was to save programming work in a

special application, the concept of using data and

eomputation descriptioDs to specify data processing tasks

generally was introduced. Rio extended the work of "Ramirez

and developed an initial version of a non-procedural

program.ing language called MODEL, limited to use in

business transactions procesa1ng[RIN 76]. For each
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transaction processing program. the programmer bad to

describe only the ~tructure of input and output files and

assertions describing relations between input and output

data. The language processor analyzed the MODEL statements

and generated a corresponding PL/I program. The programs

generated by MODEL processor include: (1) proper input and

output statements to get data in and out of the main memory

and optionally some packing and unpacking statements 1£ data

1s stored in variable format OD external storage, (2) a list

of assignment statements enclosed by very slmple iteration

control statements. The language processor analyzed the

precedence relation between statements in a specification.

For this purpose it used a directed graph. An executable

program was generated from the graph.

Shastry considered MODEL as ·a general purpose

language[SRAS 78]_. He analyzed the subscript expressions

occurring in array element references, where the subscript

expressions could be first order polynomials. By the

technique of splitting nodes in the graph. he transformed a

cyclic graph into an acyclic one 1f the specification was

aequenceable. He also conducted extensive analysis of

consisteney and completenes8 of the program specification to

detect errors before the program was generated.

IaCODsistency could be due to invalid subscript range

specification or due to inconsistent use of subscript names.

Incompleteness could be due to the omission of the data
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description statements for some data names or the omission

of an assertion that defined a field of an output f1le. Any

cyele in the array graph whieh corresponded to a set of

simultaneous equations was cOQsidered -not sequenceable.

The capability of automatic applying of numeric methods

to solve a system of equations was incorporated into the

MODEL procesaor[GREB 81]. It has proved useful in

applications of econometric forecasting and modelling.

Recent development of the MODEL system further extended the

capability of the system. Modularity and execution of

subspeciflcatioQs in parallel or in distributed computation

are currently under development. The proposition of

extending the MODEL system for distributed computation 1s,

discussed in [PNPR 81]. The use of data flow computer to

perform the comput~tlon in MODEL system is being explored.by

[GOKH 81].

One objective or use of VULLs is to decrease the

involvement of computer users in the complexity of computer

characteristics. Although the lntroduc~ion of HLLs has

relieved programmers of the painstaking struggle with

particular computer architectures, HLLs are still very far

from the languaae that problems are discussed and solution

methods are presented. Software development 1s still a

laborious and difficult task to undertake. One of the

approaches to ease the work of software development 1s

through' the use of VULLa. VHLLs usually offer use of
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abstract data structures, high level operations and

nOQ~procedura11ty. In this way the user can concentrate

. naturally on the problem statement without considering

implementation related deci8ions that become entangled with

the problem logic. In some cases the level o~ the languages

1s sufficiently high, requiring only a high level

specification of the computations, which can be prepared by

Don~pro8rammers.

It has been suggested that most of the conventional

programming effort goes into selection of proper data

representations and data manipulation algorithms to perform

the computations eff1ciently[SCR 75]. Sometimes the

cOQaideration of program efficiency may cause the sacrifice

of program readability and comprehension. In turn, it

affects the ease of program testing and maintenance. The

use of VHLLs offers many benefits such as les8 coding work,

less required proficiency in programming and in algorithm

analysis, and ease in understanding and updating the

program. All these benefits are conditioned on whether the

languale processor can produce satisfactorily efficient

programs.

Users of MODEL need not be concerned with physical

representations of the data. MODEL processor allocates

memory for each data structure in the specification. When

all the elements alona 80me dimension of an array can share

the same program variable, we say that dimension of the
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array is virtual. Otherwise, the dimension of that array 1s

physical. Virtual array dimensions save memory space. In

addition, users do not have to specify program controls such

as loop control or I/O control.

Recently Rajeev Sangal [SANG 80] has investigated the

possibility of introducing modularity in non~procedural

languages such as NOPAL, a non-procedural language for

automatic testing, and MODEL. The use 0·£ abstract data

types 1s suggested as an approach to modularity. The

abstract data types are specified in modules. A module

consists of a header, data declarations for the

representation of the abstract data type, and a set of

module functions which are the allowed operations on the

abstract data type. The functions are also defined within

the ~ramework of Don-procedural languages.

2.2.2 PROBLEM ORIENTED VHLLS

Many problem statement languages have been developed to

auto.ate the system design of very large information

systems. They allow the statement of requirements for an

information system without stating the procedures that will
•

be used to implement the system. The computer programs can

be used to analyze the problem requirements and report the

logical inconsistency and incompleteness to the system

designer. For example, Accurately Defined Systems(ADS), a
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product of the Nation~l Cash Register Company[LYNC 69],

consists of a set of form. and procedures for a systematical

approach to the systea definition. An ADS requirements

statement includes the descriptions of (1) inputs to the

inforaatlan system, (2) historical data stored by the

information system, (3) outputs produced by the information

system, and (4) actions required to produce these outputs

and ~he conditions under which each action 1s performed.

The ADS Analyzer can perfor. a nuaber of checks, ranging

from simple syntax checking to more complex logical

consistency and completeness checking. It also produces a

number of summary reports such as a dictionary of all data

element occurrences, indices to all data elements and

processes, data dependency matrices and ~recedence

relationships among data elements and processes, and

graphical displays of the ADS forms. The use of ADS can

save the system designer cODsiderable time during the

specification of logical system design because the ADS

Analyzer can provide them feedback before the physical

design or coding starts.

SODA Statement Language(SSL) was developed by

Nunamaker[NUKO 76]. It is designed for the total design

process from non-procedural problem statement through

software design and hardware selection to final

iaplementation and performance evaluation. An SSL problem

stateaent 1s composed of a collection of Problem Statement
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Units(PSU). A PSU consists of three components: data

description. processing requirements, and operational

requirements such as information on volumes. frequency of

output, and timing of input and output. The problem

statement analyzer finds the precedence relationships

between the data and processes, then uses the matrix algebra

and graph theory to ch~ck the -consistency and completeness

of the problem statement. Another program called SODA/ALT

determines the number of CPU and the size of core memory in

the hardware system under the cODstraints of operational

requirements. It then selects a program module and file

design from feasible alternatives with the concern of

reducing the total transport volume by grouping operations

into modules and data sets into files.

Business Definition Language(BDL) 1s a very high-level

programming language used in the domain of business data

processing. The coneepts in BDL were derived from aimicking

a model of business organization. For example, the

documents in BDL, which serve as input and output to a

program as well a8 internal representation of Inform~tionJ

correspond to the business formj steps in a program

correspond to the organizational units of the system being

described. In a Form Definition Component. the user defines

the format and structure of the forms used in the program.

The Document Flow Component is used to describe the

interconnections of the steps in the same way as that used.
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to describe the business organization. The computations on

the documents are described in the Document Transformation

Component. The documents are' routed among the various units

of the organization or stored in files and computations on

the elements of forms can be done in the basic steps.

The Requirements Language Proces8or(RLP)[DAVI 79]

develo ped a t GTE La bora to·rie. aim.ed to au toma te the

requirements phase of the software develop.ent. It 18 a

table-driven compiler which allows the requirements to be

written in a language that 1s designed specifically for the

application area of the product. The RLP will accept the

requirements of the .ystem as input, produce formatted

documents, report any incompleteness, inconsistency,

ambiguity and redundancy in the requirements, and finally

create a machine readable model of the specified system
•
which 1s in the form of a finite-state machine. The F5M

system model generated by the RLP can be used to help

automate latter phases of software development [DAVI80].

lor example, the custoaer can apply a Feature Simulator over

the system model to verify the system's behavior before

design or implementation 1s initiated. Furthermore, a Test

Plan Generator and an Automatic Teat Executor caD be used to

automate the certification testing of the system based on

the system model [BAlI 79].
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2.2.3 VHLL OPTIMIZATION

In a very high-level language such as SETL, programs

are written in teras of general data structures and their

related operatious. The compiler has to select the internal

data representation and decide on the efficient algorithm to

implement those high level operations. The optimization on

this level emphasizes algorithm optla1zatlon which may have

very significant effect on program execution and therefore

1s essential to the practical use of the language.

The design of very high-level languages emphasizes ease

of use rather than efficient implementation. They usually

allow' use of high level operations on abstract data

structures. However, the compilers have to translate high

level operations into corresponding lower level operations

and select data representations for abstract data

structures. There .ay be many alternative algorithms that

can be used to iaplement a high level operation. As is

knowQ, DO amount of code optimization can compensate for a

bad algorithm. The difference in performance between a

clever and a naive program implementation can be quite

significant. Therefore, optimization techniques applied to

languages are essential 1f large programs written in these

languages are to be run routinely.

In the language SETL, the objects being manipulated

include finite sets, ordered n-tuples J and sets of ordered
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n-tuples usable as mappings. I~ 1s the responsibility of

the compiler to choose both the data structures which will

represent the abstract objects in a program and the

corresponding code sequences which will realize the abstract

operatioDs to be performed on these objects. For practical

reasons, the choice 1s typically limited to the most

representative data structures and the criteria which

influence the choice of data structure are collected through

an empirical study of manual translatlon •. The optimizer

performs global program analysis to check whether the

criteria are satisfied.

Since the objects aanipulaeed in SETL progra.. tend to

be very complex data structures, it 1s desirable to pass a

pointer rather than physically copy the data when an object

18 assigned to or made part of another variable. The SETL

language takes value se.antics for the asslg~men~ operation,

1.e. the effect of assignment is to physically transfer

80a. value frOB a source to a target variable instead of

renaming the object being assigned as in CLU. This may

cause problems in aodificat1on to the existing objects. The

cases where a minor change to an existing object can be

safely accomplished by modifying that object is discussed in

[8CH 75]. Another major issue in optimizing a SETL program

1s to properly select the data structure. The decision may

be baaed on 'the relationships of inclusion and meabersh1ps

between objects in the program. The technique to discover
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these relationships 1s described in [SCHW 75].

In a bU81ness~oriented autoaat1e programming system

such as PROTOSYSTEM-I and SODA the optimization concentrates

on the reduction of number of I/O accesses. The method to

reduce the number of accesses is through merging of data

sets and computations. By aggregating the data sets which

have the same key field into one physical f1le, many related

data items can be accessed from a single data file when they

are needed for processing, rather than having to access them

from several different files. There are two ways to

aggregate computations such that the Dumber of accesses can

be reduced. When several computations require the same

input data sets, it 1s desirable to group all of them into

one computation. The benefit 18 that a record to be

accessed need be read once for all the computations, rather

than once for each computation. The aggregation of two

computations may be advantageous when the output ~f one 1s

fed as the input to the other. In this case, the need for

the latter computation to read output records of the former

is eliminated. If the output of the former computation 1s

not further used by any other computations, the writing out

of the data set can be elim1nated, too.

In the KODEL system, programs are opt1mized by

selecting efficient loop control and memory allocation

schemes based on a Don-procedural specification. A part of

the program design module has knowledge about what
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alternative loop structures are feasible to implement the

required computation and another part of the module will

evaluate the quality of each alternative in terms of the

overhead of loop control statements and the amount of memory

space for program data. A phenomenal program improvement

can be achieved by maximizing the loop scopes in the

program. The consideration of merging two loops is not

limited to the case that they iterate same number of times.

When the instances of one loop correspond to a subset of

those of another loop, we may still merge the two loops into

one. This feature of allowing loops with different number

of iterations to be merged makes the efficient

implementation of list like data manipulatioQs possible.

Although the optimization techniques that we have developed

are used primarily for the MODEL system, with eome

preprocessing it is possible to apply them to other

array~or1ented VHLL such as APL. For APL, the necessary

preprocessing is to rename the prograa variables when the

same variable names are served for different uses such that

aD APL program will become a non-procedural program

specification. After an APL program has been transformed

into a program specification. it can be submitted to the

MODEL system to generate an efficient program.
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2.2.4 SouacE~to~SOURCE TRANSFORMATION

Some systems 'perform a source-to-source transformation

on the program representation to improve or refine a

program. The motivation for the program trausformation

systems is to encourage users to write programs which are

easy to read, understand, and update, without having to

cOQsider program efficiency. These programs are transformed

in a systematic way into a aore intricate but effieclent

fora.

Prom the view p~int of ease of program maintenance,

programmers should be encouraged to write programs that are

easy to read and easy to change. It is advisable, therefore

to adopt a discipline in the programming style. However,

such a program may suffer a h~avy penalty in program running

time. In practice, it 18 often necessary to trade program

comprehensibility for program efficiency. The technique of

source-to-source transformation a1ms to overcome this

dilemaa by manipulating a program 1n

representation into an efficient version.

its source

Early attempts of source-to-source transformation made

the program improvement visible to the user [SCAN 72].

Optimizing programs at the source level usually also

requires that the optimization techniques are machine

independent. 80.e of the program transformation system

emphasize program optimization and others emphasize program
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refinement.

Burstall and Darlington[BUDA 77] descT1bed a system

which can convert program

iteration and transform data

structure from recursion

structures from abstract

to

to

concrete. The program to be transformed 1s presented as a

set of recursion equations. Transformations rules such as

definitioQ, instantiation, unfoldins, folding, and

abstraction can be used to add new definitioDs of functions

into the set. Heuristic strategies for applying the

transformation rules are used to help avoid fruitless

search. The process of producing new definitions for

functions' continues and hopefully the more efficient

versions of the function definition will be generated by the

systea. The same program transformation technique can also

be used to help abstract programming. The user 1s required

to define a single representation function which maps the

lower data type onto the higher, then programs written in

teras of higher level primitives can be rewritten in terms

of the lower level primitives by the system.

The Program Develpoment System (PDS) developed at

Harvard University aimed to simplify the work of program

maintenance [CRTK 79] [CHBT 81]. The system takes an

abstract algorithm as input and applies a set of

user-defined transformation rules to the abstract

algorithms, then produces an efficient program which

realizes the algorithm. Sineeltbe implementation decisions
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wh1eh are program efficiency relevant can be incorporated in

the user-defined transformation rules, programs can be

designed and modified in their abstract forms. The same

program efficiency cousiderations wili be maintained by

applying the program transformation again. A transformation

rule consists of a syntactic pattern part, optionally

augmented by a semantic predicate, and a replacement part.

Since both the program to be transformed and the

transformation rules are converted to a tree representation,

the transformation process 1s basically subtree matching and

replace.eDt.

Two classes of program transformation techniques

discussed by Kuck[KKPL 81) aim to transform FORTRAN programs

into a form which exploits the computer architecture capable

of parallel processing. A collection of techniques based on

siaple rewriting transformations remove unnecessary

dependency relationships between program statements. When a

program 1s to run on a machine with parallel processing

capability, reducing the number of dependencie8 usually

leads to a reduction in the program'. running time. Sharing

the same variable for different values 1s adequate for

aequential programs. Rowever, it imposes unnecessary

a.quantiality constraints on parallel programs. The

rena.lng transformation which ass1gns different names to

different uses of the same variable and the expansion

transformation which changes a variable used inside a loop
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linto a higher dimensional array remove the sequentlality

coustraints caused by sharing the memory space. Another

class of transformation aims to reconfigure the loop

structures in a program such that the scope of recurrence

loop is reduced and the possibility of doing vector

operations 1s increased, which in turn speeds up the

execution. A technique called loop distribution breaks

loops into smaller ones as long as possible. On the other

hand, in a virtual memory environment merging two loops
/

which reference the same set of vectors 1s helpful to reduce

unnecessary page swap.

In order to facilitate further the use of the MODEL

language in the areas of mathematical computation and data

processing, operations on higher level data structures and

matrix operations are proposed as an extension to the

system. The technique of source~to-source transformation

has been studied for implementing those features. A

statement containing high level operations 1s replaced

automatically by a set of statements containing only lower

level operations. This extension essentially increases the

level of abstraction in specifying computations and

potentially reduces the number of mistakes made by the user.
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2.3 AUTOMATIC PROGRAM SYNTHESIZING SYSTEMS

Automatic programming systems usually synthesize

programs from problem spec1f~cat1on8 in particular

application doaains. They can be divided into the

knowledge-based approach and the formal-model-based

approach. Knowledge-based autoaatic programming systems

auch as PSI[G&EE 77] and OWL[SZHK 77] contain a great deal

of information about 80me application domain. They accept

very high-level problem descriptions, check for consistency

and completeness, and use knowledge about the application

domain to translate the problem description into a

procedural program which satisfies the problem requirement.

Formal-model-based automatic programming systems such as

PROW[WALE 69] derive program from logic theorem proofs.

They accept the problem specification and the primitive

operations in the form of logic formulas. Then the theorem

proving techniques are used to synthesize the required

programs.

PSI 1s a kQowledge~ba8ed automatic programming system

developed at Stanford University. It consists of a set of

closely interacting modules or experts. A discourse expert

18 responsible for conducting a dialogue with the user in

natural language. A domain expert interprets terms with

domain-specific meanings and provides help to both the user

and the model-building expert regarding possible algorithms

and infor.atioD. structures to be used. A trace
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expert[PHIL 77] allows the user to specify a program with

the trace of the program execution. The model~bul1ding

expert[MCCU 77] contains h1gh~level general programming

knowledge and rules for assemblying fragments of program

description coming from the domain expert into a complete

program model. After the program model is built up, it 1s

passed to the coding expert[BAKA 16] which produces an

efficient target language program with the help of the

efficiency expert.

The synthesis phase of the PSI system constructs

programs from high level program models with a coding expert

and an efficiency expert. The coding expert uses rule-based

programming knowledge to produce alternative algorithm and

data structure choices. The program optimization 1s

performed by the efficiency expert which est~mates

space-time costs for every partially developed program

pas.~d from the coding expert[BAKA 76]. The estimation 1s

performed with an exact mathematical analysis on the number

of ti.es that each statement 1s executed. For statements

within loops, the efficiency expert computes the average

number of executions by summing the probability of execution

over all poss1ble loop instances. The branch probability of

a conditional test and the execution probability of a loop

instance which are essential to the estimation of execution

frequency are either assumed by the efficiency expert or

from user'. eomment'. For every statement in the partially
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program, the efficiency expert computes its

execution frequency, space usage, and single execution time.

Then the space-time product is used as the cost function.

The alternative with the smallest cost will be picked as the

best choice.

The OWL system is the top-part of a automatic program

generation project at MIT. It aia. to be a knowledge-based

man-machine -interface which can accept the problem

description in natural language and produce a data

processing specification. Its application domain 1s in the

area of Management Information Systems. The bottom part of

the project, PROTOSYSTEK-I, obtains a problem statement

written in SSL from the top part. It analyzes the

specification, performs the system design, and generates

PL/I code and JCL for the required system.

The formal-model-based automatic programming system

started with the idea of deriving programs automatically

with a mechanical theorem prover.
I

[GREE 69], [MANN 711,

[LEWA 74] In order to construct a program, the user first

formulates the relation between the input and the output

variables of the program. Then the system proves a theorem

~Ddueed by this relation and extracts the program from the

proof directly. Since the program 1s derived form its

logical specification, it does not require debugging or

verification. For example. the PROW system by Waldinger and

Lee accepts the specification of a program written in the
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language of predicate calculus, decides the algorithm for

the program, and then produces a LISP program which 1s an

implementation" of the algorithm. The instructions of LISP

are ax10matized and stored as axioms in PROW. The input and

output relationship of the program 1s expressed as a

well-formed formula in the first order predicate calculus.

A logic theorem 1s constructed from the program

specification and a theorem prover 18 invoked to generate a

proof of the theorem. The desired program 18 then extracted

fro. the proof of the theorem.
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CHAPTER 3

SYNTAX AND SEMANTICS OF THE KODEL LANGUAGE

descr1ption

the

the

name

structure of the nput or output f1les and the structure of

the intermediate esul:~~~~~S'~re used to define

the values of ntermediate or output variables specified ~

in the data description statements. Although the user 1s

encouraged to group statements together and order the parts

in the sequence mentioned above, the statements in a program

specification can be put in any order~~­

.. vf("} .-t'a't~·;~.D,..,t:.t 11*,''''i,''''j''''''~''),' i &/"~~{-~A-J:eva;;),,"-t-t>'~"'''~--m.e-.,.. ....-.-._......
~~, ~~;p- (~~~ ~..#

,~~ai.ri~iJ!J1L.i/ ~1ft-).8 ~~"'r~,'.8S0l\--d-wh., "we-"'c'a~pro t7-y~"'" I .,.,,-.'/ ~' <,..,..,....
L"?",,
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~dr~/;~~~,ii/thiS section we
"r

/
discuss the statements in the progra~ header. We will

/
/

discuss in section 3.2 the data desciipt10n statements, and

/
in section 3.3 the ~l~~.~x__~~ l~.~. ~~~~~~cs of the ~

assertions. We will discuss in section 3.4 the use of

control variables •
...._~~-,~

2. [ ••• ], a pair of square brackets 1s used to enclose a

The syntax rules of the HODEL statements will be defined
~..r ,;. ''''''1

with extended~otatlon. I~entifze!s 'enclosed by the

angle brackets ('(' and ')') are non-terminal symbols. The

I

I~
/t/l~

~~

L7

1. ::-, it 1s read as 'is-defined-by'.

metasymbols used include:

string which is optional.

3. I, a vertical bar 1s used to separate alternatives.

4. { ••• }., a pair of brac&s followed by an asterisk 1s used

to enclose a string which can repeat any times (including

zero). '-f# . JI oJ
~( i

-7

'Jr
>t

Module Statement
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The syntax rule for the module statement is as follows.

<module~statement>::·

MODULE : <identifier> j

The user-chosen identifier is used as the name of the

program being specified.

Source F1le Statement
..-....- -----

The syntax rule for the source f11e statement 1s as

follows.

<source-file-statement)::-

SOURCE [ FILES I FILE 1 : <identifier> { t <identifier>

}* j

The source f1le statement ~oQ81sts of a list names of

files which serve as the input files of the program. The

Target F1le Statement

source files are assumed stored in external storage devices.

~f '
tI~~rf

The syntax rule for the target f1le statement 1s as

follows.

<target-file-statement>::-

TARGET [ FILES t FILE ] <identifier> { J <identifier>

}* j

• The target flle statement lists the names of files

which serve as the output. files of the program. The output

files are assumed to be on external storage and they serve
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to retain the computat~oD result for future use.

3.2 DATA DESCRIPTION STATEMENTS

In a non-procedural programming language every ;varlable ,/ )It
\ ~.....

can only have a single value. Therefore, different ";'a'r'1"a"b~le

names should be declared for different data involved in the

computation. The data structures in external files, or the

schemata of files, can be described in MODEL with data

~scriPtio~,eements. ,,1. 0 8 1(;.11, z:.aJ.at&.d IAJ:~
~bi ~ecl ....I ••~r~,i.~....-"~~ The user must ... also
~ . . .• ' ••"-',". . " ......,,-.,..=,•.. ,

declare the ~ta'"'"" type~_)~} tt-e compone~ of <:~~~~i;) in
+"-·'~"'''''''a.~.....~.~..v-".",_.,."._...,,,,.;~.~~_·",·-·~t'-~~ "·~"~-;~~''''''-':>''''''~'''''''<--<:<O;l''_~'~~.f''''l~W~~"...tlII''ti''>'''''''''·~

data description statements. The MODEL language has been

designed :.~",,~el~V:kh~h:~~r of concern for I/O control. In

general(i/oJ~<~ v co~plicated part of a programming
\ .J!"/

language~~A few simple mechanisms have been included in the

data description statements to ease the I/O programming

accessing a record.

organization and to indicate

include the abilitY,,~Cribe file

a lc. e y ;,/"f'i e 1 d .p~/4'i0 r d 1 r e c t
'", ,.,.."".,,'....~

In section.. 3.2.1 we' will discuss the

Examplestask.

way to specify the data type of a variable; in section

3.2.~, the way to describe ~;-~;.;;~ and in section
..""",o...",..,..,.._·..·""..........,..·,""-•...,w -.-,.../

3.2.3, the mechanisms used for I/O~ programming.
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,IJ /,1
. ~'~/''-'

""r
",,/ iv"!'

The smallest unit of data in a program is a~field. A

field may contain a datum of some type~~~~~4)bY the
~--,,,,,,,,~-,~.~,,,,,,,.,..-.-,,,,..,,,,,,,,,,,

MODEL language. The available data types includes picture,

character,
~,

bit string, and numbers.
,~--~--_.-

It 1s the user's

responsibility to select a data type for each field.

Field Declaration Statement

The synt,ax rule for a field declaration statement 1s as

follows.

<f1eld-declaration-statement) ::a

<identifier> [ IS ] <field> <data-type) j

<field> ::- FLD I FIELD

<data-type) ::- <type> <leng-spec>

<leng~spec> ::- «min-length> [ : <max-length> ] )

<m~n-length> ::- <integer)

<type>::- <pic-de.c) I (string-spec) I (num-spec)

<p1c-desc) ::- <pic-type)' <string> '

<pie-type) ::- PIC I PICTURE

(string-spec) ::- CHAR. I CHARACTER BIT I NUM I NUMERIC

(num-spee> ::- <num-type) [ <f1xflt> ]

FIXED I FL I FLOAT I FLT

(num-type) ::- BIN I BINARY

<f1xflt> ::- FIX

(max-length> ::- <integer>

DEC I DECIMAL
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A character string may be of fixed length or variable

length. For a fl~ed length character string the length in

byte units should be specified in the type declaration. A

variable length character string 1s specified through

declaring the range of the possible length of the string.

When a field ~ of variable length string occurs in an input

file, its length should be specified by an associated

control variable called LEN.X.

Example:

A IS FIELD CHAR(6).;
B IS FIELD CHAR(O:lO)j

The field A is a string of six characters and the field

B is a variable l~ngth character string with maximum length

ten. The actual length of the field B should be specified

by a co~trol variable called LEN.B in some assertion.
/1

The available operations for manipulating character

strings 1nclud~ lexicograph1 comparison, concatenation, and

!

I
/
l

Z·

'·
/"

extracting substring. The discussion for the character

string 1s also applicable to the bit string data type.

The data types for numeric data include picture,

floating point decimal, floating point binary, fixed point

decilllal, and fixed point binary. The operations ap,plicable 1_
to numeric data are arithmetic operations, comparison, and

conditional def,1nition. It should be noted that the picture

/

aDd character typed variables have a printable

~epre.eDtation. Therefore, it is suitable for data
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contained in reports. Other numeric data types are

genera~ly used for the data stored in the computer system.

The PL/I target language incorporate extensive type

conversion and therefore the user is generally relieved of

this concern.

3.2.2 DATA STRUCTURES

Usually there are two ways to group logically related

data together to form data structure. An array cOQtains

- homogeneous data elements - and a structure contains

heterogeneous data elem.ents. In MODEL a generalized data

aggregate can be used to specify arrays and structures. The

data aggregate 18 called a group or a record in KODEL

language.

Group Declaration Statement

The syntax rule for the group declaration statement 1s

as follows.

<group-declarat1on-statement> ::-

<identifier> [ IS 1 <group> ( <member-list> ) j

<group> ::- GRP I GROUP

<member-list> ::- <member> { , <member> }*

<member> ::- <identifier> [ ( <occspec> ) ]

<oeespee> ::- * I <.inoec> [ : <aaxocc> 1

· <m1nocc) ::- <integer>
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<maxocc> ::- <int~ger>

In the group declaration statement an identifier is

declared as a data group which contains a list of members.

Each member may optionally repeat some number of times. If

a member repeats, it 1s considered as an array of one

dimension more than the group cOQtaining it.----------- There are

three ways to specify the number of repetitions over a

dimension of an array. If the nuaber of repetitions 1s a

coastant, then the constant can be specified along with the

array name. When the number of repetitions is not fixed but

the user knows the maximum of it, he can specify a range for

the number of repetitious in the group statement. If the

user does not know the maximum, i.e. where the maximum is

an unknown ~arge value, he can denote the range by an

asterisk. When the number of repetitions is not a constant,

it can be defined through 80me control variables with

keyword prefix such as SIZE or END (refer to section 3.4) or

definition may be omitted if it can be detected based on an

end~of-f11e indication.

The members of a data group can be fields, or some

other data groups. A data group may be declared as an array

of arrays. In order to(reference a unit datum of it, the
'-..,---,,_._.

user has to supply as many subscripts as the number of array

dimensions. Thus the 1Ilem.ber field becomes a

.ult1~di.en81oDal array.
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Example:

A IS GROUP (B, C(lO» j

B IS FIELD CHAR(6) j

C IS GROUP (D(5), E(1:50), F(*» ;

where identifier A 1s declared as a data group

containing two members Band C. Let us assume that A 1s a

zero dimensional variable. Since C repeats, it 1s a one

dimensional array. Identif1er C contains three members, D,

E t and F. The member D repeats five times, and the member E

may repeat a number of tiaes from one to fifty. The member

F has a unknown number of repetitions, so an asterisk 1s

specified as its number of repetitious. All the members of

data group C are two dimensional arrays.

3.2.3 I/O RELATED DATA AGGREGATES

In a HODEL specificatioD, the user describes the

structures of the data files with data description

statements. The HODEL processor generates I/O statements

automatically for the source and target files of the program

based on the information in data description statements.

The record declaration statement 1s syntactically

similar to the group declaration statement. The only

difference is that the keyword GROUP is changed to RECORD.

A record corresponds to a unit of data which can be
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memory.
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main

The file 1s the highest-level data structure which

could be declared in a MODEL specification. It is not

allowed to have a structure above the file. A f1le

structure may consist of substructures declared with group,

record, or field statements. A well structured file

declaration will have the f1le entity on the top level. tts

iamediate descendants (l.e. aeabers) can be declared either

as groups or records. The groups may contains groups,

records, or fields. Finally on the lowest level in the f1le

structure the data should be declared as fields.

File Declaration Statement

The syntax rule for the file declaration statement 1s

as follows.

<fl1e~declarat1oD~8tate.ent>::-

(1dent1fer> [ IS ] FILE [ NAME ] <file-dese>

( <member-list) ) ;

<file-desc> ::-

[ KEY [ NAME] ["IS] <identifer> ]

[ ORG [ IS ] <org-type> 1

(org-type) ::- SAM I ISAM

A f1le may have the KEY attribute specified. In that

case. the records in the f1le are accessed by a par~ of the

record contents. If a f1le is keyed, there can only be one
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record type in the f1le structure and ODe of the field in

the record should be declared as the key for accessing the

record. Two types of file organization are supported by the

MODEL language, namely the sequential files and the index

sequential fl1es. A record in an index sequential f11e can

be accessed faster than in a sequential f1le 1£ direct

aceessing 1s necessary.

Example:

MODULE: KINSALEj
SOURCE: TRAN, INVEN;
TARGET: SLIP, INVENj

TRAN IS FILE (SALEREC(*»j
SALEREC IS RECORD (CUST$,STOCK$,QUANTITY)j

CUST$ IS PIELD(CRAR(S»;
STOCKS IS FIELD(CHAR(8»j
QUANTITY IS PIELD(CHAR(3»j

INVEN IS FILE (INVREC)
KEY STOCKS
ORG ISAM;

INVREC IS RECORD(STOCK$,SALPRICE,QOH);
STOCK$ IS FIELD(CHAR(8»;
SALPRICE IS FIELD(NUMERIC(5»;
QOH IS FIELD(NUMERIC(S»j

SLIP IS FILE (SLIPREC(*»j
SLIPREC IS RECORD (CUST$,STOCK$,QUANT.PRICE.CHARGE);

CUST$ IS FLD (CHAR(12»j
STOCK$ IS PIELD(CHAR(16»;
QUANT IS FIELD (PIC'(11)Z9')j
PRICE IS FIELD (PIC'(11)Z9')j
CHARGE IS FIELD (PIC'(11)Z9')j

3.3 ASSERTIONS

Data description statements define the data structures

of the variables involved in a computation. However, the
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values of the variables are defined either automatically by

input files or manually by assertions. Basically an

assertion 1s an equation. On the left hand side of the

equal sign there should be either a simple variable or a

subscripted array name which references an array element.

On the right hand side there can be any arithmetic or

logical expres.1on whose value is used to define the

variable on the left hand side. The current restriction 1s

that the assertion can only be used to define the value of a

field. Operations on the higher level data structures are

proposed to be translated into basic operations [PNPR 80].

3.3.1 SIMPLE AND CONDITIONAL ASSERTIONS

There are two kinds of assertions which can be used to

define the value of a variable, namely slmple assertion and

conditional assertion. The assertioQs have the same syntax

as an assignment statement and a conditional statement in

the PL/I language, respectively. All the arithmetic and

logical operations can be used in composition of

expressions. In addition, the conditional expression of

ALGOL language can be used in composing the expression.

Siaple Assertion

The syntax rule for the assertion 1s as follows.

(assertion> ::- (siaple-assertion> I <conditional-assertion>
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(aimple-assertion) ::- <variable> • <expression> j

<variable> ::- <simple-variable) I <subscripted-variable)

The variable name on the left hand side of an assertion

1s called the target variable of the assertion as its value

is defined by the assertion. All the variables on the right

hand side are called the source variables of the assertion

since their values are used to calculate the value of the

target variable. In the examples shown below, a conditional

expression 1s used to define the value of variable H.

Example:

1) A • B + 5 j

2) X(I,J) • .4 * I + J ;

3) M • IF OK" THEN 5 ELSE 0 ;

Conditional Assertion

The syntax of the conditional assertion is aimilar to

that of an IF statement in PL/I.

(conditional-assertion) ::-

IF <boolean-expression) THEN (assertion)

[ ELSE (assertion) ]

The conditional assertion has two bran~he8J one after the

keyword THEN and the other after the keyword lLSI. These

two branches are selectively executed according to the truth

value of a boolean expression. Since the purpose of an

assertion 18 to define the value of a variable, there can

only be ODe target variable in an assertion. In any case
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the two branches should define the same target variable.

Therefore, the target variable in any branch of a

conditional assertion should always be the same. It should

be noted that the ELSE branch of a conditional assertion is

optional. If it 1s omitted. the target variable may be

undefined in some cases.

Example:

1) IF I < 5 THEN A(I) • B(I) ;

ELSE A(I) • 1(1) + 2 j

2) IF END.X(J) THEN B • X(J) ;

3.3.2 SUBSCRIPT EXPRESSIONS

The var1ables used in assertions are either simple

variables or subscripted variables. A specific element of

an N dimensional array can be referenced with the array aame

followed by N subscript expressions. In the following we

will d~SCU8S how the subscript expressions are formed and

how they are used in composing the assertions.

Subscript expressions are composed of ordinary

variables. subscript variables, and constants with

ar1thaet1c operations. The subscript variable 18 a special

kind of variable. It does not have structure and it does

not hold one specific value. Iustead, a subscript 'variable

assumes integer values in a range from one up to some
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positive integer. If the range for a subscript variable 1s

\

fixed in the whole program specification, then the subscript

variable 18 called a global subscript. On the other hand,

if the range for a subscript variable 1s to be determined

for each assertion, the subscript variable 1s called a-local

subscript. There are ten system predefined local subscripts

named SUBl. SUB2 •••• , up to SUBIO. There are two types of

global subscripts. One of them has the form of qualifying

the name of a repeating data structure prefixed with the

keyword FOR. EACH.- The other 1s ereated by declaring an

1d~n~1f1er as a globa~ _s~bscrlpt_ with

statement.

Subscript Declaration Statement

the subscript

The syntax rule for the subscript declaration statement

is as follows.

<sub8er1pt~declarat1on~.tatement>::-

<identifier> IS <subscript> [ ( <occspec> ) ] ;

(subscript) ::- SUBSCRIPT I SUB

The subscript expressions are classified into the

following types according to their forms. In the following,

let I denote a subscript variable, c and k denote

Don-negative integers, and X denote an indirect indexing

vector( refer to section 4.2.2.2.) Subscript expressions may

be classified as follows:

1) I,
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2) 1-1 J

3) I-k, where k>l,

4) Done of the other types,

S) XCI)

6) X(I-c)-k, where c+k-l,

7) X(I-c)-k, where c:+k>l.

The range of a global subscript variable in an

assertion may be declared in a subscript declaration

statea'81lt. If not declared, the range 1s derived from an

array dimension in which the subscript variable has been

used·1n a type I, 2, or 3 subscript expression.

Examp.le:
~

1) I IS SUBSCRIPT (10) j

B(I) • A(I) ;

A global subscript 1 1s declared in the subscript

declaration statement and the range of the value of I is

from one to ten. In the assertion, the global subscript

1 will assume the integer values in the range declared in

the subscript declaration statement.

2) FACT(SUBl) • IF SUBl-l THEN 1

ELSE SUBl * FACT(SUBl-l) j

The range of the local subscript SUBl will be the

8aa. as that of the first dimension of array FACT because

the subscript SUBl occurred in the term FACT(SUBl) is in

a fora of type 1 8ubscript expression.
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The use of" subscript variables allows us to define all

the elements of an array in one assertion •. In the second

example above, the whole vector FACT is defined by the same

assertion.

For multi-dimensional arrays, subscripting array

variables may become tedious. We have adopted the following

convention to allow users to omit subscripts in array

referenees. When all the array references in an assertion

have the same leftmost subscript expression, which 1s a type

1 subscript and when the subscript 1s not otherwise referred

to ·1n the assertioQ, then the subscript can be omitted from

the assertion systeaatieally. For example, the following

three assertioDs are equivalent.

al: A(I,J,K) • 2 * B(I,J,K) + C(I,J) ;

a2: A(J,K) • 2 * B(J,K) + C(J) j

a3: A(K) • 2 * B(K) + C ;

3.4 CONTROL VARIABLES

Sometimes it 1s necessary to refer to attributes'of the

data, such &s the number of repetitions, the lengt~, or the

key for accessing a record 1n an index sequential f1le. In

order to allow reference to such attributes, a number of

control variables are included in the MODEL language. Binee

the control variables are always related to 80me variable,

they have a form of a qualified variable, with the name of
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the variable as the suffix and ODe of several reserved

keywords as the prefix. In the following we will assume

that X 1s a variable name declared in some data description

statement. The control variables which can be formed from X

are discussed below.

SIZE.X

If X 1s a repeating member of some data structure, the

user can specify the range by defining the value of a

control variable called SIZE.X. It should be Doted that X

may be a multi-dimensional array. SIZE.X defines only the

~range of its rightmost dimension. The ranges of the other

dimensions have to be defined separately.

SIZE.X 1s a variable of integer type. Its value 1s

used to 8pec~fy the number of repetitions of the rightmost

dimension of array X. If X(Il,I2, ••• ,Iri) is an n

dimensional array where 11 occurs on the most significant

dimension and In on the least significant dimension. then

the control variable SIZE.X(Il,I2, •••• Ik) should be a k

dimensional array with O<-k(n. The first dimension of

SlZE.X has the same range as the first dimension of array X,

the second dimensioD has the same range as the second

dimension of array X, and so on. The value of SIZE.X cannot

be a function of any subscript Ii with k<i<-n. For every

n-l tuple (Il,I2 •••• ,In-l) which corresponds to a possible

combination of the leftmost n-l subscripts for array X, the
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number of elements of array X with this tuple as their

leftmost n~l subscripts 1s specified by the array element

SIZE.X(Il,I2, ••• ,Ik).

Example:

A IS GROUP (B(3» ;
B IS GROUP (C(*» ;
C IS FIELD ;
SIZE.e(l) • 4 j

SIZE.C(2) • 2 ;
SIZE.C(3) • 3 ;

SIZE.C

I 4 I

c

I Cel,l) I C(1.2) J C(l,3) I C(1,4) I

I 2 I

I 3 I

---~----~--------~-------------------I C(2,1) I C(2,2) I

I C(3,1) I C(3,2) I C(3,3) I

In the example above, array C 1s two dimensional.

There are three instances of B in data group A and each

instance of B conta1ns a number of elements of array C.

Corr•• pondingly the range of the first dimension of array C

18 a constant three and the range of the second dimension

which _ay depend on the subscript value of the first

dimension 1s specified in vector SIZE.C. SIZE.e(l) equals

to four implies that there are four elements of array C in

the first instance of Bt the value of SIZE.e(2) specifies

the number of elements of array C in the second instance of

'B t and 80 on.

IND.X
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If X 1s a repeating member of a data structure, END.X

can be used to specify the range of the r~ghtmo8t dimension

of array X as alternative to the use of SIZE.X.

IND.X is a boolean array. If X(Il,I2 •••• ,In) 1s an n

dimensional array, then the associated control array

END.X(Il.I2, ••• ,In) 1s an n dimensional array, too. The

range of array dimensioDs of IND.X are the same as the

corresponding array dimensions of X. The value of END.X

determines the range of the rightmost dimension of array X

in the following way. For every n-I tuple (ll,I2, ••• t1n-1)

which 1s a possible combination of the leftmost n-l

subscripts of array X, there exists a sequence of elements

in END.X array with the same left n-l subscript values, 1.e.

{END.X(ll •••• ,In-l,Iu)1 l<-In}. If END.X(Il, ••• ,In-l,.) 1s

a boolean true and .all the elements of

{END.X{Il, ••• ,In-l,In)1 l<-In(m} are false, then there are

exactly ,m elements in array X with (llt ••• tln-l) as the~r

leftmost u-l subseripts. The values in END.X may depend on

the values in array X, 1.e. the number of repetition may

depend on the data in X.

Example:

Por the same array C aent10ned above, we may use a two

dimensional control array END.C to specify the range of the

second dimension of array C as follows.

A IS GROUP (B(3» ;
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B IS GROUP (C(*» j

C IS FIELDj
END.C{SUBl,SUB2) • IF SUBI-l THEN (SUB2-4)

ELSE IF SUBl-2 THEN (8UB2-2)
ELSE IF SUBl-3 THEN (SUB2-3) ;

c
-~-----~-----~----------------~------I C(l,l) I C(l,2) I C(l,3) I C(1,4) I

I C(2,l) .1 C(2,2) I

I C(3,l) I C(3,2) I C(3,3) I

----------------------------
END.C

F F 1 T

---------------------~---------------F T

--~-------------------------F F T

In the first row of END.C the first boolean true comes

in the fourth element, therefore, the fourth element is the

last element in the first row of array C. Similarly, the

second element of the second row of END.C 1s true implies

that there are OGly two elements in the second row of array

c.

Exaaple:

We will show how the END control variable can be used

to specify a varying number of repetitious by finding the

greatest co••on divisor of two positive integers M and N.

Euclid's algorithm 1s used here.

MODULE: TEST j

SOURCE: IN ;
TARGET: OUT ;
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IN IS FILE (rNR) j

INR IS REC(M.N) ;

OUt IS FILE (OUTR) ;
OUTR IS REC(GCD) ;

WK IS GROUP (WKG(*» ;
WKG IS GROUP (WKl.WK2) ;

(M.N.GCD.WKl,WK2) IS FIELD NUM(4) j

WKl(SUBl) • IF SUBi-i T~EN M
ELSE IF WKl(SUBl-l»WK2(SUB1-l) THEN

WKl(SUBl-l)-WK2(SUBl-l)
ELSE WK2(SUBl-l) ;

. WK2(SUBl) • IF SUB1-1 THEN N
ELSE IF WKl(SUBl-l»WK2(SUB1-l) THEN

WK2(SUB1-l)
ELSE WKl(SUBl-l) ;

END.WKG(SUBl) • WKl(SUBl)-WK2(SUBl) ;

IF END.WKG(SUBl) THEN GCD • 'WKl(SUBl) ;

POINTER.X

If X is a record of a keyed input f1le F J the instances

of the record X can be selected and ordered accord~ng to the

value of a control variable POINTER.X. The control variable

POINTER.X has the same number of dimensions and the same

shape as the array X. For every value in the control

variable POINTER.X. a record instance in the f1le F with

that key value will be presented in the corresponding

element of array X. In order to use POINTER control

variable for selecting and ordering the records in a keyed

f1le, one of the field in records should be declared as a

key in the file declaration statement. The content of the

POINTER control variable 1s used as the key to access the



60

corresponding record from the keyed f1le.

A keyed file may either have sequential or index

sequential organization. If the f1le is index sequential.

the records stored in the f11e may be in any order.

However, if the f1le is actually a sequential file, then the

records have to be sorted in an ascending order according to

the key field and the keys used to access the records should

also be sorted in the same order. This Is an implementation

restriction. Without this restriction we can not read all

the records we want from that f1le in one pass.

When a keyed file 1s declared as a source and a target

file, the target file will be an updated version of the

source f1le. Effectively only the records being selected

may be modified. For the rest of the f1le they are kept

intact in the target f11e. This mechanism makes the update

of sequential or index sequential f11e much easier to

specify. Since a key value may occur more than once in the

POINTER array, the corresponding (one) record will be

accessed, possibly updated. and written out several times.

In order to make sure every update to the same record is

effective, the updates have to be done sequentially. We can

envisage that a new version of the keyed f1le 1s ereated

after one record i8 updated and every update 1s done on the

moat recent version of the file.

Example:
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In the following MODEL specification a source file

INVEN is declared as a keyed file. STOCK$ in the record

INVREC is the key field of INVEN f11e. Since the control

o

variable POINTER.INVREC 1s equal to the field STK in f11e

TRAN, the INVREC records will be ordered according to the

values in the STK field.

MODULE: KINSALE ;
SOURCE: TRAN, INVEN j

TaAN IS FILE (SALEREC(*» j ,
SALEREC IS REC6aD (CUST$,STK,QUANTITY) ;

CUST$ IS PIELD(CHAR(5» j

STK IS FIELD(CHAR(8» j

QUANTITY IS FIELD(CHAR(3» ;

INVEN IS FLLE (INVREC(*»
KEY STOCK$
OR.G ISAM j

INVREC IS RECORD(STOCK$,SALPRICE,QOH) ;
STOCKS IS FIELD(CHAR(8» j

SALPRICE IS FIELD(NUMERIC(5»
QOH IS FIELD(NUHERIC(S» ;

POINTER.INVREC • TRAN.STK ;

FOUND.X
'...... f

f'\C:;. ~{'G?
J t ' i'

If X 1s a record in a keyed file, then it 1s

/

bq5 1" /1""0yc 0
accessed

through the value of a POINTER control variable. It may

happen that the key value used to access the record does not

match with any record. The accessing would fail. The user

may test the value in a control variable called FOUND.X to

find out whether a record with some specific key exists or

not. This informaton may be used to decide whether a new

record should be added into the f1le or an old record should

be updated. The control variable FOUND.X has the same shape
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as array X and POINTER.X.

LEN.X

Its data type is boolean.
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If X 18 a field in 8'0111e record and its data type is

variable length character string, then the actual length of

X 1s specified by the control variable LEN.X which 1s used

to disassemble the input or output records. Corresponding

to every element of array X, there is an element in LEN.X.

The values in the array LEN.X are integers. We can use any

integer type expression to define LEN.X. The only

restriction is that the content of LEN.X should not depend

upon any data physically positioned in a re~ord after the

data field X.

NEXT.X

If X is a field in an input sequential file, the

control variable NEXT.X can be used to denote the same field

in the next physical record of the f1le. Although the next

record usually aeans the record with a subscript value one

larger than the current record, it 1Iay not be true when the

current record is the last record in some group. The

problem 1s caused by the fact that the user 1s dealing with

structured data but the real data in the external file is in

a linear form. Sometimes the information used to transform

a .equenee of records into a structured form can only be

conveniently expressed in the way that the records are

physically contiguous. For example, we may want to compare
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the value of a key field in two adjacent records to

determine whether a record is the last record in a group or

not. The fact that the current record and the next record

mayor may Dot be in the same group causes trouble in

referencing the next record.

Exam.ple:

Suppose the records in a transaction file contain a

customer number and some relevant information and the

records are sorted according to the value of the customer

number field. We may use the following specification to

describe the data structure.

TRANSACTION IS FILE (CUSTOMER(.» j

CUSTOMER IS GROUP (TRANS RIC(.» ;
TR.ANS llEC IS RECORD (CUSTOM NO,INFORMATION) ;

CUSTOMER_NO IS FIELD (PIC'99999999') ;
I IS SUBSCR.IPT ;
J IS SUBSCRIPT j

END.TRANS REC(I,J) •
~CUSTOKER_HO(I,J)A.NEXT.CUSTOKER_NO(I,J) ;

The term NEXT.CUSTOKER_NO(I,J) in the last assertion

can not be replaced by CUSTOKER_HO(I,J+l) because there may

Dot be a record with this pair of subscript values. The

restriction in using the control variable NEXT.X 1s that the

position of X field in a record should be fixed, 1.e. the

fields to the left of the field X can not be variable length

strings or repeating with a variable number of times.

Otherwise, the field X in the next record may not be located
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correctly.

~.

'1 v(e< i \ (J

If X is a reeord< in an output file, then the control

variable SUBSET.X can be used to selectively omit some

~ecords from an output file. The SUBSET.X control variable

1s a boolean array of the same shape as the array X. When

an element in the SUBSET.X has a value of boolean true, f the

corresponding record X will be put into the output file. On

the other hand, 1f the element has a value of boolean false,

the corresponding record will not be put into the output

f1le. It should be noted that the use of SUBSET control

variable d6_s not affect any other computations. Only a

subset of records X may be omitted from the output f11e.
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CHAPTER 4

PRECEDENCE ANALYSIS

4.1 INTRODUCTION

A MODEL specification cons1sts of .any data description

or assertion statements. In principle, the data description

statements specify the structure of data entities such as

file, group, record, and field. The assertions specify the

relationships between the data entities. The data entities

and the assertions are referred to here as program entities.

On the other hand, in an executable prosram there are

program events such as I/O activities, computations, or

letting data ready. The events in a program generated by

the MODEL system correspond to entities in the

specification. For example, a f1le entity corresponds to an

event of opening a f1le or closing a f1le; a record entity

corresponds to reading a record or writing a record; and an

assertion entity corresponds to computing a target variable.

The sequence of the prograa events 1s not given by the user.

Instead, it is determined by the MODEL processor under the
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constraints of precedence relationships among the program

events. In this chapter we discuss the analysis for

recognizing the precedence relationships between program

events and representing them in a directed graph.

Based on the specification we can find the unique
\

symbolic names assigned by the user to data entities.

Additionally the MODEL processor automatically assigns a

unique name to every assertion. Similar to other compilers,

the HODEL processor aaintaina a symbol table called

dictionary which contains all the symbolic names of program

entities and their attributes.

The dictionary 1s created by a procedure CRDleT which

finds all the entities in the program specification and

stores their names into the dictionary. Exeept for some

special cases· described below, there is a correspondence

between each statement in the specification and an entity in

the dictionary.

Attributes of a symbol such as the type (flle, group,

field, ..., etc), the Dumber of dimensions, the structural

relation of it to other symbols are stored in the dictionary

during the process of precedence analysis, and later during

dimension analysise This information 1s used later to

determine the execution sequence.
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Various types of relationships among p~ogram entities

have direct implication on the execution sequence of their

corresponding program events. The precedence relationshlps

among the program events are found based ou the analysis of

the program entities. For example, a hierarchical

relationship exists when one data entity contains another,

such as when a f1le contains a record, a record contains a

field, ••• , etc. A dependency relationship exists between a

f1eld and an assertion when the field 18 either a source

variable of the assertion or its target variable. There are

also relationships between data entities and their

associated control, variables. the events and their

precedence relations are represented by a directed graph

called an Arrar Graph.

The Array Graph 1s created by two procedures, ENHRREL

and ENEXDP. The ENHRREL routine analjzes data description

state.eats and finds the precedence relations caused by the

hierarchical relations between data entities. The ENEXDP

routine analyzes assertions and finds the precedence

relations from the dependency relations among data fields

and assertions. It also finds the precedence relations

among data entities and their associated control variables.

Since the Array Graph contains the complete precedence

information, it 18 used to check the completeness and

CODsistency of the specification and to determine the

computation sequence.
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4.2 REPRESENTATION OF PRECEDENCE RELATIONSHIPS

DICTIONARY

68

Every program entity has a full name which uniquely

identifies it. Ko~t of the entities have a siusle component

full name. When ~wo data entities share the same name, it

1s necessary to qualify the name with their respective file.

names to distinguish them. Two data entities within one

file are not allowed to ahare the saae name. A f1le name

may have at most two instances denoted as ,NEW or OLD

followed by an identifier. Thus a data entity may have a

full name of three components: NEW or OLD, f1le name, and

dat_ name. Co~trol variables have one component more than

the associated data entities, 1.e., a reserved key name.

The full name and the attributes of each prograa entity are

stored in the dictionary.

In order to use memory efficiently, memory space for

the entries of the dictionary are allocated dynamically.

Pointers to the d1ct1o~ary entries are stored in a vector

DICTPTR and the total number of pointers in the vector is

denoted as DICTIND. With this arrangement, we can allocate

memory piecewise and access the. information random.ly. Since

each program entity corresponds to ~ Dode in the Array

Graph, we will call its entry number in the dictionary node

nUDlber. The organization of the dictionar.y---.1s shown in

Fig. 4.1 and the attributes in the dictionary are listed in
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N --..--..4 A'ITPJ.(N) / •

DICTIND
N

ATrRrn(N)

Fig. 4.1 Organization of the dictionary



70

Table 4.1 Attributes in the Dictionary

XDICT - Is the full name of the entity.

XNAKESIZE - Is the number of characters in XDICT field.

XUNIQUE - Is the smallest name by which the entity can be

identified uniquely. If the file name component of

a full name 1s not necessary to identify the entity

uniquely, then XUNIQUE 1s set to the name without

file name component; otherwise, XUNIQUE 1s set to

. XDICT.

XDICTYPE - Specifies the type of the entity. Following are

the possible values:

ASTX - An assertion.

GRP - A group.

FILE - A file.

RECD - A record.

MODL - The specification name.

SPCN - A special name prefixed with a keyword such

as END. SIZE. LEN, POINTER. NEXT, SUBSET,

ENDFILE, and FOUND.

$SUB - User or system declared subscripts, including

the standard subscripts: SUBl, SUB2, ••• ,

SUB10.

$$ - System added subscripts: $1, $2,

$$1 - System loop variables: $11. $12,

XMAINASS - Contains a pointer to the storage

statement which defines the entity.

• •• , $10.

••• , $110.

of the
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Table 4.1 Att.ributes in the Dictionary (Continued).

XNRECS .. This ~ount is meaningful only for file entities and

holds the Dumber of different record types contained

in the file.

XPARFILE - Holds the node number of the parent file entity

for all input and output data items.

XPAREC - For data items below the record level this field

holds the node num.ber of their parent record entity.

XINP .. Is 'l'B i£ the entity 1s in input file, and 'O'B

otherwise.

XOUP - Is I 1 ,'B if the entity Is in output flle, and 'O'B

otherwise •
•

XISAM - Is 'I'B 1f the entity is an ISAM file, and 'O'B

otherwise.

XKEYED .. Is 'l'B 1f the data entity 1s in a f1le for which a

key name was specified.

XLEN_DAT .. The length in bytes of the data entity.

XREPTNG .. Is 'l'B 1f the data entity 1s repeating.

XVARYREP .. Is 'l'B 1f the data entity bas a varying number

of repetitious.

XKAX_REP ~ The maximal number of· repetitions which was

declared for the data entity. If no maximal

repetition 1s declared, XKAX_RE~ 1s set to 1.

XVARS - Is 'l'B if the entity contains a descendant below

the record level and the descendant has a variable
\

structure.
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Table 4.1 Attributes in the Dictionary (Continued)

XSUBREC - Is 'l'B if the data entity is a member of some

record type.

XISSTARRED - Is 'l~B 1f the data entity is repeating and has

a undetermined repetition.

one

data

which 1s

in the

XFATHER - The node number of the data entity

level above the current entity

structure.

XSONl - The node number of the leftmost descendant of the

current entity.

XBROTHER - The node Dumber of the immediate right ne11hbor

of the current entity in the data structure.

XENDB - The node number of the control variable END.X if the

currnt entity 1s X•

. XEXISTB - The node number of the control variable SIZE.X 1f

the current entity 18 X.

XVIR_DIM - The conceptual (virtual) dimensionality of the

e-nt! ty.

XSUBSLST - A pointer to the node subscript list associated

with the entity.

X$SUCCESSORS - The number of edges in the XSUCC LIST.

XSUCC_LIST - A pointer to the list of edges emanating from

the current entity.

X$paEDECESS~RS - The number of edges in the XPRED_LIST.

XPRED_LIST - A pointer to the list of edges coming into the

current entity.

•
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4.2.2 THE ARRAY GRAPH

The Array Graph is a directed graph which represents

the precedence relationships among program events. The

nodes in the Array Graph are the program events and the

edges are the precedence relationships. One program event

in the Array Graph will correspond to one program entity.

Thus the nodes in the Array Graph correspond to the program

entitles 10 the dictionary. The edges between nodes are

stored in edge lists associated with those nodes. The

attribute SUCC LIST of a node contains a list of edges

emanating from it and the attribute PRED_LIST contains a

list of edges termlnating at this node. We can thus find

the successors as well as the predecessors of any Dode.

The nodes in the Array Graph are compound nodes, 1.e.,

an entire array of data 1s represented by one node. Also

each assertion 1s represented by one node, independently of

how maoy array elements it defines. The range of each

dimension of a compound node 18 stored in the node subscript

list associated with the node. The edges in the Array Graph

are compound edges which denote arrays of relations between

two compound nodes. With each edge are also stored the

types of subscript expressions used in the relations between

the source and the target Dode of the edge. The meaning of

the Array Graph 1s made more precise by cOBsidering the

eorrespond1na UnderIling Graph (UG), where every array

element is represented by ODe node. An assertion node in
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the Array Graph may be expanded in the UG into as many nodes

as the elements of the array which it defines. Edges- are

drawn between the simple nodes. The UG may be au enormous

graph which is impractical to analyze. Sometiaes the actual

number of array elements is not known until run time. Thus

it 1s impossible to ereate the UG of the specification. In

contrast. the Array Graph 1s more compact and easy to

analyze.

4.2.2.1 DATA STRUCTURE OF EDGES

Every edge from a node S to a node T has a uniform

format:

t
T(Ul, •••• Uk) <~-- S(Jl, •••• Ja)

where t 1s the type of the edge,

k 1s the dimensionality of node T •

• 1s the diaensionality of node S,

Ji, 1<-1<-., are subscript expressions appeared on

the 1th dimension Q£ node S.

U1, 1<-1<-k, are the node subscripts associated with

the node T.

The subscripts Ui, ••• ,Uk of the target node Tare

stored in the attribute XSUBSLST of T 1n the dictl~nary.

Therefore they are Dot specified in the edge. In the later

discussion. a type 4 subscript expression J1 will be
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indicated by an '.' in the 1th dimension of the source node.

An edge 1s represented by the following data structure:

SOURCE: The source node of the edge.

TARGET The target node of the edge.

EDGE_TYPE: The type of the edge.

DIMDIF : The difference between the dimensionality of

the target node and the source node.

SUBX : A pointer to the subscript expression

(Jl •••• JJa).

4.2.2.2 DATA STRUCTURE OF SUBSCRIPT EXPRESSION LIST

list

A subscript expression J1 can be elassified into one of

the following seven categories according to its composition

(refer to section 3.3.2). Type 4 subscript expression 1s

referenced later as a general subscript expression. Types

5, 6, and 7 subscript expressions are added for the

efficient implementation of some list type

functions[PNPR 80]. They are basically of the form X(I)

where X is a variable but used to subscript another variable

B in B(X(I». This form of subscript expression 1s referred

to as indirect indexing. The array used in indirect

~ndex1nl must be integer valued with non-negative entries.

The system will analyze indirect subscripts only 1f the
~

indirect indexing array·X(I) is sublinear, na.ely 1f it is:

a) Monotoni~. i.e., 1f I>J then XCI) >- X(J).
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b) Grovs more slowly than I, i.e., XCI) <- I.

The system can test the indirect indexing array

automatically to determine 1f it 1s sub11near by the

following simple criteria. In the assertion that define the

indirect indexing array XCI), the value of the right hand

side must be either 0 or 1 for I-I and must be equal to

X(I~l) or X(I-l)+l for 1>1. Thus the system will examine

the assertion to check 1f it is in the form:

XCI) - IF I-I THEN (1 I 0)

ELSE (X(I-I)

An element in a subscript expression list is defined by

the following data structure:

NXT_SUBL : A po·inter to the next. element of the list.

LOCAL_SUB$ : If the subscript expression 1s of the form

Uq[-c] or X(Uq[-c]) [-k].J then LOCAL_SUB$ is q, i.e.

the ordinal number of the subscript Uq as it appears

in T(Uk, •••• Ul).

APR_HODE : The type of subscript expression.

INXVEC : The node number of the indirect indexing vector

X i£ the APR MODE is 5, 6, or 7. Otherwise, O.

4.3 CREATION OF THE DICTIONARY (CRDICT)

The procedure CaDleT analyzes the statements of the

specification and enters all the program entities into the
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dictionary. To find all the data entities we start from the

top level of data structures ~nd then trace down the

structures. The structures whose root 1s a f1le listed in

the SOURCE FILE or TARGET FILE statements of the program

header are cOQsidered external f1les, i.e. input f1le or

output f11e.· If a data structure is not part of any input

or output file, it 1s considered an inter!. variable which

1s computed as any variable in an output file but not

written to the external storage.

Corresponding to each input or output file, there is a

f1le entity entered into the dictionary. If a f1le named F

1s served both as a source and a target file, then two f11e

entities named OLD.F and NEW.l will be entered into the

dictionary. Starting from the file entity we can find its

immediate descendants from the file de8~rlption statement,

and the descendants' names will be prefixed by the file

entity's name. If the root of a data structure 1s not a

file, we will consider INTERIM as its file name and all the

decendant8 will be put into dictionary, too.

As we analyze a data structure. we also construct a

tree representation for it. For every data node we store

pointers to its father, leftmost SOD, and younger (i.e.

iamediate to its right side) brother in the attributes

XFATRER, XSON1, and XBROTHER respect1vely.- We will

•
illustrate this with an example in Fig. 4.2 •
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X IS GROUP (Y,Z) ;

Y IS ·FIELD ;

Z IS FIELD ;

x = XFATHER(Y)

X = XFATHER( Z)

y = xSOtll(X)

:z = XBROTHER( Y)
!'"-':- ..-. -.' - ':",":",.,,;, ..• ..

Fig. 4.2 Tree representation of data structure

After all the data entities are entered into the

dictionary, a simplified name is derived .for every data

entry. If the f1le name eomponent can be omitted from the

full name without causing any ambiguity, the simplified name

is the reduced name. Otherwise the simplified name is the

same as the full name.

Other types of program entities such as module name,

assertions, and subscript variables are defined by a

..

specific type of statement respectively and there 1s a

one-to-one correspondence between the stateaents and the

entities. We can retrieve these types of statements from

the associative memory and enter the entities into the

dictionary.
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Finally we will put control variables into the

dictionary. For each type of qualifier keyword, we find

from the program specification all the qualified names with

that qualifier. Next we search the dictionary for the

suffix name. If the suffix 1s a declared data entity, the

full name of the control variable 1s formed from the full

name of the associated data entity. Otherwise, the

qualified name 1s an unrecognizable symbol and 1s reported

as such to the user.

4.4 CREATION OF ARRAY GRAPH

4.4.1 ENTER HIERARCHICAL RELATIONSHIPS (ENHRREL)

The data stored in external sequential files are simply

a string of bits. The use of data description statements

allows the user to treat them as structured. Therefore, the

system has to t~an8for. the data files from a linear form to

the structured form which 1s described by the user. For

this purpose, we envisage that there are two program events

corresponding to each data entity, one for opening!h! data

and the other for closing the data. The ,equantial order of

data in the external file requires these opening and closing

events be arranged in a strict order. The precedence

relationship among these program events can be established

as follow8. If a data entity contains some members, then

its opening event precedes the opening event of its first
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member and its closing event follows the closing event of

lts last member. In addition, the closing event of its Qth

member precedes the opening event of its n+lth member. In

the case that a data entity 1s repeating, then the closing

event of ite n-lth instance precedes the opening event of

its nth instance. Fig. 4.3 shows the prec~dence

relationship. of a sequential file. Because the data node B

1s repeatins, there 1s an edge from the n-lth instance of

the closing event of node B to the nth instance of the

opening event of node B. The edge is shown as a dashed

line. The existence of this feedback edge c~uses a cycle in

the Array Graph and this cycle ensures us that the reading

of an instance of the field D will be followed by the

reading of an instance of E. It should be noted that the

subscript expression associated with the edge from the event

C.B to the event O.B is of the form 1-1 which allows us to

remove it and break the cycle during the scheduling phase.
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A IS FILE (B(*),C(*» ;

B IS ~CORn (D,E) ;

C IS RECORD (F,G) ;

D,E,F,G ARE FIELD;

....-..-.. -.
..... -- _--~ - -

* O.X: opening event for data X

* e.x: closing event for data X

Fig. 4.3 Precedence relationship of a data structure

We envisage that for each field entity there is a third

node which corresponds to the available event of the data.

The opening event of an input field must precede its

avallable event, and the closing event of an output field
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should follow its available event.

This view assures us that we can always read the input

files sequentially and store them in the main memory before

any computation starts. If there are variable structures,

1.e., structures of varying field length or varying number

of repetitious, then we may have to include some assertions

in. the reading, process. Afterwards we can do all the

coaputatlon internally conf9rmin·g with the constraint of

data dependency which 1s i.plied by the assertions. At the

end, all the fields in the output files are available and

the informations for cOQtrolling the variable structure are

available, too. We then take the data from main memory,

assemble them into records, and write the records

sequentially.

Actually we have in the Array Graph only oue node,

instead of the open, close, and available nodes mentioned

above, for each data entity, as this helps compiler

efficiency. For input f1les, we can view the nodes as

corresponding to the opening events. For output flles, the

nodes corresponding to the closing events. The records

stored in a sequential file have to be accessed in a strict

order. Therefore, there i8 a precedence relationships among

the data entities of an input or output f1le to assure that

the rec·ord·s are accessed in the proper order. On the other

hand, a record 1s composed of fields. The m.·embership

relation between a record and its constituent. fields implies
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a precedence relationship, 1.e. no field in an input record

will be available until the record 1s read in. Similarly

all the fields in an output record should be available

before the record can be written out.

We will use the following definitions in discus.sing

tree structures.

Definition lor a data entity G, SON1(G) deDot.~_ its leftmost

son.

Definition For a data entity G, RSON(G)

rightmost son.

denotes its

Definition For a data entity G, CEB(G) denotes_~he closest

elder brothe; of G, 1.e. the data entity which is to

the immediate left of G among all the brothers of G.

Definition For a data entity G, CYB(G) denot~~__ 1~~_ closest

younger brother, 1.e. the data entity which 1s to the

i ••ediate right of G among all t~e brothers of G.

Definition For any tree with node G as th._~rootJ RDM(G)

denotes the rightmost node on the frontier of the tree.

Definition For any tree with node G as the root, LDM(G)

denotes the leftmoat node on the frontier of the tree.

The precedence relationships in different f1le types is

discussed in the following.
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1) Input sequential f11e. Since the records in a sequential

f1le are read in one at a time, the precedence

relationship needs to assure that the records are read in

the order they are present in the input f1le. A record

may be composed of many fields. Therefore, after a

record 1s read, it should be unpacked to get all th~

fields. If the records in a f1le are not unpacked in the

order they are read, then we will need memory space to

store the records. "Therefore, it is advantageous to

unpack the records when they are read in. This implies

that all the fields in a sequential file will become

~aval1able in the order they occur in the external file.

Three kind of edges are drawn among the data nodes in an

input sequential file.

a) Assume that a data node G is n dimensional. If

SON1(G} exists and 1s 11 dim.ensional where m m.ay be

either n or n+l, then the following edge 1s drawn.

SONl(G)(Jl, ••• ,Ja) <-la- G(Jl, ••• ,Jn)

b) Assume that a data node G is n dl1Rens ional· and

FATHER(G) is k dim.ensional where k may be either n-l

or n depending on whether node G repeats or not. If

CEB(G) exists and RDK(CEB(G» is m dimensional, then

the following edge 1s drawn.

G(Jl, ••• ,Jn) <-lb- RDM(CEB(G»(Jl, ••• ,Jk,., ••• ,.*)

c) Assuming that a data node G 1s n dimensional.

1s repeating, then the following edge 1s drawn.

If it

G(Jl •••• ,J ) <-lc- RDM(G)(Jl, ••• ,J -I,., ••• ,.)
n n
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If a data node in an input sequential file

corresponds to the opening event of that data, we can

interpret the above edges in the following way. The

edges of type 1& say that a higher level data instance

should be ready before all of the data instances

corresponding to the first member of it can be read. The

edges of type Ib say that all the brothers within the

same instance of their father should be read in the order

they are declared in the data structure. The edges of

type Ie say that if a data node is repeating, then one

instance of it 1s not ready to be read. until the last

field in the previous instance of it is read.

2) Output sequential f1le. The records of an output

sequential file should be written out in a strict order.

There may be several fields in a record, therefore, we

may have to pack the fields before writing. Packing the

fields when they become available is convenient for the

code generation but poses extra restrictions on

scheduling the assertions. For example, suppose a record

node R contaius three fields A, B, and C. If we insist

that fields A, B, and C should be available in that

order, the user would Dot be able to define the value of

A in terms of C. Therefore, at or above the record level

the precedence relationship requires that the records be

written in strict ·order but below record level the
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precedence relationship will only require that the

constituent fields of a record are ready before the

reeo"rd i's written. Therefore t fields in a record do not

have to be computed in the order they are packed into the

record.

Three kinds of edges are drawn among the data

entities above and including the record level of an

output sequential file.

a) A.suming that G 1s an n diaensional data entity above

the record level and RSON(G) , i.e. the rightmost son

- -of Gt is --m dimensional. The following edge is drawn

from RSON(G) to G.

G(Jl, ••• ,Ju) <-2a- RSON(G)(Jl, ••• ,Jn,.)

b) If node G has a younger brotner. then an edge will be

drawn from node G to LDM(.CYB(G». Let G be an n

dimensional node, FATBER(G) be a k dimensional node,

and LDK(CYB(G» be a • dimensional node. The edge to

be drawn 1s as follows.

LDM(CYB(G»(Jl •••• ,Jk, ••• ,Jm) <-2b- G(Jl, ••• ,Jk,*)

c) If node G 1s repeating, then the following edge 1s

drawn from G to LDM(G). Let G be an n dimensional

node and LDM(G) be a m dimensional node.

LDM(G)(Jl, ••• ,Jn, ••• Jm} <-2c- G(Jl, ••• ,Jn-l)

If we 1magine that a data node in an output

seqtientlal f1le corresponds to the closing event of that

data. then the edges mentioned above have the following
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interpretation. An edge of type 2a says that a data

instance can be written out only after all the data

instances corresponding to its laat son are written out.

An edge of type 2b says that all the instances of an

elder brother within the same father instance should be

written before any instance of its younger brother can be

written. An edge of type 2c says that 1f a data node 1s

repeating, then an instance of it cannot begin to be

written until the previous instance 1s completely

writ~en.

Below the record level -- in an output file, the

precedence relationships assures that a record will not

be written out until all of its constituent fields are

available. However, the relative order in which the

fields ar~ comp~ted is not restricted. We will simply

draw edges from all the descendants of a record node to

1~. Fig. 4.4 illustrate the edges in an output

sequential file.
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A IS FILE (B(*),C(*» ;

B IS RECO~~ (D,E) ;

C IS RECORD (F,G) ;

P,E,F,G ARE FIELD;

(El)

2b .

(GI)

Fig. 4.4 The edges in an output sequential file

3) An input ISAK file. In an ISAK file, there 1s only one

type of record. The dimensionality of the record node IR

1s the same as that of the associated control variable

POINTER.IR. Since the record instances are accessed with

the keys, it 1s possible to read the records in the order

of the keys. If the ISAK file 1s a pure source f1le to

the program, the keys in the POINTER.IR array can be used

in any order. On the other hand, if the ISAK file 1s
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used as a source and target file, the records should be

processed in a sequential way, therefore, the keys in the
~

POINTER array should be used sequentially to access the

records. Below the record level, we can have the similar

precedence relationship as in a SAM f11e because we may

bave to unpack the fields.

4) An output ISAM f11e. If an ISAK f11e 1s a pure target

f1le, the output records wlll be added to the f1le. If

it 18 a source and target f1le to the program, then ouly

the selected records may be updated. In order to assure

that each updated record 1ncl~des the effects of previous

updates, we will have to update and write out a record

before the next record is read in. Therefore, the keys

in the POINTER array should be used sequentially.

However the fields in an output record can be computed in

any order. Below record level the precedence

relationships only reflect the membership of the fields

within the record.

5) Interim variable. There are no I/O actions concerning

interim variables. They are stored in main memory and

referenced as fields. Therefore, there is no relative

precedence relatioDship among the interim fields. But we

still draw edges which reflect the membership among the

data entities to facilitate range propagation (refer to

Chapter 5). Since an interim variable 1s considered to

be part of an output f1le except that it will not be
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written out. the edges are drawn from the descendants to

the ances"tors.

4.4.2 ENTER. DEPENDENCY RELATIONSHIPS (ENEXDP)

Two types of assertions, namely simple assertion and

conditional assertion, may be used to define the values of

iateri. variables and output variables. The execution of an

assertion depends on the availability of all of its source

variables, and its execution makes the target variable

available. This 1s because a data entity must be defined

before it is referenced and a data entity becomes available

after the assertion in which it is the target variable is

executed.

Procedure ~NEXDP examines all the assertions twice. In

the first pass, it checks whether the target variable of an

assertion defines a 8ublinear function and can be used as an

indirect indexing vector or not. An indirect indexing array

should be defined by an assertion of the following form.

XCI) • IF I-I THEN (0 I 1)

ELSE (X(I-l) I X(I-l)+l) ;

During the second pass, it analyzes every assertion and

enters the precedence relations caused by explicit data

dependency into the Array Graph. Given a simple assertion,

the left hand side of it is scanned to find the target
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variable. Then the expression on the right hand side 1s

scanned to find all the source variables. For a conditiona1

assertion, the THEN parts, ELSE parts, and the conditional

expression parts are scanned in that order to find all the

source and the target variables. The source variables in a

conditional assertion are found in the cond1tl~nal

expressions, the THEN parts, and the ELSE parts. For every

source variable an edge is drawn from it to the assertion

node. It should be noted that one assertion defines one

target variable only and no more than one target variable

can appear in a conditional assertion.

Tbe edge from the source variable to the assertion is

of EDGE_TYPE 3 and the edge from the assertion to the target

variable is of EDGE TYPE 7. The DIMDIF is the

dimensionality difference of the target node and the source

node of the edge. The types of the subscript expressions of

a source variable are stored in the subscript expression

list associated with the edge. It should be noted that the

subscript expressions of the target variable define a

mapping from the node subscripts of the target variable to

the node subscripts of the assertion. Because the edge

corresponding to the occurrence of the target variable is

drawn from the assertion node to the target variable,

instead of from the target variable to the assertion Dode,

the mapping should be inverted to form the subscript

expression list of the edge. In Fig. 4.5 the data
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dependency of an assertion 1s shown. Notice that there 1s a

list of subscripts associated with every node in the graph.

lor example, variable A 1s a two dimensional array.

Subscripts <Atl> and <A,2> correspoad to the first and

second dimension of array A. The edge leading from node A

to al has a subscript expression list associated with it.

The subscript expressions are ordered in the way they are

used in the subscript variable A(I,J-l).

al: C(I,J) = A(l,J-l) + B(I,~) ;

7 (Cl,C2)

Pig. 4.5 The data dependency of an assertion

In addition to the explicit data dependency found in an

assertion, there exists 80me implicit data dependency

between the data entities and their associated control
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variables. Let TRGT denote the name of a data entity and

NODE denote the name of the associated control variable

which 1s composed of a keyword PREFIX followed by the name

of the data entity.

1. If PREFIX • 'POINTER', then verify that TRG! 1s a keyed

record and draw an edge.

TRGT <~5- POINTER.TRGT, DIMDIF· 0 •

2. If PREFIX • 'SIZE', then verify that TRG! 1s repeating

and draw an edge.

TRGT(I) <-13- SIZE.TRGT, DIMDIF· 1 •

3. If PREFIX • 'END', then verify that TRGT is repeating

and draw an edge.

TRGT(I) <-14- END.TRGT(I~l), DIMDIP • 0 •

4. If PREFIX • 'FOUND', then varify that TRGT 1s a keyed

record and draw an edge.

FOUND.TRGT <-15- TRGT, DIKDIF • 0 •

5. If PREFIX • 'NEXT', then verify that TRGT is a field in

an input sequential f1le and draw an edge.

NEXT.TRGT <-16- TRGT, DIKDIF • 0 •

6. If PREFIX • 'SUBSET', ~hen verify that TRGT 1s an

output record. If it is an output record, then draw

the following edge.

TRGT <-17- SUBSET.TRGT, DIKDIF • 0 •

7. If PREFIX • 'LEN'. then we draw an edge.

TRGT <-20- LEN.TRGT, DIMDIF • 0 •
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The subscript expression lists of these edges are for

the .oment empty. They will be constructed by the procedure

FILLSUB later according to the EDGE_TYPE •

•

4.5 PINDING IMPLICIT PREDECESSORS (ENIMDP)

Hany efforts have been made to make MODEL language

tolerate 80me 1ncoapletene88es and inconsistencies in the

specification. When incomplatene8se. and inconsistencies

are found, warning messages or error messages are -sent to

the user. If practical, the MODEL processor tries to

correct the specification in a reasonable way.

If an interim field is not defined by any assertion, an

error message 1s sent to inform the user. It is probable

that the user forgot to write the asse·rtion. Therefore, the

system should request an assertion from the user. Howeve~,

if a field in a target f1le is not defined explicitly, the

MODEL processor will try to find an implicit source to

define that field. The MODEL processor tolerates this kind

of incompleteness and saves the user work of writing

assertioos for aerely copying fields from a source f1le to a

target f1le.

Given a field in a target f1le which 1s not explicitly

defined by any assertion, we will seareh for a field with

the same name in another file according to the following
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order of priority. The idea 1s to make some reasonable

assumption 80 that the undefined field will get a value.

Rule 1: If the undefined field 1s in a f1le which 1s both a

source and target f1le, then the value in the

corresponding field in the old record 1s taken as

the value for it.

Rule 2: If Rule 1 does not apply, then the processor tries

to find a same~na.ed field in other source files.

If one 1s found, it 1s assumed to be the source. If

more than one 1s found, then the processor

arbitrarily picks ODe as the source and prints a

message to indicate that there was ambiguity.

Rule 3: If the above are unsuccessful, the processor tries

to find a field with the same name in other output

files. If ODe 1s found. it 1s taken as the source,

and if more than one 1s found, then one 1s taken

arbitrarily, with a corresponding message to the

user regarding the ambiguity.

In the above cases where an implicit predecessor is

found successfully, an assertion which defines the target

variable by the implicit predecessor 1s generated as if it

were entered by the user.
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4.6 DIMENSION PROPAGATION (DIMPROP)

The source ·and the target variables in an assertion may

be arrays. In order to reference an element of an N

dimensional array. the user should subscript the array name

with N subscript expressions. A subscr1ptless dialect of

the MODEL language allows the user to omit subscripts in

assertions in certain cases whieh do not lead to ambiguity.

Therefore, the number of subscript expressions following an

array variable does Dot necessarily indicate its actual

array may be simplified by

dimensionality.

multi-dimensional

Furthermore.

interim

the declaration of a

omitting the data description statements for the hi~her

level groups. The omission of subscript expressions in

assertions and the omission of the higher level data

description can be viewed as incompleteness or inconsistency

of the specification. However, they are tolerated by the

KODEL processor, and a process called dimension propagation

1s used to resolve inconsistencles of the dimensionality for

the interim variables and missing subscripts in assertions.

All the nodes in input and output files should be

declared precisely, using data description statements.

r

Their number of dimensions can' therefore be derived directly

from the data description statements. Associated with every

edge there 1s a field DIMDIF which denotes the dimension

differenee between the source and the target nodes of the

edge. The number of dimensions of a node can be propagated
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along the edges of the Array Graph.

• The dimension propagation algorithm 1s briefly

described in the following. Let N denote the set of nodes

in the Array Graph, array C store the current number of

dimensions, and array D store the initially declared number

of dimensions for each node in N. A queue Q keeps all the

nodes whose calculated dimension could possibly be changed.

Algorithm. 4.1 DitaeD.·sion Propagation

Input. Array Graph.

Output. VIR_DIM: An attribute in the dietionary which

contains the number of dimensious of a node.

1. For each node n in N. let C(n) be D(n) and put node n in

Q.

2. If Q 1s empty, then exit.

3. Pick a node n from Q, remove it fTom Q. Let .dim be O.

4. Por every incoming edge from Dode s to n. let dim be the

maximua of dim and C(s)+DIMDIF.

5. For every outgoing edge from node n to t, let dim be the

aaxiaum of dim and C(t)-DIHDIF.

6. If dim(-C(n), go to step 2.

7. Else, the node n has a new updated dimension.

be dim.

Let C(n)

8. lor every incoming edge from node s to n. append s to Q.

9. lor every outgoing edge from node n to t, append t to Q.

10. If more than N*N nodes have been taken from the queue,

then halt and issue an error message - 'there exists a
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propagation cycle.

If the process converges, then every node will have a

finite dimension. However, it 1s possible that a cycle in

the graph causes an endless increase in the dimensions.

Consider for example the following specification.

(F, H) ARE FIELD;

I IS SUBSCRIPT ;

IF I-I THEN H(I) • 5 ; ELSE H(l) • F+l ;

IF I-I THEN F(I) • 6 ; ELSE F(I) • H+l ;

The first assertion implies that the dimension of H 1s

larger by 1 than that of F, 1.e. C(H»C(F). The second

assertion states that C(F»C(H). Apply~ng our algorithm to

this specification will result in endless loop of

alternately incrementing C(B) and e(l). In this case the

system will send out an error aessage indicating that the

dimension propagation process is in an infinite cycle and

also print out the nodes involved in the cyele.

4.7 FILLING KISSING SUBSCRIPTS IN ASSERTIONS (PILLSUB)

In the d1aens1on propagation phase we have determined

the Dumber of dimensions of every node. If the number of

dimensions of a node 1s larger than its apparent number of
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dimensions, it 1s necessary to add the respective subscript

and data structures. This is performed in the following

three tasks.

Task 1: Generate the node subscript list.

If the node X 1s a data node, its node subscript list

Is (displayed here from last to first):

(FOR_EACH.Ak, •••• , lOR_BACH.AI)

where Ak, ••• , Al 1s the list of the repeating ancestors of

X in a top down order. If X itself 1s repeating than Al is

equal to X.

If the node 1s an assertion node, then it has already

been assigned a partial subscript list by ENEXDP. This 1s

the list of apparent subscripts in the assertion. 1.e. all

the subscripts appearing either on the L.H.S. or the R.R.S.

of the assertion. Let the assertion be of the form:

al: A(Ik, ••• J 11) • f( •••• ) ;

Let the a.B.S. cODtains the subscripts Jl, ••• , Jm not

appearing on the t.R.S. and hence assumed to be reduced.

Then the partial list assigned to al is (lk, ••• J I1,J.,

••• ,J1) and its apparent dimensionality 1s determined to be

d-k+m. As a result of the dimension propagation process we

may have recomputed a new dimensionality c for a1 where

c)-d. This will cause n-e-d new subscripts to be added to

the subscript list of a1 which now appears as:

($n, ••• , $l,Ik, ••• Il,Jm, •••• ,Jl)
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where $1, ••• J $n are the name of the new subscripts.

Task 2: Fill in Kissing Subscripts in the Assertions.

Consider an instance of a subscripted variable A(Ij,

••• , 11) in an assertion. The calculated dimension VIR_DIM

for array A yields a value d which should be greater or

equal to j. If u-d-j>O we should add a new syste. generated

subscripts $1 to $n, modifying the instance into A($n, ••••

· $1,lj, ••• J II). It should be noted that the new subscripts

are always added on the leftmost dimensions of the array

variables.

Task 3: Fill in the Subscript Expression List. for the Edges.

All the edges except types 3 and 7 have been generated

with an empty subscript expression list. Using the edge

type and the dimensions of its source and targ~t nodes, we

generate a subscript expression list for each edge. Edges

of type 3 and 7 have a partial subscript expression list

based on their apparent appearance in the assertion. It may

be necessary to expand this partial list. If n 8issing

subscripts have been added to the variables in an assertion,

then it 1s necessary to add n subscript expressions to the

'edges which correspond to the instances of the variables in

the assertion.
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CHAPTER 5

RANGE PROPAGATION

5.1 INTRODUCTION

The structures of variables are declared in data

description statements. Every variable 1s considered an

array of some dimensions. The number of elements in an

array variable 1s determined by the dimensionality of the

array and the sizes of each of the array ~ dimensions. The

size of an array dimension is called the range of that

dimension. The range information allows us to allocate

meaory space for the array variables and generate iteration /

cOQtrol statements which will define every element in the

arrays. The use of subscripts in assertions makes it

possible to define multiple elements of an array through one

assertion. We can instantiate an a8sertlo~ by fixing its

subscript values. Then every instance of the assertion

def1nes one single data element. The ranges of the

assertion'. subscripts restrict the number of instances of

an aS8ert~OQ. which in turn defines the number of times that
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the assertion will be executed. The ranges of array

dimensions and assertion subscripts are used in the later

phases to synthesize the program.

Much information 1s not given explicitly in the

specification. For instance users are allowed in assertioQs

to use free subscripts for which the range is not specified.

Also the range specifications of some array dimensions may

be omitted. Therefore an algorithm 1s needed to derive

ranzes for certain assertion subscripts and array

dimensions.

There is yet another reason why we want to analyze the

subscript ranges. A criterion for placing a number of

assertions in the scope of one loop 1s that they all have

subscripts of the same range. From the point of view of

program optimization it 1s preferred to have the loop scope

as large as possible. It 1s important therefore to identify

the subscripts· of the same range. By propagating the

specified range information to all the assertion subscripts

and array dimensions we not only find the ranges which have

been incompletely specified, but also identify the ranges

which are equal.
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LANGUAGE CONSTRUCTS FOR RANGE SPECIFICATION

A multi-dimensional array 1s declared as a hierarchical

~

1

~
i
)

I
i
J

~

data structure with the .oat significant dimension specified

at the top level. The range of a dimension may not depend

on the subscript value of less significant dimension. The

range of an array dimension may be specified in MODEL in

several alternate ways as follows:

(1) Through a data description statement. A constant number

of repetitions of a data structure .ay be specified in

the data description statement which describes the

parent structure.

(2) By defining the value of a SIZE qualified control

variable (Refer to section 3.4.). For example, 1f group

X repeats H times and M is a variable itself, we may use

the following assertion to specify its range:

SIZE.X • M ;

A SIZE "qualified variable 1s an interim variable of

at aost one diaension les8 than that of the suffix

variable. tts value 1s used to define the range of the

last dimension of the suffix variable (i.e. X).

Consider an N dimensional repeating group x. Assume

that the ranges of all its dimensions except the least

significant one are defined elsewhere. By definition,

SIZE.X is at most an N-l dimensional array and the range

of its dimensions is exactly the same as the range of

corresponding dimensions of data structure X. Since the
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values in array SIZE.X can be different from one

another, the array X may Dot have a regular (i.e.

rec: tangul_ar) shape t but have "jagged edges. It This can be

stated formally as follows:

X(S ,S , ••• ,S , ••• ,S ) 1s in X iff
12k n

SIZE.X(S , ••• ,S )
1 k

is in SIZE.X &

1 <- S
n

<- SIZE.X(S
1

, •.• ,s )
k

(3) By defining the. value of an END qualified control

variable. The END array 1s of boolean ~ype~ It

determines the range of the least significant dimension

• of the variable named in the suffix. Given an N

d1me~s1onal array x, the associated cOQtrol array END.X

has the saae structure as array X. The range of the Nth

dimension 1s defined as the smallest positive integer Ln

which satisfies the following conditions.

END.X(S
1

END.xes
1

, .•• ,s ,Lu)· TRUE
n--l

, ..• ,s ,S) - FALSE,
n-l n

for 1 <- S < Ln.
n

(4) By using a subscript declaration statement tQ define a

global subscript. The constant number of repetition can

be specified in the statement. lor example:

I IS SUBSCRIPT (20) j
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(5) By system ~efault. A repeating data structure which 1s

a rightmoat decendant and which is above or at the

record level, may be assigned the end-af-file as its

ra~ge 1f the user does not specify a range for it.

The mechanisms of SIZE and END arrays are not totally

redundant. There are some essential differences between the

SIZE and END arrays. First, the END array can define a

.inimua range of one, whereas the SIZE can define a range of

zero. This is because the END array must have at least one

value of boolean true. Secondly, the range specified by

SIZE array 1s finite. But the range specified by END array

may be infinite (through a user error in the range defining

assertion. when there is no first boolean true condition).

This 1s not checked by the systea. Thirdly, the range

specified by array SIZE.X(Il, •• ,Ik) may not depend on the

array element X(Ii, •• ,In), whila END.X(Il, ••• ,In) may depend

on X(Il, ••• ,In). For example, let X(l), ••• ,X(k) be all the

instances of an one dimensional array X whose range 1s

specified by SIZE.X-k. In the program, the value of SIZE.X,

i.e. k t must be computed before we compute any of the

elements of X. If END control array 1s used. the range 1s

specified by END.X(i), ••• J END.X(k). and we only have to

ensure that END.X(I-i) 1s computed before XCI) for l<l<-k.
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5.3 DEFINITIONS

Subscript variables belong to a special class of

variables. While an ordinary variable can assume only a

unique value, a subscript variable can take on a range of

positive integer values. Subscript variables can be used as

indices in array element references or in the same way as

ordinary variables to compose complicated expressions. The

meaning of subscripts 1s the same as their meaning in

mathematical usage.

The following definitions are used in

subscripts.

discussing

Definition Let X be an N dimensional array ---re.presented 1n

the Array Graph by a node. Let i be a positive

integer. The tuple <X,i> is referred to as a node

subscript. It denotes the ith dimension of the-node of

array X. Let al be an assertion node, and I a

subscript variable referenced 1n the assertion ale The

tuple <al,I> 1s referred to as a node subscript for I

associated with the assertion node ale If <n,d> is a

node subscript, then R«n,d» denotes its range.

Node subscripts are grouped into range sets. Every

range set conta~D8 the node subscripts which have the same

range. However no two dimensions of the same node can be
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put into one range set even if they have the same ranges

because every range set will later correspond to a level of

nested loops in the generated program and no two dimensions

of the same node can correspond to the same level of nesting

loops.

Definition The range of a subscript that has been declared

as a global subscript is the same in all assertions

where it 1s used. There can only be one range

associated with a global subscript.

Definition The range of a subscript that has not been

declared as global is fixed within the scope of the

assertion where it 1s used. It will be called a local

8ubscript. A symbol used as a local subscript caQ- have

different ranges in different assertions.

There are two types of global subscripts in MODEL. One

1s specified by use of. the qualifying keyword POR_EACH in

the prefix and a repeating data structure name in the

suffix. The other is explicitly declared in a subscript

declaration statement. (Refer to section 3.3.2.) The

FOR_EACH type global subscript always has the range of the

repeating data group named in the suffix associated with it.

A user declared global subscript can have its range

specified in the subscript declaration statement. By using

global -subscripts in assertioDs, the user can specify
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explicitly the range of assertion subscripts.

Local subscripts are all of the form SUBn where n 1s a

positive integer. Users do not have to declare local

subscripts (in subscript statement). The use of local

subscripts in an assertion is like that of formal parameters

in a function definition. They ean be chosen arbitrarily

within the scope of an assertion. This gives the user

freedom to reuse the subscript names in different

assertions.

5.4 DISCUSSION OF RANGE PROPAGATION

5.4.1 CRITERIA FOR RANGE PROPAGATION

In this section we discuss the conditions for

propagating the range of a subscript from one node to

another. A node subscript refers to either an array

dimension or an assertion subscript. If two node subscripts

are related through some dependency ~elat1on and one of them

does not have an explicit range specification, we propagate

the range from one to the other.

Let us consider first a simple assertion:

B(I) • A(I). Three entities are involved the source

variable At the target variable B, and the assertion itself.

All of them are one dimensional objects. The assertion

states that the kth instance of the assertion corresponds to
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the kth in.tance of array B for all k in the range of B's

dimension. There is a bijective mapping between the

instances of the assertion and the instances of the array B.

It 1s therefore very natural to believe that the range of

the target variable B is the same as the range of the

assertion. Additionally, from the subscript expression I in

the term A(I) we can derive that the range of the assertion

can be taken from the range of the array A. In short,

whenever a siaple subscript variable is used as a subscript

expression it strongly suggests that we may propagate the

range from one node subscript to another.

When a subscript expression of the form I-k is used in

an assertioD, where 1 1s a subscript variable and k is a

p081t~ve integer, there exists a one~to~one mapping between

values of certain elements indexed by I and I-k. The

mapping may be interpreted in two possible ways assume

the ranges of the arrays indexed with I and I-k subscripts

are the same, or assume that the variable with the I-k

subscript expression has k instances fewer than the variable

with 1 subscript. We have dec1ded to adopt the simpler

assumption, that Is, the ranges are the same. Therefore we

will propagate ranges between the node subscripts indexed by

subscript expression I and I-k.

It should be noted that we do not intend to modify or

ignore a user specified range of a node subscript. The

analysis mentioned above 1. used for two purposes. One is



110

to derive a range for a node subscript which does not have

an explicitly specified range. Second is to determine 1f it

1s possible to put two node subscripts into the same range

set when both of them have user specified ranges and the

ranges are the same. When two node subscripts have user

specified ranges, we are interested in finding out whether

their ranges are equal. Since there is no simple way to

determine 1£ two functions are equal in general, we will

only cheek the assertions whieh define the range arrays by

the other range array.

5 .4.-2 PRIORITY OF RANGE PROPAGATION

User specified ranges are associated with repeatins

data structures or declared global subscripts. The range

specified for a data node is interpreted as the range of its

least significant diaension. Ranges of node subscripts can

be propagated along a path in the Array Graph from one node

to another baaed on the following relations between

•

respective node subscripts.

1. The two node subscripts are both global subscripts and

have the same global subscript name.
/

2. One of the node subscripts corresponds to a dimension of

a data node and the other corresponds to the same

dimension number of the associated control variable.

3. The two node subscripts occur on the corresponding
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dimensions of two data nodes in the same data structure.

4. One node subscript is associated with an assertion node

and the other 1s associated with a source variable of

the assertion-.

5. One node subscript 1s associated with an assertion node

and the other is associated with the target variable of

the assertion.

There may be several alternative paths (and directions)

for propagating a range, and the range derived for a node

subscript may depend on the choice of a path. The choica of

path may also affect th~ efficiency of the generated

program. Therefore. we will propagate ranges according to a

priority order which attempts to obtain the highest

efficiency. The priority order 1s as follows.

When a global subscript 1s used in several assertions.

the ranges of the respective node subscripts (in these

assertions) are the same. We may consider all the node

subscripts with the same global subscript name as a group.

Whenever any element in the group has its range defined, we

will propagate the range to other elements in the same

group. This type of propagation will have the top prior1ty.

Next consider the data nodes and their associated

control variables such as SIZE.X, END.X, POINTER.X, LEN.X,

••• J etc. The diaeus10ns of the control variables

correspond to the diaensions of the variable named in the
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suffix fro. left to right. The corresponding dimensions of

a data node and its associated control variables should have

the same range. Similarly the corresponding dimensions of a

data node and its higher level nodes in a data structure

should have the same range.

If the range specification of local subscripts in

assertions or array dimensions are not given explicitly, we

will derive them by analyzing the respective subscript

expressioDs in assert1oBS. It 1s preferable to propagate

the range from a target variable to an assertion rather than

to propagate -the range from a source variable to an

assertion. Therefore, the range propagation between an

assertion node and its target node or between a data node

and its associated control variable will have the second

priority.

Globally it 1s preferred to propagate the range from a

variable in an output flle backward to a variable in an

input file than reversely. Thus we will assign the third

priority to the propagation from an assertion node backward

to its source variables and the fourth priority to the

propagation from a data node forward to an assertion node in

which it 1s .referenced as a source variable"

Ex.aple Let array A be an input f1le with 20. elements, array

C an output file with 10 elements and array Bone

dlaensional interim array. The assertions

al: 1(1)· ACI) j
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a2: C(I)· B(l) ;

may lead us to assign either 20 or 10 as the range for

array B, depending on the point of vie. taken. As far

as the correctness 1s concerned, it does not make any

difference whether 20 or 10 is used as the range of

array B. But a smaller range would mean potentially

less memory space and less computation time. Therefore

the latter 1s more desirable. The range may be

evaluated as follows. Since no global subscripts are

used here, no propagat1on corresponding to the top

priority can be achieved. The propagation from an

assertion node to the target variable 1s second

priority, therefore, the range of <e,l> and <B,l> should

be propagated to <a2,1> and <a1,t> respectively. The

range of subscript <B,l> will be that of <A,I> or <C,l>

depends on whether we -give higher priority to the

propagation from <A,l> to <al,I> or from <a2,1> to

<B,l>. Since the latter haa the higher priority, the

range 18 propagated from array C all the way back to the

assertion node a1. (Refer to F1g. 5.1.)
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al: B(I) = A(I) .,
a2 : eel) = B(I) .,

R( <A,1'»=20

......
/ "I

,
R«al,I»=?, ,

I I
I I

\
r

I R«B,l»=?

" /

",-

I R«a2,I»=?
(

I,
R«C,l»=lO

""'- ~, ...... ..-

F1g. 5.1 Example of Range Propagation

In summary, we have divided the range propagation into

four priority levels. The . top level is based on use of

global subscripts. The second level is based on the

relation between data node and its associated control

variables or between the assertions and their target

variables. The third level 1s to propagate the range from

·an assertion backward ~o its source variables, and the

fourth one 1s to propagate the range fro. a data array

forward to the assertions in which it 1s referenced as a

source variable.
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REAL ARGUMENTS OF RANGE FUNCTIONS

Every node subscript will iterate over its range by a

•

loop control statement in the generated program. A node in

the Array Graph having N node subscripts associated with it

will have an N level nested loop enclosing it. Every loop

cODtrols the iteration of a corresponding node subscript.

We w1ll show that the range specification of the node

subscripts may have influence on the order that the loops

can be nested and on the order of subscripts in referring to

a range array.

When the ranges of the dimensions of an array are all

CODstant, the array has a regular shape. We can access all

of the array elements by iterating the subscripts in any

order. For example, 1f we have a rectangular a'rray At we

can access all of the array elements either row-wise or

column-wise. However, 1f some of the dimension ranges of an

array are specified by range arrays, it 1s no longer true

that we can nest the loops in any order. In Fig. 5.2(a) two

arrays A and B are both three dimensional arrays. The

ranges of the third dimension of both arrays are specified

by the SIZE.A array. In F1g. 5.2(b), a part of the

..

flowchart for the specification in 5.2(a) is shown. The

point 18 that the loop .corresponds to node subscript <A,3>

should be scheduled inside the loops of <A,l> and <A,2> •

Because the loop control statement for <A t 3> referenees the

ra~le array SIZE.A aDd the value of SIZE.A depends on the
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values of subscript <A,l> and <A,2>.

A IS FIELD;
B IS FIELD;
B(I,J,K) • A(I,J,K) j

SIZE.A(I,J) • f(I,J) ;

Fig. 5.2(&) A range array with real arguments

•
•
•

DO <A, I>;
DO <A,2>i

DO <A,3> • 1 TO SIZE.A«A,l>,<A,2»;
A«A,l>,<A,2>,(A,3»;
B«A,l),<A,2>,<A,3» • A«A,l>,<A,2>,<A,3»;
B«A,l>,<A,2>,<A,3»;

END;
END;

END;
•
•
•

Fig. S.2(b) Flowchart of 5.2(a)

A simple 8olut~on would be to require that the loops

enclosing an array are nested according to the hierarchical

order of the array dimeusions •. Thus, the dimension being

declared on the top level of the data structure will be

scheduled on the outmost level. Because the range of a

dimension 1s not allowed to depend on the subscript value of

any lower level dimension in the data structure, in the

example above when the loop of <A,3> is to be scheduled, the

loops of <A,l> and <At2~ would have been scheduled on the

outer levels. However, this requirement 1s unnecessarily
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strong. For example, 1f we follow this scheme, then all the

two dimensional arrays will have to be computed row-wise.

With this restriction we may lose the opportunity to

generate an optimal program.

A generalized solution would be to treat the range

arrays as functions and find the real arguments of the range

functions. For example, an N dime~8ional rauge array

•

SIZE.X(Il, ••• ,In) say be considered as a function which maps

an N tuple of integers 11, ••• , In to an ln~eger value which

1s the rauge of the n+lth dimension of array X. Every

subserlpt of the range array may be viewed as corresponding

to an argument of the function. We will use the terms range

array and range function interchangeably. Some of_- the

function arguments may not affect the function value, namely

the range does not vary with the value of these subscripts.

The rest of the arguments which do play roles in determining

the actual value are called real arguments of the range

function.

By analyzing the assertion which defines a range array,

we can find all the real arguments of the range array. If

the range of a node subscript <n,d> is specified by a range

array and the range array has some real arguments, the real

arguaeuts of the range array should correspond to 80me other

node subscripts of node n. In the generated program the

loop~ which correspond to the real arguments should be

scheduled on the outside level of the loop which corresponds
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to the node subscript <n,d>.

specification in Fig. 5.2(a).

For example, consider the

The range array SIZE.A has

two real arguments, i.e. <SIZE.A,l> and <SIZE.A,2>. Since

the node subscript <A,3> referenees the range array SIZE.A

and the node subscripts <A,l> and <A,2> correspond to

<SIZE.A,I> and <SIZE.A,2> respectively, node subscripts

<A,l> and <A, 2> will.be stored in the real argument list of

Dode subscript <A,3>. It 18 shown in F1g. 5.3. The loop

iterated on <A,l> and (A,2> will be scheduled on the outside

of the loop on <A,3>. Similarly, we can find the real

argument lists for <al,K> and <B,3>.

/
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<a1,J>

<al,I>

~

S <SIZE.}.,2

I
I I
I I
I I
I I
I I

<A,l> <A,2> <A,3>

I I
I

I i
I,

I
I

I I
I I I
I - I

-
<a1,I> <a1,J> -·<a1,.K>

..... - .. , I-_::.- .,. ......- .._- - --- ,,-.

f I

I I
«

I,
_.~-- _.~ ---- -- -

I I

<B,l~ <B,2> <B,3>

<8,1>

<B,2>

F1g. 5.3 Real argument lists of node subscripts

Example We will show how transposing an array effects the

mapping between the real arguments of the range arrays.

Let us examine the following assertions.

B(I,J,K) • A(J,I.K) ;

..

.SIZE.A(M,N) ···h(M,H) j

Assumiog that R«A,l» 1s equal to R«B,2» and R«A,2»
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is equal to R«B,l». The range for subscript <B,3> is

obtained from R«A,3» which 1s given by SIZE.A.

SIZE.B(N,M) should be equal to SIZE.A(K,N). All we need

1s a permutation of subscripts to make the range array

SIZE.A the same as SIZE.B. A possible flowchart for the

loops enclosing node A and B 1s shown in Fig. 5.4.

•
•

DO <A, 1> j

DO <A,2> ;
DO <A t 3>- 1 TO SIZE.A«A,l>,<A,2»

A«A,1>,<A,2>,<A,3» ;
END ;

END ;
END ;

•
•

DO <Btl> ;
DO <B,2> j

DO <B,3>- 1 TO SIZE.A«B,2>,<B,l» j

B«B,l>,<B,2>,<B,3» ;
END;

END ;
END ;

•
•

Fig. 5.4 Transposition of real arguments of
a range array

It should be Doted that the order of the node subscripts

<B,l> and <B,Z> in the range array reference

SIZE.A«B,2>,<B J 1» is significant in the loop control

statement for <B,3>. Therefore, in the real argument list

associated with the node subscript <1,3> we should store the

real argum.ents in the order of <B,.2> followed by <B,l>.

(Refer to Fig. 5.5)
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<A,l>

. <al,I>

<B,l>

<A,2>

<al,J>

<B,2>

<A,3>

<al,K>

I

I
t
I
I

<13,3>

<A,l>

: <A,2>

<al,J>

<al,I>

<B,2>

<B,l>

Pig •.5.5 The order of real arguments in the
real argument list

5.5 RANGE PROPAGATION ALGORITHM (RNGPROP)

The range propagation algorithm consists of three

steps. First of all, we locate the node subscripts which
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have user specified ranges (Algorithm 5.1). In the second

step we propagate the explicit range specifications by

• partitioning the node subscript set into range

sets (Algorithm 5.2). In the third step, we will propagate

the real argument 11st(RAL) among the node subscripts in the

same range set (Algorithm 5.3).

The data structure used are as follows. The total

number of node subscripts is denoted by $ALLSUBS. Every

node subscript 1s assigned a unique sequence number. A

vector TERKC(DICTIND) of integer denotes the kind of range

specification used for the least significant dimension of

each node. It can have the values of 1-4 to denote the

following conditions:

1 : the data structure has a constant n.um.ber of repetition.

2: the ranae is specified by an END arr·ay.

3: the range is specified by a SIZE array.

4: the range 1s implied by readin.g an end of file.

The vector LtERMC prOVides the same information for node

8ubscripts a8 TERKC for the nodes. The contents of TRRMe

and LTERKC are computed ~y Algorithm 5.1.

Algorithm ~ Find User Specified Ranges

Output:

TERKC: The type of user specified range of every node in

the Array Graph.

LTERKC: The type of user specified range of every node

subscript.
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1. Initialize the vectors TERMC and LTERMC to O.

2. For each node n, in turn do:

If attribute VARYREP-O. then TERMC-l.

If attribute ENDB>O, the~ TERMC-2 •
./

If attribute SIZEB>O, then TRaMe-3.

3. lor every Dode u, in turn do:

If TERKC(n) is not equal zero, find the node subscript

<l1,d> which corresponds to the least significant

dimension of node u. jSet the LTERKC entry of the node

subscript to TERMC(n).

Three arrays, HEADER., SETNEXT, and LUNGEP are used in

step 2. Each of them has $ALLSUBS number of entries.

HEADER(I) gives the sequence number of the header element of

the block to wh~ch the Ith node subscript belongs.
;l

SETNEXT(I) links the Ith node subscript to the next node

subscript in the same block, 1£ any. When the Ith node

subscript is the header of a block, then LRANGEP(I) shows

the range of the Ith subscript. Algorithm 5.2 partitions

the set of all the node subscripts. Initially every node

subscript forms a block by itself. Then whenever we find

that two node subscripts could have the same range and no

range conflict would occur, we will merge their bloeks.

This meraia! process will continue until no further merging

can be done. Since every node subscript can only be 1n one

block. at any moment, this 1s in falct a disjoint-set union

proble.[ABU 74]. The blocks formed in Algorithm 5.2 are
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called range sets.

Algorithm 5.2 Propagation ~ Range Specification.

Input:

LTERKC: The type of user specified range for every node

subscript.

Output:

RANGE: A field in the LOCAL_SUB data structure of every

node subscript. It contains the range set number

where the node subscript belongs.

$RNGSET: The total number of range set.s.

SET$RNG: The node number of the header of a range set.

Data structures:

$ALLSUBS: The total number of node subscripts.

HEADER($ALLSUBS): The node number of the header of the

range set of a node subscript.

SETNEXT($ALLSUBS): For every node subscript, it points to

the next node subscript of the same range set.

LRANGEP($ALLSUBS): If a node subscript 1s not the header of

any range set, the value 1s -1. Else, if the node

subscript bas a user specified range, the value 1s

the data node number of the range. Otherwise, the

value 1s o.

1. Initialization.

Hake every Dode subscript a block by

values of I from 1 to $ALLSUBS do:

READE1l(I)-I,

SETNEXT(I)-O, 1* NO NEXT ELEMENT */

itself. For all
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LRANGEP(I)-node of the range 1* IF IT HAS A DEFINED

RANGE */

-0, 1* OTHERWISE *1

2. Merge blocks of the same global subscript name:

For every node subscript with sequence number I, cheek

whether it has a global subscript name. If it is a

global subscript of the form FOR EACH.X or user declared

subscript X, let J be the sequence number of the node

subscript which 1s associated with the least significant

d1aenslon of node X. Call procedure UNION(I,J) to merge

the blocks cOQtaining these two subscripts.

3. Propagate ranges between data nodes and control arrays

or target nodes and assertion nodes:

For every edge in the Array Graph with edge type not

equal to 3 check the type of the subscript expressions

associated with the edge. 1 These ed~es connect data

arrays to the associated control arrays and the assertion

nodes to their target variables. For every subscript of

the source node, find the corresponding subscript in the

target node. If the APR_MODE of the subscript expression

1s 1 or 2, merge them using procedure UNION.

4. Propagate ranges from assertion to source variable:

Scan all the edges of type -3 which connect a source

variable to an assertion. The range is to be propagated

backwardly. If the subscript of the source node has a

defined range, no aerge will be done. Otherwise check 1f

the APR MODE of the subscript expression 1s 1 or 2. If
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UNION to merge it with the

•

•

corresponding subscript of the target node.

5. The same a8 step 4. Except that no merge will be done 1f

the subscript of the target node has a defined range.

6. Check the header of each block. If it does not have a

user defined range, check the elements of the block. If

there exists an element which is associated with a data

node at or above record level and being the rightmost

node in an input f1le structure, we may use end-of-file

as the default range.

7. Assign a range set number to ~very block of the

partition. If a node subscript belongs to the kth bl~ck,

put k into the RANGE field in the data structure

LOCAL SUB of the node subscript. Also store the node

number which gives the range information of the block in

SET$RNG(k) entry.

Procedure UNION(I,J)

Input:

t,J: The subscript sequence numbers of two node subscripts

for which the range sets will be merged.

Output:

Modify the data structure HEADER, ~ETNEXT, and

LRANGE to reflect the merging of the two range sets.

1. If both subscripts I and J are in the same block, exit.

2. If the blocks containing subscript I and J have different

ranges, exit.

3. Put BEADER(I) into A.
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4. Put HEADER(J) into B.

5. Change the HEADER entries of all the elements in the same

block as J to A.

6. Append the list with the header B to the list with the

header A.

7. Replace LRANGEP(A) by LRANGEP(B) if LRANGEP(A)-O.

8. Set LRANGEP(B) to -1.

Step three examines all the range sets. If the range

of a range set 1s specified by a ~ange array, a RAL 1s

computed for every Dode subscript in the range set.

Algorithm 5.3. Propagation of Real Argument List

Input:

LTEllMC: Type of user specified range of every

subscript.

node

RANGE: A field in the LOCAL_SUB data structure of every

node subscript. It contains the range set number

where the Dode subscript belongs.

Output:

RALP: A field in the data structure LOCAL_SUB of every node

subscript. For every node subscript whose range is

of types 2, 3, or 4, it points to a list of real

arguments of the range function.

Data structure:

The real argument list pointed to by BALP consists

of a list of elements which are stored in the data

structure RAL. The fields in the RAL are &s
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follows.

$RAL: The number of real arguments.

RSPOS($RAL): The sub_cript position of a real argument in

the range array.

MSPOS($RAL): The subscript position of the corresponding

real argument in the node subscript list.

1. lor each node subscript which has a user specified range

and the termination eriterion 1s not constant, form the

RAt for it and put it into a candidate queue. (Refer to

Algorithm 5.4)

2. I"terate step 3 to step 7 until the candidate queue

becomes empty.

sU~8crlpt S of node X. Propagate the RAL of S to other-
•

3. Get a node subscript from the queue. Let it be the

node subscripts 1n step 4. 5, 6, and 7. If any node

•

subscript gets its RAL new~y defined, put it into the

candidate queue such that its RAL can be propagated to

other subscripts.

4. For each outgoing edge from node X, propagate the RAL of

subscript S from· node X to the target node. (Refer to

~lgor1thm 5.5)

5. For each incoming edge into node X, propagate the RAL of
~

subscript S from node X back to the source node. (Refer

to Algorithm 5.6)

6. If subscript S references a global subscript, propagate

its aAL to the global subscript.

7. If subscript S 1s a global subscript, then propagate its
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END.X into a list.

8. Stop.
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Let the range array be SIZE.X or END.X.

Suppose the range of the subscript·<X,n) 1s specified

RAL to all the subscripts which reference its name.

its least significant dimension from the list.

3. Repeat for each of the subscripts in the RAL to check

1. Put all the subscripts of the target variable of the

2. If the target variable is END.X, delete the subscript on

by an assertion.

The algorithm tries to find the RAL for subscript <X,n>.

Algorithm 5.4. Find' RAL from .! range specifling assertion

.,

whether it is referenced on the right hand side. If yes,

it 1s a Real Argument. Otherwise, delete it from the

list.

4. The resulted list is the RAL of the subscript <X,n).

Algor1tha .h1.:. Propagation of RAL forward along ..!!!. edse-

Assume 81 is a subscript of node X and there is an edge

E from node X to node Y. The algorithm propagates the RAt

of 51 to some subscript of node Y.

1. If the subscript expression of 81 is not type 1 or type

2, exit.

2. Let the corresponding subscript of node Y be 82. If RAL

of 52 1s defined, exit.

3. If the ranges of 81 and 82 are different, exit.
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4. For each subscript in the RAL of 51, check its subscript

expression type. If anyone of them is not type 1, exit.

Find their corresponding subscripts in node Y and form a

new list. If the ranges of the corresponding subscripts

are not the same, exit.

5. The newly ~or.ed subscript list 1s the RAL of 82.

Algorithm~ Propagation of RAt backward al.ong an edge

Assume 81 is a subscript of Dode X and there is an edge

E from. node Y to node X. The algorithm. propagates the RAL

of Sl to some subscript of node Y.

1. If there is no subscript of node Y corresponding to

subscript SI, exit.

2. Let the corresponding subscript of node Y be 82. If RAL

of S2 is defined, exit.

3. If the ranges of 81 and 52 are different, exit.

4. lor every subscript Xi in the RAL of 51 find its

corresponding sub8cr1~t Yj of node Y.

4.1 Let the subscript position of Xi in the local

subscript list of node X be 1.

4.2 Check the LOCAL_SUB$ field in the data structure

associated with edge E. If the jth

LOCAL_SUB$ is equal to i, the jth node subscript Yj

in the local subscript list of node Y corresponds to

Xi.

4.3 Check the APR_HODE corresponding to subscript Yj in

edge E. If it 1s not 1, exit.
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4.4 Check the RANGE field of the node subscript Yj and

that of subscript Xi. If they are different, exit.

5. Form a subscript list which contains those subscripts

Yj's of node Y. It 1s the RAL of subscript 82.

Algorithm 5.7. Propagate ~ between Global subscripts _

Suppose subscript 81 of node X and subscript 82 of node

Y have the same global subscript name.

propagates the RAL of Sl to 52.

1. If the RAL of 52 1s defined, exit.

The algorithm

....

2. lor each subscript T in the RAL of Sl, get its range, say

RT. Check all the subscripts of node Y. If there is one

and only one subscript U which has the same range as

subscript T, then subscript U 1s the corresponding

subscript of T. Otherwise, exit •

3. Form a subscript list which contains those subscripts U's

of node Y. It 1s the RAL of 82.

5.6 DATA DEPENDENCY OF RANGE INFORMATION

In section 4.4.2 we have mentioned that range arrays

cause implicit data dependency relationship. The edges of

type 13 and 14 in the Array Graph represent this type of

data dependency. However, it 18 Qot enough 1f we only have

the edges from a range array SIZE.X or END.X to the 'node x.

For every node in the Array Graph, no aatter whether it 1s a

data or an assertion node, as long as one of its node
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subscripts 1s in a range set where the range 1s de1ned by a

range array, an edge should be drawn from the range array to

that node.

We can tell the range of every node subscript only

after the range propagation phase. Therefore, the correct

time to add this type of data dependency relationship is

after we have found all the range sets. If a range set bas

a range array as its range specification, then there will be

edges emanating from the range array and terminating at

every node in the range set. Subscript expressions of type

1 are associated with the edges emanating from a SIZE range

array. Subscript expression of type 2 is associated with

the least significant dimension of an END range array and

type 1 subscript expressions are associated with the other

dimensions of the END range array.
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CHAPTER 6

SCHEDULING

6.1 OVERVIEW OF SCHEDULING

Through the phases of data dependency analysis,

dimension propagation • and rauge propagation we have

• analyzed the user's specification and cheeked the

consistency and completeness of the specification. In a
~

non-procedural programming language, the execution sequence

1s not specified in the program specification. The

objeetlve in this chapter 1s to determine the order of

execution in performing the specified computation. We have

collected the needed information in the convenient for. of

•
the Array Graph. The Array Graph contains all the program

activities as nodes and the data dependency relationships as

edges. The next step toward cODstructing a program 1s

'.

ordering the program aetivities'represemted by the nodes of

the Array Graph under the constraints posed by: a) the

edges of the Array Graph. and b) considerations of

computation efficiency. As stated in chapter 1, efficient
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scheduling is one. of the main contributions of the reported

research. This method of synthesizing the program 1s called

scheduling here. It is followed by the actual program code

generation.

Two rules which are frequently accepted in programming,

except in cases where memory limitations are extremely

severe, will be followed here as well. The first 1s that

every input fl1~ is to be read only once. This rule will

reduce the number of input activities which are usually

relatively slow. If necessary we may store the input data

in the memory for repetitive use. However. sometimes the

memory price may be very high due to the large capacity of

external storage. The second rule is that no values are to

be recomputed. This means that once an element has been

computed it will be retained as long as it 18 needed for

later reference.

6.1.1 A BASIC APPROACH TO SCHEDULING

A correct but often inefficient realization of a

computation can be obt~1ned through the following scheduling

aethod. Our eventual approach will be partly based on this

simpler basic approach. The acyclic portious of an Array

• Graph may be scheduled very .i~ply as follows. A

•

topological sort algorithm can be applied to obtain a linear

ordering of the nodes in the graph in accordance with the
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edge constraints. Mult1~d1mens1onal nodes are then enclosed

within nested loop controls. Every loop iterates the

respective node over the instances of one of the distinctive

node subscripts of the node •.

When there are cycles in the Array Graph, a topological

sort will not succeed. Superficially, a cycle in the Array

Graph means a circular definition which does Dot allow us to

determine a linear order for the computation. Actually

since the Array Graph masks some of the details of the

relationships in. the corresponding Underlying Graph (see

Chapter 4), there may be a cycle in the Array Graph where

there are no cycles in the corresponding Underlying Graph.

Also iterative solution methods can be applied to perform

the computations even where there are cycles in the

Underlying Graph. We have to apply a deeper analysis of the

nodes and subscript expressions used in assertions in the

cycle. the cycles that are found to be really not circular

can be resolved to generate a linear schedule. The method

employed 1s briefly described as follows. The Array Graph

1s decomposed into 8ubgraphs. Each Bubgraph 1s a most

strongly connected component (MSCC). A MSCC in a directed

graph 1s a maximal subgraph in which there 1s a path from

any node to any other Dode. The deeper analysis 1s then

applied to the MSCC components in the Array Graph. The

analyats described in section 6.2 consists of search of a

dimension that 18 co••on to all the nodes in the KSCC. If
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an edge 1s found in the MSCC which has an l-k type subscript

expression associated with it, the edge may be deleted.

This 80aetimes results in an acyclic subgraph which can be

topologically sorted. If this method is not successful then

other analysis methods, or alternatively an iterative

solution method may be applied.

6.1.2 EFFICIENT SCHEDULING

In general, a schedule which satisfies the coustraint

of the data dependency r~latlonship is not unique, 1£ one

exists. Therefore, there 1s a degree of freedom to select a

schedule which meets efficiency requirements as well. We

want to have a schedule with the fewest number of loops or

with the least amount of working storage for the program

variables. Although we will use here the results of the

basic scheduling approach mentioned above, our method of

scheduling consists essentially of a. process of repeated

merging of basic MSCCs in the Array Graph. As will be

shown, in this way we can reduce the use of memory and

computation time.

Non-procedural programming uses &s many variables as

the values that occur during the program computation. If we

simply allocate separate memory space to each var1~ble, as

may be done in the basic approach, we will most probably get

a program which uses a large amount of memory space and in
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some cases may not be executable. Therefore, we are here

primarily concerned with memory efficiency of the program.

Our approach 1s to examine the effect on use of memory due

to merging of blocks of nodes of the same or related

subscript ranges and form iteration l·oops for the selected

subscripts enclosing the merged blocks. We will select

mergers of blocks of nodes which reduces the use of memory

the most.

In 80me cases we have an alternative of maximizing the

scope of one loop at the cost of reducing the scope of one

or more other loops. The choice of which loop scopes are

maximized 1s based on comparison of memory requirements of

the alternatives. The alternative that requires least

memory space for program variables will be selected.

The repetitious indicated -by the node subscripts are

controlled· by loop statements. The execution of loop

statements takes some CPU time. If the loop scopes in a

program are small, i.e. 1f they contain fewer nodes, then

there will be more loops in the program and the overhead

spent on the loop control statements will be increased.

This 18 another reason why it is desirable to maximize the

loop scopes in the generated programs.
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6.1.3 OUTLINE OF THE CHAPTER

The material in sections 6.2, 6.3, and 6.4 forms a

background to understanding the optimization in the

scheduling algorithm. In section 6.2 we will discuss the

analysis of MSCCs. The algorithm of our optimizing

scheduler 1s based on deeper ana~ys1s of cycles. A similar

approach was used previously in an .earlier version of the

KODEL processor. Some changes discovered in the course of

the presently reported research have been added. The merger

of components 1s discussed in section 6.3. There are two

bases for merging of components: when components have the

same .Ub8C~1pt ranges and when they have related range (this

is explained later). In section 6.4 we will introduce the

memory penalty concept which will be used to evaluate the

use of memory in a partially designed schedule. The memor-y

penalty 1s the memory cost associated with a candidate

subschedule. The scheduling algorithm 1s presented in

section 6.5.

6.2 ANALYSIS OF KSCC

6.2.1 CYCLES IN THE ARRAY GRAPH

A cycle in the Array Graph aeans that a variable

definition depends directly or indirectly on itself. An

Array Graph 1s a compact representation of an Underlying



139

Graph. It does not show the details of precedence

relatlonship~ in the Underlying Graph. Therefore, the

apparent circularity may be deceptive and not be reflected

in the Underlying Graph. In this case a correct computation

may be realized for an Array Graph cycle.

Consider for example the assertion in Fig. 6.1 which

defines the factorial function. Because of the recursive

definition there 1s a cycle in the Array Graph. But there

1s no cycle of precedence relatioQship in the corresponding

Underlying Graph. Therefore, there exists a precedence

ordered sequence for computing all the factorial values.

a(I): Fel) = IF I=l THEN 1 ELSE I*F(!-l) ;

Ca) "Assertion

•

a

I I-l

(b) Array Graph

• • •

• • •

(e) Underlying Graph

• •

Pig. 6.1 Example of cycles in the Array Graph
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A KSCC in the Array Graph mayor may not represent a

circular definition. If it is not truly circular, we may be

able to perform the respective computation by using an

iteration loop. In section 6.2.2 we will discuss the

conditions under which a MSCC can be enclosed in a loop. If

these conditions are met, we will find the loop parameter to

bracket the entire MSCC. Once such loop 1s found, since the

loop indices are ascend1ng, the precedence relationships

between the respective loop instances is assured.

Therefore, as shown in section 6.2.3 we delete edges w1t~

.I-k subscript expressions and the MSCC may be decomposed.

If the above method fa1ls, there are other approaches to

schedule a MSCC which will be discussed in section 6.2.4.

6.2.2 ENCLOSING A MSCC WITHIN A LOOP

The objective of iterative computatioGs of a single

data or an assertion node 1s to define all the elements

correspondinl to the values of node subscripts associated

with the node. In general, the values of every node

subscript can be stepped independently of other node

subscript values. Therefore, a node with N node subscripts

would have an N level nested loops enclosing it, and each

level of the nested loop -corresponds to one distinctive node

subscript. We will associate with every loop a loop

variable with values which are stepped up by one from one to
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the upper bound of a subscript range. All the nodes inside

the scope of a loop will be executed once for every possible

value of the loop variable. Generally 1f a node does not

have a node subscript corresponding to a loop variable, the

repetition 'would be redundant. We want to treat an entire

MSCC in some manner as a single node. i.e. to compute all

the elements of the nodes in the MSCC iteratively. We

require however that all the nodes of a MSCC have a node

subscript with which a loop brackets the MSCC. If one of

the nodes does Dot have such a node subscript then the

activity represented by the node, such as input/output, may

be repeated, which will cause an erroneous computation. All

the distinguished dimensions must then have the same range.

It should be noted that the loop variable 1s stepped up each

iteration by one, and no computation of a loop instance can

depend on any computations in later loop instances.

Given a KSCC in the Array Graph, we will first check 1f

all the nodes in the MSCC have more than zero dimensions.

If every node does have at least one dimension to schedule,

we will then check the subscript expressions on the edges of

the MSCC to see 1f the entire MSCC can be enclosed within a

loop. The edges in the Array Graph represent relationships

between 80me elements of the nodes at the ends of the edges.

The subscript expressions associated with edges reveal more

precisely the precedence relationships between specific

elementse In the following we examine the subscript
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expressions associated with an edge to· determine if the

nodes at the end of the edge can be scheduled within the

scope of a loop.

Definition Let A be a node of n dimensions. .Then A denotes

the set of all the instanees of node A, i.e.

A - {ACII, •••• In)1 1<-Ik<-R«A,k», for l<-k<-n }.

Definition Let A be a node of u dimensions. Then !(I1-Clj

Ij-C2j ••• ) denotes the set of all the instances of

node A with the ith subscript Ii being Cl and the jtb

subscript Ij being C2. ••• etc.

Consider an edge from node A(Jl, ••• ,Jm) to node B(ll, ••• ,In)

in the Array Graph:

B(Il, ••• ,Ik, ••• ,In) <--- A(El, ••• ,Ep, ••• ,Em)

where J's and l's are the node subscripts of node A and B

respectively, and I's are the subscripting expressions of A.

Consider the subscript expressions of types 1, 2, 3, and 4.

1) If a 8ubscript expression Ep 1s of type 1 and equals ta­

lk, then every element in !(Ik-c) depends only on the

elements in !(Jp-c). Since !(Ik-c) does not depend on

any element in !(Jp-d) with d)c, the Underlying Graph

dependencies are satisfied 1£ node A, followed by B, are

bracketed by a loop where the parameters of the iteration

are the pth dimension of A and the kth dimension of B.

These are referred to a8 a distinguished dimension of A

or of B.
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2) If the subscript expression Ep 1s type 2 or 3 and equals

to Ik-a, then for any positive integer c every element in

!(Ik-c) depends only on the elements in A(Jp-c-a). Since

the parameters of the bracketing loops are in ascending

order (in step of 1) then this assures that !(Jp-d) 1s

computed before !(Ik-c) with d<c. Thus it 1s allowed to

schedule node A and B into one loop, with Ik and Jp the

distinguished dimensions.

3) If the subscript expression Ep 1s type 4. then for any

positive integers c and d every element in !(Ik-c) may

depend on elements in !(Jp-d). We will be conservative

and assume that every element in !(Ik-c) depends on at

least one element in !(Jp-d) with d>c. Therefore, it 1s

iapossible to designate the pth diaension of A and the

kth dimension of B as the distinguished dimensions for a

loop.

Example Given an assertion a1 as follows. Le~ A and B be

square arrays.

assertion node ale

There is an edge from array node A to

a1(I,J): B(I,J) - A(S,J);

where g is a type 4 subscript.

CODsider the node set {A,al}. Consider scheduling this

set into OQe loop with <A,l> and <a1,1> as their

distinguished dimensioDs. Let SA be {A(Jl.J2)IJl-2}

and 51 be {al(I.J)II-l}. SB 1s in the first instance

of the loop and SA is in the second instance of the
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Consider next the

• element a1(1,2) of 5B. We can find an element A(2.2)

in SA which precedes a1(1,2) because of the type 4

subscript on (A,l> dimension. SB and SA then precede

each other, in the Underlying Graph, and th~refore can

not be scheduled.

Exaaple Given the assertion &2 below.

a2(I,J): Y(I,J)· X(I,J) + X(J,I)j .

X 1s a square array and subscripts ·(X,l>,- <a2,I>, and

(a2,J> have the same range. We want to schedule the

node set {X,a2} in one loop with <X,I> and <&2,1> as

the distinguished dimensions.

All the subscript expressions being used with node X

are not type 4. However, in the term X(J,I) a

subscript J occurs on the distinguished dimension of X,

i.e. <X,l>. Since (a2,J> does not correspond to the

distinguished ~1men81on of Dode a2, it aay be scheduled

in an inner level loop and iterates faster than <a2.I>.

therefore some array elements of X will be referenced

before defined. Thus we should not form a loop with

these designated distinguished dimensions.

Prom the examples above we know that the subscript

expression on the distinguished dimension of a node must not

be a general expression and it should correspond to the
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distinguished dimension of another node in the same loop,

otherwise the loop can not be formed. Since the loop

instances are strictly running upward starting from one and

all the subscript expressions on the distinguished

dimensions are of the form I or I-k, no reference goes to

the later loop instances, therefore, no data dependency

relationship is violated. In fact, by constructing the loop

we have.divided the whole computation into many smaller

tasks where every task corresponds to a loop instance. It

should be noticed that the formation of an outer loop does

not exclude the possibility that the original computation

involves an unsolvable eycle. What we are assured 1s that

the outer loop divides the original problem into smaller

ones and which can be solved easier •

6.2.3 DECOMPOSING A KSCC THROUGH DELETION OF EDGES

Cousider now the ease where an MSCC is sche4uled in one

loop based on the tests described in the previous

subsection. The ~odes in the MSCC have each a distinguished

dimension which corresponds to the loop variable. Also the

subscript expressions associated with the distinguished

d111lensioQs are of the for'1D either I or I-k. We will show in

the following that where the parameter of the loop 1s

stepped up from one by a step of one then edges which have a

subscript expression of type 2, 1.e. !-k, are superfluous
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and can be removed.

Consider an edge of the form B( ••• ,I, ••• ) <---

A( ••• ,I-k, ••• ) where I-k and I occur on the pth and the qtb

dimension of nodes A and B t respectively. If node A and B

are scheduled in the loop of I, then the elements in

!(Jp-I-k) "have been evaluated in the I-kth loop instance and
~

the elements in !(Iq-I) are evaluated in the Ith loop

instance. Since the values of loop variables are ascending,

therefore every element of !(Jp-l-k) precedes all the

elements of !(Iq-I). This implies that the precedence

relation represented by the above edge 1s superflou8 as it

1s enforced by the order of evaluation of the respective

elements. In short, when two nodes are scheduled in a loop

of loop variable It the precedence relationship presented by

subscript expression I-k is subsumed by the order of loop

execution. This is illustrated in Fig. 6.2, showing the

Array Graph of a Factorial function which 1s defined with

recursion. The recursion causes a cycle of two nodes {al,

lAC}.
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al: FACe!) = IF I=l THEN 1 ELSE IAFAC(I-l) ;

al «al,I»

00 I ;

3 (I-l) 7 (I) 7

( <F~.c,l»

Fb'D ;

Fig. 6.2 Remove I-k edges in a loop

These two nodes can be scheduled in a loop iterating

over node subscript <aI, I>. The kth instance of the

assertion al 1s evaluated in the kth loop instanee and it

references the k-lth instance of the array FACT, .which has

been evaluated previously in the k-ltb loop lnsta~ce.

Therefore the edge associated with subscript expression I-I

can be removed. There 1s no further a cycle in the Array

Graph.
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6.2.4 OTHER APPROACHES TO DECOMPOSING AN MSCC

.There are a number of methods for scheduling a MSCC in

an Array Graph. We have been primarily interested in the

cases that a cycle can be implemented by a loop with the

parameter that runs upward from one. However, not all the

cycles can be implemented with this simple loop mechanism.

Thus 1f the above approach fails it will be necessary to

apply ather methods. Consider first the ease where the

array elements may be evaluated in a sequence which does ~ot

follow the natural ascending order of subscripts. Consider

for example the following specification which defines A, a

vector of 50 elements.

Example

A(I) • IF 1-25 THEN X

ELSE IF I<25 THEN A(I+2)+X

ELSE A(I~1)+A{I-25) j

A pos8ible PL/I program to compute array A 1s as

follows.

A(25) • X j

DO I • 23 TO 1 BY -2 .
J

A(I) • A(I+2)+X ;

END .
t

A(26) • A(25)+A(1) j

DO I • 24 TO 2 BY -2 ;

A(I) • A(I+2)+X .
J
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END j

DO I • 27 TO 50 j

A(I) • A(I-l)+A(I-25) j

END ;

When the subscript expressions are first order polynomials,

we can divide an array nodes into many parts and compute the

parts of the array separately [SHAS 78].

A cycle in the Array Graph may also be considered 8S a

set of simultaneous equations and numerical methods such as

Jacobi and Gauss-Seidel iterations can be applied to solve

the system of equations [GREB 81]. Since splitting nodes in

the Array Graph, &s suggested by Shastry, 1s complicated to

apply, the MSCCs which can not be decomposed may be treated

similar to simultaneous equations and solved iteratively.

In this dissertation we will refer only to ·the cases that a

KSCC can be decomposed as described above. The other

methods are described in the references.

6.2.5 A SIMPLE SCHEDULING ALGORITHM

The methods of scheduling an KSCC in a loop and

attempting to decompose a HSCC may have to be applied

repeatedly, depending on the outcome of each application.

This section describes a simple scheduling algorithm which

incorporates repeated application of the methods described
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It generates a correct schedule based on an Array

Graph. However it does not include the consideration of

program efficiency.

The algorithm consists of two mutually recursive

procedures, SCHEDULE_GRAPH and SCHEDULE_COMPONENT. Given

any Array Graph a8 input, SCHEDULE_GRAPH procedure finds the

KSCCs in the Array Graph. The MSCCs are then sorted into a

sequence {Ml,H2, ••• ,Kn} which retains the partial order of

the precedence relationships between the MSCCs.

SCHDULE_COKPONENT procedure then schedules each co_ponent

separately. If 51 is the schedule of component Mi, the

•

sequence {Sl,S2 •••• Sn} is returned as the schedule of the

original graph •

The input to procedure SCHEDULE_COMPONENT is an MSCC,

say Mi. If Hi 1s a single node component and there is no

unscheduled node subscript associated with it, the node

itself 18 returned as the schedule of the component.

Otherwise, the coaponent may be schedulable in a loop. The

procedure tries to find a loop variable which satisfies the

requirements discussed in the previous section. If a loop

variable 1s found, say It it then deletes the edges in

component Hi with subscript expression I-k and marks the

distinguished dimensious of the nodes in Hi as scheduled.

•
Let Hi' denote the resulting graph. Then 1 t . calls the

procedure SCHEDULE GRAPH to produce a schedule for the graph

Hi'. After SCHEDULE_GRAPH returns the schedule of Mi'. a
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loop with loop variable I and loop body, the schedule of Mi'

is formed by SCHEDULE_COKPONENT~and returned as the schedule

of Hi. If no loop variable can be found, SCHEDULE_COMPONENT

sends a warning message to the user and calls the procedures

described in section 6.2.4 to decompose the MSCC.

6.3 MERGER OF COMPONENTS TO ATTAIN HIGHER EFFICIENCY

The basic scheduling algorithm, described above,

cODs1sts essentially of topological sorting of the nodes or

MSCCs in the Array Graph and of the enclosing of these

entities within the scope of nested loops fo-r the respective

dimensions. In contrast, the scheduling algorithm offered

here considers the Array Graph globally and progressively

aerges co.pone~ts into the 'scope of a selected loop which

reduces the most the use of aemory aDd computing time. The

scope of the loops in the schedule 1s thus progressively

enlarged.

Given an Array Graph as input, we can CODstruct a

component graph where every MSCC is a component node and an

edge 1s drawn from component A to component B if and only if

there exists an edge in the or1ginal Array Graph whleh leads

from a Dode in the component A to a node in the component B.

The c~.pon~~t graph is an acyclic graph. Note that the

KSCCs in an Array Graph are not further divisible. The

aerger process starts with the MSCCs in the Array Graph as
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the basic components, and through merger it creates larger

components progressively. A loop scope can be the union of

80me MSCCs. In this section we will discuss the merging of

MSCCs in an Array Graph into the scope of one loop.

6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE

The condition for scheduling a set of component 1n one

loop 1s that every component in the seope of a loop have a

distinguished dimension corresponding to tba~loop variable.

There are several condition on designating distinguished

dimension of a node in an Array Graph or a Component Graph.

First the distinguished dimensions of the components must be

in the same range set and have a common range which

specifies the number of ~terat1on8 of the loop. The loop

variable 1s stepped up by one in successive iterations.

Therefore also the order of execution of elements of each

component will be evaluated in this order. The second

cond1tion is that an evaluation of each instance of a

eomponent in a loop instance should not refer to values

computed in later loop instances.

Further, components to be merged into the scope of a

loop may Dot depend on any other component which does not

have a distinguished dimension and which in turn depends on

one of the coaponents to be merged. The rule 1s that a set

of coaponents which can be scheduled in one loop should be
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equal to 1 ts closure. The closure of a set of components _

includes all the components which are reachable from any

component in the set and which also reach any component in

the set. For example, consider the component graph in

Fig. 6.3. The components Cit e2 t and C4 have a common

diaens10n I. Still they can not be merged into the scope of

a loop with the loop variable I. The closure of the set of

coaponents {CI, C2. C4} includes component C3. Since C3

does not iterate with subscript It it can not be scheduled

in the loop of I. Co.ponent C4 can be scheduled only after

component C3. Therefore, at most we can merge components Cl

and C2 or C2 and C4 into the scope of a lo·op •
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The set
The closme
of the set

Fig. 6.3 Closure of a set of components
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The search and selection of a distinguished dimension

for each component in a set 1s similar to the analysis of

subscript expressions in MSCCs described in section 6.2. We

showed there that the subscript expressions associated with

edges terminating at a component can not be type 4 and that

subscript expressions associated with the edge should

connect the distinguished dimensions of the components at

the ends of the edge.



c

155

6.3.2 MERGER OF COMPONENTS WITH SUBLINEARLY RELATED RANGE

In the previous subsection, we considered merging

components with distinguished dimensions which have exactly

the same range as the loop variable. Every Dode 18 then

executed once in each loop instance.

There is a large class of cases where subscript

expressions are explicitly related, 1.e. where we use an

indirect subscript X(I) and X 1s a function of I.

Statements with such an indirect subscript may in some case

be conditionally executed in the scope of a loop for the

parameter I. We will require that the indirect subscript

expression X(I) have values which grow monotonically and

slower than that of the. loop variable I. This feature of

sublineari ty was a1 ready mentioned in sec: Uon -__ .4,.4.2·. As

explained in [PNPR 80], use of indirect sublinear subscript

is important in many instances, such as selecting a subset

of records from a sequential f1le or merging two sequential

files into one.

In section 4.4.2 we have discussed

recognizing a vector which can be

indexing. The values of elements of an

the criterion for

used for indirect

indirect 1nd~xing

vector grow slower thaD the subscript value of the elements.

The range of its dimension will be called here the major

range, while th. range of its content __ will be called

8ubral1ge relative to the lIlajor range. For.. __-...example, the
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variable X in Fig. 6.4 satisfies these criteria. X is used

in the subscript expression of the first dimenslo~ of node A

and therefore R«X,l» 1s a major range and R«A,l» 1s a

subrange relative to R«X,l».

XCI) • If I-I THEN 1
ELSE IF <condition is true) THEN X(I-l)+l

ELSE X(I-i) j

1(1) - A(X(I» ;

Flg. 6.4 Example of indirect sub11near indexing
in subscript expression

A subrange relative to a major range may be the major

range of some other subranges. Therefore, the 8ubl1near

relationship" between the ranges may form a tree with the

maximal major range at the root. We merge major ranges and

subranses in a bottom up order. By progressively merging

each subrauge with the next level major range finally we

will obtain a loop which iterates in the maximal major

range, and where all of its subranges are nested inside the

loop. Such merger of subranges say not always be possible.

For example, if type 4 subscript expression 1s used in the

distinguished dimensions of a component. the precedence

relationship will prevent us from scheduling this component

into the scope of a loop.
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When a set of components with a 8ubrange and a major

range are merged into the scope of a loop, the major range

will be used a8 the loop range and the value of elements of

the indirect indexing vector will be checked to evaluate

only the elements which are within the subrange. An

instance of the 8ubrange is executed for each stepping up by

1 of the indirect indexing vector. The computation of the

indirect index should precede the computation of any node

within the subrange. This introduces an additional

precedence relationship.

~ We will treat subscript expressions of types S, 6, and

7 similar to types 1, 2, and 3, respectively, in checking

the cODsistency of subscript expressions of the

distinguished dimensions as discussed in section 6.2.1. If

a check of the subscript expressions of the distinguished

dimensions fa11s, 1.e. some type 4 subscript expressions

are used or the subscript expressions do not connect

distinguished dimensions of the components, we will treat

these indirect subscript expressions of type 5, 6, and 7 as

type 4. If the check succeeds, we will add edges in the

Array Graph from the indirect indexing vector to the nodes

referencing it. This 1s similar to the addition of edges

fro. a range array to the nodes referencing the ra~ge array •
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6.4 MEMORY EFFICIENCY

In some eases the same memory space may be shared by a

number of variables. thereby using memory storage more

efficiently. Small savings of memory space are not worth

the cost of the analysis. For example. sharing memory space

among few scalar variables does not save much m~mory space.

Our approach will concentrate on having elements of the same

array share the me.ory space. Since the range of each array

diaension 1s in general large and there are several

dimensions. the saving should be considerable. It should

also be noted that memory space is statically allocated to

the variables in the produced program. Compared with

dynamic memory allocation, static memory allocation has the

advantages of simplifying the program control in that there

1s DO need to allocate memory space at run time. This also

facilitates efficient random access of array elements.

Three alternative approaches to allocating memory are

used:

1. Physical Dimension

If all the elements along some array dimension have

different .emory spaces assigned to them, the memory

space allocated 1s proportional to the range of the

array dimension. This method of allocating aemory will

be referred to in the following as the

physical dimension.

2. V1rtural Dimension
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If all the elements along 80me array dimension share

the same memory space, a single element memory space

serves for the entire array dimension. We will refer

to this method' of allocation as virtual dimension.

3. Window ~ width k

In soae eases there is no need to store all the

elements in an array dimension in main memory. But an

array reference of the form A(I-k) makes it necessary

to keep k+l array elements in main memory at any

moment. This type of memory allocation will be

•

•

referred to as window of width k+l.

For every array dimension we have to decide how the

memory space is to be allocated. The memory allocation

decision is related to the program execution sequence •

Different program schedules may require different memory

allocation approachese lor example, Fig. 6.5 shows two

•,

•

different schedules for copying a f1le. The one which reads

all the records into the main memory thea writes them out

takes more memory space than the other one which copies the

file, record by record •
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SChedyle-l

DO I ;
READ(~.(I)) ;

END ;

DO' I ;
B(l) = A{I) ;

E~·!D ;

DO I ;
t.JRITE ( B( I») ;

END ;

( <A,l»

( <a1,I»

( <B,l»

Schedule..2

DO I ;
REAn(A(I» ;
B(l) = A(I) ;
t~RITE ( B( I» ;

END ;

.....=

1--' ......

•

Fig. 6.5 Two schedules for copying a file

In the following we will show how the memory allocation

decisions are influenced by the program schedule and how the

.emory spaee requirement for the program variables is

evalua'ted •
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EVALUATION OF MEMORY USAGE

We will first consider in what units we should allocate

memory space. If a data structure or substructure 1s used

a8 an argument of a function or au operation. the whole

structure must be pas.ed between program modules. The

relative position of its constituent elements becomes

important to the computation. Therefore we can not allo~ate

memQry space to its eleaents separately. On the other hand,

economic allocation of memory space requires that the unit

be as small as possible. We will require that all the

operations operate on fields. Operations on higher level

structure mu.t be therefore transformed into operations on

elementary data structure. The memory space will therefore

be allocated in the unit of fields.

The array dimensions above the unit data structure will

be ·eonsldered as logical array dimensions for which there

may not be corresponding physical dimensions in the

allocated meaory space. One of the three approaches

•

mentioned above may be used to allocate memory space. Since

a virtual dimension requires less memory space than a

physical dimension, we would Dot phy~ically allocate memory

apace to an array dimension unless it is necessary based on

the loglc of the specification. In the following we will

discuss the conditions when an array dimension has to be

phys1cal or window of width k.
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The values of data structures may be produced by some

program activities such as reading an input f1le or

evaluating an expression, and consumed by some other

activities such as writing an output file or referencing an

expression. If the production and consumption of the

elements along an array dimension does not proceed in a

planned order then all the array elements that are produced

can not be discarded. All must be 8tored simultaneously in

main memory.

Given a program schedule we can check whether the

program activities which produce or consume the values along

an array dimension are all in one loop. If not, that array

dimension should be a physical dimension. If all the

definitioQs and references of an array are in the same loop,

we should furth~r check whether any type 2 or 3 subscript

expressions are used, because the occurrence of I~k type

subscript implies the necessity of keep~ng previous k

elements while computing a new array element. Thus the

memory space for the array dimension should be a window of

width k+l. It should be noted that if an array has its

distinguished dimension using either a finite window or a

physical dimension memory allocation scheme, all the loop

for array dimensions which are scheduled nested inside the

current loop have to be of physical dimensions. This is

illustrated in rlg_ 6.6, where a two dimensional array A 1s

coaputed by a nested loop. Suppose the outer loop iterates



163

over the first dimension of A, 1.e. <A,l>. The presence of

subscript expression I~l requires a memory allocation scheme

of window of width two for <Atl> dimension. Since the array

element of A 1s computed row by row and the c:olllpu.tat1on of

array elements in one row depends on the value of array

elements in the previous row, therefore, we will have to

allocate two rows of memory space for array A.

al: A(I,J) =IF I=l THEN f(J)
ELSE g(A(I-l),J) ;

-(a) - MODEL specification

00 I ; Mrray A

00 J ;

al(I,J) ;

END ;

:.
END ;

(b) Schedule

/l-.(I-l,J) - - -- - ~
- - - -~ A(I,J)

" -
-

'. - ' .. ...... ........•..
~. - .

(e) Yemcrj requ';rement

Fig. 6.6 Effect of window dimension on the outer loop

over dimensioQs on the inner loops

After the memory allocation approach for every array

dimension has been deter.ined, we can estimate the memory

space requirement, which will serve as a measure of the

prog~am quality. Given an N dimensional array A. we can
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define the required memory space M for a node subscript

•
•

<A,i> as follows •

K«A,1» • 1

• k

if the ith dimension 1s virtual,

if using window of width k,

• upper bound of R«A,1» if physical.

If an array dimension 1s not physical, the upper bound of

its range 1s not used 1n calculating the memory requirement.

The upper bound 1s needed to estimate the memory space for a

physical dimension. Sometimes the range of an array

dimension 1s specified by an assertion and the upper bound

18 not known until run time. In that case we can only

assume the upper bound 1s infinity unless the user has

specified an upper bound of the ranae in the data

description statements. The memory space for array A 1s the

product of K«A,1»'s for all the dimensions of A. The

total memory requirement of a program 1s the sum of the

memory space used by every array variable.

6.4.2 MEMORY PENALTY

Analysis of the loop scope leads to the selection of

the memory allocation scheme for the respective array

dimension. The memory penalty of a loop is defined as the

memory cost of the arrays included in the loop scope. The

memory cost is the difference in .emory requirements between

the ideal ease (virtual dimension) and the memory
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requirements 1£ the loop is formed. In order to evaluate

the memory penalty of a loop, we first find all the nodes

whose memory allocation scheme 1s influenced

construction of the considered loop.

by the

Whenever an Array Graph edge crosses the loop boundary,

a source or target node of the nodes in the loop will be

outside of the loop. Either one of the two nodes may

require using the physical aemory allocation scheme. For

example, 1f an edge from a data node to an assertion node

crosses the loop boundary, (1.e. the data node 1s in the

scope of the loop while the assertion node is outside), the

data node 1s defined in one loop and referenced outside it.
--:i.'-~'--'-_._.._._... --

Therefore, its array dimensions have to be physical.

..

Similarly 1£ the edge crossing the loop boundary is from an

assertion node to a data node, the dimension of the target

node has to be physical.

Each node under cOQsideration may fall into OQe of the

following three categories and the memory penalty can be

eoaputed accordingly.

1. A physical dimension for a distinguished dimension. This

category 1s recognized by the existence of an edge which

crosses a loop boundary. The memory requirement in ideal

case 18 taken as that of a virtual dimension. The memory

requirement for a loop 1s computed by multiplying the

upper bounds of all the unscheduled dimensions and the

dimension that 18 considered for a loop. The difference
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1s the penalty of the loop for this array.

2. A virtual dimension for the distinguished dimension. In

this case the loop boundary is Dot crossed by edges and

all the subscript expressions on its distinguished

dimension are type 1 subscripts. The memory penalty for

a virtual dimension should be zero.

3. A window of width k+l for the distinguished dimension.

Similar to the virtual diaension category. No edges

would cross the loop boundary. However subscript

expressions of the form I-k on its distinguished

•

dimension are allowed. The other unscheduled dimensions

are considered to be physical dimensions. The penalty is

computed similar to the first category.

Exallple Consider the aemory. penalty of a -:.-1.o0p-- shown in

Fig. 6.7. The ranges of subscripts I and J are 10 and

•

.
•

20 respectively, and every data element occupies one

unit of memory space. The memory requirements in ideal

cases for node At B. C. and D are 1 t 1 J 1 t and 1

respectively. The memory requirements 1f the loop 1s

formed will be 10, 40, I, and 200 respectively. Arrays

A and D have to be physical and the first dimension of

array B needs a window of width 2. The memory penalty

for this loop is the difference of 251 and 4, i.e. 247

units of memory space •
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,
loop on I

(I) I
I
I
I

_I,J) I
I
t
I

(I,J) I
I
I
I

( I,J) I
I

'--- - __ ...J

•

..

MP(A) = 10 - 1 = 9

MP(B) = 2 " 20 - 1 it 1 - 39- .
.~ .- . -... ....~. t.~

_.
.-

MP(C) = 1 * 1 ... 1- •. 1·: 0 ..

MP(D) = 10 * 20 - 1 * 1 = 199

..

•

Fig. 6.7 Example of computing memory penalty

Information about the unscheduled dimensions may be

used to compute the penalty more accurately. For example.

some array dimensions must be physical dimensions because of

the use of type 4 subscript expressions. During the process

of scheduling, we can accumulate such information to speed

up the .emory penalty evaluations •



168

6.5 A HEURISTIC APPROACH TO MEMORY-EFFICIENT SCHEDULING

In general. there 1s a large number of schedules which

can realize the computation of a program specification. The

schedule with the minimal total aemory requirement will be

called an absolute optimal program. In principle it ah~uld

be possible to enumerate all the possible schedules for an

Array Graph. as there is a finite number of them. and then

evaluate the memory requirement of each schedule. We would

thus be able to find the absolute optimal schedule. For

several reasons this method is not practical. The program

events being scheduled are low level activities represented

by nodes. 1.e. statements and variables, and an Array Graph

may eas1ly consists of several hundred or even thousands of

nodes. Also the nodes in the Array Graph may be

multi-dimensional and the number of combinations of possible

nested loops is very large. Further, the constraints on the

feasible schedules are complicated. Thus enumerating all

the feasible schedules would be prohibitive. and an

exhaustive examination of all the feasible schedules to find

the absolute optimum 1s not acceptable.

Instead we have adopted the heuristic approach as

follows. Given an Array Graph as input. we first construct

an acyclic component graph with the MSCC. in the Array Graph

as nodes. Our objective is to repeatedly aerge components

in the component graph into blocks which correspond to loop

scopes. This process will be applied repeatedly to the
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levels of nested loops. On the first application it will

produce the outer level loops. The blocks are formed by

merging as many components as possible which have the same

or related ranges. The process 1s repeated for each lower

level of the nested loops, based on the subgraph that

corresponds to the higher level loop. This process may not

result in the absolute optimal program as the outer level

loop scopes are determined without the analysis of the

-effects of inner loop structures on the use of memory space.

However considering the effect of inner loops on memory

usage is a complex process and it represents a large

increase in the number of alternatives that must be

evaluated. The scope of the major loops in a program are

maximized in our proposed approach and there 1s no, or

little, effect of inner loops on meaory usage. Thus this

heuristic approach represents a good compromise between the

amount of analysis involved and the payoff in reducing

memory usage.

On each level of loops, the scheduling process consists

of a trial scheduling for every range set in the

•

corresponding Component Graph. A loop for the range R will

enclose only the components which have dimensions in the

range set associated with range R. The range sets related

to a (through sublinear indirect indexes) will later be

merged with the blocks of range R. The maximum loop scope

for every range R 1s the range set of R•
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The trial scheduling of each range set cons1sts of

finding the closure of the range set and an attempt to

schedule nodes in the set which may be within the scope of

the respective loop. We first merge into a block the

components in the range set which do not have any

predecessors in the closure of the range set. Progressively

we will merge into the block other components which depend

on those in the block, as far as possible. The merger

involves selection of a distinguished dimension in each

component, as described above. At the end we evaluate the

memory penalty of the loop scope obtained by the trial

scheduling. The loop with the smallest penalty will be

scheduled finally. This process will be repeated with the

unscheduled portion of the graph until all the components in

the Component Graph are scheduled.

There are many possible orders for merging components

in the closure of a range set, to form the scope of a loop.

For example, we may arbitrarily pick a component in the

a1ddle of the Component Graph and merge it with its neighbor

components or start with a component on which no other

components depend and merge the components backward.

However. considering all the possible orders of mergers will

further increase the number of alternatives that must be

evaluated. The order of mergers 1s unimportant in the ease

where the whole range set can be scheduled in one loop, i.e •

it 18 the case that all the array dimensions may become
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virtual. No matter in what order we merge the components,

we will finally get the same loop scope. Again, we selected

the forward merging of the Component Graph as a good

compromise between quality of the schedule and the amount of

analysis.

It 1s necessary next to order the blocks associated

with outside level loops in an execution sequence order.

The memory cost will be the same for any order that

maintains the precedence relatioDs between these blocks. We

choose to order the blocks by topological sorting. For

every outer level loop we mark the distinguished dimensions

of the blocks as scheduled.

We apply the scheduling algorithm recursively. to each

inner nested level loop by considering only the 8ubgraph

which contains the nodes in one loop scope. The resulting

schedule will be the body of the outer level loop.

We will illustrate this process with an example of

scheduling the Array Graph shown in F1g. 6.8. Every Dode 1s

a MSCC by itself, and the initial Component Graph 1s in fact

the Array Graph. The candidate ranges are R«A,l» and

R«B,l». Assuae that the repetition numbers are SOO and

200, respectively. The range set of R«A,l» contains three

nodes: At aI, and C. The closure of {A, aI, C} 1s itself •

If we schedule the whole set into one loop, the penalty will

be making array B physical. On the other hand, the trial
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scheduling of the range set of R«B.l» contains two nodes:

Band ale If this set is 8cehduled in one loop, the penalty

will be making both array A and C physical. We will select

the loop of R«B,l» since the size of array B 1s greater

than the sum of the sizes of array A and C. We mark the

component Band a1 as scheduled. There are two components

left to be scheduled. We have no alternative but to

schedule each of them in a separate loop. The resulting

schedule 1s shown in Pig. 6.8(b).
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DO I ;

o
E1'ln ;

DO J ;

EliD :

(I)

DO I ;

·0
END ;

Fig. 6.8(b) The outer level loop structure

•
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6.6 THE SCHEDULING ALGORITHM

The scheduling algorithm, called SCHEDULE, is

documented below. The overall process is illustrated in

Fig. 6.9. The solid lines show procedure calls and the

dashed lines show passing of parameters and returns. The

SCHEDULE process starts with construction of a reduced form

of the Array Graph, which will be modified in the eourse of

scheduling and is also easier to manipulate. It then calls

a recursive procedure SCHEDULE_GRAPH., This procedure

accepts an Array Graph as input and returns a schedule as

output. SCHEDULE GRAPH calls on a number of procedures to

perform its tasks. It calls first the procedure STRONG to

construct a Component Graph out of the reduced Array Graph

(or subgraphs of it in recursive calls).

Next. the major iteration in SCHEDULE GRAPH schedules

the outer loop scopes. This iteration repeats until all"the

components in the Component Graph have been scheduled. This

major 1terati~n loop finds first all the candidate ranges.

Next there is a nested iteration for trial scheduling

of all the candidates ranges. It consists of calls to four

procedures. Procedure INDRSUB is called first to find the

range sets of each candidate range. If a candidate range

bas soa. subranges related to it, the sets of the subranges

will also be included in the major range set. CLOSURE is

then called to get the Bubgraph for the closure of the range
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set. Then KAX_SCHED is called to do a trial scheduling­

MAX_SCHED accepts as input a 8ubgraph which consists of the

closure of a respective range set and returns as output a

loop scope which contains components in the closure of the

range set that have been trial scheduled. The trial

scheduling consists of repeated mergers into a loop scope of

the components in the closure of the range set which do not

depend on any other components. As a component 1s merged

into the loop scope. it is deleted from the 8ubgraph of

closure of the range set. The aerger repeats until no more

components can be scheduled. Procedure EVALUATE is then

called to compute the memory penalty associated with the

loop scope.

At the end of the nested iterations for all the

candidate ranges, SCHEDULE_GRAPH selects the loop scope with

the smallest penalty. It will eventually form a part of the

final schedule. "The components in the selected loop scope

are first merged into a single component and then marked off

in the COmpGDent Graph.

The above major iteration loop 1s repeated, as noted

above, until the Component Graph 1s empty. The outer loop

scopes are thus all found. The corresponding components are

topologically sorted. It 18 necessary then to find the

nested loop scopes. 1f any, for each outer loop scope

subgraph. As SCHEDULE_GRAPH selects the next component in

the topological sorting, it calls the procedure EXTRACT to
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extract these subgraphs, which correspond to the selected

loop scopes. Each of these 8ubgraphs must be internally

scheduled. EXTRACT calls SCHEDULE_GRAPH recursively, to

schedule each of the 8ubgraphs. A component that 1s not

within a loop scope needs not be further internally

scheduled.
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The reduced fora Array Graph, constructed by the SCHEDULE

procedure, consists of a list of elements of type GNODE,

with the following fields:

NXT_GNODE - A pointer to the next element in the list.

(At the generation of the reduced for. Array

Graph all the GNODEs form a single list.

During the process separate lists will link

the GNODEs in each MSCC.)

- The node number of the element

dictionary.

in the

SUXL - A pointer to a list of edges connecting this

eleaent to its successors. Initially this 18

identical to the SUCC_LIST list. As the

• process proceeds, some of the edges are

removed from this list.

The components in the reduced Array Graph are found by the

procedure STRONG. STRONG modifies the list connecting the

nodes in the Array Graph to form separate lists for each

MSCC.

The lalt!al number of components in a Component Graph

1s denoted as COMP_CNT. Every component 1s assigned a

coaponent number from one ·to COMP_eNT. The component graph

is defined in the following four vectors.

1) NODELST(COHP_CNT). Points to a list of GNODE elements in

the Array Graph which belong to the respective component.

2) ACOMP(COKP_CNT). A boolean value showing whether the
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component exists 1n the component graph or not. In the

course of the process, when a component is merged into

80me other component, its corresponding ACOMP bit 1s

reset.

3) INCMP(COKP_CNT). A

component bas been

boolean value showing whether a

scheduled or not. Once a component

•

has been scheduled, its corresponding bit will be reset.

Thereby it will not be scheduled again.

4) CEDGES(COMP_CNT). Points to a list of edges which

originate from the component and end at its successor

components. Every element in the list has two fields.

One field contains the component number of its successor

and the other is a pointer which points to the next edge.

A 8ubgraph of the Component Graph can be represented by a

bit vector like INCHP. If a component 1s in the 8ubgraph,

its corresp.onding hi t will be set. O.therw1se t the

corresponding bit will be reset. In the following, all the

8ubgraphs of the Component Graph will use this

representation.

The finally generated program schedule 1s structured as

a list of schedule elements. There are four types of

schedule elements: node-element, for-element.

81aul-element, aad cond-element. A node-element corresponds

to a primitive prograa event in the generated program such

as the computation of an assertion. opening a f1le, reading

a record. A for-element corresponds to a loop in the
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program. The body of the loop 1s also represented by a

schedule list and pointed to from the for-element.

Similarly, a siaul-element corresponds to an iterative

computation for a simultaneous block and points to a list in

the body of the iteration. The cond~element 1s used to

represent a conditionally executed block which corresponds

to the scope of a subrange. It will point to the respective

body list.

1) A node-element 18 a structure NELMNT. with the

fields:

NXT HLMN - Pointer to the next element

schedule.

NLMN_TYPE - Equal to 1 • denoting this 1s a

in the

following

Bode-element.

NODE$ - The node number.

2) A for-element 18 a structure FELMNT, with the

f1elds:

NXT_FLMN - Pointer to the next element

schedule.

FLHN_TYPE - Equal to 2, denoting this is a for-element.

ELMNT_LIST- Pointer to a program schedule which is the

body of the loop.

lO~NAME - The dictionary node number of the loop

variable.

POR_RANGE - The dictionary mode number where the range

of the loop variable 1s specified.

3) A staul-element 1s a structure SELKNT which 1s used for a
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simultaneous equation block. It has the same structure

as FELMNT with FLKN TYPE equal to 3.

4) A cond-element 1s used for a conditionally executed

block. It has a similar data structure as lELMNT except

that the field FLMN TYPE is always equal to 4.

Algorithm 6.1 SCHEDULE_GRAPH

Input.

G: A pointer to the reduced Array Graph which is
-/-

represented by a GNODE list.

L: The nesting level L.

Output.

A program schedule for the input graph G•

Data Structures.

GSIZE(COMP_CNT): The number of nodes in a component.

MINFREE(COMP_CNT): The minimum of the number of

unscheduled dimensions associated with any node in a

c01llponent.

SUBRNGR($RNG_SET,$R.NG.-SET): A boolean lIatrix which shows

the 8ubrange relationships. If the jth range set 1s

a subrange of the ith range set, then SUBRNGR(i,j)

will be set to '1'B.

&NG_VEC($RNG_SET): lor each range set, it indicates the

node number of the indirect indexing vector which

reduces the major range into this range set, if any.

1. Call procedure STRONG to find out all the KSCCs in the
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Array Graph G and then construct a Component Graph with

each MSCC as a node. Initially all the components are

put in the Component Graph and the corresponding ACOKP

and INCMP bits are set to 'I'B.

2. For each component, compute the corresponding element of

the vector GSIZE, which 1s the number of nodes in the

component, and the corresponding element in the vector

MINFREE, which 1s the minimum of the number of

unscheduled dimensions associated with any node in the

component. Also compute the SUBRNGR matrix by scanning

the indirect subscript expressions used in the

assertions, and the vector RNG_VEC which gives for each

range set number the node number of the indirect

subscript, 1f any.

3. If a component has MINPREE-O, it 1s not to be scheduled

1n any loop. ~e will mark it off from the Component

Graph by setting the corresponding INCKP bit to 'O'B.

This component will b~ a single component block.

4. Repeat step 5 to 11 to schedule all the outer level

loops. until all components 1n the Component Graph have

been marked off.

5. Select the ranges of node dimensions which are not yet

scheduled and where the respective range does not have

real arguments of unscheduled subscripts. The selected

rauge. can be scheduled in the outer level loops. The

ranges of those node dimensions will be the candidate

ranges.
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6. Repeat step 7 to 10 for each range candidate. Steps 7

to 10 consist of a trial scheduling of a range candidate

Ri.

7. Call procedure INDRSUB. This procedure computes a

8ubgraph S which contains all the components which are

in the range set of Rt or the range set of a subrange of

a1. S 1s represented as a bit map similar to INCMP.

8. Call procedure C~OSURE to find the subgraph

S'-closure(S).

9. Call procedure MAX SCHED with 8ubgraph S' and range

candidate 1.1 as input parameters to fors a loop scope Ll_- __

which contains a subgraph of S'. Li is represented as a

bit map similar to INCMP.

10. Call procedure EVALUATE to compute the memory penalty of

Li.

11. Choose the loop Lj with the smallest memory penalty.

Merge all the components in Lj into oue component. say

Ck. by modifying the list pointed to by the NODELST of

Ck to include all the GNODEs in the other merged

components. ACOMP, INCKP. and CEDGES vectors are also

modified to r~flect the new component. Then set

INCMP(k) to 'O'B to mark the whole loop scope off from

the Component Graph.

12. Do a topological sort over the resulting components of

the component graph where each component corresponds to

either a single node or a loop scope in the schedule to

be returned.
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13. Schedule each component ~eparately. If there is no

distinguished dimension for the nodes in a merged

component, a node-element will be formed for the

component. Otherwise. call the procedure EXTRACT to

form a for-element for the eoaponent.

Algorithm 6.2 STRONG

Inp.ut.

G: A pointer to an Array Graph.

Output.

HODiLST: A list of components which are the KSCCs of the

input graph. Every component is represented by a

list of GRODE elements which belong to the

c01llponent •

1. Clear the stack, the component count J the 11s.t of

components NODELST, and the variable COUNT. Por each

node v in the graph G set

DFNUMBER.(v) • 0

2. lor each node v in the graph G such that DFNUMBER(v)-O

call SEARCH(v) to add the components reachable from v to

the component list NODELST.

3. Return the component list as the result.

Algorithm 6.3 SEARCH

Input.

v: A node 1n a graph which is not examined yet.

Output.



185

The NODELST for all the MSCCs reachable fr9m node v.

1. Set COUNT to COUNT+l and DFNUMBER(v), LOWLINK(v) to

COUNT. Push v on the stack.

2. Repeat the following substepa for each node w, a direct

descendant of v.

2.1 If DFNUKBER(w)-O, eall SEARCH(w) and then let

LOWLINK(v)-m1n(LOWLINK(v),LOWLINK(w».
-

2.2. Else, 1f DFNUMBER(w»O and w 1s on the stack. then

let LOWLINK(v)-.1n(DFNtJKBEB.(w),LOWLINlC(v».

3. If LOWLINK(v)<D1NUKBER(v) then return.

4. Else, LOWLINK(v)-DFNUMBER(v). Node v 1s a root of a

strongly connected component. All the elements (above

and including v) OD the stack are successively popped

off the stack and linked into a list - a 8ubgraph which

1s def1ned as a component. This component is placed on

the top of a list of coaponents pointed to by the

variable COMP LIST. In addition a unique component

nuaber is assigned to each node w in the current

component.

Algorithm 6.4 INDRSUB(RANGE.GI)

Input.

RANGE: A candidate range (a range set number).

Output.

GI: A 8ubgraph which contains all the e~mponents in the

range set of RANGE and the components in the range

sets of the subranges of RANGE which can be included
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in the loop scope of RANGE.

1. Construct a subgraph GI which contains all the

components in the Component Graph which have an

unscheduled dimension with the range RANGE. GI is

represented in a bit vector similar to INCMP. Set

GI(k)-'l'B 1£ the kth component is in the range set of

RANGE. The edges from these nodes are given 1n CEDGES.

2. If RANGE has no 8ubranges, return GI as the result.

This information stored previously in SUBRNGR matrix,

which shows the subrange relationships.

3. Otherwise, repeat step 5 to 8 for each immediate

subrange RNGIK of RANGE.

4. Call IND&SUB recursively with RNGIK as input parameter

and GIK as the output parameter. GIK will contain the

components which can be scheduled in the loop of RNGIK.

5. Call procedure CLOSURE to compute the closure of GIK in

the Component Graph. Then put the closure into GIK.

6. Set the union of GI and GIK into GI. (Note that this

may be reversed in step 8.)

7. Call HAX_SCHED procedure to do a trial scheduling for

8ubgraph GI.

8. If the subgrpah GI can Dot be scheduled completely, then

at least one node, and possibly more, will have to be

physical. Also the range specification of the 8ubrange

may become necessary. Therefore we decided that in this

case it 1s Dot worthwhile to merge the range set of

B.NGIK w1th the range set of RANGE and GIK is taken out
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of GI.

9. Return GI as the result.

Algorithm !.:1 CLOSURE(COKPS)

Input.

COKPS(COMP_CNT): A bit vector with a set of components

marked by 'l'B. Other components are aarked by

•

The algorithm also uses the global data structures

(ACOMP and CEDGES).

Output.

CCOKPS: A bit vector with the closure of the set of

components in the input marked by 'l'B. Other

coaponents are marked by 'O'B.

1. Create a bit vector NACOKP (size COMP_eNT) with the

coaponents in ACOHP marked except the components in

COHPS are merged into one component. This also involves

creating a vector NCEDGES similar to CEDGES except

reflecting the merger of the components in COMPS.

2. lind all the KSCCs in the new component graph

(consisting of the new vectors NACOKP and NCEDGES).

3. Locate the HSCC which includes the components in COMPS.

4. CODstruct CCOKPS. a bit vector (size COKP_CNT), with all

the components in the MSCC marked. This is' the closure

set of the input.
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Input.

INCMP: A bit vector where a set of yet unscheduled

components 1s marked by 'l'B.

components have a value 'Q'B.

Other scheduled

Note that these·

•

•

unscheduled components are the basic MSCCs found by

STRONG. The function of MAX SCHED 1s to schedule as

many of the marked coaponents as possible.

MERGCMP: A bit vector with the closure of a range set

marked by 'l'B.

aANGE: The candidate range (range set number).

Output.

COMPS: A bit vector with the components, which have been

trial scheduled in a loop, marked by 'l'B.

POSITION: A vector (size 18 DICTIND- the number of nodes

in the dictionary). The position in each scheduled

node of the distinguished dimensions that

corresponds to the loop parameter.

1. Initialize the POSITION entries to O.

2. lor each component 1, 1f INCMP(i)·'l'B (1.e. it 1s not

yet scheduled), MERGCMP(i)-'l'B (i.e. it 1s in the

closure set), then search the CEDGES vector and set

PRBDeNT(1) to number of predecessors in MERGCKP. If

PB..EDCNT(1)-O then put component i into a list of

candidates to be trial scheduled~

3. aepeat steps 4 to 8 until the list (referred to in step

2) is empty. The funetion of steps 4 to 8 1s to merge

one component from the list into the loop scope
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represented by COMPS.

4. aemove a component. say Cit from the list. Search

through the NODELST of Cit if there exists a node v with

POSITION(v»O (i.e. its distinguished dimension has

been determined in a previous iteration). then set

FIRSTNODE-v, and go to step 7.

5. Else, arbitrarily pick any node of the component. Let

it be denoted by v. Set FIRSTNODE-v.

6. Search the subscript list of node v until finding a

dimension j that has not been scheduled in a loop scope

(1.e. IDWITH-O) and its range 1s the same as the RANGE

parameter. If found, then POSITION(v)-j. If none found

then this component should not be scheduled in the loop

• scope •

step 9).

Therefore go to next iteration (i.e. end of

7. Propagate the distinguished dimension of node v repeatly

until all the nodes in Ci have their distinguished

dimensions defined. During each propagation step:

7.1 Propagate the distinguished dimension forward along

the edges originated from node v to all the nodes at

the terminating end of the edges.

7.2 If the node to which a distinguished dimension 1s

propagated does not belong to Cl then do not further

propagating the distinguished dimension from this

node forwards.

7.3 If propagation 1s not possible to any node in Ci

because of type 4 subscript expression then the
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current iteration may be terminated, i.e. go to end

of step 9.

8. The current component can be merged into the loop

scope. Set COMPS(i)-'l'B.

9. Search through the list pointed by CEDGES(i). For

every edge fro. C1 to Ck set

PREDCNT(k)-PREDCNT(k)-l. If

•

•

•

INCKP(k)-'l'B, and KERGCKP(k)-'l'B. then put Ck into

candidate list.

Algorithm 6.7 EVALUATE

Function: Given a loop scope, compute the resulting penalty

in use of memory. This procedure is called after

each trial schedule for a range candidate and again

after the final schedule was selected.

Input.

COHPS: A bit vector of size COMP eNT with the bits....

correspondn1ng to components in a loop scope equal

to 'l'B.

EVAL_SET: A bit denoting whether EVALUATE is called to

evaluate memory penalty of a trial schedule or for

the selected schedule, in whieh case the selected

me.ory allocations are recorded in STOTYP.

Output.

PENALTY: The memory penalty of the loop scope, in bytes •

Data structure.

SaCPHY, TGTPHY: When an edge in an Array Graph crosses a
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boundary of a loop scope then, depending on the type

of the edge, the memory allocation for the data node

at the origin or terminating ends of the edge may

have to be physical. The SRCPRY bit vector denotes

for ea~h type of edge ( there are 28 types) whether

the memory allocated to the node at the origin end

of the edge (the source node) must be physical.

Similarly, the TGTPRY vector refers to the node at

the terminating end of the edge (the target node).

MRAL: The memory requirement, in bytes, after the loop

18 formed.

MRlC: The memory requirement in the ideal case.

STOTYP: A field in the data structure LOCAL SUB-. For a-
virtual dimension, STOTYP-O. For a window of width

k+l dimensiou, STOTYP-k+!. For a physical dimension

with upper bound u, STOTYP--u.

1. Repeat steps 2 to 6 for every edge in the Array Graph.

Each iteration computes the effect of the edge OD. use of

memory.

2. If the source an.d the target nodes of the edge are in

COMPS, this 1s an internal edge, then go to step 6 to

exa.ine the subscript expression of the

determine its effect on use of memory.

edge to

•

3. If both the source aDd the target" nodes of the edge are

not in COMPS, then this edge has no effect on memory

useage. Go to end of iteration, at end of step 6.

4. If none of the above then this edge crosses the loop
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In this case, 1f SRCPHY(EDGE_TYPE)-l, then

the distinguished dimension of the source node must be

physical. If then the

distinguished dimension of the target node must be

physical. The respective node numbers and the

requirements for physical memory allocation are stored

in a list. Also in this case go to the end of the

•

•

iteration (at end of step 5).

5. If the subscript expression 1s of the for. I-k and

SRCPHY(EDGE_TYPE)-l, then the memory allocation for the

distinguished dimension of the source node must be a

window of width k+l. This is also stored in the list.'

6. PENALTY is initialized to zero.

7. Repeat steps 8 to 11 for every node in the above list •

These nodes have either a physical or window of width

k+l memory allocation. An iteration computes the memory

requirement for a respective node.

8. In the case of .a physical distinguished dimension.

compute KRAL, as the product of all the ranges of the

uDscheduled node subscripts. In the ease of a window of

width k+l for the distinguished dimension, compute MRAL

as the product of k+l and the ranges of the other

unscheduled node subscripts.

9. 70 co.pute HRlC it is necessary to scan each unscheduled

• node subscript • If its storage type STOTYP 1s 0, then

the ideal memory requirement for this dimension 1s one~

If STOTYP<O, the memory allocation has previously been
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memory

requirement 1s -STOTYP (u).

these ideal Tanges.

MRlC is the p.roduc:t of

10. The penalty for the array node ND PENALTY-

(MRAL-MRIC)*(length of node element in bytes).

11. PENALTY-PENALTY+ND PENALTY.-
12. If EVAL_SET-' 1'1 then 1f the distinguished dimens1o-u is

physical then STOTYP in every unscheduled dimension 1s

equal to the a1nU8 of its range, if the distinguished

dimension 1s a window of width k+l then STOTYP of the

distinguished dimension 1s k+l and for the other

uDscheduled dimensions STOTYP is the ainus of their

respective range.

Algorithm 6.8 EXTRACT

Function: To obtain the for-element for a loop, including

the schedule elements for the body of the loop

scope.

Input.

SUBGRAPR: A pointer t~ a reduced Array Graph of the

component scheduled into one loop scope.

SVPOSITION: A vector with an element for every node in

the SUBGIlAPH. Each element has the value of the

•..

d1aens1on Dumber of the distinguished dimension of

the respective node.

L : The nesting level.

Output •
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A for-element which is the schedule of the input

graph.

1. Allocate a for-eleaent. Set FOR_NAME to loop parameter

name and FOR_RANGE to the range set number of the loop

parameter.

2. If the current loop range has some immediate subranges,

then call procedure COND_GRAPH and upon return go to

step 7. COND_GRAPH takes over all further scheduling of

a body of a loop which contains conditionally executable

nodes due to use of indirect subscripting.

3. Delete all the edges from the graph with distinguished

diaension subscript expressions of type 2 or 3. The

precedence expressed by these edges 1s assured by the

order of the iterations.

4. Set IDWITH of the distinguished dimension of all the

nodes in the subgraph to L, the nesting level of the

current loop-.

5. Call SCHEDULE_GRAPH, with SUBGRAPH and L+l as the

parameters, to get the schedule of the resulting graph.

6. Set ELKNT LIST in the for-element structure to point to

the schedule returned from step 5.

7. Return the for-element as output.

Function : To obtain the schedule elements of the body of a

loop scope, which includes cond~element8.

Input.
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TOP_RANGE: The range set number of the highest level

major range in the SGRAPH.

SGRAPH: A graph to be scheduled within an iteration

block of the range TOP_RANGE.

Output. A schedule for SGRAPH.

1. Scan all edges in SGRAPH. If an edge has a subscript

expression in the distinguished dimension of types 2, 3,

6, or 7, and either the souree or the target nodes nave

the TOP_RANGE range, then delete this edge from SGRAPH~

2. If node X is the indirect indexing vector served to

reduce the range TOP RANGE to a subrange RNGIK,then

draw an edge from X to all the nodes in the range set of

RNGIK.

3. Call procedure STRONG to form a Component Graph for

SGRAPH, consisting of ACOMP and INCMP, CEDGES, and

MODELST. ACOMP and INCMP are bit vectors ( the size 1s

the Duaber of MSCC found by STRONG). These vectors are

all of the value 'i'B.

4. For every aubrange RNGIK of TOP_RANGE, merge all the

components in the range sets of RNGIK or its direct and

indirect subranges into one component. Set the INCKP

vector elements of the aerged components to 'O'B.

s. Repeat steps 6 to 9 until all the elements in INCHP are

'O'B. Each iteration merges a group of components with

TOP_RANGE range.

6. Call CLOSURE with INCKP to obtain the closure set

MERGE eMP •....
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7. CALL MAX SCHED with INCHP, MERGE_CMP, and TOP RANGE.- It

returns CCOMPS.

8. Merge the components in CCOMPS into one component,

updating NODELST, CEDGES, ACOMP, and INCMP.

9. Set the element of INCMP' corresponding to the merged

schedule to 'O'B.

10. Repeat steps 12 to 13 for the components in ACOMP.

11. Select the next component in ACOMP in a topologically

sorted order. Let this component be COMPI.

12. Let RNGIK be the range of the component COMPI. If

RNGIK-tOP_RANGE, then mark the distinguished dimension

of each node in the component as scheduled and call

procedure SCHEDULE_GRAPH to get a schedule for this

component. Go to step 14.

13. Otherwise, allocate a cond-element to this component •
.

Call procedure COND_GRAPR recursively with RNGIK and

COMPI as the input parameters to get a schedule for the·

conditional element.

14·. aeturn the schedule elements obtained as the final

schedule of SGRAPH. Note that the order of the schedule

elements was determined by the selection of components

in a topologically sorted order in step 11. The

schedule elements are obtained either in step 12 or 13,

depending OD whether they are cond-elements or other
,

elements respectively.
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CHAPTER. 7

CODE GENEllATION

7.1 OVERVIEW OF THE CODE GENERATION PROCESS

Code Generation 1s the last phase of the processor. It

uses the data structure generated in Array Graph

construction, specification analysis, and program.

scheduling. As shown in Fig. 7.1 the code generation

process accepts two inputs: the program schedule created in

the scheduling phase and attribute tables produced in the

analysis phase. Recall that the program schedule 18 an

ordered sequence of schedule elements described in section

6.6. The nodes referenced in schedule elements ean be found

in the dictionary. the attributes of the respective nodes

are 10. the dictloa.ary•. They are described in the sec.tion

The output is a complete PL/I program ready for

coap11ation. The executable PL/I code 1s written out to the

"PLIEX" f11e. The PL/l "ON" conditions are written to the

"PLION" f11e and the PL/I code for declaring the object data

items 1s written to a "PLIDCL" file.
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Program
Schedule

Attribute
Tables

CODE GErtERATION
PL/I

- - - 7Program

Fil_ 7.1 Overview of the Code Generation Phase

F1g. 7.2 shows the overall organization of the code

generation process. cODaist1ng of the aain procedure CODEGEN

which in turn calls on the other procedures to ~erform

certa1n tasks. The PL/I execution code 1s generated by the

GENERATE procedure which examines the elements of the

schedule one at a tis•• and invokes the procedures that are

indicated by types of program events. The GPLIDCL procedure

generates the data declarations. GENERATE calls GEN NODE to

generate statement for node eleaents of the schedule. The

GIN_NODE calls on GENIOCD for input-output operations and on

GENASSa for assertions. GENERATE also calls GENDO and

GENEND for generating iteration control structures for

for-elements. and on COND BLK and CORD_END for generating

conditional block statements for cOQd~elements. These

procedures are briefly reviewed in section 7.2. They are

described in greater detail together with other auxiliary

tasks in the subsequent sections that follow.
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Fig. 7.2 Components of Generating PL/l Code

7.2 THE MAJOR PROCEDURES FOa CODE GENERATION
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7.2.1 CODEGEN - THE MAIN PROCEDURE

CODEGEN starts with opening the output files PLIEX.

PLION, and PLIDCL. It next generates code that will handle

program errors. Host of these errors are due to input data

errors discovered by data type conversions in the program.

The user can also define additional error conditions. The

stat••eRts written to the PLIEX file are a8 follows:

ALLOCATE ERROR, ACe_ERROR j

Ace ERROR • 'O'B •- ,
ALLOCATE $ERR_LAB j

$ERB._LAB • END_PROGRAM

The declarations written to the PLIDCL f1le are as follows:

DeL (ERROR, Ace_ERR, NOT_DONE) CTL BIT(l) ;

DeL $ERR_LAB LABEL CTL j

Finally the ON condition code 1s sent to the PLION f1le &S

follows:

ON ERllOR.

BEGIN

1* write erronous input record to ERRORF file */

WIlITE PILE(ERROal) FROK($ERROR_BUF) ;

ERROR • 'l'B . /* set error flag */,
GO TO $EllJLLAB ; 1* go to end of loop where */

END . 1* error was detected */,

K1.1.0i. RESTART:
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CODEGEN next passes the entire program schedule to

GENERATE, which will generate the portions of the program

for the schedule elements. When this 1s completed CODEGEN

passes the attribute tables to GPLIDCL to generate data

declaratioDs. Finally CODEGEN calls on MERGEPLI to merge

the three output f1les.

7.2.2 GENERATE - INTERPRETING SCHEDULE ELEMENTS

This recursive procedure scans the schedule given by

the list of schedule element8, LIST, for a loop nesting

level LEVEL. To start with. CODEGEN passes the whole

schedule at level o. In subsequent calls GENERATE will .

receive a schedule of a loop scope at each nesting level.

GENERATE calls lower level procedures to process the

different types of schedule elements &s follows:

1. Scan each element of the list LIST.

perform steps 2 to 4.

For each element

2. If the element 1s a node-element call GEN NODE which will

aenerate the code for the schedule element.

3. If the element 1s a for-element do the following:

3.1 Call GENDO to produce a code for opening a loop.

3.2 Call GENERATE recursively with the list of the

elements within the loop's scope and level • LEVEL+l.

3.3 Call GENEND to generate the ter.inatioQ of the loop.

4. If the element 1s a cond-element do the following:



202

4.1 Call COND_ILK to produce the code for opening a

conditional block.

4.2 Call GENERATE recursively with the list of the

elements within the condition block and level·

LEVEL.

4.3 Call COND END to generate the termination of the

conditional block.

7.2.3 GINDO - TO INITIATE THE SCOPE OF ITERATIONS

This procedure produces the code for a control

statement initiating an iteration loop. The loop variable

name FORNAME and the termination criterion are taken fro.

the fields lOR_NAME and FOR_RANGE in the for-element being

seauned.

The following instructions are intended for recovery

from a program error. They always precede each loop control

statement:

ALLOCATE ERROR, ACC_ERROll ;

1* reset accumulative error flag */

ACC_ERROR • 'O'B .
J

ALLOCATE $ERR_LAB' .
J

$ERB....LAB .. LOOP...EHDc j

The "cit following LOOP_END 1s a unique number assigned to

the loop_ The purpose of these statements 1s to ensure that

an error occurring within the loop scope will cause the
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to LOOP_ENDc which is a label

•

i.mediately preeeeding the end of the loop.

,
The DO-statement itself 1s constructed next. Two basic

forms for the loop control statements are used:

1)

DO name • 1 TO upper [ WHILE (condition) ] ;

2)

name • a
DO WHILE (condition) ;

name • l1ame+ 1 j

"name" 1s the loop variable. "condition" 1s the ter11linati~n

condition.

If the termination eriterion given is that of a fixed

upper limit or given through a SIZE variable, the first form

is used and "upper" 1s either a con8ta~t number or a

variable of the form SIZE$X.

If the range 1s specified by an END.X control variable,

the second form of loop control 1s used. In this case we

use NOt~DONE in the condition and the following statements

are generated before the beginning of the loop:

ALLOCATE NOT_DONE j

NOT_DONE • 'I'B ;

NOT_DONE will be reset to 'O'B whenever the appropriate

END.X variable 1s Bet to 'true'.
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If there 1s an end-of-file condition associated with

the iteration, either as the main termination condlt1ou t or

because this is an iteration on an input record or group

above the record level which are last in their peer group,

we add:

AENDFILE$file

to the condition "condition".

7.2.4 GENEND - "TO T&RKINATE THE SCOPE OF ITERATIONS

This procedure produces the code needed at the end of

the loop scope. Since at times, we use k+l locations to

store a window of size k+l of an array, it 1s necessary on

each iteration to shift the window by oue element position.

This is done at the end of the iteration. The size of

respective window 1s originally stored in STOTYP of the node

subscript of each array node. GENERATE passes the node

numbers of arrays using window dimensions in a list called

PREDLIST to GEN_END. Based on this list GEN_END generates

statements to shift the window by one element position. The

actual range declared for a window dimension is k+l. In

each iteration we compute (or read) A( ••• , k+l, ••• ) and may

refer to the previous element as A( ••• t k, .••• ). When an

iteration 1s completed we transfer A( ••• , 1+1 •••• ) to

A(.·•• , I, ••• ) for I from 1 to k.

•
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After producing a sequence of these shifting operations

we produce the label:

where "c" 18 the unique count associated with the current

loop. If the termination criterion for the loop was through

an END.X control variable we also produce the code:

IF iND.X THEN NOT DONE • 'O'B j
~ -

This has to be done at the end of the loop since the value

of END.X at a given iteration determines whether this

iteration will be the last.

After this we produce the following statements:

$THP_ER&OR • ACe_ERROR j

FREE ERROR, Ace_ERROR j

lREE $ERR_LAB ;

IF $TMP_ERROR THEN ERROR, Ace ERROR • 'l'B ;

If the termination criterion was through an END.X

cOQtrol variable we also produce:

7.2.5 CORD_BLK - INITIATE A CONDITIONAL BLOCK

This procedure produces the code necessary to initiate

a conditional block. The conditional block will be executed

within the iteration only when the value of the indirect

subscript 1s increased. The indirect subscript node number
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1s stored in the FOR_RANGE field of the cond-element being

scanned. An IF-statement 1s generated to test the above

condition. Inside the conditional block we will use a new

symbol for the indirect subscript. For example, if XCI) 1s

tbe indirect subscript then we define a new subscript

J-X(I). Let 'old-sub' denote the subscript running in the

major range, 1.e. I. The 'new-sub' denotes the new

representation of the indirect subscript, i.e. J. A

boolean variable, $B_X, indicates whether the conditional

block should be executed. The code to compute $B_X is

generated by GEN_NODE when the node X 1s scanned in the

schedule. The new-sub 1s of the form $Xn where 'n' 1s a

unique number associated with this conditional block. The

following declaration statements are issued:

DeL $Xn FIXED BIN ;

DeL $B_X BIT(l) ;

The following codes 1s then produced:

IF $B_X THEN DO ;

new-sub • X( ••• , old-sub) j

7.2.6 COND_END - TERMINATE A CONDITIONAL BLOCK

This procedure produces the code at the end of a

conditional block. The above IF-statement has been

generated by COND BLK. Here we issue an 'END' statement to

terminate the IF-statement •
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7.3 GEN_NODE - CODE GENERATION FOR A NODE

This procedure generates the code associated with a

schedule node-element. It branches to different parts

according to the types of nodes.

1.3.1 PROGRAM HEADING

If the node 1s a module name (type MODL) we produce the

code:

This code 1s routed to the f11e PLIDCL.

7.3.2 FILES

If the node 1s a f11e node (type FILE) we first

generate three names. "file_stem" is the file name with

prefixes "NEW" or "OLD" removed, if any. "l1am.e" is the full

name of the Bode, including all prefixea. "f1le suff" is-
the file_stem with the suffix of'S' for source file, 'T'

for target file, and 'u' for update flle (both source and

taraet). The following declaration statements are routed to

PLIDCL file.

DeL name_S CHAR(length) VARYING INIT(' ') ;

DeL name_INDX FIXED BIN j

"length" 1s the maxm1aum length of records in the file.
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"na·ae_S" 1s the name of a buffer 1nto which records in the

f1le are read. (It 1s VARYING as the file may have more

than one record type J wi th different lengths.) 'tname INDX"

is a variable used to scan the buffer for packing and

unpacking the records (explained further later).

1. If the f11e is an input f1le we produce the statement:

OPEN FILE (file_Buff) j

2. If the f1le 1s a sequential input file and an end-of-file

is not explicitly .e~t1oned by the user, we produce the

declarations:

DeL ENDFILE$f~1_e_8te1ll BIT( 1) INIT( ~O-'B) ;

DeL $FSTf11e~suff BIT(l) INIT('l'B) ;

routed to PL1~CL file. If the user explicitly mentioned

the eud~of-fl1e variable then these statements will be

generated when the declaration are generated for all

variables by GPLIDCL.

The statements:

ON ENDFILE (file_suff)

BEGIN

ENDFILE$fl1e_stem • 'I'B j

name_S • COPY(' ',length) j

END ;

are sent to PLION f1le. The purpose of these statements

i. to have the f1le buffer filled with blank characters

when an end of f1le condition occurs.

3. If the file 1s an output f11e we produce the statement:
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CLOSE FILE(f11e_suff) ;

7.3.3 RECORDS

If the node is a record (type REeD) we call GENIOCD to

produce the code for the reading or writing of racords.

7.3.4 FIELDS

To process fields GEN_NODE calls procedure GENITEM.

GEN_NODE also calls CaECK~VIRT to find 1f the node has a

windowed dimension. If the field node 1s an indirect

subscript, X, the following code 1s issued.

IF loop_var-l TREN DO j

bname • 'l'B; rnaae • OJ END j

ELSE IF X(loop_var»X(loop_var~l)THEN DO j

bnaae • 'l'B; rname • OJ END;

ELSE DO ;

bnaae • 'O'B; rnaae • 1; END ;

where loop_var is the current level loop variable, bname is

of the form $B_X, and rname 1s of the form $R_X. Recall

that bname indicates whether the associated conditional

block will be executed. ruaae w1ll be used to compute the

index to reference an element such as A(X(loop-var» in the

case that array A has a ~lndowed dimension. This 1s

explained further later in connection with the code
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generation for assertions.

7.3.5 ASSERTIONS

If the node is an assertion we call the procedure

GENASSR to produce the code for an assertion.

7.4 GENASSI. - GENEltA.TING CODE FOI. ASSEI.TIONS

This procedure generates code for assertions. The main

task of GENASSa is to transform the syntax tree

representation of the assertion into a string representation

acceptable by the PL/I compiler. The transformation 1s

carried out by a recursive climb OD the syntax tree.

combining for each node the string representations of the

descendant subtrees into a string representation of the tree

rooted at that node. However. before performing the aain

task the procedure trausform. assertions containing

conditional expressioDs into conditional assertions. Thus,

an assertloB of the form:

Y - IF (IF X>O THEN Y>O ELSE Y<-O) THEN X.Y

ELSE -X*Y

will be transformed into:

IF X>O THEN Il Y>O THEN Y • X·y ;

ELSE Y • -X*y j

ELSE IP Y<-O THEN Y • X*y ;
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ELSE Y • ~X*Y ;

The overall execution of GENASSR can therefore be

su••arily described as:

1. Transform assertions with conditional expressioDs into

conditional assertions.

2. Form the string representation of the assertion.

7.4.1 TRANSFORMING CONDITIONAL EXPRESSIONS

This task 1s carried out by the procedure SCAN which

uses the auxiliary procedure EXTRACT_COND.

7.4.1.1 SCAN (IN)

The procedure SCAN effects the complete transformation

of assertions coftta1ning conditional expressions into

conditional assertions. The procedure 1s presented with an

assertion pointed to by IN, and returns a pointer to the

tranaforaed assertion. The steps in this procedure are as

follows:

1. Check the root of th~ tree pointed to by IN to see

whether it 1s a simple assertion or a conditional

a8sertion. If it 1s' a simple assertion then go to step

5.

2. We check next 1f the conditional assertion contains
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conditional expressions. A conditional assertion has the

form:

IF COND THEN 81 ELSE 82

where S1, 82 are assertions.

SCAN calls EXTRACT_COND to check whether COHD contains a

conditional expression. If COND contains a conditional

expression. then EXTRACT_COND returns C. L, and R which

are the parts of COND as follows:

COND • IF C THEN L ELSE R.

Otherwise, go to step 4 •

.3. If a conditional expression is found in COND then:

3.1 SCAN then transforms the tree (pointed to by IN) into
III

a tree INl whieh consists of the form:

IF C THEN IF L THEN 81

ELSE 92

ELSE IF a. THEN 51

ELSE 82

3.2 SCAN calls SCAN(INl) recursively to further search

for conditional expressions in INl and return a

transformed conditional assertion.

3.3 The transformed assertion 1s returned by SCAN.

4. If COND does not contain embedded conditional

SCAN then returns

expressions, then there are two recursive calls to SCAN

for the assertions Sl and 82 in IN.

the fol~owing assertion and exits.

IF COND THEN SCAN(Sl) ELSE SCAN(S2)

s. In the ease of a siaple assertion:
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Y • E.

SCAN calls EXTRACT_COND(E) to search for conditional

expressions in E. If Done found, then assertion Y • E 1s

returned unchanged. Otherwise, EXTRACT COND returns C,

L, and R which are the parts of E as follows:

E • IF C THEN L ELSE R.

6. If E contains conditional expression, then SCAN calls

SCAN(IN2) recursively, where IN2 points to a tree of an

expression of the form:

'11 C THEN Y • L

ELSE Y • R'

The return from the recursive call on SCAN is returned by

SCAN as the transformed assertion.

7.4.1.2 EXTRACT COND(ROOT,COND,LEFT,RIGHT)--
This procedure identifies and extracts the leftmost

conditional expression in a given expression pointed to hy

ROOT.

If a conditional expression is found the (pointer to

the) condition 1s returned in CORD and its first (THEN) and

second (ELSE) subexpres810ns returned in ~ LEFT and RIGHT

respectively. If the analyzed expression contains no

conditional expression the procedure returns NULL in COND.
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Its operation 1s as follows:

1. Iuspect the top level node of the given syntax tree.

2. If it is a conditional expressioQ, return respectively

the condition, the 8ubexpresslon following THEN, and the

subexpress10n following ELSE, then exit.

3. If the expression 1s a simple expressioQ, 1.e. a

coustant or a variable, return NULL and exit.

4. If the expression 1s a compound expression, scan each of

its descendants by calling EXTRACT COND- recursively.

Consider the first COND, LEFT, and RIGHT which are

returned such that COND 1s not equal to NULL. In

general, a compound expression 1s of the form:

E • g(El, •••• E.)

Assume that the recursive scanning of El, ···, Em

produces first COND not equal to NULL for E1 where

1<-1(-., returning also the THEN and ELSE subexpressions

L, and a respectively.

returns:

Then the current call for E

CORD as the eond1t1ou,

gCEl, ••• tEi-l,L, ••• ,Em) as LEFT, and

g(El, ••• JEi-I,R, ••• ,Em) as RIGHT.

Thus the overall effect of EXTRACT COND on an expression E

is to extract a condition C if one exists 1n E (returned as

COND), and then to compute 11 when C is true, and E2 when C

1s false. El and E2 are returned in LEFT and RIGHT

respectively. Described in another way we look for C, El,

and 12 such that the following equivalence holds:
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E • IF C THEN El ELSE E2 •

In particular this gives:

g(E1, ••• JEi~lJ(IF C THEN L ELSE R), ••• Em) •

IF C THEN g{El, ••• ,Ei-l,L, ••• ,Em)

ELSE g(11, ••• JEi-l,R, ••• ,Em).

7.4.2 PRINT - TRANSFORMING THE ASSERTION INTO STRING FORK

This procedure 1s presented with a pointer to an

assertion syntax tree and it converts the assertion tree

into a string representation.

Tbe procedure branches according to the types of the

nodes in the assertion tree.

1. If the node is a subscripted variable A(El, ••• ,Em) we

generate -the string 'A('. We then scan each of the

subscript expression El to Em and add them to the string

accor41ng to the following subcases:

1.1 If the dlaenslon at position 1 corresponds to the

dimension declared for repetition of a record and the

variable A includes the prefixed 'NEXT', then

1.1.1 If the dimension 1s scheduled as a window of

width k+l we insert the subscript value k+2.

1.1.2 If the dimension 1s scheduled as physical and

the expression 11 1s a constant c. then insert

the value of c+l. (See further below.)

1.1.3 If the dimension 1s scheduled as physical and
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call PRINT(Ri) and

concatenated with

1.2 If the dimension at position i 1s scheduled as a

window of width k+l, in this ease the physical

allocation for the array dimension 1s k+2 elements

with the k+lth element stauding for the current value

and the k+2th element standing for the field in the

next record. The different subscript expressioDs are

handled as follows:

1.2.1 If it ~s __ ~ 8iDlpl~ subscript then we insert an

integer k+l as the subscript.

1.2.2 If the subscript expression 1s I-c, then an

integer k+l-c 1s inserted.

1.2.3 If the subscript expression is X(I). then

k+l-$R_X is inserted where k+l-$R_X points to

the element A(X(I». If X(I)-X(I-l) then $R_X

is equal to 1, and 1f .X(I»X(I-l) then $R_X 1s

equal to O. (The code to compute $R_X is

generated by GEN NODE right after node X 1s

scanned.)

1.2.4 If the subscript expression is X(I)-c, then

k+l-$R_X-c 1s inserted as subscript.

1.2.5 If the subscript expression is XCI-a), then

k-[X(I-l)-X(l-a)] is inserted as the subscript.

X(I-l)-X(I-a) is the offset of A(X(I-a» to

A(X(I-l» which is stored in the kth element of
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the window for the ith dimension of array A.

1.2.6 If the subscript expression 1s X(I-a)~cJ then

k-[X(I-l)-X(I-a)]-c 1s inserted as the

subscript.

1.3 If the ith dimension of array A 1s physical and Ei is

the subscript expression, we call PRINT(E1) and

insert the returned value.

2. For all other co.pound nodes we call PRINT recursively to

convert the descendants and insert between them the

string representation of the separators, operators, and

delimiters. The latt.rs are stored in the O~- CODE fields

as integer codes. The integer codes are translated into

the operator representation using the array KEYS and then

inserted.

3. For atomic nodes we use the variable name either directly

or through its node number. Loop variables (subscripts)

are accessed through the level indication available in

their IDWITR field which 1s used as an index to the array

LOOP_VARS. Function names are retrieved by their

function number indeXing the table reNAMES.

7.5 GENIOCD - GENERATING INPUT/OUTPUT CODE

GENIOCD 1s invoked by CODEGEN upon scanning a schedule

ele.eat which corresponds to a record Dode. It accepts as

input the aode number in the schedule element. GENIOCD
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generates PL/I READ, WRITE, or REWRITE statements with the

appropriate parameters, based on the attributes of the f1le,

as well as the control code or condition code associated

with the input/output operation.

Table 7.1 summarizes the different statements generated

by GENIOCD for the different cases. Each of the different

cases in Table 7.1 shows the conditions defining the case

and the statements which are generated for the case. The

upper ease letters represent the part of the actual PL/l

string being generated. wbereas the lower case letters are

the metanames of the items obtained from the program

schedule elements.

Several preparatory steps are taken before branching to

the different cases.

1. Definition of names: We generate several variable names

derived from the record name that will be used in the

code. Let the record name be designated· by ree.

1.1 If ree 1s of the form OLD.X or NEW.X we define

reenam·e as OLD_X or NEW_X respectively.

1.2 Otherwise we define reename as ree.

1.3 Reebuf 1s defined as reename S.

1.4 Recindx is defined as recname INDX.

Consider now the file which is parent to rec. Let it be

denoted by f11.

1.5 Set file_name to f1l.

1.6 If £11 is of the form OLD.X or NEW.X set file name
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and f1le suff to- .

f1le nameU.

1.7 Otherwise set file_suff to file_DameS 1£ the file is

a source aDd to file_namet 1f the f1le is a target.

1.8 Set eof to ENDFILE$f11e_name.

1.9 Retrieve the keyname associated with the record, if

one exists, and assign it to key_name.

1.10 Set found to FOUND$file_Daae.

2. Issue the following declarations.

DeL recbuf CHAR (len_dat(n» j

DeL rec1ndx FIXED BIN INIT(l) ;

This declares a buffer for the record into which and out

of which the information will be read or written.

'Leu_dat(n)' here gives the buffer length.

3. If the record is an output record, the instruction for

moving the data from each field into the record buffer

will be generated.

4. If the record 1s an output record and a SUBSET condition

was specified for it we enclose the code for writing the

record by the condition:

IF SUBSET$rec THEN DO ;

code

END ;

The procedure DO_RBC produces the code for reading and

writing of records. It branches according to the cases in

Table 7.1.
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Table 7.1 The Various cases of program I/O control

Case 1: An Input Sequential and Nonkeyed Record.

The following code 1s produced:

IF $PSTfl1e_suff THEN DO j

READ FILE (file_Buff) INTO (recbuf) j

$FSTfile_8uff • 'O'B ;

END j

ELSE recbuf • f11ebuf ;

recindx • 1 ;

IF AENDFILE$£ile_name THEN

READ FILE ~file_suff) INTO (filebuf) j

$ERROll_BUF • recbuf ;

The movement of the data to the individual fields will

be done in conjunction with the nodes corresponding to

the fields (see GENITEK). The next record is always

read into file buffer so that we can unpack the data for

the NEXT record.

Case 2: Input, Sequential and Keyed Record.

Ensure that the following reelarations have been issued:

DeL FOUND$ree BIT(l) j

DCL PASSED$ree BIT(I) j

IS8ue now the code:

FOUND$rec, PASSED$rec • 'O'B ;

DO WHILE(AENDFILE$f11e_name & APASSED$rec) ;

READ lILE (file_8uff) INTO (recbuf) ;
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(code for extracting the key field)

IF keyname • POINTER$rec THEN

FOUND$ree, PASSED$rec • 'l~B

ELSE IF keyname > POINTER$rec THEN

PASSED$rec • 'l'B ;

END

ree1ndx • 1 j

Case 3: Input. Nonsequential (ISAH), Keyed record.

Verify that the declaration

DeL rOUND$rec BIT(l) ;

has been issued. Then issue the code:

FOUND$rec • 'l~B ;

ON KEY (file_suff) POUND$rec • 'O'B ;

READ FILB(file_suff) INTO(recbuf)

KEY(POINTER$rec) ;

rec1ndx • 1 ;

Case 4: Output, Sequential Record.

Issue the following code:

ree1ndx • 1 j

Call PACK procedure to pack its fields into the record

buffer. Then issue the code:

WRITE FILE(file_8uff) FROM(reebuf) ;

Case 5: Output, Nonsequential, Keyed and an Update Record

(both NEW and OLD specified)

Issue the following code:



222

reclndx • 1 ;

Call PACK procedure to pa~k its fields into the record

buffer. Then issue the code:

REWRITE FILE(file_suff) FROM(recbuf)

KEY(POINTER$rec) j

Case 6: Output, Nonsequential and Keyed Record •

. Issue the following code:

rec1ndx • 1 j

Call PACK procedure to pack its fields into the record

buffer. Then issue the code:

WRITE PILE(f11e_suff) FROM(recbuf)

KEY(POINTER$rec) j

7.6 PACKING AND UNPACKING

After a record 1s read we unpack its fields from the

record buffer and place the. in the respective declared

structures. Similarly before a record 1s written we pack

its fields into the record buffer. The data movement 1s

performed by individual transfers of fields. The transfer

stateaents may be interleaved with other statements which

control the iteration over respective fields' dimensions.

The transfer instructions for unpacking are generated

elsewhere, in conjunction with the schedule elements

associated with the input field nodes. The code for packing

an output record is generated in GENIOCD and inserted right
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before the record buffer is to be written out.

7.6.1 PACK ~ PACKING THE OUTPUT FIELDS

The procedure PACK is called by GENIOCD in the case of an

output record. It accepts a node number (NODE$) as input.

It checks the type of the node NODE$. If the node 18 a

field, it calls DO_'LD to generate the code for' packing.

Otherew1se. it considers in turn each descendant of the node

NODE$. For each descendant D it calls PACK1(D) recursively.

PACKl: This procedure generates code for packing a node

which mayor may Dot repeat.

1. If the node 1s a repeating group or a field we get the

termination criterion of the repetition.

1.1 Open a loop: Call ,procedure GENDO to generate the

DO~statement for opening the loop.

1.2 Call the 8ubprocedures PACK to issue code for packing

a single element of the node.

1.3 Call procedure GENEND to generate the code for

terminating the loop.

2. If the node 1s not repeating then:

Call procedure PACK to generate the code for packing all

the constituent members of this node.

DO_FLD: This procedure 1s responsible for producing code to

pack a field F into record buffer. It uses the

procedure FIELDPK to generate the following code.
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SUBSTR(recbuf,reeindx,lenstring) • F

recindx - recindx+lenstr1ng ;

lIELDPK 1s described further below •

. 7.6.2 GENITEM - UNPACKING THE INPUT FIELDS

This procedure 18 called to generate code for unpacking

information fro. an input buffer to an input field.

GIN NODE calls GENITEK upon scanning a schedule element of

an input field. GENITEM accepts as input the node number in

the schedule element. The READ statement for reading the

record to a buffer 1s generated by GENIOCD when the record

node 1s scanned. GENITEK first finds for a record R the

names of the input buffer as and the packing counter RINDX.

Next, GENITEK calls an auxiliary procedure FIELDPK, which

generates the code for unpacking.

The GENITEM procedure 1s as follows:

1. Determine the name of the record containing the current

field. Let it be ree. Then we coustruct a buffer name:

rec_S and a buffer 1ndex n.ame rec INDX. Let the field's

name be in the variable "field".

2. If the corresponding

referenced, then call

field in the next record 1s

FIELDPK to unpack the field from

the f1le buffer.

3. Call FIELDPK to generate the code for unpacking the field

fro. the record buffer.
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7.6.3 FIELDPK - PACKING AND UNPACKING FIELDS

The procedure FIELDPK produces the code for both the

packing and unpacking operation. Input parameters are the

field name, buffer name, record index name, and a code

(CASE) to indicate whether the field has a NEXT prefix.

1. If the length type of the field 18 fixed, 1.e. specified

in the data description statements. we compute its length

directly. If the field's type 1s 'C', 'N', or 'P',

denoting respectively character, numeric or picture, we

take the declared length. Otherwise we will compute the

length of the field in bytes from its declared length and

type. The string representing the length is stored in

"lenstring".

2. If the length of the field was declared by specifying

lower and upper bounds we check that there exists a

control variable of the form LEN. field for this field.

If none exists we issue the error message:'

THEFOllSPECIFICATIONLENGTHlIELDPK: NO

PIELD"f1eld.

3. If a LEN.field control variable is found we set:

lenstrlng • LEN.field

The byte-length of the field will be computed during run

time.

thegenerate4. If the field 1s an input field we

instruction:

UNSPEC(fleld) • SUBSTR(rec_S,rec_INDX,lenstring);
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If the same field in the next record is ref.rred in the

speeificatlo~t we will unpack the f1le buffer to get the

corresponding field in the next record. For output field

we generate:

SUBSTR(rec_S.rec_INDXtleustring) • UNSPEC(field) j

Here "field" 18 the name properly subscripted and

"lenstring" 18 the length specification. If the field ls

of type 'C', the UNSPEC qualifications will be omitted.

S. If the CASE code indicates that the field naae does not

have prefix NEXT then we generate the following code to

update the buffer index:

rec_INDX • rec_INDX+lenstrlng ;

There is no need to update recINDX 1f the unpacking 1s for a

NEXT prefixed field.

7.7 GENERATING THE PROGRAM ERROR FILE

If a program error condition 1s induced during the

execution of the generated program. then an input record.

read during the iteration execution when the program error

was induced is written to an error file, ERRORF. The

required code for writing the bad input record to the error

f1le 1s generated by the routines CODEGEN and GENIOCD. For

example, the following PL/t code 1s included in PLION file:

ON ERROR BEGIN ;

WRITE FILE(ERRORF) FROK($ERaOR_BUF) j
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GO TO $ERR_LAB j

END ;

After the GENIOCD generate the code to read a record from an

input file it also generates a statement to copy the input

record into $ERROR...BUF.

7.8 GPL1DCL - GENERAtING PL/l DECLARATION

this procedure generates the declarations for the data

nodes declared by the U8er and those added by the system.

As noted previously, some declarations are also generated by

other procedures during the code generation.

The aain part of GPL1DCL is as follows:

1. For each flle P in the specification (available from the

list FILIST) call

DECLARE_STRUCTURE(F)

to declare F and all its descendants.

2. For each node N in the 8pec1f1c~t1on which is an interim

variable or a control variable, call

DECLARE_STRUCTURE(N)

3. Por each subscript which has been used, issue the

eleclaration:

DeL subname FIXED BIN ;
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7.8.1 DECLARE_STRUCTURE - DECLARING A STRUCTURE

This procedure 1s called by GPLIDCL. The input is a

file node number. It declares the entire f11e structure.

It issues the declarative: DECLARE. and then proceed to

call DCL_STR(N,l.O).

This recursive procedure produces a declarlng-clause­

for each node N in the structure. 'LEVEL' 1s the current

level in the structure. SUX is· a term.ination criterion

stating whether there 1s a next node on the same level

(younger brother) or a descendant.

1. Some Preliminary transformations are made on the declared

Dode names.

1.1 Pile names of the fora NEW.l and OLD.r are modified

to N~W_F and OLD_F respectively.

1.2 The group names, record names, or field names are

reduced to their stea (removing prefixes).

2. For cOQtrol variables the resulting declaration 1s:

For SIZE, and LEN names:

name FIXED BIN,

while for all other names:

name BIT(l).

3. The declaration includes 'in general the following items:

LEVEL - The component level.
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Name - The declared name.

Repetition" The number of physical storage elements.

Type - The data type.

The data type 1s determined as follows:

For character fields - CHAR(len) [VARYING]

For numeric: fields - PIC '99 •••• 9'

For pictux-e fields - PIC 'picture'

For fixed binary .. BIN PIXED(len. scale)

For fixed decimal - DEC FIXED(len,seale)

For binary floating - BIN FLOAT(len)

For decimal floating - DEC FLOAT(len)

In the above 'len' 1s the specified or default length for

the field. The VARYING option is taken 1f the length 1s

specified (for strings) by a minimal length and a maximal

length.

Repetition 1s defined in STOTYP of the node

subscripts of the fields. If au array dimension is

virtual we omit the repetition indicator. If an array

diaeus10n 1s a window of width k+l. the repetition 1s set

-
to It+l. Otherwise. the array dimension must be a

physical dimeusion. The node subscript list of the field

node 1s scanned, and the repetition indicators for array

dimensioDS are concatenated and put into a variable REP.

If R is not an empty string. we will append the string

'(REP)' after the declared field name.

4. Por each of the descendants of the node H, call
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DCL_STR(M.LEVEL+l,terminat1on) recursively.

7.9 CGSUM - CODE GENERATION CONCLUSION

CGSUM has the task of concluding the code generation

phase. First, the different files with the generated PL!I

program (PLIDCL, PLION, PLIEX) are merged into one PL/t file

(PL1P&OG) which can be subsequently compiled. Secondly, a

Code Generation Su••ary Report 18 written which lists the

PL/I program. While the PL/t listing would Bot be of much

use to the average MODEL user, it 1s of interest to the more

sophisticated user and caD serve the system prograamer for

insight or -debugging of the KODEL system.
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CHAPTER 8

SUGGESTED FUTURE RESEARCH

In this chapter we will discuss some of the p08sible

directions of the future work. We have studied the issues

related to analyzing the precedence relationships among the

program events and ordering the program events to generate a

program. There are additional techniques that need to be

deve~oped to reduce the execution time or the memory

requirements. Two suggestions for program optimization area

that require further research are described in this section.

8.1 ELIMINATING REDUNDANT COMPUTATION

8.1.1 ELIMINATING UNNECESSARY COPYING OF DATA

C08s1der the example of a stack which 1s represented by

a pointer to the top of stack and a vector of elements. In

defining a stack in the MODEL language it "is necessary to

define a new vector of elements each time when an element is
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added to the top of the stack. Thus V(I,J) would be an

array of vectors representing the stack and SIZE.V(l) would

be the vector of pointers. The push function can be defined

as

SIZE.V(l) • SIZE.V(I-l) + 1 j

V(I,J) • IF J·SIZE.~(I) THEN new-element j

ELSE V(I-l,J) ;

The copying in the ELSE part 1s very time-consuming when the

stack 1s large. With our present program optimization

approach, aemory 18 allocated for· two vectors V(l-l) and

V(I), and the entire V(I-1,J) 1s copied into V(I,J). The

sUIgested research would develop a method for recognizing

the above illustrated condition and reducing both the memory

required and execution time.

8.1.2 ELIMINATING MULTIPLE EVALUATIONS OF CONDITIONS

The assertions

conditions. In the

in the KODEL language may include

case when the conditioQ8 in several

statements are the same, it would be more efficient to form

a block of the statements with the same condition and to

execute the entire block only 1f the condition 1s true. A

possible direction of future research 1s to recognize when

condition expressions in several assertions are the same and

to try during the scheduling to arrange these assertions 1n

a block which will require only a single evaluation of the
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condition.

In procedural languages the user can assemble

statements within a BEGIN-END block and associate a

condition expression with the entire block. In the MODEL

system eachi statement is scheduled by itself subject to a

variety of considerations, including efficiency

considerations. The suggestion here 1s to add an additional

lower priority consideration whereby statements with the

saa. condition expression will be placed in a bloek.

8.2 MODIFYING SPECIFICATION TO IMPROVE EFFICIENCY

A given computation task may be specified in a number

of ways in the MODEL language. Since the program generated

by the MODEL processor 1s influenced by the representation

of the problem in a specification, different representations

usually correspond to different programs. These programs

may have different efficiency. For example consider the

following KODEL specification. An input f1le IN contains a

sequence of records, each with two fields called A(I) and

B(I). The output 1s D, the quotleftt of dividing the sum of

B's by the sua of A's. One way to state this problem in

MODEL is to use p' and C as interim variables as follows.

IN IS FILE (INREC(*» ;

IRREe IS aECORD (A,B) ;
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P • SUH(A(I),I) j

e(l) • B(I)/P j

D • SUH(C(I),I) j

The generated program would scan the input f11e twice.

In the first scan it computes the value of P and in the

second scan value of D 18 computed. Since the input f1le 1s

read only once 1n the generated program, we will have to

eave the whole f11e in main .emory. However, there exists

other MODEL specification which scan the input file only

once and compute the same result. BY doing simple algebraic

aan1pulation on the assertions, we can eas1ly show that the

following specification eoaputes the same value of D.

IN IS FILE (IHREe(.» ;

IHREe IS RECORD (A,B) ;

P • SUM(A(I),I)

Q • SUM(B(I).I) j

D • Q/p j

This transformation on specification not ouly saves

computation time but also the memory space. The goal of the

transformation 1s to scan the input f1le only once so that

there 1s no need to keep the whole fl~e in the .emorY. If

there 1s some computation which needs an input f1le and 80me

other values which can be obtained after scanning the input

file. then it 1s an indication that modifying the

specification may be advantageous.
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APPENDIX A

EXAMPLES OF MODEL SPECIFICATIONS

The appendix consists of two examples of MODEL

specifications and the respective schedules generated by the

system. These examples have been selected to illustrate the

design decisions of the scheduler. The first example

illustrates how the calculation of memory penalty effects

the design of a schedule. The second example illustrates

how the scope of an iteration may be enlarged based on

analysis of related subscripts (i.e. through use of

indirect subscripts.)
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A.l EXAMPLE OF TABLE LOOK-UP

This example consists of a bank customer file CUST

which is updated based on a CODE which specifies the

interest rate of each customer. The interest rates that

correspond to codes are given in another input file TABLE.

A new CUSt f1le 1s produced with the updated balances. This

is illustrated in Fig. A.l and the MODEL specification 1s

given in Fig. A.2.

y

J I

x

OLD.rt1ST ..

x
I

ACCTS ~:r ~iC!

Fig. A.l Diagram for the Example of LOOKUP
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SOURCE
TARGET

LOOKUP;
CUST,TABLEj

: CUST;
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CUST IS FILE (CUSTR(l:x»j
CUSTR IS RECORD (ACCT$,CODE,BALANCE);

ACCT$ IS FIELD (NUKERIC(7»;
CODE IS FIELD (NUMERIC(4»;
BALANCE IS FIELD (PIC'(12)ZV.99')j

TABLE IS FILE (TABLER(l:Y»j
TABLER IS RECORD (CODE,RATE);

CODE IS FIELD (HUHERIC(4»;
RATE IS FIELD (PIC'BV.99')j

/********** ASSERSIONS Foa OUTPUT FILE CUSTOM **********/

NEW.ACCT$(I) - OLD.ACCT$(I);

NEW.CODE(I) • OLD.CODE(I);

IF TABLE.CODE(J)-OLD.CODE(I) THEN
NEW.BALANCE(I) •

OLD.BALANCE(I) * (1 + RATE(J»j

END.TABLER-ENDFILE.TABLERj

END.OLD.CUSTR-ENDFILE.OLD.CUSTRj

/********** END OF THE SPECIFICATION ***************/

Fig. A.2 MODEL specification for LOOKUP

The most effie1ent memory usage depends on the relative

sizes of TABLE and CUST, i.e. on x and y respectively.

Only one of these files ean have a virtual memory

allocation. If TABLE is relatively very large, then it

should have virtual memory allocation and CUST must then

have a physical memory allocation, and vice versa 1f CUST is

the larger file.
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F1g. A.3 shows the Array Graph with the two alternative

range sets that are candidates for a loop scope circled.

The memory penalties for these two alternatives are as

follows.
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1»&. set of J

Fig. A.3 Array Graph of the LOOKUP specification

If a loop iterated over the first range, i.e. I. 1s

scheduled first, then three arrays have to become physical,

i.e. END.TABLER., RATE, an.d TABLE.CODE. END.OLD.CUSTR has

to be a window of width two. The memory penalty 1s computed

as follows:
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END. TABLER (y - 1) * 1 • y-1

RATE (y - 1) * 4 • 4y-4

TABLE. CODE (y - 1) • 4 • 4y';'4

END.OLD.CUSTR (2 - 1) * 1 • 1

total penalty • 9y-8

If a loop iterated over the second range, 1.e. J, is

scheduled first, then four arrays have to become physical,

i.e. OLD.CODE, OLD.BALANCE, NEW. BALANCE , and END.OLD.CUSTR.

END.TABLER has to be a window of width two. The memory

penalty 1s computed as follows:

(x - 1) * 4 • 4x-4

(x - 1) * 15 • 15x-1S

(x - 1) * 1 • x-I

(2 - 1) • 1 • 1

OLD. CODE

OLD. BALANCE

NEW. BALANCE

END.OLD.CUSTR

END.TABLER

(x 1) * 15 • 15x-IS

total penalty • 35x-34

Depending on the relative values of x and y the

scheduler may produce the schedules in Fig. A.4 and

F1·g. A·.6. In the case that x 1s equal to 10 and y equal to

37. the TABLE file 1s relatively larger, the system will

make it virtual. If TABLE 1s the virtual (larger) file.

then the schedule has first an iteration for reading in

OLD.CUST. Next an iteration reads one record of TABLE at a
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time and computes NEW.BALANCE for all customers with the

respective CODE. Finally a third iteration writes out the

N&W.CUST file. The corresponding PL/I program generated by

the system is listed in Fig. A.5.

In the case that x 1s equal to 10 and y equal to 35,

the CUST file 1s relatively larger, the system will make the

CUST f1le virtual. The schedule in Flg. A.6, when CUST is

virtual, has first an iteration for reading TABLE. This is

followed by an iteration for reading, updating, and writing

a record of CUST at a time. The corresponding PL/I program

generated by the system is listed 1n Fig. A.7.
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LOOKUP: PROCEDJJRE OPTIONS(MAIN),
DeL CUSTS RECORD $E14LINPUT;
DeL SFSTCUSTS aITel) INIT(~l~B);

DC~ ENDFILESCUSTS 811(1) INIT(~O~B)I

DeL OLD_CUST_S CHAR(2~) VARVING INIT(~~)'

DCL I~D_CUST_INDX FIXED BINI
Del. OLD_CUST_CUSTR_S CHAR(26) VARYING;
DeL OLD_OJST_CUSTR_INDX FIXED BINI
OCt. TABt.ES RECORD SEQL I NP'JT,
DeL SFSTTABLES BIT(1) INIT(~l~B)1

Df...~ ENOFIL.ESTABLES BIT( 1) INIT( "'0'9);
oeL TABLE_S CHAR<SJ VARYING INtT('~);

~;L r~8LE_INDX FIXED BIN;
0&:1. TA8LE..TABLER_S CHAA<S) VAAVING1
DeL TABLE_TA8LER_INDX FIXED BINI
OCL. NEW_Cl1ST_CUSTR_S CHAR(26) VAAYING;
DCl. NEW_CUST_CUS1lLS-F CHAR ( 26' ,
Dt:L. NEW.-CUST..CUSTR..SC eI T ( 208) BASED (ADOR (NEW_CUST_CUSTR_S-F) ) I
DeL NEW_CU$T_CUSTR_INDX FIXED BINI
DeL CUSTT RECORD SEQL OUTP'JT;.
DeL SFSTCUSTT BIT(I) INIT(~l~B);

DeL ERRQR_BUF CHAR(270) 'JARt
DeL ERRORF FILE RECORD OUTPUT'
~:L ~~~RF_9IT 8IT(1) STATIC INIT(~1~9);

oeL ('ERr<OR.SACC-ERROR,SNOT_DONE) (::r)) 8IT(1);
DeL SERR_LAB(20) ~AeEL;

OCL SERRSPS FIXED BIN STATIC INITIAL (0)1
OC~ sTMP_VAL F~OAT SIN;
DeL STMP_ERR 9IT(1)'
OECLARE

l Nl::W_CUST,
~ C1J:;TR.

:3 ACCTS< 10) PIC'" 9999999'" ,
~ COuE(10) PIC~9999~7

3 9A~A~NCE(10) PIC'(12)ZV.99~1

OECt..AF<E
1 IlLO_CIJST,

~ ~;CTS PIC~99~9999',

3 CODE(10) PIC'9999~,

::: 8ALANCE< 10. PIC'" ( 12) ZV. 99-~;
OE.CL.~RE

t TABL.E,
-;: TA8LER,

·3 ':'JDEPtC·'9~~'.,

3 ~ATE PIC~~V.99"

DECL.ARE
1 INTER:M7

2 SYSG£Nl,
3 ~NtsOLD_CU$T_CUSTR(10) BIT<l) .,

:: s'(seEN::,
3 ENDsiAe~E_TAeLER(2) SIT(l) •

.~ 'aY-:::~EN=3 ~

3 ENOF1LE$OLD_CUST_CUSTR 81T(1)
~ $V$O~~4,.

~ a~DF!~£STAe~E_TA8LERBIT(l) ;
Ot;l.. • 11 FI X£D S II'~;

[)(:L • t2 F1XED BIN'
~:L (TRUE.SELECTED) 8IT(1) INIT('l~B)t

DCL (FALSE,NOT_SELE,NOT_SELECTED) 8IT(!) INIT('O~B);

242
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ON EI'~DFIL.E(CUSTS) BEGIN;
ENOF!LE.CUSTS·'l~B;

OLt'_CYST_$-COPV (;' ',26. ) I
E.r-.JOI

.:aN E",jOFILE(TABLES) BEGIN;
ENDFtLEsTABLES-'1'8;

TABLE..S-COPY( '" ~ .8)'
EN(I,

(IN uNC.:t=tNEDFlLE(ERRORF) ERRORF_BIT-"O'BI
1* ON !RAOR BEGINI
1F ERRORF-BIT THEN WAITE FII..E ( ERRORF ) FROM (.ERROR_BUF) 1
.eRRORCSERRSPS)-"l'BI
'~C-ERROR(SERRSPS)·'l~~;

1)0 TO -ERR_LAB ( $ERF<$P~ ) J

END'
*11

C.~F<OF<_RESTARTI ,
seRRSPS • SERRSPS +1'
$ERAOR(SERRSPS)·~O~8;

'ACC-!~ROR(.ERRSP.)·'O~B;

~ERR_LA8($ERRSP.)·END_PROGRAM'

~peN FIL£(CIJSTS), -.
-ERRSP. • SE~RSPS +11
SE~RC.R ( $ERRSP$ ) • ... f)'B'
~~C_ERROR(SERRSPS)·~O'B;

~ER~~AB(SERR$PS)·~OOP_£N011
~! 1 .();
$t~T_DCINE(1)·~1~Bt

00 WHI~£{SNOT_DONE(l»I·

till • sI1 +1;
SERAOR<'5ERRSPS)·-'O"9*
IF SFSTCUSTS THEN DO'

R!AO FILE(CUSTS) INTO <OLD_CUST_CUSTR_S);
S='STCUSTS-"'O"'S;
END;

EL$£ OLO_CUST_CUSTR_S-OLO_CUST_S;
O~:_~U$T_CUST~_INDX·1J

IF ··'EN6FIL.E$CUSTS THEN ~AD FILE(CUSTS) INTO (OLD_Ct.tST_$)'
Se:~FcOR_BIJF.OL.D_C'-'ST_CU~:;TR_S'

Et:OFIL.£sOL.D_CU$T_CUSTR-E.1\'DFIL.ESCUSTS,
EN:).C!L.~_CUSl_C'.ISTr< ( s 11 ) aENDFI1.ES'JL.D_CUST_C~;TR'
UN~SPEC ( l~l.D_CUST • ACCT. ) .'JNSPEC (SU8STA ( OL.~_CtJSi _CUSTR_S, 01.D_CUST_CUSTR.-INDX , 7) )

&)LO_CUST_CUSTF_!l'.:DX.')L.D_CUST_CUSTR_ INDX+7 1
N~~_C'JST.ACCTS(SI1)-)LD_CU$T.ACCTS'

tft~$PEC(OL~_CLt$T.CODE\SI1»·UNSPEC(SU8$TR(OLD_CUST_CU$TR_S,O~O_CUST_CUSTR_INDX,

4>": J
·:tL.D_CUST_Ct.lSTR_!NDX-OLD_CUST_CUSTR_INDX+4;
Na~_CUST.CO~E(SI1)·OLD_CUST.CODE(SI1)'

tJI'I$P£':: ( OLD_CU=::T • 9ALANCE (S I 1 ) ).UNSPEC: (SLt9STR (OLD_CUST_C'.t$TR_S~

~~~_CUST_CUST~_I~DX91'» ,
':tLO_CUST_l::IJS~_INOX••j\.O_CUST_CUSTR_INDX+l~ ;

IF ENDS.j;..D_I:t:S-r_CUSTR( SI 1) THEN sNOT_DONE ( 1 ).·.. 0., Bt
~NC~:

~T~~_E~R·~~~C_E~RCR(.ERRSPS)1

SE~~S? • .eRRSF~ - It
[r STMP_ERR THEN SEAROR(SERRSP.).~1~B1

!F S!MP_ERR TH~~ SACC_ERROR(SERR$PS).-'1~9;

OPEN ~ILE<TAaLES)'

S~R~$FS • .£RRSP. +1;

Fig. A.5 Generated PL/I program for Schedule-l
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~ARORc~RR$PS)·~O~8'

SACC-ERROR(SERRSP.)·~O~e;

'ER~_LAB(SERRSPS)-LOOP_END2;

.11 .,:.;
·SNOT_DONE ( 1 )."'-1'8'
DO WHILEtSNOT_OONE(1»,

511 • SIl +1'
.ER~OR(.ERRSPS)·~O'B'

IF SFSTTA8L.ES THEN DOl
R£AD FILECTt\8L.ES) INTO (TABLE_TABLER_S)1
SFSTTA8l-ESa'O"'S,
END'
E~SE TABLE-TASLER_S-TAB~E-$;

TAeL£_TA9LER_INO~·11

IF ~£NDFILESTAeLES THEN READ FILE(TAS~ES) INTO (TABLE_$);
SERROR_BUF·TAB~E_TASLER-S'

ENOFlLE.TABLE-TABLER-ENDFILESTA8LES1
~EC(TABLE.CODE)aUNSPEC(SUBSTR(TABLE-rA8LER_$,TA8LE-TA8~ER_INDX.4)) I
TABLE_TABLER_INDX-TA8LE-TA8LER_INDX+4 I
UNSF'EC( TABLE. RATE,)-JNSPEC<SUBSTR( TAiLE-TABt..ER_S. TABLE-TABl.ER_INQX, 4) I
TABLE_TABLER_INDX-TABLE-TASLER_INDX+4 1
.12 -0,
S,4QT_[-ONE ( 2 )." 1; 8'
00 WHl~E(SNOT~ONE(2»)1

.1:: • s12 .11
IF TA81..E. CCtCE-OLD_CUST. COCtE ( S 12 ) THE~J NEW_I:UST. BALANCe: ( .. I:: )•
OLO_CUST.aALANCE('I2)*(1+T~aLE.RATE);

1.01)P_EN03: ;
IF alDsOL.D_CUST_CIJSTR(SI::, THEN SNOT_ttONE(2)."O"'S,

!NO'
END.TA8LE-TABLER"(2)aENDFlLE.TAa~E-TAe~E~'

1.+)OP_£'JD2: ,
IF ENDsTAa~E-TABLER(2) THEN SNOT_DONE(1)."O~B1

ENOSTA8La-TA8LER(1) • ENO$7~eLE-TAeLER(~);

~ND·1

STMP_E~~·~ACC-E~RCR'SERRSPS);

SE~9SP$ • sERRSPS - :1
IF .·rMF·..£~R THEN sERROR (S£RRSPS).'" 1-'9;
IF S"T:"'t=- _E~'r:: THEN SACC_ERROR ( sERRSPs )•., 1 ..'B;
SI 1 .t)~

$NOT_OONE~l)a~l~o;

DC WHlL£{~NOT_OONE(l»;

S:l • s11 +11
NEW_CU~T_~vSTR_INDX·1J

~JSST~(NEW_CUST_OJSTR-SC,Ne~_CU$T_CU$i~_INDX*e-7t7*S)·VNSP£C(NEW_CUST.~:CTS(

SI1» ;
NEW_CtIST_C1JSTP~I~JDX-NEW_CUST_CLlSTR_INDX+7 ;
SUBSTR(NEW_CUST_CUSTR_SC,NEW_CU$T_CUST~_INDX.S-7~4*e).JN$PE~(NEW_CUST.CODE(

SI1) ;
NEw_Ct.I$T_CtJSTR_INDX-NEW_CUST_C!JSTR_ INDX+4 ,
$U~ST"{NEW_CU~T_CU$TR_SC.NEW_CUST_CU$TR_INDX*e-7,1~*e).~N$PEC(

NE;.-._CUST. &A~ANCE( It 1» ,
NEW_CU:~T _CU::'TR_INDX-NEW_':t.I$T_CUS~_:NOX""15 ;
NEW_CUST_~USTR_S·~U8STR(NEW_CUST_CU$TR_S_F,1,NEW_CUST_CU$7~_INDX-l)'

wRITE FIL~(CUSiT) FROM (NEW_CUST_CUSTR_S);
LO'.JP_ENt~4: ~

t F ENtlS:)Ltt_CUST_CIJSTR ( S I 1) THEN SNOT_DOI'~E ( 1 ).'"O'BI .
ENOl
CL'::$E FILE <CUSTT) ;
ENO_PRO&R~MI RETURN;
END L.Ot)Kljp,
S

lig. A.5 Generated PL/I program for Schedule-l
(Continued)
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~5 SVSGENl
57 $VSGEN3
36 NEW.CUST

OPEN FILE
FOR $11 UNTIL END.X SPECIFIED
READ RECORD

TARGET OF ASSERTION- AASS280
FOR S11 .

TARGET OF ASSERTION- AASS260

CLOSE FILE

EVENT
PROCE~JRE HEADING
or·EN FILE
FOR $11 UNTIL END.X SPECIFIED
READ RECORD

FOR tIl

'FOR $12 UNTIL END.X SPECIFIED

FOR $12
TARGET OF ASSERTION. AASS220

TARGET OF ASSERTION- AASS200

· TARGET (IF ASSERTIONI AASS180
WRITE RECORD

'-'.Ot.JCIIt'\lcT Hl:f·C.RT
l'I.~~:.(·n I' ~"'lON
Ht:aJ)s,JlE N"KE
I' It E
IlfF(ATION
RECOHr. IN FILE TABLE
$':'ECIAL NAME
A~::;:;;EnT ION
~~r'EC: t AL NAtlE
FII:.LO IN RECORD TABlE. TABLER
FJELD It" tiE:C:OHO TAblE. ·fABLER
1::,,,[' I TERAl ION
CiHOUP
(·r:OtIF'
FIl.E
ITERATION
RECORD IN FILE OLD.CUST
FIELD IN RE:COn[1 OLD.CUST .CUSTR
t=' JEI_D IN RE(:Of~D OLD. CUST. CUSTR
fIELD IN RECOtlD OLD.CUST.CUSTR \

[
ITEf~ATIC'N

J ASSERTICaN
E~Ul ITERATION
fIELD IN RECORD NEW.CUST.C~STR

A~;SER·r 100i
FIELD IN RECORD NEW.CUST.CUSTR
A~::>~:'~(:R'f 11)1'1
fIELD Jt~ RECORDNEW.CUST .CUSTR
RECORD IN FILE NEW.CUST
SPECIAL NAME
A$~;;ERT ION
SPECIAL NAME
END ITERATION
GROUP
GROliP
FI~E

END

I

TADLE.l·(-\r:cLER·
ENDFJLE. TABLE. TnOLER
AASS2bO
END.TA~LE.TADLER

TABLE. CODE
TAI:'LE. nf.\ TE

34
52
49
'5(.

40 NEW.C~ST.BALANCE

32 AASS200
39 NEW.CUST.CODE
31 AAi:;S 1eo
38 NI~W.CUST.ACCT$

37 NEW. CUST. CUSTR
53 ENUFILE.OLD.CUST.CUSTR
35 hASS2S0
51 END.OLD.CUST.CUSTR

56 tVSGEN2
58 $VSGEN4
41 e'LI). CU~3T

o
42 OLD.CUST.CUSTR
43 OLD.CUST.ACCT$
44 OLD. CUST. CODE
45 OLD.CUST.BALANCE

o
33 AASS220

.1
ONODE' Nnt'IE

46 LCI(IVlIP
47 Tf,Ul..[

o
48
54

,.

.~ . .' .



LOOKUP: PROCEDIJRE OPTI0N$CMAIN)1
DeL TABLES RECORD SEQL. INPUTI
DeL SFSTTA8LES 8IT(I) INIT(~l~B);

DeL ENOFI~EsTAeLES BIT(l) INIT(~O'8)1

DeL TA8LE_S CHARCS) VARYING INIT(");
DeL TABt..E_INDX FIXED lIN'
r.c~ TA8L£_ TABLER_S CHAR<S) VARYING;
DeL TABLE..TABLEfLINDX FIXED BIN'
DCL CJJ$T$ RECORD SE.~L INPtJTI
OCL SFSTCUSTS BIT(l) INIT('l'B);
oc~ ENDFILE.CUSTS 8IT(1) INIT('O'B),
oc~ 1~_CUST_S CHAR(2~) VARYING INIT(~~)I

oc~ OLD_CUST_INDX FIX!!' SINI
DC~ OLD_CU$T_CUSTR_S CHAR(26) VARYINO,
DeL OLD_CUST_CUST~_!NOX FIXED BIN'
oeL. NEW_CUST_CUSTR_S CHAR(26) VARYING*
DCL NEW_CUST_CUSTR-S-F CHAR(26),
DCL NEW-CUST_CUSTR_SC BIT(20S> 8ASED(ADDR(NEW_CUST_CUSTR-S-F»,
DeL NEW_CU~T_CUSTR_INex FIXED BIN; ~

DCL cusn RECORD SEI:LOUTPUTI
OCL $FSTCUSTT 81T(1) INIT('l'B);
OCL SERF<C1R_BUF CHAR ( 210) VAR,
DeL eRRORF FI~E RECORD OUTPUT'
OC:L ERRQRF-iIT BIT(l) STATIC INIT('l~B);

DC~ (sERRC~,SACC~E~ROR,sNOT-DONE)(20) 81T(1);
'~L SERR_~HB(20) ~AaEL'

DeL SER~SPS FIXED BIN STATIC INITIAL (0);
DC~ STMP_VAL FLOAT BINI
DeL STMP_E~R 8IT(1);
DECLARE

1 rEw_CUST.
~ CUSTF.,

3 ACCT. PIC'999~999~t

3 CODE PIC'9999;,
3 8AL~:E PIC~(1:)ZV.99~'

t·ECLAicE
1 Ol..O_C\,.l$T,

2 CtJSTR,
3 ~CCTS PIC'9999999~,

3 CODE P!C/~~9~;,

3 eAL.AI'4C~ PIC..-(lZ) tv. t?9·";
DEt;L.ARE

1 TABLE,
2 TP\EtL.ER,

3 COO£(3~) PIC'9999~,

3 RATE<3S) PIC~9V.·~;1

OECl.ARE
1 INTERIM.
~ SV~SI~EN1,

~ ~~tSOLD_CUST_CUSTR(:) 81T(1) t

3 ~~O.TA&· ~ TA!LER(3~) BIT(1) ,
~ SV$t)EN3,

3 ENDFILESOLD~CUST_CUSTR BIT(1) t

:: SVSOEN4,
3 ENDFILESTABL£_TABLER BIT(1) ,

DeL SIl FIXED BINI
oc~ S12 FIXED BINI
DeL <TRUE.SELECTED) SIT(I) INIT('l~B)'

OCL (FALSE,NOT_SELE7~)T_S£LECTED) alT(l) INIT(~O'B)l

Fig. A.7 Generated PL/I program for Schedule~2
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')N ENDFILE(TABLES) BEGIN'
ENDFILESTABLESa'l'BI
TA8L~S-eoPY(~ '.8),
END1

ON ENDFILECCUSTS) BEGINI
EtJCFiLE~:tJSTS·'1'81

OLD_CUST_s<oPY(' ',26) I
END1

1»-1 UNDEFINEDFIL.E(ERRORF) ERRORF_IIT-'O'B;
1* ON ERROR BEGIN'
IF EF:RORF_81T THEN WRITE FILE(ERRORF ) FROM ( SERROR-BUF) 1
SERROR(SERRSP.)·'1'81
SACC-ERRORCSERRSP.)-'l'!;
00 TO ERR-LAB ( SEF\RSPS ) I

ENOl
*1,

EAAOR..RESTMT: ,
SEARSPS - SERRSPS +11
SERROR(SERRSPS)·'O'B1
SACC_ERROR(SERRSPS)·'O'BI
SERR-LAB(SERRSPS)-END_PROGRAM,
OPEN Ft~(TA8LES)1 . -
SERR$F's • SERRSF1 +1'
·SEAROR (SE~~SPS ) • #" O'B,
SACC_!"RCR(sER~$P.)·'O'Bt-­
SERR..).AB(SERRSPS)-t.OOP-EN01;
SI1 -04
SNOT_~~E(l)-~l'B;

to WHILE(SNOT_OONE(l»;
SIt - S1l +1;
SERRORCsERRSPS)-'O'S,
IF sFSTTk8LES THEN DO;

REMD FIL£(TABLES) INTO CTASLE-TABLER_S);
SFSTTAa.ES·'O"S,
ENO~ .

£~SE TAi~E_TA!LER_S.TAaL.E-S'

T~i~£~T~a~ER_INDX·l1

IF ·~ENOFILESTABLES THEN READ FI~E(TA8LES) INTO (TASLE-S),
S£RROR-BlJF-TAiLE-TABLE.I:(_$1
Et~DFILE~TAe~E_TAeLER·ENDFl~STAeLES;

ENOST~iL.E- TAaL.ER< SI 1 )-ENOFIL.EST':'Bl.:_TABl.ER;,
UNSPEC~TAaLE.COOE(Sll»-JNSPEC(SUESTR(T~&~E_TAi~1R_$,T~e~_TABLER_INDX~4» ,
TAeL.E_TAeL.ER.-INDX.TAB1.£_TAaL.E~_IN~X+4 ;
UNSPEC(T~eLE.RATE(.Il»)·UNSPEC($UB$TR(TAeL~TA8LER_S,TAeLE_TASLER_INDX~~) I
TA.~i-T~aLER_INOX.TAa~TAeL£R_INDx.4 ;
LOOP_ENOl:;
IF ENDSiASLE-TA8LER<.Il) THEN SNOT_DONE(l)-'O/Bf

END;
sTMP-E~~ ••4CC~~~)R(SERRSP.);
SERR~F. • ~ER~SF. - l'
IF .TM~_E~~ T"EN SERROR(SERRSPS).~l/i;

r~sTMP_Er":R T~:N SACi:_ERROF< ( SERRSP$ ) ." 1 .J' B;
OPEN FI~!~CU$7$)'

~EPR~P. : 4E~~SP~ +1;
~ERROR(S::=:~SPS)..... 0"91
"A(:C_E~~I:'P{s:R~SP')."0"'&;
.£~R-LAa~.ER~SF')·~OOP_END21

SIl -):
~~)T_OQNE\1}·'1~aJ

Fig. A.7 Generated PL/I program for Schedule-2
(Continued)
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DO WHILE(SNOT_DONE(l»,
$11 • S11 +11
SERRORCSERRSP.)-'O'S1
IF sFSTCUSTS THEN 00'

READ FIL.E(CUSTS) INTO (OLO_CUST_CUSTR_S),
.FSTCUSTS-"O'!I
END'

ELSE OLD_CUST_CUSTR-SaOLD_CUST_S;
OLD_CUST_CUSTR_INDX-l1
IF nENDFILESCUSTS THEN READ FII.E(CUSTS) INTO (OLD_CUST_S)1
SERROR-BUF-OLD_CUST_CUSTR_S1
ENDFlLESOLD_CUST_CUSTR-ENDFIl.ESCUSTSI
UNSPECCOLD_CUST.ACCiS)-UNSPECCSU9STR<OLD_CUST_CUSTR-S.'JLD_CUST_CUSTR-INDX,7)
I
QLD_C'.JST_CUSTR_:NDXa')L.D_Cl.IST_CUSTR_ INOX+7 1
UNSPEC(OLD_CUST.COOE)-uNSPEC($U8STR(O~D_CUST_CUSTR-S.OLD_CUST_CUSTR-INDX,4) ,
OLD-CUST_CUSTR_!~DX·I~_CUST_CUSTR_INOX+4 ,
UN$PEC(OLD..CUST.&ALANCE)-uNSPEC(SUBSTR(OLD_CUST_CUSTR_S,OLD_CUST_CUSTR_INDX.
15») ,
Ot.D_CUST_CUSTR-INDX.OLD_CUST_CUSTR_INDX+l~ I
.12 -0,
SNOT_I)ONE<2)· ... 1'B1 .
DO t.JHIt..E(SNC1T_DONE(2) );

.12 • s12 +1'
IF TA9LE.COOE(.I2).)LD_CUST.C~DETHEN NEW_CUST.9ALANCE-oLD_CUST.8ALANr~*(

1·TA8LE.~ATE(II~»);

LOOP-END31;
IF ENDSTABLE-TABLER(SI2) THEN .NOT_OvNE(2).~O~BI

END.
NEW_CUST.CODE~jLD_CUST.CODE;

NEW_CUST.ACCTS-OLD_CUST.ACCTS;
NEW_CUST_CUSTR_INDx-l'
SUBSTR(NEW_CLfST_CUSTR-SC.NEW_CUST_CUSTR_INDX*S-777*S)-JNSPECCNEW~CUST.ACCT.) I
NEW_CUST_CUSTR_INDX-NEW_CUST_CUSTR_INDX+7 I
SU9STR(NEW_CUST_CUSTA_SC,NEW_CUST_CUSTR_INDX*S-7,4*S'-JNSPEC(NEW_CUST.CODE) I
r,aEW_CtJST_C!J$TR_INDX-NEW_CUST_CUSTR_If-jDX ...4 ,
~JISTR(NEW_C~$T_CUSTR_SC7NEW_OJ$T_CUSTR_INDX*S-7~1~.S).UNSPEC(

NEW_Cv$T.8AL~~C~) , -
NEW_CUST_CU$TR_INOX~~EW_CUST_CUSTR_INDX+l~ 1
NEW_CUST_CU$TR_S.SUaSTR(NEW_CU$T_CU$TR_S_Ffl,NEW_CUST_CU$TR~INDX-l)1

t.-R 1TE F!LE ( CtJSTT) FROM (NEW_CUS~T _ClJSTR_S) ,
a~O.OLD_CUST_C~$TR(2)·ENDF!LE~Q~_CUST_CU$TR;

1.00P-END:::: ;
IF ENDSOL.D_CUST_CUSTR(2) THEN SNOT_ttONE<l)."O"S;
ENDSOLD_CUST_CIJSTR(l) • ENJjSOU)_CU$T_CtJSTR(~)'

Er~D'
s'~_ERR·sACC_ERROR(SEPRSPS)'

.ERRS~ • $ErtRS;PS - l'
IF ST"P-EP~ THEN $ERROR<SERRSP.)-~1'B1

IF STMP_E~R T~EN SACC-ERROACsERRSPS).'l'BI
C~uSE FI~E\CU$TT)'

iNO_PROGR~M: ~ETURN;

~l\lfj L.I)OKUP,
s

Fig. A.7 Generated PL/I program for Schedule-2
(Continued)
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A.2 EXAMPLE OF MERGE OF FOUR FILES

This example illustrates merging the scopes of loops

for related subscripts, thus increasing the scope of loops,

decreasing the number of loops in a program, and permitting

virtual memory allocation for arrays referenced in the

merged loops. The example shows also how this merging can

be applied recursively, inereasing the scope of loops on

every application. It consists of merger of four files,

first merging two pairs, 81 and 82 into MI, and 83 and 54

into M2, and then merging Ml and M2 into T.

This is illustrated in Fig. A.8. Each of the files

consists of records a, each with two fields, NUM and CHR.

The records in each files are sorted by increased values of

NUM. The three merger boxes in Fig. A.8 are similar and it

suffices to show only the merger of 81 and 82 into MI. The

respective specification and Array Graph are shown in

Fig. A.9 and A.lO. The range sets in Fig. A.10 are shown

circled.
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~·.,g·am

I I

li-Ui-ma

I I

CL •"Ci.era

I I

<i-~s.a.'tI
___._1

............- .......
g:

. Ii!

Fig. A.8 Block Diagram of the Merging Example



\

251

The subscripts of the files in Fig. A.8 are shown as I, .

J, K, L, M, N, and P. The indirect subscripts for the

latter six are U, V, W, X, Y, and Z, respectively. The

definition of W(J) and X(J) is shown in the above

specification in Fig. A.9 for the merger of 81 and 82.
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/-.**... MER.JE INPIJT FILE:=: 51 AND S:: INTO INTERIM FILE I'll ****.,

XSl IS GROUP (W<*);
W IS FIELD (NUMERIC(4»;

XS2 IS GRC~P (X(*);
X IS FIELD (NUMERIC(4));

DONES1 IS GROUP <OONESIF(*»);
DONES1F IS FIELD (Bl1(1»;

OO;,ES2 IS GR01.tP ([IO~tE~~::F (*) ) ~

OONES2F IS FIELD (911(1);

SEL.S12 IS GROIJP <SEl.S12F<*»);
SELSl2F !$ FIELD (911(1»;

WlSU81) • IF SUBl-1 THEN 1
E~SE IF SE~S12F(SUal-1) & ADONES1F<SU81) THEN W(SUB1-1).1

ELSE W(SU81-1);

XCSUS11 • IF SUB1-1 THEN 1
£(8£ IF SELS12F(SUB1-1) DONES2FCSUB1) THEN X(SUB1-1)

ELSE XCSUB1-l)+1;

DOi\1:S1FC$UB1) • IF SUBt-l THEN "0"'8
ELSE DI:tNES1F ( $UB 1-1 )

(END.Sl.R(WCSU91-1» & SELS12F(SlIB1-1»;

DONES2F(SUB1) • IF SUB1-1 THEN ~O~8
ELSE DONES2F(SU81-1) I

(END.S2.ReXCSUB1-1» L ASELSl2F(SU91-1»'

SELS12FCSU81) • DONES2F(SUB1) :
(ADONES1F($JB1) ~ (Sl.NUM(W(SUB1») < S2.NUM(X(SUB1»»)1

"l.~M(SUel) • IF SE~Sl2F(SU81) THEN S1.NJMCW(SU&1»
ELSE S2.~JM(X(SUB1»;

"1.CH.~(SUB1·) • IF SEL.S12FCSlIB1) THEN Sl.CHR(WCSUB1))
ELSE S2.CHReX($U81»1

END.Ml.R(SUB1) • CDONES1F(SUB1) & END.S2.R(X(SU81») :
CDONES2F(SUEtl) & END.Sl.RCW(SU81»);

•
Pig. A.9 KODEL specification for merging two f1les
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Pig. A.10 Array Graph for Merging two files
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The entire specification is given in Fig. A.1I. There

are seven range sets that need to be merged progressively

(three for each of the mergers into Hl and M2, one for the

merger into T) into a single loop scope. The resulting

schedule 1s shown in Fig. A.12. The aerger of range sets is

applied recursively resulting in nested conditional blocks

in the scope of the loop. Thus there are conditional blocks

for each of the source files of each merger, 81 and 82 into

Hl and 83 and 84 into M2. Further the conditional blocks of

these mergers are nested in the conditional blocks for

merging HI and M2. These conditional blocks are shown

bracketed in Fig. A.12.
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/***********************************••*********************************/
1* */'* THE FOLLOWING SPECIFICATION DESCRIBES THE TARGET FILEtl, WICK IS */
/* OBTAINED BY MER.GING THE FOUR SORTED SOURCE FILES S1, 52, 83 AND S4.*1'* THE ~IERGING IS DONE IN TWO STEPS. FIRST, THE FILES 81 AND 82 AlE */
/* MERGED INTO INTERIM FILE MI, AND THE FILES S3 AND 54 INTO M2. */
I * HI AL~ M2 ARE THEN MEllGED INTO T. *I
1* */
/***.*************************************************.****************/

MODULE
SOURCE
TARGET

MEllGE4;
51,82,53,54;
T;

51 IS FILE (R(.»;
II IS RECORD (NOM, eRR.) ;

HUM IS FIELD (NUMERIC(4»;
CHR IS FIELD (CHAR(4)}j

52 IS FILE (R{.»,

S3 IS FILE (R(*»;

54 IS FILE (R(*»j

T IS FILE (R{*»;

!-{l IS FILE (R(*»;

M2 IS FILE (R(*»j

/***** SIZES OF INPUT FILES *****/

END.Sl.R(SUB1) - ENDFILE.Sl.R(SUB1);
END.S2.R(SUB1) • ~mFILE.S2.R(SUBl);

~~.S3.R(SUB1) • ~~FlLE.S3.R(SUB1);

END.S4.R(SUBl) s DnlFILE.S4.R(SUB1);

Pig. A.li MODEL specification for merging four files
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/***** MERGE INPUT FILES 51 AND 82 INTO ItrrERlM FILE Mi *****/

XSl IS GROUP (We.»;
W IS FIELD (NUMERIC(4»;

XS2 IS GROUP (XC*»;
x IS FIELD (NUMERIC(4»j

DONESl IS GROUP (DONESlF(*»;
DONESIF IS FIELD (BIT(l»;

DONES2 IS GROUP (DONES2F(*»;
DONES2F IS FIELD (BIT(l»;

SELS12 IS GROUP (SELS12F(*»;
SELS12F IS FIELD (BIT(l»;

W(SUB1) - IF SUBl-l TdEN 1
ELSE IF SELS12F(SUBl~1) & ADONESIF(SUBl) THEN W(SUB1-l)+1

ELSE W(SUBl-l) j

X(SUBl) • IF SUBl-1 THEN 1
ELSE I~ SELS12F(SUBl-l) I DONES2F(SUB1} THEli X(SUBl-l)

ELSE X(SUB1-l)+lj

DONES1F(SUBl) • IF SUB1-1 THEl~ 'Q'B
ELSE DONESIF(SUBl-l) I

(END.Sl.R(W(SUBl-l» & SELS12F(SUB1-l»j

DO~~S2F(SUBl) • IF SUBl-l THEN 'Q'B
ELSE DONES2F(SUB1-l) I

(END.S2.R(X(SUB1-i» & ·SELS12F(SUBl-l»j

SELS12F(SUB1) • DONES2F(SUBl) I
(ADONESIF(SUBl) & (Sl.~~(W(SUBl» < S2.~~M(X(SUB1»»;

Ml.NUM(SUBl) • IF SELS12F(SUBl) THEN Sl.~1lM(W(SUBl»

ELSE 52.NUM(X(SUB1»;

:il.CRR(SUB1) - IF SELS12F(SUB1) THEli Sl.CHR(W(SUBl»
ELSE S2.CHR(X(SUB1»j

~ ~~.Ml.R(SUB1) • (DONESIF(SUB1) & END.S2.R(X(SUBl») I
(DONES2F(SUB1) & END.Sl.R(W(SUB1»)j

Fig. A.I! KODEL specification for merging
four files(cont1nued)
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/*••** MERGE INPUT FILES 53 AND 84 INTO INTER.IM FILE H2 *****/

XS3 IS CROUP (Y(*»;
Y IS· FIELD (NUMERIC(4)}j

XS4 IS GROUP (Z(*»;
Z IS FIELD (NUMEllIC(4»;

DONES3 IS GROUP (DONES3F(*));
DONES3F IS FIELD (BIT(l»;

DONES4 IS CROUP (DONES4P(*»;
DONES4F IS FIELD (BIT(l»j

SELS34 IS GROUP (SELS34F(*»j
SELS34F IS FIELD (BIT(l»;

Y(SUB1) iii IF $UBl-l THEN 1
ELSE IF SELS34F(SUBl~1) & ADONES3F(SUBl) THEN Y(SUBl-l)+l

ELSE Y(5U81-1);

Z(SUBl) • IF SUBl-l THEN 1
ELSE IF SELS34F(SUBl-l) DONES4F(SUBl) .THEN Z(SUBl:"l)

ELSE Z(SUBl-l)+l;

DONES3F(SUB1) • IF SUB1-l THEN 'O'B
ELSE DONES3F(SUB1-l) I

(END.S3.R(Y(SUB1-l» & SELS34F(SUBl-l»j

DONES4F(SUB1) • IF SUBl-l THEN 'O'B
ELSE DOUES4F(SUBl-l) I

(Eh~.S4.R(Z(SUB1-l» & ASELS34F(SUBl-l»;

SELS34F(SUB1) • DONES4F(SUBl) I
(AOONES3F(SUBl) & (S3.~1!M(Y(SUB1») < S4.~~«Z(SU31»»j

M2.NUM(SUBl) • IF SELS34F(S'UB1) THEN S3.NUM(Y(SUBl»
ELSE S4.NUM(Z(SUB1)j

M2.CHR(SUal) • IF SELS34F(SUBl) THEN S3.CHR(Y(SUB1)
ELSE S4.CHR(Z(ScrBl)j

~~.M2.R(SUB1) • (DONES3F(SUBl) & END.S4.R(Z(SUB1») I
(DONES4F(SUBl) & END.S3.R(Y(SUBl»);

Fig. A.II HODEL specification for merging
four f11es(cont1nued)
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/****. l-tERGE INTERIM FILES HI AND M2 L';TO OUTPUT FILE Tl *****/

XMl IS GROUP (U(*»;
U IS FIELD' (NUMERIC(4»;

1M2 IS GROUP (V(.»;
V IS FIELD (NUMERIC(4»;

DONEMl IS GROUP (DONEMIF(*»;
DON~11F IS FIELD (BIT(l»;

DONEM2 IS GROUP (DONEM2F(*»;
DONE~F IS FIELD (BIT(l»;

SE~~12 IS GROUP (SET~~12F(*»);

SELM12F IS FIELD (BIT(l»;

U(SUB1) • IF SUBl-l rdEN 1
ELSE IF SE~~12F(SUBl-l) & ADONEMIF(SUBl) THEN U(SUBl-l)+l

ELSE U(SUB1-1) j .

V(SUBl) • IF SUBl-l THEN 1
ELSE IF SELM12F(SUB1-l) DONEM2F(SUBl) THEN V(SUBl--l)

ELSE V(SUBl-l)+lj

DO~~~lF(SUB1) • IF SUB1-l THEN 'O'B
ELSE DONEMIF(SUBl-l) I

(END.Ml.R(U(SUB1-l» & SELM12F(SUBl-l»;

DONE.'t2F(SUB1) • IF SUB1-l TdEN 'O'B
ELSE DONEMlF(SUB1-l) I

(END.M2.R(V(SUB1-l» & ·SELM12F(SUBl-l»j

SELM12F(SUB1) • DQtmM2F(SUB1) I
(ADONnflF(SUBl) & (~11.~1r~(U(SUBl» < M2 .NUM(V(SUBl»» j

r.NU1f(SUBl) • IF SELM12F(SUB1) THEN Ml.NUM(U(SUB1»
ELSE ~a.NUM(V(SUB1»j

T.CHR(SUB1) • IF SELM12F(SUB1) THEN Ml.CHR(U(SUB1»
ELSE M2.CHR(V(SUBl»j

END.T.R(SUB1) • (DONEMIF(SUBl) & END.~.R(V(SUB1») I
(DO~~M2F(SUB1) &END.Ml.R(U(SUB1»)j

Pig. A.II MODEL specification for merging
four f11e8(cont~nued)
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"!RGE41 PROCEDURE OPTIONS(MAIN);
DeL SIS RECORD SEQL INPUT'
DCL sFSTS1S 8IT(1) INIT(~l~B)1

DeL ENDFILESS1S 8IT(1) INtT('O~B);

DeL $1_$ CHAR(S) VARVING INIT(")J
DCL Sl_INDX FIXED BINI
DCL S2S RECORD SEQL. INPUTI
cu..... SFSTS2S 8IT( 1) It~IT("I ..... ) 1
Del. ENDFlLESS2S BITel) INIT(~O'B)I

DeL $2_$ CHAR(8) VARYING INIT(~')'

~ S2-INDX FIXED 81M;
DeL. S3S RECORD SEQL I NPltT;
DeL SFSTS3S BIT(l) INIT(~1"B);

DeL. ;::NDFtt.ESS3S iIT( 1) INIT(.... O'9)'
tlCL S3-S CHARCS) VARYING INIT('-') 1
DCL S3_INDX FIXED BIN'
DCI. S4S RECORD SEQL INPUT1
OC~ SFSTS4S BIT(1) INIT('l'B)1
D:L ENDFILESS4S 8IT(1) INIT('OIB),
DCL $4_$ CHAR(S) VARVING INIT(");
OCL S4_IND~ FIXED IINI
Da. (SX2.SR-INTERII1SU) FIXED BINI
DCL .8~lNTLqIMsU 8IT(1)'
DeL. (SX3,1SR_INTERIMSX) FIXED 8IN;
DC~ .S_INTERIMSX 9IT(1)1
DCl. S2_::<_S· C~AR ( S j VARY I NO 1
DeL S2-R_INDX FIXED BIN;
DeL ('X4,sR_INTE~IM.W) FIXED BINI
·DeL SS.INTERIMSW BIT( 1) 1
DCl. Sl_R.S CHAR(Si VARYING;
DeL S1_R_INDX FIXED BIN~

DeL (SX'~SR_INTERIMSV) FIXED BINI
~~L SS.INTERIMSV BITtl);
DCl. (st6 .. SR_1N~-RIM'Z) FIXED BINI
DC:L S8_INTE.=tIMSZ i"IT( 1 ).
~c~ S4-R_S CHAR(S) VAnVINGl
DeL S4_~.INOX FIXED SIN;
OC~ (SX7,SR_INTERIM.V) FIXED BIN'
DeL sB_:NTEnIMS¥ BIT<l);
DeL S3-R_S ChARtS) VARVING;
OCL S3_R_INDX FIXED BIN;
DCL T-A.S CHARta) VARVING1
DeL T_R.S_F CHAR<S),
DeL T_R-SC iIT(64) BASED(ADDR<T_R_S.F»'
OCt. T_R..':NDX FIXED SINI
oa..,. TT RECOP~ SEQL. OUTP1JT;
DC~ SF$T~ BITel) INIT(~l'B);

DeL SERF:OR..lUF Ce1.fAR ( 270) VAR,
DeL ERRC"F FI~E RECORD OUTPUT;
DeL ERRO~F_SIT 8IT(1) STATIC INIT(~l'B)'

DCt. (sE~~(lR .. SAa:C-£ARaJR • SNOT• DONE ) (20) 8 IT ( 1 ) ;
OCL s~~_~~S(20) LA2~_~

DeL SE~~$~1 ~IXED BIN STATIC INIiIA~ (0)'
OC~ STMP_VAL ~_OAT BIN'
OC~ ITM~_~R eIT(l);
DECLARE

1 1'11,
2 R,

3 NUM(2) PIC'9999~,

3 CHR(2) CHAR(4),

Fig. A.l3 Generated PL/I Program for·
the MERGE4 Example
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DECL.ARE
1 t12t
2 R.

3 ~(2) PIC'9999~,

3 CHR(2) CHAR(4)1
DECLARE '

1 S1,
2 Rt

3 NUM(2) PIC'9999',
3 CHR(2) CHAR(4);

DECLARE
1 S2.
~ R,

3 NU"(2) PIC'9999~,

3 CHR(2) CH"R(4)~

DECLARE
1 S3.
2 R.

3 NUM(2) ~IC'~99~t

3 CHR(2) CHAR(4) J
DECLARE

1 $4"
2 R.

3 NU"(2) PIC'9999',
3 Q;Ft(2) CHAR(4) ,

DECLARE
1 T.
:: R ..

3 ~M.U" PIC'9999' t

3 CHR CHAA(4);
DECl.~~E

1 INTE.I\It1,
2 XS4,

3 Z<:) PIC'9999',
~ XS3,

3 V(2) PIC'9999',
Z xs-z,

3 X<Z) PIC~9999' ..
: :CSt.

3 W(~) PIC'99~9~,

2 XM::,
3 V(2) PIC~9999~,

2 XM1,
3 U(2) PtCI9999~.

2 SEt.S34,
3 SE~$34F(2) 8IT(1),

2 SEL.$12,
3 SE~S12F(2) SIT(l),

2 SEL.:-!12 ,
3 Sa:-tl·2F(~)· SIT<l),

: DONES4.
3 ~)NE$4F(2) BIT(1),

~ OI)NES3,
3 DONES3F(2) BIT(l),

~ DONES21'
3 OON£S:F(~) 8IT(1),

:: O')~':ES1,

3 OONEStF(2) BIT(l),
..:: DCINEM2,

3 DONEM2F(2) BIT(l),

Fig. A.13 Generated PL/I Program for
the MERGE4 Example(Continued)
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,

2 DONEM1~

3 DONEM1F(2) BITCl),
2 SVSGEN1,

3 ENDST-R(2) BITel) 9

2 SVSGEN2,
3 ENDSM2-R(2) BIT(1) t

2 SVSGEN3,
3 ENDSM1.R(2) BIT(1) t

2 SVSOEN4,
3 ENOSS4_R(2) BIT(1) 9

2 SYSGEN!!,
3 ENOSS3_R(2) BIT(l) •

2 SVSGEN6~

3 ENOSS2-R(2) BIT(l) t

2 SVSGEN7,
3 END$$1-R(2) 8IT(1) ,

2 SVSGENS..
·3 ENDFIL£sS4-R BITt 1 )

2· SYSGEN9, .
3 ENDFILESS3..R BIT ( 1) •

2 SY$OEN10, .
3 ENDFILESS2-R BITtl) 9

2 SY$13EN11,
3 ENDFI~SS1-R IIT(l)

DC~ SIl FIXED BIN;
~~ (TR~ElIS~£C~) BIT(l) INIT(~l~e),

DCL (FALSE.NOT_$E~tNOT_$~~CTED) SIT\l) INIT('O'B)I
ON ENDFILE($l$) BEGIN;
ENDFI~SSlS·~1~9;

Sl_S-COPV(J' "',8);
Er'llDI

ON ENDFtLE($2$) BEGIN'
E,~DFIL.ES$2'S·"'1"BI

S2_S<OPY (~ ... t S) ,
ENOl

:)N eNDFt~£~SZS) BEGIN;
ENDFILE'$3S·~1~il

S3_S-:0PV(' /,S)'
END;

.)N ENDF11.£ (S4~;) aeGI"N;
ENDFl~EsS4$·~1?a,

$4_S--::0F-,," (... .-, e);.
END;

ON IJNDEFtr-JE~FILE(ERRORF) ERRORF..BI T.··· 0""a,
1* ON ERROR BEGIN;
IF ERROFtF-SIT THEN WRITE FIL.E<EnROAF) ~OM ($ERROR-BIJF) 1
sERROR ( SERFcSP'I ) •.# 1 '91
SACC-ER~OR(~~RSPS)·.... 1'9;
00 TO .L~R~~B(sERR$PS) ,

END 1
*/;

EF:ROR_RESTA,.T: t

SERRSPs • S~~RSP$ +1'
~ERROR(.~~SPS).~O'8'

SACC-ERAORt.EnRSP.)· .... O'SI
SERR-LA8(.~~RSPS)·END_PROGRAM'
;:sPEN Flt.£~SlS);

OPEN FlLE(S:S) J
OPE.... FIL.ECS3$)'
OPEN FlLE<S4S)'

Pig. A.13 Generated PL/I Program for
the KERGE4 Example(Continued)
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SERRSP. • SER~wPS +11
SERRORCSERRSPS)-"O"B,
.~:C_ERROR('ERRSP')·~O~B;

SE~_LAB ( SERRSPS ) -LOOP_END1,
SIl -0'
~NOT_DONE(l)·~l'B'

00 WHILE(SNOT_DONE(l)1
.11 • S11 +11
SERRORC-ERRSP$)·"O"8;
IF -11-1 THEN INTERIM.DONEM1F(2).~O'B'

El.SE INTERIM. DONEt11F(2)-lNTERIM.DONEM1F( 1) :END.f11-R( l-INTERII1.IJ( 1 )+INTERl".U(
1)&INTERIM.SELMl2F(1)1
IF SI1-1 THEN INTERIM.U(2)-1,
ELSE IF INTERIM.S£1.Ml2F(1)&"'INTERIM.DONEM1F(2) THEN INTERII1.U(2)-INTERltt.U(1)

"-11
~SE INTERIM.UC2>-tNTERIM.U(1)'

IF ~Il.1 THEN OOt
SS_INTERI"SY- 'l~B'

.A_INTERlf1SU-01
ENDI
ELSE IF (INTERIM.U<2»INTERIM.U(1») THEN DOl,.
S8_INTERIMSU- 'I'S,
'SR_INTERIMSU-O;
ENDI
E1.SE DO'
SB_INTERIMsU- '0"81
SA_INT~F<IMSU·l;

END;
iF -11-1 THEN INTERIM.DONEM2F(2) ....O... St

EL.SE INTERIM.OONEM2F(2)-INTERIM. DON£"CF( 1) ~ E~.aD.M2-R(l-INTERIM. VC 1 )+lNTERlt1. V(
lJ)~AINTEnlM.SELMl2F(l)J

IF SI1-1 TH~~ INTERIM.V(2)-t;
ELSE IF INTERIM.SELMt:F(1)IINTERIM.DONEM2F<2) THEN INTERI~.V(2).tNTER~.V(1)'

ELSE INTERIM.V(2)-INTEnIM.V(1)+1;
IF sIl-1 THEN 001
S!_INTERIMSV- 'l~BI

"R_INTERIMSV.()~

ENtl;
E~$E IF (INTERIM.V(2»)INTERIM.V(1) THEN DOt
SS_IUTERIMSV- 'l~B;

SR_INTERIMSV-·);
END;
El...SE DO;
SS_INTERIMsV- '0'81
SR_IN~-RIM.V·ll

END'
tF SB_INTERIMSU THEN
DO J

SX2 • INTE~IM.U(2)'
IF .X~.l THEN INTERII1.DONES1F(Z)·'O'S,
ELSE INTE~:M.OONES1F(2).INTERIM.DONES1F(1)lEND.Sl_R(1-INTERIH.W<l)

+INTERIM.W(l»)~INTERIM.SELSl2F(l)'

IF sX2-t T~EN INTERIM.W(2)-11
Et.SE IF INTERIi'1.$EL.S12F(1)~""INTERIl'1.00NES1F(2)THEN INTERIM.W(2)-INTERIM.W(

1) +11
ELSE INTERIM.W(2)-INTERIM.W(1),

IF sXZ-t THEN 00'
SS_INTERIMSW- ~l"BI

sR_INTERIMSW-O'
END;

Fig. A.13 Generated PL/I Program for
the MERGE4 Example(Continued)
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ELSE IF (INTERIM.W(2)jINTERIM.W(1») THEN DOl
SS_lNTERIMSW- '1'11
SR-INTERIMsw-ol
END;
E:..SE Of)1
-e_INTERIMSW- '0'81
SR_INT~I".W·ll

ENOl
IF .;(2-1 THEN INTERIM.DONES2F(2)-'O'81

ELSE INTERl".DONES2F(2)-INTERIM.DONES2F(1)IENDSS2-R(1-INTERIM.X(1)
+INTERIt1.X(1»)8cA INTERIM.SEL.S12F(1);
IF .X2-1 THEN INTERl"'.~(2).11

E~SE IF INTERIM.S!LSl2F(1):INTERIM.DONES:F<2) THEN INTEAIM.X(2)-INTERIM.X(
1 ) I

EL.SE INTERI".X(2)·IN~RIr1.X(1)+1'

IF SX2al THEN DOl
.a_INTERI~X. '1'1;
SFl..lNTERI"$X-o;
ENDf
ELSE IF (INTERIM.XC2»INTERIM.X(1») THEN DO;
SS_lNTERI"SX- '1'1;
SR_INTERIt1SXa01
ENOl
EL..SE CC;
.B_IN~£Rl".X. '0'81
SR_IN~E~I"'~X·11

E~JDt

IF SS_INTERIHSX THEN
DO. ;

SX3 • INTERIM.X(2),
IF SF$TS2S THEN DO;
RE~D FILE($2$) INTO (S2-R_$);
SI='·:.7$2$· ... 0"'8;
ENO:

e..S!: S2_iLS-52_S;
S2_p_Ir~t:X·ll

IF ·· ..ENOFIL.E.S2S THEN READ FILE<~~2S) .INTO (S:'-S) ,
SE~PC"_5UF·S2-R_S1

ENOF!~S$2-R·£NDFt~E.S2SI

el[!s:;2_~ (2) -ENDFIL.ESS2_R;
UNSF;CCS:.NUM(2»-JNSFEC(SUeSTR<S2-R_S,S2-R_INDX,41)
$2-~_INDX·S2-R_INDX+4 ;
S2.C"R(:)·SU9STA(S:-R_S,~--R_INDX,4) ,
S~~_IND~~':-R_INOX+4 ;

END;
IF sa_:~TE"I"SW THEN
DO 1

SX4 • INTERIM.W(2),
IF IFSTS1S THEN DO;

REAC FI~(SlS) INTO ($l-R_S),
SF:~Sl~:=.~O"D;

E~SE Sl_~_S-Sl_S;

Sl_Fi_!NOX-ll
IF hENOFlLESS1S THEN READ FII.E(SlS) INTO (S1_S),
s~~~O~_SVF·$l_R-S'

ENOFILESS1_R-ENDFlLESS1S;
EN~I~~_R(2J·ENDFILESS1_R;

UNSPEC(Sl.NJM(2»)-uNSPEC(SUBSTR(Sl-R_S.Sl-R-INDX,4» 1
Sl_~_INDX.Sl-R_INDX+4 I

Fig. A.I3 Generated PL/I Program for
the MERGE4 Example(Cont1nued)
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Sl.CHR(2).SU8STR(Sl_R_S~Sl_R_INOX.4)I

Sl_R_INDX-St..R_II'Jt'X+4 1
END I
INTERI".SELS1ZF(2)·INTERI".DONES2F(2):AINTERIM.DONE$lF(2)~S1.NU"(

2-SR_INTERIMSW)<S2.NUt1(2-SR_INTERII1SlC);
IF INTERI".SELSl2F(2) THEN Ml.CHR(2)-S1.CHR(2-SR_INTERIMSW),

ELSE "1.CHR(2)-S2.CHR(2-SR_INTERIMSX)1
IF INTERIrt.SE1.S1:F(2) THEN P11.Nll"(2)-Sl.NUI'1(2-SR_INTERIMSW);
ELSE "1.NUM(2).S2.NU"(2-SR_INTERIMSX11

ENDSH1_R(2)-INTERI".DONES1F(2).ENDSS2-R(2-SR-INTERIMSX):INTERIM. DONES2F(2)
~ENDSS1_R(2-SR_INTERI"SW)I

IF SB_INTERI"'SX THEN S2.CHRtl) • ~.CHR(2)1

IF Sa_INTERIMSX THEN S2.NUM(1) • S2.NUM(2);
IF SB_INTERIMSX THEN ENDSS2_R(1) • ENOS$2_R(2),
IF SS_INTERIMS~ THEN Sl.CHR(l) • Sl.C~R(2)'

IF S8_1NTERl"S~ THEN $l.NU"(l) • Sl.NUM(2),
IF SS_INTERIMS'" THEN ENDSS1_R( 1) • DIDSS1..R(2)'

END'
IF S8_INTERIMSV THEN
DO 1

.X~ • INTERIM.VC2)c
·IF ~X~.l THEN INTERIM.DONES3F(2).;O'BJ .

ELSE INTERI".DONES3F(2).INTERIM.DONES3F(1):END.S3_R(1-INTERIM~·(1)
+INTERIM.V(1»)&INTERIM.SELS34F(1)'
IF SX!5-1 THEN INTERIM. Y(2.)al1
ELSE IF INTERIM.SELS34F(1)&AINTERIM.DONES3F(2> THEN INTERIM.Y(2)-INTERI".Y(

1)+11
ELSE INTERIM.Y(2)·INTERI~.Y(1)'

IF ·I)CS-l THEN D01
.S_INTERIMSV- '1'81.
SR_INTERIMSY-o;
ENDI
ELSE IF CINTERIM.Y(2»INTERIM.Y<1» THEN DOt
_i_INTERIMSY- 'l~ic

SR_INTERIMSY-e);
END;
E:"$E 00;
SS_INTERIMSV- '0'81
SR_!NTERIM~Y·l;

END;
IF .X~.l iMEr4 INTERI~.DONES4F(2).~O~P1

~SE :NTERIM.OONES4F(2)·INTERIM.DONES4F(1)IEND.S4_~(1-INTEAIM.%(1)

+INTEAI".Z(1»~AINTERI".SELS34F(1)'

IF SXS-l THEN INTERIM.Z(2)-11
ELSE IF INTERIM. SE1.S34F( 1): 1NTER·IM. DONES4F(2) THEN INTERIM. Z(2)-INTERlt1. Z(

1 ) c
E!..SE INTERIM.Z(2)-lNTERIt1.Z(1)+11

IF SXS-l THEN OO~

S8_INTERIMSZ. ~1'B1

1~_!NTERtMSZ·O'

END;
ELSE IF (INTERII1.Z(2»lNTERIM.Z<1») THEN DO;
SB_INTERIMSZ- ~1?8;

SR_IN.ER1M5Z-t);
END'
EL.SE 01);
se_INTERIM~Z. '0'8'
Sf'_INTERIMSZ-ll
END;

IF SS_lNTERIHSZ THEN

Fig. A.13 Generated PL/t Program for
the HERGE4 Example(Contlnued)
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00 1
SX6 • INTERlt1.Z(2);
IF SFSTS4S THEN DO;

READ FILEC$4S) INTO (S4_R-S),
SFSTS4S-'O'I,
END'

ELSE S4_R_S-S4_S1
S4_R_INDX-ll
IF AENDFILESS4S THEN READ FI~(S4$) INTO (S4_S)~

s£RROR_BUF-S4-R_Sl
ENDFILEsS4_RwENDFILE.S4S;
ENDSS4-R(2)-ENDFILEsS4-R;
UNSPECt$4.NUM(2»-UNSPEC<SUISTRCS4-R_$9$4-R_INDX,4» ,
S4_R_INDXaS4_R_INDX+4 ,
$4.CHR(2)-SUBSTR($4~R-S,S4_R_INDX,4)

S4-R_INDX-S4_R_INDX.4 I
ENOl
IF s8_INTERIMSY THEN
DO ,

SX7 • INTERIM.V(2),
IF SFSTS3S THEN D01
READ FILE(S3S) INTO (S3.JLS),

'. .FSTS3S·~0<J1BI

ENtI~

ELSE S3-R_S-S3_S1
S3_R_INDX-l1
IF ·····ENDFIL..£..S3S THEN READ FILE(S3S) INTO <$3_$),
SERROR_SUF-S3_R-S,
ENOFILESS3_R-ENDFILSSS3S;
ENO,:;3_R< 2)-eNOFILE.S3_Rt
UNSPEC(S3.NUM(2»·UNSPEC(SUaSTR(S3_~_S,S3-R_INDX94» ,
S3_"_INDX-S3-R_INDX+4 1
S3.CHR(2)a$UBSTR(S3-R_S,S3-R_INDX,4) ;
S3_R_INDX·~3_R_INu~+4 ;

END;
INTER!~.SE~$34F(Z).INTERIM.DONES4F(2):AINTERIM.OONES3F(:)~$3. NU"(
2-SR_INTEF\IMSY ><$4. NtJM<2-SR-INTERIM-Z);
IF tNTERI~.SEl..S34F(2) THEN l'12.CHR(2)a$:!.CHR(2-SR_INTERIM$V),
EL.~;E ~t2. CHf:(2) -$4. eMF': <2-'SR_INTERIMSZ)'

IF IN~~IM.SEL.S34F(:) THEN M2.NUM(2)e$3.NUf1(2-.R_INTERIMSV);
~SE M2.~~~(2)·$4.NUM(:-S~_!NTERIM.Z)~

ENOSM2-R(2)·INTEPIM.OONES3F(2)~ENOSS4_R(2-~~_INTERIMSZ);INTERIM.DONES4F(2)

&END.S3_~(2-SR_INTERIMSV)t

IF .B_:NTE.~IMSZ THEN S4.CHR( 1) • S4.CHR(2) 1
IF .S_!NTE~!MSZ THEN S4.MJM(1) • S4.NU~(2)'

IF SB_IN~IM~Z THEN ENDS$4_R(1) • ENDSS4_R(2)J
IF $a_:NTE~IM.Y THEN S3.CHRil) • S3.CHR(2);
IF SS_!NTER!MSV THEN S3.NUM( 1) • S3.NlJr1(2) t
IF S~_:N~!MSV THEN ENOSS3_R(1) • ENOSS3_R(2),

END=
~DST_F~:)·INiEnIM.DONEM1F(~)~NDSM~(2-SR_INTERI~V)~tNTERIM.DONEM2F(2)

&END~Ml_~(:-SR_INTEAIMSU)1

INTERIM.~EL~l2F(2)·INTERIM.DONEM2F(2):AINTERIM.DONEM1F(2)~Ml.NUM(

2-.~_INT;nIMSU)~M2.NUM(2-SR_INTERIMSV);

IF INTER!M.$~Ml2F(2) THEN T.CHR-M1.CHR(2-SR_INTERIMSU)1
E~S£ T.CH~.M:.CHR(Z-SR_INTERIMSV)1

IF INTE~!~.SELM1:F(2) THEN T.NLtMaMl.NUM(2-.R_INTERIMSU);
ELSE T.~JM·~~.NUM(2-SR_INTERIM.V)J

T_R_INDX-ll
SUaSTR<T_R_SC,T_R-INDX-S-794*S>-JNSPEC(T.NUM) ,

Fig. A.13 Generated PL/I Program for
the KERGE4 Example(Continued)



T_~_lND~.T_R_INDX+4 I
SUBSTR(T_R_S_F.T_R_INDXt4)·T.CHR •
T~R_IND(·T_R_INDX+4 ,
T_~_S·~UBSTR(T..P_S_F,l,T_R-INDX-l)'

WR!TE FIL£CTT) FROM (T-R_S)1
L.C:OP':EJ'~D 1: ;
IF ENDST-R(2) THEN .NOT_DONE(l).~O~B;

IttTERIM.SEU112F(1) • INTERIM.SELI112F(2),
£ND'ST-R< 1) • ENDST_R(2")'
INTERIM.V(l) • INTERIM.V(2),
INT~RIM.DONEM2F(l) • INTERIM.DONEt12FC2',
INTEnI~.U(l) • INTERIM.U(2),
INTERIM.DONEM1F(1) • INTERIM.DONEM1F(2)t
IF s8_INTERIMSU THEN ENOSM1_R(1) • ~~C.Ml_R(~)'

IF s9_1NTERIMSU THEN Mt.NU"(1) • Ml.NUM(2',
IF SB_INTERIMSU ~"EN Ml.CHR(l) • "1.CHR(2);
IF -B_INTERIMSU THEN INTERI"'. SELSl2F (1) • INTERIM. SELS12F·( 2) ,
IF se_INTERIMSU TMEN INTE.ctIf1.X(l) • INTERIM.X(2),
IF s8_INTERIMSU THEt~ INTERIM.DONES2F( 1) • INTERIM.DONES2F(2) I
IF SI_INTERIMSlJ THEN INTERIM.WC!) • INTERI".W(~)'

IF -8_INTERIMSU THEN INTERIM.DONES1F(1) • INTERIM.DONES1F(2),
IF .8_INTERl"~Y THEN ENDSM2_R(l) • END~2-R(2)1

IF ~8_INTERI"SV THEN M2.NUr1(l) • M2.NUM(2)I
IF sB_INTERIM~V THEN ~.CHR(l) • M2.CHA(2),
IF .B_INTE~IM5V THEN IMT£nIM.SELS34F(1) • INTERIM.SELS34F<2>;
IF s8_INTERIM~~ THEN INTERIM.I(1) • INTERIM.Z(2),
IF '9_INT:RIM~V THEN INTERIM.DONES4F(1) • INTERIM.OONES4F(2);
IF :B_INTERIl-1S'J THEN INTERIM. Y( 1) • INTERIM. Vi 2)'
IF SB_INTERIMSV THEN INTERIM.OONES3F(1) • INTERIM.DONES3F(2);

E1~D'
STMP_£~R.SACC-ER~OR(.ERRSP.)'
S£.=:"$::t~ • sERRSPS - 1;
IF S'TMP_ERR THErJ SERROf«SERRSPS).'l'S,
IF sT-,P_Ef'R THEN IACC_ERROR(SERRSPS)--'l"S,
CLO!;;E F I I.E ( TT) ;
ENO_F::\~)I~F:AMI RET1JRN'
E~:D ~~~t:'E~;

is

Fig. A.13 Generated PL/I Program for
the HERGE4 Example(Continued)
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