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discuss the extent to which all these processors may employ the same architecture and the function of
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The Simulation of Human Movement by Computer

Norman I. Badler
Joseph 0O'Rourke
Stephen W. Smoliar
Lynne Weber

Abstract

This paper is coﬁcerned with a software simulation of movement of the
human body. This simulation is being designed to drive a system for computer
animation as part of a larger program concerned with the translation of
movement notation into animated graphics. The simulation is based on a
model of the human body as a network of special-purpose processors -- one
processor situated at each joint of the body -- each with an instruction
set designed around a set of "primitive movement concepts.”" We shall
discuss the extent to which all these processobs may employ the same

architecture and the function of the network structure.
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~ 1. INTRODUCTION

We wish to enable a digital computer to franslate'movement notation
into an animated display of human figures performing the represented
movements. This process involves analyzing the descriptive content of
movement notation systems, evaluating structures for the animation of human
movement, and formulating a suitably realistic human body model [3]. The
fundamental premise involves modelling the human body as a network of
special-purpose processors -- one processor situated at each joint of the
body -- each with an instruction set designed around a set of "primitive
movement concepts." The translation of notation into animated movement may

then be divided into two stages: a compilation stage in which the movement

notation gets translated into programs for these special-~purpose processors,

and a simulation stage which simulates the behavior of these processors as

they interpret their respective programs [217.

We are currently working with labanotation (121, a movement notation
system chosen for its logic, its flexibility, and the extensive amount of
material recorded in it. As a result of research into the development of
a text editor, we have established a structured description of Labanotation
text in terms of graphic primitives [20]. What we require for an instrucfion
set for our special-purpose processors is a structured description of the
same information invterns of movement primitives. While the structure of
this instruction set has been influenced by the semantics of the graphic
primitives of labanotation, it is sufficiently general to be used to
represent information recorded by other movement notations. For purposes
of this discussion, we shall regard each instruction type as a data
 structure and describe it using the notation of Hoare (11]. A sequence

of instructions associated with a joint processor specifies the movement of
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~ that joint over a period of time. Thus, the compilation of lLabanotation
text produces a set of sequences of instructions, one sequence for each
joint whose movement is notated.

Alternative methods for speCifying movements may be found in
techniques for éomputer animation. A three-dimensional model of the human
body is constructed, articulated at joints and movable in space [2]. A
number of techniques for describing the movements of such a model are
reviewed elsewhere [3]; the method we have chosen is to simulate the
movements of each joint of the body. The simulation bears some resemblance
to the control structures for robot manipulators incorporated in AL [10]
and LAMA [15]. These systems are primarily goal—direéted and maintain an
internal model of the device and its enviromment. Constraints such as those
used by Spegel [22] are also used to control joint movements when external
contact surfaces are involved in movements affecting support. Other
~ graphic languages for animation offer subsets of the set of instructions

we shall describe next.
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2. THE ARCHITECTURE OF THE SIMULATOR

The abstracted movement concepts fall into five categories: 1) direction
signs, 2) revolution signs, 3) facing signs, 4) contact signs, and 5) shape
descriptions. Direction signs include those symbols which essentially
describe the translation of some joint of the body, while revolution signs
allow for the description of various forms of rotational movement, such as
turning, twisting, and pivoting. Tacing signs involve the establistment
of an orientation, which is generally accomplished through a joint
translation, a rotation, or a combination of the two. Contact signs
indicate contact of body parts with other body parts other people, the
floor, the performer's clothing, or other physical objects. Shape
descriptions are used to describe the tracing of a path or formation of a
shape by some part of the body.

Each category stems from a different way of analyzing motion. Different
movement notation systems tend to concentrate more heavily on one type of
analysis over another. Iconographic systems, which are essentially based
on stick figures, such as Jay notation {131, Sutton notation [181, and, to
some extent, Benesh notation, {41, rely heavily on shape descriptions.
Labanotation tends to use direction signs most heavily, while the system
developed by Eshkol and Wachmann [ 8] concentrates on rotations and circular
movements. Animation languages usually offer geometric transformations,
such as-rotational movements, and shape descriptions [7,22]. Manipulator
langauges include limited contact specifications [10,15]. A system to
describe movements of rigid or articulated objects permitted concepts
related to direction, revolution, and contacts [1].

The instruction set discussed herein should be adequate for the
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representation of any notation or animation system currently used. Before
we consider the structure of each category in detail, let us first discuss
how the selection of the individual joint processors relates to the
structure of the human body.

2.1. A Model of Body Structure

Figure 2.1 [12] presents a "first approximation”" of an assignment of
processors to body joints. In this illustration each joint is labeled by
~ the Labanotation symbol which represents it. (We have generalized the term
"joint” to include body extremities.) This assignment of processors may,
if necessary, be further refined for greater detail. However, for the
purposes of the discussion in this paper, the detéil in Figure 2.1 is
sufficient.

Each joint processor positions its associated joint with respect to

a cross of axes which defines a rectangular coordinate system. This cross

of axes is generally situated at a second joint of the body. For example,
movement of the right lower arm is determined by the processor at the right
wrist with respect to a cross of axes situated at the right elbow.
Alternatively, movement of the entire right arm is determined by the same
processor at the right wrist but with respect to a cross of axes situated

at the right shoulder. In describing any movement, the distal joint is

defined to be the joint at which the active processor is located; and the

proximal joint is the joint from which movement is effected. (In the above

two examples the proximal joint is also the location of the cross of axes.)
The term '"body éart" will be used to refer to a portion of the body which
lies between a given proximal joint and a given distal joint.

All joint processors are essentially "computationally independent." All

information exchanged among processors is transferred through a common monitor.
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Figure 2.1 Major body joints.
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One of the major responsibilities of this monitor is the maintenance of a
data base regarding body position. Through this data base any joint
processor may obtain current information on all joint positions. Since
these positions may be specified with respect to an arbitrary cross of
axes, the monitor is responsible for conversion of positional information
between the various systems of reference. In addition, the monitor
determines the timing and sequencing of command execution by scheduling
individual joint processors to minimize conflicts between their actions.
Finally, the monitor assumes primary responsibility for the interpretation
of contact signs.

In addition to the classification of movemenfs according to the
instruction categories given above, a movement may also be described as
either a gesture or a support movement. A support is a movement of the
body's center of gravity. (The center of gravity may be slightly displaced
as a result of gestural movement; but in a gesture, displacement of the
center of gravity is an effect, while in a support movement its displacement
is the cause of the movement.) Support movements are implemented by a

progression processor capable of dispatching commands to any joint processors

involved in locomotion. The progression processor is also responsible for
maintaining the body's balance (i.e. the center of gravity over the base of

support). Now let us discuss the actual instructions executed by the joint

processors.

2.2. Instruction Structure

2.2.1. Direction signs

A direction sign specifies the translation of a Jjoint as either a

position description or a movement description. The former describes the




7

orientation of a distal joint with respect to a cross of axes, while the

latter describes a path of motion with respect to the initial position of

the joint. The necessary components of a direction sign are duration (given
in terms of a simulation time unit), direction, designation of proximal

joint, and the specification of either position or movement description.
Optional components allow for modification of the path of motion, which may
involve the movement of other joints. This may be summarized by the following
type declarations:

type direction signs = (duration: rational;

direction: direction description;
proximal joint: Jjoint name;
kind: (position, movenint);
modifiers: powerset direction modifiers).
type direction modifiers = (placement modifier,
sequence deviation description,
sequence inclusion,
sequence intermediate joints).

A brief explanation of this data structure notation is in order. The
semicolon is a delimiter of components of a data structure, all of which
mist be present. The name of each component is given to the left of the
colon. The comma is a delimiter of elements of a set. Normally, this is
interpreted as a list of alternatives, exactly one of which is present.
(Thus, the "kind" component contains either the element "position' or the
element "movement".) Powerset indicates a subset of any size (including
the empty set) of its argument; and sequence indicates a sequence of any
length (including the empty sequence) of elements of a designated set.

The structure of a "direction description" involves further detail:

type direction description = (normal: coordinate-triple; .
modified: modified coordinate-triple).



type coordinate~triple = (horizontal; (right, place, left);
level: (low, middle, high); _
saggital: (backward, place, forward)).
type modified coordinate-triple = (head: (normal: coordinate-triple,
null: nil);
tail: sequence orientation mods).
A normal coordinate-triple is capable of specifying one of 27 possible
orientations with respect to a cross of axes. These are illustrated in
Figure 2.2 [14]. The cross of axes is situated in the center of the middle
plane, with the "forward" direction pointing into the page and the "right"
direction pointing to the right. (The symbols at each of the points give
the representation of each triple in Labanotation.) The actual distance
to these points is determined by the length of the-body part being moved.
Any other orientation is specified by applying a list of modifiers
to a given coordinate~triple. (If the head of a modified coordinate-triple
is nil, the modifiers are taken to apply to the current orientation of the
processor.) There are two classes of orientation modifiers. An angular
modifier specifies a direction with greater precision than a normal
coordinate-triple, and a radial modifier specifies an alteration in the
distance along the given orientation:
type orientation mods = (angular: (amount: fraction;
' direction: coordinate-~triple),
radial: bend/stretch). :
An angular modifier is given by a fraction and a coordinate-triple. For
example, the triple (place; middle; forward) may be modified by (Cz; (place;
high; forward)) to indicate a direction halfway between middle-level forward
and high-level forward. (This is illustrated in Figure 2.3 [121.)
One might ask why we have not chosen a direction description to be

represented simply by an ordered triple of real numbers. The reason is that

we are interested in the simulation of the movement behavior of the human body.



Figure 2.2 The orientations represented by a coordinate triple.
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Figure 2.3 Angular modification of orientation.

Figure 2.4 Demonstration of alternative systems of reference.

Arm alone Upper body included

Figure 2.5 Inclusion.
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While the body is quite poor at picking out arbitrary poinfs in space,
it is fairly good at establishing the direction of "right" or "forward."
We have tried to follow a philosophy that those orientations which are
more difficult for the body to determine should be reflected by more

complex expressions in the instruction set.

Radial modification arises from the ways a body part may be bent
or stretched:

type bend/stretch = (kind: bend/stretch description;
direction: surface).

type bend/stretch description = (kind: (bend,
stretch,
fold,
unfold);
degree: fraction).

The distinguishing features of bending, stretching, folding

(&3]

and unfolding
have been discussed by Hutchinson [12]. Each specification is quantified
by a fraction. For example, the arm may be described as being 2/3 of the
way from unbent to fully bent. (A degree of zero would indicate the

unbending of a bent arm; this is sometimes called neutralization.) The

direction of a bending or folding movement is designated by a point on the
surface of the body which becomes 'covered” by the movement; stretching
and unfolding take their direction from the complementary movement of
"uncovering. "

Now let us consider the difection modifiers. Medification of the

cross of axes involves specification of its origin and orientation:
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type placement modifier = (origin: (internal: (locus: (joint name, surface)
general: whole body), ’
external: (locus: direction description,
general: whole room));
orientation: (right-left: orientation descy
low-high: orientation desc;
backward-forward: orientation desc)).

The origin of the cross of axes may be located either on the body or in the
external environment. In the former case, it may be located at any of the
joints enumerated in Figure 2.1:
type Jjoint name = (side-of-body: (right, center, left);
area: (clavicle,

shoulder,

elbow,

wrist,

end of hand,

hip,

knee,

ankle,

end of foot,

upper rim of pelvis,

lower rim of rib cage,

neck,

head)).
"Center" is used to describe the side-of-body" of joints which do not come
in pairs. Also, "center" is used with "shoulder” and "hip" to indicate the
upper chest and lower pelvis, respectively. The cross of axes may also be
located at a point on the body surface (using a technique described below).
When "whole body™ is specified as the origin, it is not fixed at a given
locus; and only the orientation information may be interpreted. Similarly,
external orientation may be given as a point in the room (by a direction
description) or by a "whole room"idesignation.

Orientation 1s specified by giving a direction for each of the three

coordinate axes. (Only two of these axes need be specified; the third is

the perpendicular to the other two which forms a right-handed coordinate

system.) Orientation may be defined by two points in space, two points on
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the body, the perpendicular to a bedy surface, or the tangent to the

current line of direction:
type orientation desc = (space: (direction description;
direction description),
‘body: gjoint name; joint name),
perpendicular: surface,
line of direction: tangent flag).
Figure 2.4 [12] illustrates a variety of orientations which could have
several possible descriptions. Consider, as an example, the right arm. To
describe the position of the right arm, it is necessary to locate the
right wrist with respect to a cross of axes whose origin is at the right
shoulder. There are at least two ways in which the axes themselves may be
oriented. One alternative is to align the "low-high" axis with gravity.
This would entail the "space™ description: ((place; low; place); (place;
high; place)). (Imagine Figure 2.2 as a schema for selecting points in
space.) The other possibility is to align the "low-high" axis with the
torso. This may be achieved by a "body" description: ((center; hip);
(center; shoulder)). In both cases the "right-left" axis may be given by
the "body' description ((right; shoulder); (left; shoulder)); and the
"backward-forward" axis is the perpendicular to the plane described by
the other two axes. (A more detailed discussion of orientation alternatives
is gi&en in [9].) Of course, different cocordinate-triples are required to
describe the direction with respect to the alternative systems of reference.
The former cross of axes requires the coordinate-triple (place; high; place);
the latter requires (place; middle; forward).
There remains the specification of a point on the surface of the body.
This may be determined as follows:

1) Select a body part by specifying its proximal and distal joints.
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2) Select a point along that body part as a fraction of the total
distance from the proximal joint to the distal joint.
3) Select a direction to proceed from the "bone' of that body part
to the "skin" of the surface; this may be given as a fraction of full
rotation from a "zero" position which is defined for each body part.

We thus have the following data structure:

i

type surface = (body part: segment;
displacement: fraction;

point: fraction).

type segment = (proximal: Jjoint name;
distal: joint name).

This description technique may be demonstrated by giving an explicit
definition of the "backward-forward" axis for the second alternative given
above (in which "low-high" and "right-left'" were both given by 'body"

" descriptions). Intuitively, the direction is the perpendicular to the
front chest surface. This corresponds to the "surface" descriptions:
(((right; shoulder); (left; shoulder)); %; 0). The "%" indicates the
point halfway between the two shoulders, and "0" indicates the amount of
rotation to face the front of the chest.

We conclude this section with a brief description of the remaining
direction modifiers. A deviation is a slight directional displacement from
thé unmodified direction [12]. It is specified by'the amount of time it
endures and by the directionbof deviation:

type deviation description = (duration: rational;

T direction: direction description;

degree: (greater, normal, lesser)).
Several deviations may occur in sequence during the execution of a direction
sign. |

An inclusion specifies the participation of other joints in a movement.
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Figure 2.5 [12] illustrates the effect of including the upper body in a
movement of the right arm. Describing an inclusion requires the following
structure:

type inclusion = (delay: rational;
part list: powerset joint name;
degree: (greater, normal, lesser)).
The components are the time of inclusion (given as a delay following the
start of the movement being modified), the joints involved in the inclusion,
and the degree of inclusion. Other movements which directly involve other
Processors are as follows:
type intermediate joints = (delay: rational;
kind: (leading: powerset (joint name, surface),

following: powerset (Jjoint name, surface),

outward: (coordinate~triple, nil),

inward: (coordinate-triple, nil),

guildance: surface)).
A given joint or a surface may be designated as leading the movement or
following the movement of the whole (Figure 2.6 [12]). A movement may cause
a sequential use of body parts outward (proximal to distal) or inward (distal
to proximal) (Figure 2.7 [12]). This sequential use may or may not be
modified by a direction specified by a coordinate-triple. Finally, a

movement may be guided by a particular surface [12].

2.2.2.- Revolution signs

Revolution signs specify movement about some axis. Consequently, the
instruction must designate a duration, a proximal joint, an axis about which
revolution occurs, the amount of revolution, and a descriptor to differentiate

between twist and rotation. A twist is a revolution of a body part where

the proximal end does not move to the same extent as the distal end. For

example, the lower arm's natural movement about its central axis is a twist.
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Leading

Following

Figure 2.6 leading and following.
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Figure 2.7 Sequential use of body parts.
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A rotation indicates that the body part will turn uniformly, This is seen

when the body as a whole turns. Hutchinson [12] discusses this distinction
at greater length. A modifier may be present to allow for alteration of
the cross of axes used to determine the axis of rotation:

type revolution signs = (duration: rational;
proximal joint: Jjoint name;
axis: (direction description, segment);
amount: revolution quantity;
kind: (twist, rotate);
modifier: (placement modifier, nil)).

type revolution quantity = (sign: (clockwise, counterclockwise);
magnitude: rationals;
origin: (current, stance, absolute)).

The "amount" component is given in sign-magnitude form, where the "sign"
specifies whether the revolution is clockwise or counterclockwise and the
"magnitude" is a retional number of full revolutions. In additicn, an
"origin" component specifies whether "amount" is measured from the current
orientation of the body, the orientation of a front-facing stance, or an
absolute front orientation associated with the external environment.

2.2.3. TFacing signs

A facing sign indicates a relationship between a body part surface
and a direction. This relationship may be expressed in terms of direction
'signs and rotation signs, but it eﬁtails a different approach to movement
analysis. Like the other instructions, a facing sign requires a duration.
Then the body part surface and the direction it faces are given. Finally,
a modifier may be present to allow for alteration of the cross of axes used
to determine the facing direction:

type facing signs = (duration: rationals
area: surface;

direction: direction description;
modifier: (placement modifier, nil)).
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2.2.4, Contact signs

Direction signs, revolution signs,'and facing signs are all
interpreted in terms of a movement originated by a single joint. Contact
signs, on the other hand, are interpreted by the monitor which supervises
the behavior of all joint processors. A contact sign is represented as

follows:

type contact signs = (time: rational;
contacts: sequence (object; relation)).

type object = (human: (indicator: person;
place: surface),
other: auxiliary object description).
type relation = (kind: (relate,
near,

touch,
support,

passive);
modifiers: powerset contact modifiers).
type contact modifiers = (in passing, maintain, slide, surround).
The first component of a contact sign specifies the time at which the
contact takes place. The next component specifies a list of contacts as
object-relation pairs. If the "object™ is a person, that person must be

identified, together with the specification of a location on the body. The

relation classifies the contact as.a relationship (mutual "addressing" [12]

among the objects involved, without actual physical contact), nearness (also

does not involve actual physical contact), touch, bearing of weight, or a

passive approach to the relation. Optional modifiers may specify the contact
taking place "in passing," maintaining the relation, sliding after contact
has been established, or surrounding the contacted object. (Cancellation of
surrounding, maintained, or sliding contact may be represented by an

instruction at a later time without the appropriate modifier.)
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2.2.5. Shape descriptions

Shape descriptions specify paths or configurations of body parts.
(At a higher level they may also be used to describe shapes of groups of
"people.) They require a duration, designation of a proximal joint, a plot
of points in three-space to determine the shape, and a designation of
whether the shape indicates a position or movement description. A modifier
may be present to alter the specification of the cross of axes:
type shape descriptions = (duration: rational;
proximal joint: Jjoint name;
path: sequence vector;
kind: (position, movement);
modifier: (placement modifier, nil)).

type vector = (x: real; y: real; z: real).

2.3. An Overview of Instruction Interpretation

The primary purpose of the compilation stage of our system, as cited
in Section 1, is the preparation of a set of disjoint programs for the
individual joint processors, the monitor, and the progression processor.
Figure 2.8 shows how these processors are organized for the simulation stage,
during which their programs are interpreted. The monitor is responsible for
synthesizing a program which will then be passed on to a graphic processor.
All contact signs are collected together in a single program for the monitor.
Instructions affecting support are sent to the progression processor, and
all remaining instructions are placed in the instruction streams of their
respective joint processors. Within the progression processor instruction
stream, support instructions are further partitioned: each block accounting
for the movemenf of a single supporting joint. This partitioning is handled
by the compilation stage since no instruction, in itself, indicates which

joint processor it is meant to direct.
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All timing information for a joint processor is provided by the
duration fields of its instructions. However, block-structured parallelism
enables the representation of concurrent execution of several instructions
by a single processor [9]. Thus, the absence of movement must be explicitly
represented by a "null" instruction (analogous to a rest in music notation
[19]); and all substreams of a concurrency block must fill the same duration
interval. The structure of a possible instruction stream is illustrated
in Figure 2.9. All instructions express time in terms of a rational number
of time units. This unit is related to the simulation process by defining
a simulation interval to be the real time between successive "snapshots' of

the human figure desired by the graphic processor. The simulation interval

is represented as a nonzero number, where the only restriction is that no
instruction may begin or end between simulator “snapshots" or movie frames.

. The simulation interval may be fixed by the uéer or may be computed by the
monitor based on the earliest starting time of the upcoming set of instructions.
(Each processor can supply this information to the monitor.) By permitting

the interval to vary, the simulator can treat quiescent periods more
efficiently.

The general control of the simulator involves the iterative execution

of the following six steps for each simulation interval:

1. The monitor generates instructions to initiate contacts.

2. All current activities are represénted by (joint processor,
instruction) pairs; these pairs'are assigned a priority ordering
based on body structure.

3. The monitor allows the progression processor to implement any

currently active support movements .
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4. The monitor allows the implementation of each (joint processor,
instruction) pair according to the priority order established in
Step 2. Pairs with the same priority (and therefore the same
joint processor) are executed concurrently by the joint processor.

5. The progression processor adjusts balance, if necessary.

6. The monitor calculates all final body positions and prepares the

output for the graphic processor.

For each simulation interval, the monitor must first establish how
contact instructions may be executed. Since contacts have no explicit
duration prior to achievement, the monitor must utilize suitable‘existing
instructions or synthesize new ones for appropriate joint processors. The
monitor must next organize the actual execution of the other processes so
that their sequential execution will in fact appear logically parallel. A
'pfiority ordering is computed by the monitor to insure an overall determinism
to Joint movements and to facilitate the manipulation of joint location
information stored in the body data base (Section 3.2). Since a joint
processor may be executing several instructions in a conceptually parallel
fashion, a priority is computed for each active instruction of each processor.
Should these priorities be the same, the processor itself establishes the order
of execution within the set. The monitor now transfers control to the
progression processor, signalling that modifications to the body data base
may be performed. After support movements, the joint processors execute their
instructions based on the order scheduled by the monitor. When all the joint
pProcessors have completed their current instructions for this cycle, the

monitor again calls upon the progression processor to balance the body, if

necessary.
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At the completion of all processing for a simulation interval, the
monitor outputs a single stream of commands to a graphic processor which
constructs and displays an image of a human figure [2]1. Over a sequence of
simulation cycles an animation is produced. If desired, the monitor also
generates a textual report of the model's position, contacts, and collisions.
2.4. An Example

As an example of the simulation process, consider the interpretation
of the labanotation segment illustrated in Figure 2.10. It describes one
cycle of a normal forward walk: first the left foot steps forward, then the
right foot follows. Because the direction signs for support actually describe
the transference of weight, the feet do not move wifh respect to the floor
during a forward direction sign; rather, the center of gravity moves forward
[12]. During this forwaerd movement of the center of gravity, the right arm
first moves so as to point straight down from the shoulder, then moves to a
position slightly forward of the body. The left arm moves in a complementary
fashion. The final arm positions are shown in Figure 2.11.

Thé Labanotation segment is compiled into three instruction streams:
two direction signs for the left wrist, two more for the right wrist, and two
direction signs for the progression processor:

left wrist processor:

1. (1
(place; low; forward):
(lefté shoulder) ;
position;
(((left; shoulder);
" (((right; shoulder); (left; shoulder));

((place; low; place); (place; high; place));
(((right; shoulder); (left; shoulder)), %; 0)))))
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Figwre 2.10 labanotation segment for a simple walk. t
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L2 (3
(place; low; place);
(left; shoulder);
position;

nil)

right wrist processor:

1. (1
(place; low; place);
(right; shoulder);
position;
(({right; shoulder);
(((right; shoulder); (left; shoulder));
((place; low; place); (place; high; place));
(((right; shoulder); (left; shoulder)); %; 0)))))

2. (1
(place; low; forward);

(right; shoulder);
position;
nil)

progression processor:

1. ((left; ankle);
03
(1
(place; middle; forward);
(left; hip)s; '
movement ;
((whole body;
(((right; hip); (left; hip));
((place; low; place); (place; high; place));

(((right; hip); Qeft; hip)); %3 0)))))))

2. ((right; ankle);
13
(1;
(place; middle; forward);
(right; hip);
movement:
((whole body;
(((right; hip); (left; hip));
((place; low; place): (place; high; place));

(((right; hip); (Qeft; hip)); L3 0)))))))

All instructions are structured according to the descriptions given

2.2.1.

in Section

However, progression processor instructions are prefixed by two

fields: one which designates the joint processor to which the instruction
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will be dispatched, and one which gives the absolute time at which the
instruction is to be executed. Initial placement modifiers are provided for
all joint processors; the absence of further placement modifiers indicates
that current description of the cross of axes is to be maintained. Also,
all durations in this example are equal to one unit; in general, this will
be a larger number, depending upon the temporal resolution required for
describing other movements.

Movements of the two arms are easily achieved by displacements‘of the
wrists since there are no other instructions which affect any other joints
in either arm. These (joint processor, instruction) pairs therefore receive
a low priority and are executed after Support moverments in each cycle. The
two instructions to the progression processor each describe a forward
"movement"; the center of gravity is moved forward from its present location
by a fixed amount depending on the step length. Because a support movement
requires a "preparation phase" [12], execution of the current instruction for
a supporting joint depends on the instruction which follows. The progression
processor must always look beyond those instructions it is currently executing
to establish the proper context. In this example, the left heel strike actually
occurs at the start of the segment; therefore;.the position at this time will
appearvto be in the midst of the walk. When the final instructions to the
progression processor are interpreted, it notes that there are no further
instructions for the left ankle and therefore leaves the body balanced by
bringing the center of gravity ovef the contact area of the right foot.

To achieve the appropriate leg movements implied by the support
instructions, the progression processor generates contact instructions which

are dispatched to the monitor. These contacts define the timing of the foot



30

movements and, together with the step 1engih,-the movement of the center of
gravity, and the geometry of the supporting surface, implicitly define the joint
angles at the ankles, knees, and hips. For example, to prepare for the

step onto the right foot, the progression processor issues two contact
instructions to the monitor: one to break the right foot contact with the
floor at time 0.5, and the second to achieve a right heel contact with the
fioor at time 1.0 (the beginning of the first progression processor instruction
to the right foot).

In this example a complex movement has been specified by a few
instructions, but much of this complexity is accounted for by default
conditions which may be overridden by additional detail in the instructions.

By choosing a very small simulation interval, smooth animations can be
produced. While this would divide each movement into many intermediate
positions, there would be no additional overhead in the number of instructions

actually sent to each processor.
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3. THE BODY DATA BASE

We shall limit our discussion to movements which are skeletal, that
is, which can be realized by a body model composed of joints and segments.
Figure 3.1 is a more detailed version of Figure 2.1 with an itemization
of all joint processors. The segments are drawn as lines connecting joint
nodeé. They are used in the data structure primarily to define coordinate
systems and surface features of the body.

Tt will be useful to define a standard position for the body in order

to fix certain coordinate system relationships which we shall use later. 1In
the standard position the body is standing upright, all segments untwisted;
feet flat, toes forward; and hands at sides, palms toward thighs (Figure 3.2).
In our first encounter with the data base, we shall also find the body
standing on the floor of a room, at the origin of a rectangular coordinate

- system. In this position the Z-axis of the room points "up" (that is,
opposed to gravity), the X-axis points "forward" (as indicated by the arrow
in Figure 3.2), and the Y-axis points "left." We shall frequently refer to
room coordinates as "global" or "absolute."

The body is positioned with respect to the room through a chain of
special instances of joints and segments. The room is regarded as such a
segment establishing the global reference system. It only articulates with
a single joint named "center of gravity." This joint, in turn, comnects
the room segment to a segment named "whole bédy." Finally, this "whole
body" segment is connected +o the Toot of fhe body tree, generally the
center hip joint. If necessary, however, any other joint may be substituted
‘as the root, since the graph structure of Figure 3.1 is undirected. (Figure

3.3 illustrates these relationships.)
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The center of gravity is represented as a "joint" and is maintained
directly by the progression processor. it is the only joint allowed to
translate with respect to its adjacent segment. The whole body
segment permits movements of the body with respect to a line of direction;
it effectively models the "stance'" orientation described by Hutchinson [12].

3.1. Segments

Segments provide the rigid but articulated skeletal framework of the
body and determine its external (surface) appearance. These functions are
incorporated into the "segment" data type, whose components describe the
relationship between the joints connected by a segment and also store
information related to physical description of the associated body surface:

type segment = (name: sequence character;

proximal: Joint;

distal: Jjoint;

distance: real;

local directions: (forward: vector;

left: vector;
3 up: vector);

twist: (positive limit: real;
negative limit: "real;
current: real);

orientation: vector;

stop: proc (vector) logical;

enclosure: sgphere;

centroid: vector;’

mass: real;

surface: sequence sphere).

type sphere = (origin: vector;
ype sp g 3
radius: real;
features: sequence feature).

type feature = (name: sequence character;
direction: vector).
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Each segment has an internal name, given as a character string. Of the two
joints connected by the segment, the one which lies closer to the root of
the body tree (as defined above) is called the proximal joint and the other
is called the distal joint. (A joint likewise connects proximal and distal
segments. )

A cross of axes is defined for a segment such that the proximal joint
is the origin and the ray connecting the proximal and distal joints defines
the Z-axis direction. The coordinates of the distal joint are therefore
(0,0 distance) where "distance" is the fixed length between the joints. The
X-axis is chosen to lie in a vertical plane perpendicular to the global Y-axis
through the proximal joint and also to have a positive forward component
when the bedy is in the standard position (Figure 3.4). (If the Z-axis
and the front direction coincide, then the X-axis is chosen to point
upwards.) The Y-axis is the direction which yields a right-handed coordinate
system. |

As a segment moves, its cross of axes moves rigidly with it. Certain
directions are defined in this local coordinate system to correspond to the
conventional front, left, and up directions of the segment. TFor example,
the negative Z-axis is up for the lower arm and the positive X-axis is front
.for the head, independent of the current orientation of these segments in
the overall body position. Since a body segment may be capable of twisting
along its Z-axis, the cross of axes may be rotated at the distal joint
(Figure 3.5). Positive and negative rotation limits from the normal position
of the X-axis (established above) define admissible twists.

A segment's orientation is given as a vector which is the position of

the distal joint in the cross of axes of the proximal segment of the proximal
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joint (Figure 3.6), Movements of the proximal segment are naturally
transmitted through the common joint with no further computation. In
addition, a "stop" function specifies whether or not a particular orientation
is admissible. It may be used, for example, to limit movement to part of one
plane, as at the elbow or knee.

Segmenfs carry information to aid collision detection and support
computations. The "enclosure" is the minimum sphere which includes the
entire surface of the segment. It is used to approximate the location of
the segment when comparing it against other (non-adjacent) segments and
is fixed when the body model is dimensioned. A segment also has a fixed
centroid (a vector in the local cross of axes) and a mass value which the
monitor uses to compute the overall center of gravity for the bady.

The "skin" (surface) of a segment is defined by a set of overlapping
spheres [ 21. The origin of each sphere is given as a vector in the
segment's cross of axes. If the segment is twisted the sphere center is
rotated about the Z-axis by an amount proportional to its distance along
the segment from the proximal joint, which is just the Z component of
the sphere's "origin" vector (Figure 3.7). Certain "features" of a segment
may be distinguished by giving a point on a specific sphere a name which will
allow it to be specified for a contact location or used in collision reﬁorts
from the monitor. The feature direction is indicated by a vector in the
segment cross of axes; normally this direction from the sphere origin will
define the surface perpendicular (Figure 3.8).

5.2. Joints
Joints may be regarded from two points of view. First of all, they are

distinguished points within the body which trace paths in space and determine
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how the entire body is positioned. secondly, they are points of articulation
of segments. At each joint the articulated segment which lies along the
path connecting that joint to the root of the body tree (as defined above)
is called the proximal segment of the joint. All other segments articulating
at that joint are called distal segments. These two views of a joint are
both incorporated in the following data structure:
type joint = (name: sequence character;
connecticn: (proximal: segment;
distal: powerset segment);
location: (previous: vector;
new: vector:
forbidden: sequence vector;
valid: logical)). '
The joint must connect a proximal segment with a non-empty set of distal
segments unless it is an extremity. Finally, a joint has a character string
name which serves as a label.
In Section 2.2.1 we defined position and movement descriptions for
direction signs. In the simulator, these concepts are generalized to apply

to any instruction. A position description indicates the location of the

joint irrespective of any previous location (direction signs and shape

descriptions of the "position" kind, facing signs, contact signs, and some
revolution signs). A movement description indicates the joint location

pelative to its location at the start of the instruction (direction signs

and shape descriptions of the "movement" kind and some revolution signs).
Since an instruction is discarded by the joint processor after its
inferpretation is complete, it is necessary for the monitor to save the
current locations of each joint for possible use in the next simulation
cycle. At the beginning of each cycle, every valid "new" joint location

"is copied into the corresponding "previous” regisfer. (Initially the
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standard position of the body provides this déta.) During instruction
execution this previous location may be used to establish a joint location
with respect to a particylar cross of axes. This cross of axes may be
different from that originally used to achieve the position. For example,
there are different "holds" to preserve various aspects of a position [12];
and it is primarily for movement instructions which ariég from "hold"
conditions (Section 4.2,2) that the previous location is necessary.

For a movenent description the "previous" location muét be used to
establish the desired goal location; although this information is obtained
directly froﬁ a position description. In either case after the new position
is computed, the "new" register receives the location of the joint in the
global coordinate system and the '"valid" flag is set to "true." The "valid"
flags of all other Jjoints within the scope of the instruction are set to
- "false' since their absolute locations may no longer be accurate. They will
be brought up to date when that information is needed.

Once a joint is positioned, the "forbidden" register prevents further
movement in one or more directions during the remainder of the simulation
cycle. This register is initially nil (except for ankle and end of foot
processors in standard position which cannot move downward any further). It
is used to maintain coﬁtacts with parts of the room (such as the floor), to
limit the movement of the center of gravity (so gestural movements will not
perturb its path), and to execute multiply-constrained movements (for example,
whole body twists while supported on both feet).

3.3. Data Base Management

Joint processors may obtain any information stored in the body data

base upon request to the monitor. Only a limited set of modifications to the
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data base are permitted, however, and these are also mediated by the
monitor. The primary reason is that all novemeﬁts are ultimately executed
by general algorithms which are shared by all processors (via the monitor)
[5].  These general algorithms are the data base "primitives" which the
other processes use to implement their movement instructions. A second
reason is that. during the execution of these algorithms, certain body
limitations may be reached, such as joint stops or segment collisions, and
the monitor may be able to invoke some general strategy to finish executing
the movement (such as twisting the proximal segment or trying an alternative
movement path in a linkage situation). If these heuristics fail, control
may be returned to the processor issuing the request.

The permitted movements ave:

1. MOVE a joint to a point in a reference system from a given
fixed end. '

2. ROTATE a joint by a given angle about some axis from a given
fixed end. ‘

3. TWIST a joint by a given ampunt from a given fixed end.

4. BEND a joint to some angle.
Each of these functions is outlined below.

The MOVE function requires that one-, fwo—, or three-segment linkages
be moved in space from an initial position to the given final position.
One and two segment solutions are straightforward, while the three segment
case involves choosing reasonable heuristics to select a solution among
the many possible. All caSeé must take into account joint limits and
forbidden directions. These algorithms and their implementation are discussed
by O'Rourke [17]. TWIST, BEND, and ROTATE directly update the orientation

and twist information on the distal segment of the indicated joint. TWIST
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merely alters the twist angle, possibly twisting proximal segments if a
limit is reached. BIND changes the orientation vector by changing the
angle between the Z-axes of the segments adjacent to the Joint. The ROTATE
function specifies an axis of rotation about which the orientation vector is
transformed. Other segments may be affected if the rotation attempts to
move the joint into a region restricted by the stop function. In the case
of either BEND or ROTATE, the twist of limbs which have significant freedom
of rotation (at the shoulder or hip) are adjusted by a standard orientation

function for the limb to conform to the conventions of Labanotation [12].
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4. JOINT PROCESSORS

The joint processors are responsible for interpreting the actiye
direction, revolution, facing, and shape description instructions during a
simulation cycle. While the nonitbr provides some scheduling between the
various processors, each joint processor is responsible for determining
the proper sequence of actions needed to implement concurrent instructions
with the same priorities (Section 2.3). We shall now describe the data
structures maintained by each joint processor, after which we shall show
how each movement or concurrency of movements is achieved.

4.1. Data Structures of a Joint Processor

There are three groups of registers within each joint processor. The
first contains the instruction stream, the second consists of input sequence
control, and the third is composed of register subsets specific to each
instruction type. The first two sets will bz cescribed in this section,
and the instruction registers will be described in the following sections.

As we briefly discussed in Section 2.3, instructions to a joint
processor are formed into streams. Each stream consists of sequences of
instructions or concurrent instruction streams. These are formatted so that
only one level of parallelism is necessary:

ﬁigg_stream = sequence (substream, concurrency).
type concurrency = sequence substream.
type substream = sequence instruction.
type instruction = (direction signs,
revolution signs,

facing signs,
shape descriptions).

This structure is reflected in Figure 2.9. Within a substream all timing

information is based on the sequence of instruction durations; likewise,
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substreams and concurrencies are assumed to be sequential, without time "gaps."
Since each joint processor is responsible for handling an instruction

stream, program control consists of one or more program counters. There is

one program counter for each parallel substream of the instruction stream.
Each program counter stores a delay value which indicates when the associated
instruction substream must be "advanced," that is, the lead element deleted.

type program counter = sequence (delay: rational;
association: substream).

Initially the joint processor contains a single program counter with a delay
of zero.

At the beginning of a simulation cycle, the joint processor checks the
program counters. For each program counter whose delay is zero, the following
steps are repeated until the delay is nonzero:

1. TFetch and interpret the instruction in its associated substream.
If the substream is nil, then there are two possibilities:

1.1 If this is the end of a substream or concurrency, the old
program counters are replaced by a new set, each referring
to a new substream.

1.2 If this is the end of the entire stream, the joint processor
becomes dormant for the remainder of the simulation.

2. Increment the delay value by the duration (possibly zero) of the
instruction just interpreted.

3. Delete the interpreted instruction from the substream. An empty
substream is represented by nil.

An interpreted instruction is placed in the appropriate registers for
its instruction type. After these registers are set, the monitor interrogates
each active joint processor to determine the "scope" of each (Joint processor,
instruction) pair (Section 5.1) and the shortest (nonzero) delay among all
" the program counters. The simulation interval is the smaller of this delay

value and a fixed minimum interval. Every program counter delay is then
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decremented by the simulation interval. The monitor can now pProceed to
schedule instruction execution.

4.1.1. Direction registers

Interpretation of a direction sign depends essentially on the
extraction of three pieces of information. Most important is the
specification of a movement destination. This destination is interpreted
with respect to an environment, which is constructed from the fields of
the direction sign. Finally, it is necessary to keep track of the duration
remaining for the achievement of the destination. Additional modifiers
may be supplied to further define the movement. A set of direction
registers thus has the following structure: '

type direction registers = (goal: des?ination;

env: environment s
duration remaining: rational;
modifiers: powerset constraints).
The environment has the'following structure:
type environment = (cross: reference;
fixed end: Joint;
augmented scope joint: Foint;
current position: vector).
The "fixed end" register is filled directly from the "proximal joint" field
of the instruction; and "cross" is established by a placement modifier or,
if a placement modifier is not specified, by a default associated with the
joint processor. The "augmented scope joint" is normally the same as the
fixed end but may be altered by the joint processor in response to specific
commands (inclusions in a direction sign)Aor specific movements (destinations
which physically force inclusions). It is used by the monitor to establish
~an instruction's priority (Section 5.1).

The "current position" is obtained from the monitor as the location of
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the joint relative to the "cross". The monitor must use the latest
information in establishing the reference; hence the "current position" will
take into account the results of any other movements which have already been
executed during this cycle, This may force the computation of the absolute
locations of any required joints which are currently flagged as not valid.

The system of reference for an environment is given by the following
substructure:

type reference = (origin: (joint, vector, local vector);

orientation: (forward: direction;

left: direction
up: direction)).

type local vector = (segment; vector). :
type direction = (fixed: (vector, local vector),
body: (from: (joint, local vector);
to: (joint, local vector)),
tangent: (real; real)).
A system of reference is established by locating its origin and giving the
directions of its three coordinate axes. The location of thé origin may be
given in terms of a joint, a vector of absolute coordinates, or a vector
defined in terms of the local cross of axes associated with a segment.
Similarly, axis direction may be given by a vector, either in absolute
coordinates or in terms of some segment's local cross of axes; alternatively,
the direction may be given by a line connecting any two points of the body
or by the tangent to the current path (given as a vector in the plane of the
floor).
The structure of "destination" dependé on whether the "kind" field of
the direction sign is "position" or '"movement":
type destination = (position: (to: vector;
- path: (straight, radial)),

movement: (toward: vector:
from: vector)).
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- All vectors are interpreted with respect to "cross" as provided by the
environment, If the destination is a "position", the joint will be moved
"to" that position from its "current positioﬁ" along a straight or curved
("radial) path. A "movement" description is always interpreted as being in
a straight line from the location of the joint at the start of the instruction
interpretation. (This location, expressed in terms of "cross", is stored
in the "from" register.) The magnitude of the movement vector (“toward")
is determined by either the joint processor (for gestural movements) or the
progression processor (for support movements).
Finally, we have several possible modifiers:
type constraints = (contacts, deviation, bends).
type contacts = sequence contact block.
type deviation = proc (real) vector.
type bends = sequence (location: joint;
surface: 1local vector;
begin: rational;
duration: rational;
achieve: (fraction, nil)).
Information regarding contacts is supplied by the monitor as part of the
interpretation of contact signs. We shall pursue this further in Section 5.2.
The directional displacement is a . 'deviation description” (Section 2.2.1)‘
represented-as a vector-valued function of time, where the vector output
is defined in terms of the system of reference given by the environment. We
shall see in Section 4.2 how this function is integrated into the actual
movement implementation.
Bends account for the remainder of the information specified by a

direction sign. The affected joints will normally include all body joints

. between the augmented scope joint and the joint processor. Omitted Joints
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are assumed to be unaltered by this particular instruction, Each joint is
given a bending surface, a starting time, and the length of time allowed
until the bending angle is achieved. The bending surface is a local vector
which translates into a rotation axis at the joint, and the angle is
expressed as a fraction of the total possible bend in that direction; this
value can be computed by the monitor from the current joint position and
the joint stop function. A value of nil in this register is interpreted as
"whatever bending is necessary' and can be used to implement multiple bends
whenever explicit bends have not been specified [17]. By including joints
in the bending list which lie further from the joint than fhe fixed end,
inclusions (Section 2.2.1) may be implemented. The degree of inclusion is
translated into default bending fractions which will be used as maxima,

not necessarily as values to be strictly achieved.

The bending registers are also used to effect most "intermediate joints"
modifiers (Section 2.2.1). Leading and following are implemented by small
bending movements followed by bends in the opposite sense. Inward and
outward successions are sequences of such bends and cancellations. Default
values for these movements are established by the processor whenever they
are not specified in the instruction. Guidance by a body surface is
handled differently: a facing sign islgenerated by the joint processor to
orient the surface toward the direction of travel during an initial fraction
of the direction sign.

4.1.2. Revolution registers

Revolution signs require for their interpretation the same timing and
environment information as do direction signs. In this case, however,

the movement is represented as the remaining orientation change about an
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“axis, along with a modifier indicating whether this change is to be
achieved as a twist or a rotation:

type revolution registers = (env: environment;

du?ation remaining: rational;

axis: vector;

change remaining: real;

revolution modifier: (twist, rotate)).
Orientation changeé are specified as multiples of a full revolution about
the "axis", expressed as a vector in terms of the environment "cross"
Initially the '"change remaining" value is the same as the "amount" field
of the revolution sign. The "sign" value is subsumed into the "axis",
vector direction so that the rotation or twist follows the right-hand rule.
We shall make the restriction that the fixed end of the revolution be
identical to the origin of the environment "cross', except for instructions
to the progression processor. Also, for a twist the joint itself must 1i
on the axis.

Revolution may describe particular positions or relative changes in
the orientation of a joint with respect to its current "fixed end", These
cases are distinguished by the "origin" field of the revolution
sign. If this value is "stance" or "absolute", an appropriate direction 1s
computed from the "sign" and "amount" values. This direction is then used
as the "direction" field in a facing sign generated by the joint processor.
The facing sign replaces the revolution sign and inherits its other attributes,
transformed as necessary.

When the revolution sign "origin" ié "current", a relative angle change
is assumed. The joint processor will execute the total amount of change

requested, even if other instructions augment or diminish the apparent

movement. For example, the orientation of the proximal segment may change.
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While this may induce an additional twist, Labanotation conventions

[12] preclude any alteration to the "change remaining" register.

4.1.3, Facing registers
The interpretation of facing signs requires nearly the same information
as is provided by revolution signs. This makes sense, since a facing sign
invokes twists or rotations indirectly and is the position description
analog to a revolution sign:
type facing registers = (env: environments;
duration remaining: rational;
facing modifier: (twist, rotate);
action: facing).
type facing = (area: vector;
goal: vector;
axis: vector).
The "goal' register stores the orientation which the surface "area" is to
achieve. Both vectors (as well as the "axis") are expressed in the local
coordinate system of the segment containing the surface to be oriented. The
origin of this system will then be situated at the joint whose processor
received the instruction.
The "axis" vector is derived rather than supplied by the instruction.
It is chosen as that perpendicular to the plane formed by the "area" and
"goal' vectors such that the former is rotated toward the latter through an
acute angle. (If the other direction is desired, a simultaneous revolution
or an intermediate facing must be used.) If the two vectors are directly
opposed, then the axis is chosen to lie as close as possible to the Z-axis
of the distal segment containing the surface area. If this cannot be done
(the vectors are parallel to the Z-axis), the X-axis of the segment is chosen

arbitrarily. If the two vectors represent the same direction, then the

joint has achieved the facing goal. Since a fixed end is not provided in
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- the facing sign, the joint processor itseif is used, The facing is tﬁen
implemented as a rotation or twist of the distal joint of the segment
containing the surface about the "axis", Facings of the "twist" type can
only arise from modified revolution instructions (Section 4.1.2).

4.1.4, Shape registers

Shape descriptions, like direction signs, may be either position
descriptions or movement descriptions:
type shape registers = (env: environment;
duration remaining: rational;

action: shape).

type shape = (kind = (position, movement);
configuration: proc (real) vector).

For a position description the body parts between the joint précessor and

its fixed end are to achieve some configuration in space. This is given

as a vector function whose input is the disténce along the path connecting
the processor's associated joint to the fixed end. The configuration may
then be achieved by iteratively fitting body segments to the shape. A
movement description, on the other hand, describes the path of the joint
associated with the processor for the indicated duration. The "configuration"
is now interpreted as a vector function of time, appropriately scaled so

that the final position is achieved at the end of the instruction.

4.2. Increment and Destination Computation

The most elementary function of each joint processor is to move its
joint towards a destination point, direction, or orientation during each
simulation cycle. At the beginning of a simulation cycle, the joint
determines its current position with respect to the éppropriate reference
system. This is necessary because the joint may have moved from its goal
at the end of the previous cycle; other proceésors or changes in the location

or orientation of the reference system could have moved it. We shall assume
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that the destination (or final goal) of the movement is known, How much
the joint will move depends on the simulation interval:

if duration remaining < simulation interval
then do "move™ from current position to destination;

delete 1nstructlon (it's completed)
end

else do "move" (simulation interval/duration remaining)
of the way from current position to
destination;

duration remaining = duration remaining
~ simulation interval;
end

. The definition of "move" varies from instruction to instruction. It will
be helpful to define three functions to perform various interpolations,

NVRI, NVLI, and NPRI:

NVRI: proc (current: vector:; destination: vector; amount: fraction)
returns (vector).

This procedure (New Vector; Radial Interpolation) returns the vector which

is the fractional amount of the positive rotation from the current vector

to the destination vector. The length of the result is linearly interpolated
between the current and destination vector lengths (Figure 4.1).

NVLI: proc (current: vector; destination: vector;
amount: fraction) returns (vector).

This procedure (New Vector; Linear Interpolation) returns a vector which
represents the fractional amount of distance from the current to the
destination vector (Figure 4.2).

NPRI: proc (current: vector; axis: vector; total: real;
amount : fractlon) returns (vector)

In NVRI the axis of rotation is implicitly perpendicular to the two vectors.
For NPRI (New Position; Radial Interpolation) the axis is provided. The
pesult is the current vector.rotated about the axis by the fractional amount

of the total rotation desired (Figure 4.3).
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Although thgsg functions linearly interpolate to compute the pesult
vector, we can scale the fraction by ahy function F such that F(0)=0,
F(1)=1, and 0 < F(x) <1 for 0 < x < 1. The identity function F(x)=x is
implicit in the above; but other non-linear functions may be used to emphasize
smooth accelerations and decelerations [7,16,22]. We are avoiding this
route for the present, however, since phrasing information is not
specifically encoded into the instructions to the simulator.

4.2.1. Position computation

For a position description direetion instruction we must determine
which type of path is to be used. The following decision procedure has

been abstracted from Labanotation [12]:
A = arc length distance between current position and goals

if A = O°

" then path = straight;
use NVLI for interpolation;

if 0° < A < 90°

" then path = radial;

use NVRI for interpolation;

if 900 < A < 1800

" then path = straight;
include a slight deviation
(depending on joints and position);
use NVLI, then compute deviation;

Changes of the first type arise when position and goal lie along the same
direction or when either is zero in the current reference system. The
direction change in the second case does not, in itself, cause a change in
the distance between the joint and its fixed end. In the third case, however,
length changes are mandatory and must be compensated by bending intermediate
joints. The timing and degree of bending are stored in the bend registers

of the direction instruction. Both this information and the indicated

Adeviation are supplied by the joint processor depending on its physical
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capabilities and the current and goal directions.

For shape descriptions of the position type, the movement process is
one of matching joint angles to the path of direction vectors. Starting
at the fixed end, successive joints are adjusted by radial interpolation
(NVRI) to approach the tangent to the shape at the appropriate distance.
(The fixed end is "pinned" to the start of the shape; thus the first
adjacent distal joint is the first to be moved.) The arc length of the
shape can be compared to the total body length between the joint processcr
and the fixed end (obtained from the monitor), so that the distances
involved are easily scaled. | |

Revolution and facing instructions interpolate rotations with NPRI.
Additional effort must be expended, however, in insuring that intermediate
joints rotate, or segments twist, by the apprbpriate amounts. For the
elbows, wrists, knees, and ankles we can use the "universal joint" property
of these hinge connections to transmit a rotation in a distal segnent
to a twist or rotation of equal magnitude in the proximal segment. This
is not true for joints in the torso because of fhe pivot-like spinal
connection; nor is it true for the ball joints of the hips, shoulder and

“head. Generally, these joints "absorb" rotations up to their physical
maximnums.

An additional problem must be confronted in twists or facings which
include ﬁore than one fixed support or contact point, for example, a twist
of the center hip with respect to the (fixed) foot positions on the floor.
We cannot simply distribute these twists over the leg segments. Instead,
a line connecting the left and right hips is rotated; and the positions of

the knees are computed based on the hip and ankle locations. These positions
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are then used to compute the actual relative orientations at the knees and
hips and the twists of the lower legs. If one or both feet are not restricted
to immobile support contacts then some Other action any occur. For example,
if one foot is not supporting body weight then the normal twist
calculations can be performed on the supporting foot. These and similar
situations are processed by the monitor since they are caused by various
external constraints on joint positions, namely contacts.

4.2.2. Movement computation

Movement descriptions have two possible interpretations, depending on
whether or not a direction of movement is specified. When it is given, the
joint moves in that direction along a straight path. Intermediate positions
are interpolated using NVLI with a "current” location of (0,0,0). Although
the direction of movement is given in the direction sign, the length of the
"destination" vector must be determined indirectly. Most direction
instructions specifying movement alter support and are therefore handled
by the progression processor. The "destination" vector is determined by
the default step length or an appropriate modification of the default by a
bend or stretch indiéation in the instruction. Pof non-support movements
the magnitude of the movement may depend on a maximum displacement or some
reasonable default movement rate.

When no direction is specified the instruction is interpreted as a
"hold"s that is, the joint is expected to maintain some fixed relationship
to a given reference cross df axes throughout the duration of the instruction.
In this case, the position must be re-established every simulation cycle
rather than achieved only at the end of the duration interval; so the location

of the joint is used as the "current" vector and also as the "destination"
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vector in NVLI, Any fraction of the total duration will therefore achieve

the same position.

For shape descriptions movement is specified by a three-dimensional
path of points. As we have previously noted, we will. assume that the
intent is to distribute the movement evenly over the total length of the
path. It is therefore easy to compute the total path length over the
point set, if only as the summed linear distances between the points. (Cubic
interpolations could be used to "smooth" the path, making the path length
that of the interpolated curve.) At any simulation time the direction of
movement is toward that point on the curve lying (length/simulation
interval) distance away from the current pbint aloﬁg the path. Tor long
simulation intervals fhe expected shape may be somewhat distorted; but as
these are again primarily paths for the progression processor, we can expect
the simulation interval to be short with respect to the total time needed
to traverse the path.

4.3. Simultanecus Instruction Execution

During a simulation cycle a joint processor may be executing more than
one instruction affecting the same sequence of body parts. A reasonable -
execution sequence for these instructions must be determined, although
conceptually they are to be executed in parallel. Among concurrent
instructions the default execution order is:

1. shape descriptions of "movement" kind

2. shape descriptions of "position" kind

3. revolution signs of "rotation" kind

4. revolution signs of "twist" kind

5. facing signs
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6. direction signs of "movement! kind
7. direction signs of "position" kind

The general rules used to construct this ordering can be summarized:

ate
ki

Shape descriptions are executed first since they define global
movements or configurations of body parts.
% Revolution signs are executed next since they tend to orient
limb units.
* Facing signs are executed next since they may cause joint rotations
or twists to achieve the facing direction.
* Direction signs are executed last since they move joints to
specific locations in space, subject to the constraints established
by the preceding instructions.

In addition, the following factors were influential:

*  "Position" instructions are executed after "movement" instructions,

s,

gince a position must be achieved regardless of the movements which
co-occur with it.

* Rotations are performed before twists because rotations do not affect
intermediate joints; facing signs and twists do, so they must be
concerned with the admissible positions and movements of the

intermediate joints.

% Direction signs must be executed after facing signs to assure that
contact processing will establish the desired relationships

(Section 5.2.2).
% "Position" direction signs are executed after "movement" direction
signs so that contacts (maintained by "movement" direction signs)

may be broken by subsequent positioning instructions.
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The modifiers of a direction sign are applied to the basic direction
movement. The deviation function is applied to obtain an absolute
displacement which is added to the current position. From this adjusted
position bends are executed, proceeding along successive joints toward the
augmented scope joint. Finally, contacts are approached or maintained

according to the process described in Section 5.2.



5. MONTITOR

In Section 2,3 we indicated how the monitor structures the overall
control flow during a simulation cycle, ‘We bave noted that the monitor
manages the body data base and provides computational utilities for
maintaining and modifying the data base in response to requests from
the other processors. In this section we shall discuss the remaining
duties of the monitor: scheduling the current set of concurrent

processes, and moderating the achievement and maintenance of contacts.

5.1 Priorities of Processing

| Since the monitor maintains the body data base, it must also be
responsible for the order in which changes are allowed during a sim-
ulation cycle. Because the body must remain connected, all movements
(with the exception of movement of the body as a whole) must be real-~
ized by rotations. This is achieved by changing the orientation
vector of the individual segment data structures. As we have noted,
however, rotating one joint may invalidate the absolute positions of
all other joints which lie "beyond" that joint in the body tree (1.e.
further from the root). Since a processor controlling one of these
joints may be executing an instruction, it is imperative that that
procéssor have current information on the location of its joint.

During a simulation cycle the monitor must schedule the active
processes to insure the determinism of the resulting movement. Thus,
the semantics of a particular set of concurrent instructions should not
be different from one execution to the next. Put somewhat differently,
the individual joint processors determine the semantics of the instructions
they are currently executing, while the monitor determines the semantics

of the collection of executing processes with respect to the structure
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of the body.

It is therefore necessary to determine a pricority for the order of
execution of all concurrent instructions,‘ This priority is based on
whether one subtree of the body tree is contained in another, and which
of these are the "largest" among the current set of trees. The scope
of an instruction is defined as the subtree of the body tree formed by
the directed path from the fixed end of the instruction through the
joint receiving the instruction, followed by the remainder of the body
tree rooted at that joint (excluding the path already defined to the

joint). We shall call a particular kind of subtree an augmented scope

tree if the initial path is rooted at the augmented scope joint. For
example, if an instruction to the center shoulder specifies the center
hip as fixed end, but the left hip is the augmented scope joint, then
the augmented scope tree is shown in Figure 5.1.

The instruction priorities can now be derived from relationships
between the set of augmented scope trees. We first define a maximal
instruction and compute priorities among the set of maximal instructions.

A maximal instruction is one whose augmented scope tree is completely
contained in no other augmented scope. The femaining instructions can be
assigned priorities through an ordering defined among the subtrees of-

an augmented scope tree (based on containment of one subtree in another).

A maximal instruction augmented scope may still intersect that of another
instruction, so we distinguish an isolated méximal instruction as cne whose
augmented scope is disjoint from or else shares only the root joint with
any other maximal instruction, Otherwise the maximal instructions overlap:
at least one edge (segment) of the body tree is common to both.

An isolated maximal instruction is independent of any other maximal
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instruction and receives the lowest priority. To differentiate among oyer
lapped maximal instructions, we use two heuristics: |

1. Assign higher priority to the maximal instruction having a support-

ing joint within its augmented scope.

2. Assign higher priority to the maximal instruction having a passive

contact point within its augmented scope (Section 5.2.1).
These are applied 80 that (1) has precedence over (2). The first heuristic
arises from the fact that a supporting joint carries weight and cannot be
moved with respect to the point of support; thus the remainder of the
body must be positioned relative to that constraint. The second heuristic
derives from the execution of contacts: an active contact point must
adjust to the movements of a passive partner contact point and therefore
must be moved last. In case of ties, a choice is made arbitrarily, although
it is expected that this case will arise infrequently: overlapping scopes
are apt to be ambiguous even to a human interpreter.

Once the priorities of the maximal instructions are established,
priorities for the remaining instructions depend only on Subtree contain-
ment. We will also adopt a "depth-first" ordering such that all instructions
"less than" a maximal instruction of highest priority are executed before
the maximal instruction of next highest priority. The non-maximal instruc-
tion priorities therefore fall "betweén” those of the maximal instructions.
Consider two trees contained within the augmented scope of another instruc-
tion. They may intersect in one of seven ways (Figure 5.2):

1. Same Joint processors and augmented scopes. The order of

execution is determined by the joint processor, not the monitor

(Section 4.3).
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2. Same augmented scope, but joint of instruction one lies on path
between augmented scope joint and joint processor of instruction
two. Instruction one is executed first.

3. Same joint processor, but augmented scope joint of instruction
two lies between augmented scope ﬁoint and joint processor of
instruction one. Instruction one is executed first.

k. Different augmented scope joints and the joint processor of
instruction two lies in the subtree rooted at the joint processor
of instruction one. Instruction one is executea first.

5. Different augmented scope joints and joint processors, and the
augmented scope joint of instruction two lies in the subtree rooted
at the joint processor of instruction one. Instruction one is
executed first.

6. Same augmented scope joint, but joint processors are roots of disjoint
subtrees. The relative priorities of the instructions are computed
as if they were maximal instructions using the heuristics described above.

7. Same as case 6, but with the augmented scope joint of instruction two
between the augmented scope joint and joint processor of instruction
one. Instruction one is executed first.

5.2 Contact Processing

Contact instructions are handled by the monitor since contacts may occur
between arbitrary body surfaces. We shall make the assumption that contacfs
are essentially local phenomena, in the sense that suitable instructions of the
other types will approximately position the involved surfaces. We can therefore
avoid defining a unique scope for a céntact instruction; ‘rather, its effective
scope will depend upon the instructions currently being executed by the

affected processors.

Contact signs in the monitor input stream are read and interpreted



71
at the yery beginning of the simulation, since the monitor cannot know
a priori what subsequent direction signs will be used to actually implement

the contact. The contact signs are compiled into contact:blocks, one for

each pair of objects in the "contacts" sequence of the instruction:

type current contacts = sequence contact block.,
Whatever information cannot be compiled is inserted when suitable direction
signs are found which overlap the contact time. Many contact signs are
generated during the simulation by the progression proceésor, and the
monitor simply assimilates them into the "contacts" data structure as soon
as they aré received. Achieved and inactive contacts are deleted.

The goal of contact processing is to convert thé relational specifica-
tion in a contact sign into explicit points, distances, and directions.
Achievement of a contact is thus dependent upon bringing two points together
within a certain distance tolerance. Each contact block describes a single
relationship between two points (not necessarily fixed) on the surface of
the body or on an auxiliary object. For each active contact point (there
must be at least one for each contact block), a joint processor is dele-
gated responsibility for moving the point to achieve the correct contact.
These joint processors have (or else will be supplied with) a suitable
direction instruction whose "contacts" register (Section #.1.1) will refer
to the contact block. The "influencé" registers are used to control the
rate of contact achievement. The "duration interval" registers contain
the difference between the contact time and the starting time of each

direction sign with its contact modifier:
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type contact block * (timing: (at: raticnal;
duration remaining: rational;
until; (rational, nil)));
relationship: (upper limit: real;
lower limit: real;
initial distance; real;
current distance: real;
difference vector: vector;
weight: (real, nil));
contact 1: (place 1; virtual contact;
delegate 1: joint;
influence 1: real;
: duration interval 1: rational);
contact 2: (place 2: virtual contact;
delegate 2: joint; '
influence 2: real;
duration interval 2: rational;
role: (active, passive))).

Timing information consists of the time at which the contact occurs
("at"), the "duration remaining" until the contact time, and the time when
the contact is to terminate. The "until" register may contain an explicit
termination time, determined from a later contact sign (see Section 2.2.4),
or nil, in which case movements of the joints will break the contact
naturally. The "at" and "until" registers will hold the same value when
the contact is "in passing'".

Because a contact sign need not describe an actual touch relationship
between two contact points, we must allow the specification of any point
relatéd to a body or object surface. The "places" of contact are "virtual"
points described by the "virtual contact” data structure:

type virtual contact = (source: (body: (which: segment;
using: (sphere, nil)),
other: object);
location: (fixed, sli@ing);
direction: (vector, nil);
point: vector).

The contact point may be associated with a body segment or another object.

In the former case, a specific sphere may be used; or the contact point may
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"float" about the segment surface, The "location" of the contact point may
be fixed or may be free to slide about within the prescribed domain. (Tor
example, if a fingertip sphere is specified in a hand segment, then a
sliding "location" will allow a contact to occur anywhere on the sphere,
not just in some specific spot.) The location is further constrained by
optionally specifying a contact "direction" in the local cross of axes of
the segment or object (Figure 5.3). The "point" register contains the
actual fixed surface contact point or the (variable) Sliding surface
point found during contact achievement, subject to the constraints in the
other regieters.

Achievement of a contact involves two "places" and a relationship.

If the virtual contacts have any locational freedom, then the points
actually used are those representing any closest pair of points satisfying
the constraints on the two virtual contact sources. The “direction"
registers (when non-nil) define the desired alignment of the virtual contact
points (Figure 5.4). The monitor achieves the alignment by generating
suitable facing instructions for the joint processors responsible for

these contacts (Section 5.2.1).

The remaining degree of freedom is the distance between the contact
"placesht, and this is described by an "upper limit" and "lower limit"
distance range. The "initial distance" and "current distance" between the
contact "places" are also stored (Figure 5.5). The distance tolerance is
set from defaults associated with the "kind" field of the contact sign:
both limits are zero for "touch" or "support", both are small positive
values for "near", and the "lower 1limit" is zero and the "upper limit" is

. . . N \ ‘o . B
some maximum possible distance for 'relate". A "surround" modifler 1s sep
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arated info several contact blocks, each of which will be achieved
independently but concurrently. Finally, "support" contacts indicate the
weight they currently bear, since the monitor obtains this information when
computing the body center of gravity from the individual segment positions.
Contacts which are not expected to be supports have a value of nil in the
"weight" register.

5.2.1 Determining contact scope

The monitor must determine which joint processors are to implement
each contact. Since at least one virtual contact must always move toward
the other by explicit effort of a joint processor; it is designated as
(active) "contact 1". The other virtual contact ("contact 2") may or may

not be actively moved as part of the contact relationship (indicated by the
"role'" register). The delegate joint processors for each active contact
are chosen by examining the set of instructions preceding the contact time:
a delegate is a joint processor having the direction sign with the latest
starting time prior to the contéct, with its duration containing the contact
time, and also with the virtual contact point in its augmented scope. If
there 1s more than one joint processor and direction pair satisfying these
conditions for a virtual contact point, then that used is the one whose

- associated joint lies closest to the segment containing the virtual contact
and whose augmented scope joint lies furthest from it.

‘If there are rmﬁ such processors, then a direction instruction is
generated for the distal joint of the segment containing the virtual contact.
The default fixed end for that processor becomes the fixed end of the
instruction. The duration is the single simulation interval prior to the

_contact. The instruction is interpreted as a movement of the virtual

contact point (not the joiht) to the zero vector in a reference system with
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~origin at the locatign Qf the other virtual contact's lower 1limit along
the contact direction (Figure 5.6), (How this is done is described iﬁ the
next section.) Once the direction instructions are determined, their
"contacts" registers are set to refer to the appropriate contact block,

Any difference between the contact directions is adjusted by generating
facing instructions for each active delegate joint processor. These will
have the same fixed ends and durations as their respective direction
instructions. The "area" facing register holds the contact direction,
while the '"goal" is the other virtual contact point (Section 4.1.3).

If both passive and active joint processors are involved in a contact,
then the monitor will perform any movements of the passive joint first
(subject to the established priority order). The active joint will then
have the role of “pursuing" the passive one. If both segments are active
in the contact, then each is given its turn at achieving the relationship.
Since either could reach its goal first, there is some nondeterminiém
in this procedure; but this shoﬁld only cause unusual results when the
simulation interval is inordinately large.

5.2.2 Contact implementation

We have reduced the problem of achieving a set of arbitrary contacts
to the problem of defining how a single contact modifier affects the
execution of a direction sign. If a single direction sign has more than one
modifying contact biock, the movement of the contact point is the vector
average of the set of contributing contact displacemenfs which we shall
define below, Multiple contacts Hay be achieved by a joint processor even
if they occur at differeﬁt times within the same specified instruction. If

one such contact is not achieved to the specified tolerance, an error 18

report ed.
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By the joint selection criteria degcribed in the preceding section,
a delegate joint processor should approach the general vicinity of the
contact; thus the contact will modify the normal path of the joint. The
desired relationship is effected by altering the normal joint paths by

two factors: one, the distance influence, to push or pull the virtual

contact points toward or away from one another; the second, the time

influence, to postpone the maximum effect of one point on the other until
the very end of the direction sign duration. For example, consider forward
middle movements of each arm from side middle positions (Figure 5.7a),
modified at the end by a hand clap contact (Figure 5.7b). The first factor
will insure that the hands continue beyond the forward middle position to
achieve the contact in the saggital plane of the body. The second factor
causes the additional movement to occur primarily at the end of the direction
movement for each arm, otherwise the hands would approach one another too
quickly and tend to cause contractions at the elbows (Figure 5.7, c and d).
The distance influence has been chosen to be the piecewise linear
function shown in Figure 5.8. The closer the virtual contact points, the
more they affect each other's position. If the two points should move
further apart than their initial-distance (and this were not desired), then
the distance influence remains at some minimal level; If the contact is
still required, the points will tend toward each other no matter how far
apart they get. On the other hand, if no other contact sign explicitly
cancels a contact once achieved, the points are allowed to drift away
naturally when moved by other instructions. The time influence is simply a
1inear function which is zero when the contact is first encountered as a

modifier in a direction instruction and one when the contact 1is expected
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(a) start

4_(b) finish =

(c) correct (curved path)

(d) incorrect (deformed path)

Figure 5.7 Hand clap modifying forward middle positions for both arms.
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(Figure 5.9)., The time influence vyalue is undefined after the contact is
achieved.

The two weighting factors are combined into a single infiuéngg_value
by multiplying them together and associating half of the resulting weight
with each contact, even if only one is active (otherwise the active point
approaches the passive point too quickly). Thus each delegate joint pro-
cessor is responsible for achieving half the contact relationship; a passive
contact does not participate at all. Since one active processor must move
to actually achieve the desired relationship at the contact time, its
influence is set to one on the very last cycle, otherwise the virtual
contact points would still be in a state of ”apprbaching the relationship."

Finally, the influence value is used to scale the distance between

the two contacts (the contact displacement) so that they approach or repel

one another. In each simulation cycle, the virtual contact is first (roughly)
positioned by the direction instruction to the delegate joint processor.
Then the contact displacement shifts the point position, and the monitor
updates the body data base accordingly.

The timing information needed to process a contact is shown diagram-
matically in Figure 5.10. Tﬁe direction duration is the given duration

of the direction sign chosen to implement the contact. The contact "duration

interval registers are assigned the difference between the beginning of the
direction sign and the contact time for each delegate joint processor. (Thus
the comtact duration interval is less than or equal to the direction sign
duration.) The "duration remaining" register of the contact block contains
the difference between the current simulator time and the contact time.

The movement of the delegate joint processor for each contact can now
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be computed in the reference system of the direction instruction, The

(Joint processor, instruction) pair implementing the contact is allowed to

execute according to the usual priority order, The joint is moved according

to the direction destination (medified by any deviations and bends); then the

following additional steps are performed:

1.

Set the "difference vector" register of the contact block to the
vector between the two virtﬁal contact points. (The facing
instructions will insure that the actual contact directions line
up if required.) The length of the difference vector is placed in
the "current distance' register of the contact block.

Compute the distance influence (Figure 5.8), a measure of how

strongly the two contact points will attract one another:

. . oL . . .
starting difference = ilnltlal distance - lower llmltl 5

current difference = %current distance - lower lbnitl ;

distance influence

current difference
starting difference’

max(l - min ( 1), minimum influence)

where the minimun influence is some small positive number such as 0.01.

Compute the time influence (Figure 5.9), a measure of how the
contact achievement will be distributed over the contact duration.

time influence = 1 - (contact duration remaining
/contact duration interval).

Since two contacts are invdlved, each is assumed to achieve half

of the contact (even if one is passive). The value stored in the
"influence" register is therefore:

influence = (distance influence) (time influence).

During the final movement in the last cycle when the time influence

is 1, the processor moving last has influence = 1.
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5. Finally the contact displacement is computed by scaling the

difference vector by the lower limit tolerance and the influence:

contact displacement =

(difference vector) (current distance - lower limit)
current distance ‘

(influence)

This may reverse the direction of the difference vector, but that
only indicates that the contacts are to be moved apart, not
together. The virtual contact point is then moved from its current
position by the contact displacement.

In order to accomplish the last step, the joint processor substitutes
the virtual contact point for its associated joint in the "current position"
direction register. It then executes a straight or radial path movement to
the position computed in Step 5, as if the joint itself were situated at the
virtual contact point. The joint position in this configuration is then
computed, and intermediate joint bends are adjusted as necessary. This
process will additionally bring the contact points together precisely at the
end of the contact duration interval.

5.2.3 Contact maintenance

Contact maintenance is controlled by the "until" register of the
contact block. If this value should be the same as the time at which the
contact is achieved, then the contact is transient. The contact block is
deleted; and the direction instructions to the delegate joint processors
implementing this contact are free to assume their original destinations (if
they have any remaining duration).

If the contact is to be maintained the contact block is not deleted,
but its "duration remaining" register is left at zero. It will continue to

affect the direction instruction it modifies until either that instruction's
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normal end or the contact "until" time. During this interyal the maintenance
process 1s exactly the same as that used to achieve the actual contact by
the last processor in the final cycle; the contact displacement is evaluated
with an influence of 100% for one delegate joint processor or, if there are
two, then 50% for the first and 100% for the second.

When the direction instruction ends before the "until" time, the
monitor must generate a new direction instruction to accommodate the contact
block. This instruction specifies a movement direction of (0,0,0) in the
(new) reference system situated at the other virtual contact point and
parallel to.the reference system of the containing segment or object. The
direction duration is the difference between the current simulator time and
the "until" value; instruction processing (Section 4.2.2) will now insure

that the contact is maintained in each simulation cycle during this interval.
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6. PROGRESSION PROCESSOR

The progression processor has three primary responsibilities: to control
the movement of the whole body in space, to determine the path of the
center of gravity of the whole body, and to maintain balance when necessary.
The movements are described by instructions to joints which support the
body, but these instructions are collected together into a single stream
for the progression processor:

type progression stream = seguence progression instruction.

type progression instruction = (agent: (joint, whole body);

start; rational;
action: concurrency)..

A Y"concurrency" has already been defined for joint processors (Section 4.1).
Each substream of a concurrency has an associated program counter with the
same semantics as that of a joint processor.

Because support movements depend upon succeeding instructions (perhaps
to different support joints), the progression processor must determine a
movement in advance of its actuél starting time. The progression processor
may dispatch any of these instructions to another joint processor; so the
original instruction, as well as its interpretation into the appropriate
set of joint registers, must be saved:

type progression registers = (supports: sequence support joint;
interpreted: joint registers).

~ type support joint = (present: sequence instruction;
‘ begin: rational;
prepare: sequence instructions;
onset: rational;
between: (ground, step, jump)).

The "present" instructions have starting time "begin", while the "prepare'
1

instructions are the next set with starting time‘"onset" not equal to "begin'.

The action in the interval between these two times is determined by the
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"present" and ﬁprepare" instructions, For example, if these registers
contain direction signs such that the duration of the "present! causes
its end to coincide with "onset", then the "between" action is "ground";
that is, that supporting joint will maintain its contact with the ground.
Time gaps between direction signs result in a value of "step"; and if no
other support joint has a direction sign during this gap, then the result
is "Jump".

6.1 Progression Implementation

We shall assume that the support joints are the two ankles to simplify
the discussion. An instruction may cause local changes to the body center
of gravity or more global changes requiring instructions to be sent to other
processors. Effects will be described frbm.simplest to most complex, to
aid understanding.

A shape description of the position kind must describe the relative
positions of support joints. This position is assumed by a process similar
to that presented in Section 4.2.1. When the shape description is a move-
ment, it defines the (approximate) path of the center of gravity. (Although
the path is defined in three dimensions, it is convenient to assume that if
all the z-coordinates of the path are zero, it is actually a projection of
the péth onto the floor.) The path is approximate because the center of
gravity is allowed to oscillate about that path during movements. A reason-
able rule is to require the midpoint of the path of the center of gravity
during a step to lie on the globai shape path (Iigure 6.1) whenever the step
direction does not coincide with the shape direction.

Facing signs for a support Jjoint are passed on to their respective
processor input streams. A facing sign for the whole body causes a whole

body rotation (changing "stance" [12] and similar changes in facing to the
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Figure 6.1 Approximating a shape description affecting support.
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feet, These foot movements will appear as swivels (with friction) unless
a simultaneous step is called for in the "between" register, Revolutions
to the whole body change its orientation and introduce revolution signs to
the support joints unless these already exist. Revolutions of the support
joints, on the other hand, may induce a change in the orientation of the
whole body depending on the current positions of those joints on the floor.

Direction signs provide the most concise means of specifying a complex
movement and, as such, require that the instruction be expanded to include
the significant preparation, propulsion, and "follow-through'" stages of the
movement. We have chosen to implement direction sign movements under the
following assumptions:

1. The propulsion arises from a constant angular velocity at the

fixed end. (Evidence for this assumption comes from biomechanical

sources [671.)

2. The preparation phase is a fixed percentage of the previous
direction sign [12].

Intermediate joint movements are constrained by the segment orientation
limits, the fixed segment lengths, and the "boundary conditions" imposed by
the segment positioned by assumption (1) and the geometry of the floor.
Consider a leg, for example, which is to move forward from a starting
position. During this movement we know the step length (hence the displace-
ment of the center of gravity), the angle through which the upper leg ﬁust
move to displace the center of gravity,, the time of toe lift-off and heel
contact in the step, and the initial and final tilt angles at the knee. This
information fully constrains the movement of the leg, provided that the center
of gravity is forbidden from movements other than that required by the forward
progression. The progression processor determines the contact times from

the "present" and "prepare" direction instructions and generates contact
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instructions for the monitor in advance, When combined. with the direction

instructions passed on to the ankle processors, smooth movement will result,

6.2 Balanqg

When the progression processor determines that balance is necessary
dufing or at the end of a sequence of progression instructions it may adjust
the body position. The progression processor bases its decision on the
instructions it is preparing for and the number and geometry of current
support points from the contact blocks in the monitor. If the number of
contact points is zero, the body is in the air; and no adjustment is made.
If there is one support, then whether or not an adjustment is made deﬁends
on the time until the next support instruction. (If this interval is too
long, balance is necessary unless a new supporting joint is indicated:
for example, falling from feet onto hands.) If there are three or more
supports and the body center of gravity projects within the polygon formed
by ; these points on the floor, then the body is présumed balanced. When
this is not the case or when there are only two support points, then balance
is established by rotating the center of gravity (in a non-forbidden
direction) to bring its projection within the support line or polygon. The
remainder of the body (that is, the set of parts not between the center of
gravity and the supports) is simply displaced horizontally to the new

position (subject to the separate forbidden vectors at individual joints).
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7. CONCLUSIONS

In seeking a digital representationvof human moyement, an established
movement notation system, Labanotation, has proyided a wealth of well-
structured information. The variety of human moyement has been abstracted
to five types of movement concepts; these form instructions which are
interpreted by a simulator with knowledge of support requirements, body
structure, and body surfaces. By designing the simulator as a network of
communicating processes, we obtain very general and flexible control over
individual joints, body segments, and the whole body.

Components of the simulator have been implemented in LISP and FORTRAN
on a UNIVAC 90/70. While the simulator itself is not expected to produce
graphic commands at a real-time rate, these commands will be stored in a file
and interpreted in ""batches" by the graphic display program. We expect that
this process will be fast enough to animate the body model (drawn with circles
or shaded disks to represent each sphere) on a graphics configuration consisting
of a PDP-11/60 computer and a Vector General 3404 refresh display. Sequential
snapshots may be produced on our Ramtek GX~100B color video display to obtain

permanent video or film records of the solid figure in motion.
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