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Abstract 

This paper is concerned with a software simulation of movement of the 

hUJIB11 oody. 'This simulation is being designed to drive a systein for computer 

animation as part of a larger program concerned with the translation of 

nDvement notation into animated graphics. 'The simulation is based on a 

model of the human body as a network of special-purpose processors -- one 

processor situated at each joint of the oody -- each with an instruction 

set designed around a set of 11primitive movement concepts." We shall 

discuss the extent to which all these processors may employ the same 

architecture and the function of the network structure. 
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~ INTRODUCTION 

We wish to enable a digital computer to translate.movement notation 

into an animated display of human figures performing the represented 

novements. This process involves analyzing the descriptive content of 

novement notation systems, evaluating structures for the animation of human 

rrovement, and formulating a suitably realistic human body model [ 3]. The 

fundamental premise involves modelling the human body as a netmrk of 

special-purpose processors -- one processor situated at each joint of the 

body -- each with an instruction set designed around a set of "primitive 

novement concepts." The translation of notation mto animated movement may 

then be divided into two stages: a compilation stage in which·the movement 

notation gets translated into programs for these special-purpose processors, 

and a simulation stage which simulates the behavior of these processors as 

they interpret their respective programs [21]. 

We are currently working with Iabanotation [12], a rrovernent notation 

system chosen for its logic, its flexibili t"'J, and the extensive arrount of 

nat erial recorded in it. As a result of research into the development of 

a text editor, we have established a structured description of La.banotation 

text in terms of graphic primitives [20]. What we require for an instruction 

set for our special-purpose processors is a structured description of the 

same informa.tion in terms of movement primitives. vJhile the structure of 

this instruction set has been influenced by the semantics of the graphic 

primitives of Labanotation, it is sufficiently general to be used to 

represent information recorded by other movement notations. For purposes 

of this discussion, we shall regard each instruction type as a data 

structure and describe it using the notation of Hoare [11]. A sequence 

of instructions associated with a joint processor specifies the movement of 
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that joint over a period of time. Thus, the compilation of Labanotation 

text produces a set of sequences of instructions , one sequence for each 

joint whose movement is notated. 

Alternative methods for specifying movements nay be found in 

teclmiques for computer anirration. A three-dimensional model of the hunan 

body is constructed, articulated at joints and movable in space [ 2 J . A 

number of techniques for describing the movements of such a model are 

reviewed elsewhere [ 3 J ; the method we have chosen is to simulate the 

rnovements of each joint of the rody. The simulation bears some resemblance 

to the control structures for robot mcmipulators incorp:::>rated in AL [lOJ 

and lAMA [15]. These systems are primarily goal-directed and maintain an 

internal model of the device and its environment. Constraints such as those 

used by Spegel [22] are also used to control. joint movements when external 

contact surfaces are involved in movements affecting support. Other 

graphic languages for animation offer subsets of the set of instructions 

we shall describe next. 
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2. THE ARCHITEC'IURE OF THE SIMUlATOR 

The abstracted movement concepts fall into five categories: 1) direction 

signs, 2) revolution signs, 3) facing signs, 4) contact signs, and 5) shape 

descriptions. Direction signs include Uose symbols which essentially 

describe the translation of some joint of the body, while revolution signs 

allow for the description of various forms of rotational movement, such as 

turning, twisting, and pivoting. Facing signs involve the establishment 

of an orientation, which is generally accomplished through a joint 

translation, a rotation, or a combination of the tv.D. Contact signs 

indicate contact of body parts with other body parts, other people, the 

floor, the performer's clothing, or other physical objects. Shape 

descriptions are used to describe the tracing of a path or formation of a 

shape by some part of the body. 

Each category stems from a different way of analyzing motion. Different 

movement notation systems tend to concentrate more heavily on one type of 

analysis over another. Iconographic systems, which are essentially based 

on stick figures, such as Jay notation [13], Sutton notation [18], and, to 

some extent, Benesh notation, [4], rely heavily on shape descriptions. 

I..ab:motation tends to use direction signs most heavily, while the system 

developed by Eshkol and Wachmann [ 8] concentrates on rotations and circular 

JIDVements, Animation languages usually offer geometric transformations, 

such as rotational movements, and shape descriptions [7 , 22 J. Manipulator 

langauges include limited contact specifications [10,15]. A system to 

describe movements of rigid or articulated objects permitted concepts 

related to direction, revolution, and contacts [1]. 

The instruction set discussed herein should be adequate for the 
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representation of any notation or animation system currently used. Before 

we consider the structure of each category in detail, let us first discuss 

how the selection of the individual joint processors relates to the 

structure of the human body. 

2 .1. f2 Model of Body Structure 

Figure 2.1 [12] presents a "first approximation" of an assignment of 

processors to body joints. In this illustration each joint is labeled by 

the Labanotation symbol which represents it. (We have generalized the term 

"joint" to include body extremities.) This assignment of processors may, 

if necessary, be further refined for greater detail. However, for the 

purposes of the discussion in this paper, the detail in Figure 2.1 is 

sufficient. 

Each joint processor positions its associated joint with respect to 

a cross of axes which defines a rectangular coordinate system. This cross 

of axes is generally situated at a second joint of the body. For example, 

rrovement of the right lower arm is determined by the processor at the right 

wrist with respect to a cross of axes situated at the right elbow. 

Alternatively, JIDvernent of the entire right arm is determined by the same 

processor at the right wrist but with respect to a cross of axes situated 

at the right shoulder. In describing any movement, the distal joint is 

defined to be the joint at which the active processor is located; and the 

proximal joint is the joint from which movement is effected. (In the above 

tw:J examples the proximal joint is also the location of the cross of axes.) 

The term "body part" will be used to refer to a portion of the body which 

lies between a given proximal joint and a given distal joint. 

All joint processors are essentially llcomputationally independent." All 

information exchanged among processors is transferred through a common monitor. 
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Figure 2.l Major l::ody joints. 
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One of the rrajor r-esponsibilities of this monitor is the maintenance of a 

data base regarding l::xJdy position. Through this data base any joint 

processor may obtain current information on all joint positions. Since 

these positions may be specified with respect to an arbitrary cross of 

axes, the monitor is responsible for conversion of positional jnformation 

between the vcu"ious systems of reference. In addition, the monitor 

determines the timing and sequencjng of corrrrnand execution by scheduling 

individual joint processors to minimize conflicts bet:vJeen their actions. 

Finally, the monitor assumes prirrary responsibility for the interpretation 

of contact signs. 

In addition to the classification of movements according to the 

instruction categories given al::xJve, a movement may also be described as 

either a gesture or a support movement. A support is a movement of the 

body's center of gravity. (Ths center of gravity IDnY be slightly displaced 

as a result of gestural movement; but ln a gesture, displacement of the 

center of gravity is an effect, while ln a suppor-t movement its displacement 

is the cause of the movement. ) Support movements are implemented by a 

progression processor capable of dispatching commands to any joint processors 

involved in locomotion. The progression processor is also responsible for 

maintaining the l::xJdy' s balance (i.e. the center of gravity over the base of 

support). Now let us discuss the actual instructions executed by the joint 

processors. 

2.2. Instruction Structure 

2.2.1. Direction signs 

A direction sign specifies the translation of a joint as either a 

position description or a movement description. The former describes the 
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orientation of a distal joint with respect to a cross of axes, while the 

latter describes a path of motion with respect to the initial position of 

the joint. T'ne necessary components of a direction sign are duration (given 

in terms of a simulation time tmit), direction, designation of proximal 

joint, and the specification of either position or movement description. 

Optional components allow for modification of the path of motion, which may 

involve the movement of other joints. This may be SUJlllYlal"ized by the following 

type declarations: 

typ~.direction slgns = (duration: rational; 
direction: direction description; 
proximal joint: joint name; 
kind: (position, mover;~:;nt) ; 
modifiers: powerset direction IIDdifiers). 

type direction modifiers = (placement modifier, 
sequence deviation description, 
sequence iDclusion, 
sequence intermediate joints) . 

A brief explanation of this data structure notation is in order. The 

semicolon lS a delimiter of components of a data structure, all of which 

must be present. The name of each component lS given to the left of the 

colon. The comma is a delimiter of elements of a set. Normally, this is 

interpreted as a list of alternatives, exactly one of which is present. 

(Thus, the 11kind11 component contains either the element 11position11 or the 

element "move.'1lent 11
.) Powerset indicates a subset of any size (including 

the empty set) of its argument; and sequence indicates a sequence of any 

length (including the empty sequence) of elements of a designated set. 

The structure of a "direction description11 involves further detail: 

~ du"ection description = (normal: coordinate-triple; 
modified: modified coordinate-triple) . 
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~coordinate-triple = (horizontal; (right, place, left); 
level: (low, middle, high); 
saggi tal : (backward, place, forwarx:l) ) . 

~ rrodified coordinate-triple = (head: (normal: coordinate-triple, 
null: nil); 

tail: sequence orientation mods). 

A no:rrnal coordinate-triple is capable of specifying one of 27 possible 

orientations with respect to a cross of axes. These are illustrated in 

Figure 2.2 [14]. The cross of axes is situated in the center of the middle 

plane, with the "forward" direction pointing into the page and the "right" 

direction pointing to the right. (The symbols at each of the points give 

the representation of each triple in Labanotation.) The actual distance 

to these points is determined by the length of the body part being moved. 

Any other orientation is specified by apply~1g a list of modifiers 

to a given coordinate-triple. (If the head of a rrodified coordinate--triple 

1s nil, the modifiers are taken to apply to the current orientation of the 

processor.) There are two classes of orientation modifiers. An angular 

modifier specifies a direction with greater precision than a normal 

coordinate-triple, and a radial modifier specifies an alteration in the 

distance along the given orientation: 

.~ orientation mods = (angular: 

radial: 

(amount : fraction; 
direction: coordinate-triple) , 

bend/ stretch) . 

An angular rrodifier 1s given by a fraction and a coordinate-triple. For 

example, the triple (place; middle; forward) may be modified by (~; (place; 

high; forward)) to indicate a direction halfway between middle-level forward 

and high-level forward. (This is illustrated in Figure 2.3 [12].) 

One might ask why we have not chosen a direction description to be 

represented simply by an ordered triple of real ntL'11bers. The reason is that 

we are li1terested bl the simulation of the rravement behavior of the human body. 
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Figure 2. 2 The orientations represented by a coordinate triple. 
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Figt.rr>e 2.3 Angular nodification of orientation. 

Figt.rr>e 2 • 4 Demonstration of alternative systems of refe~1ce. 

Arm alone Upper body included 

Figt.rr>e 2.5 Inclusion. 
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While the rody is quite poor at picking out arbitrary points ID space, 

it is fairly good at establishing the direction of "right" or Hforward. 11 

We have tried to follow a philosophy that those orientatior1s which are 

more difficult for the body to determine should be reflected by rrore 

complex expressions in the instruction set. 

Radial modification arises from the ways a rody part rray be bent 

or stretched: 

~ bend/ stretch = {kind: bend/ st.L'etch description; 
direction: surface). 

type bend/stretch description = (kind: (bend, 
stretch, 
fold, 
unfold); 

degree: fraction). 

The distinguishing features of bending, stretching, folding, and unfolding 

have been discussed by Hutchinson [12]. Each specification is quantified 

by a fraction. For example, the arm may be described as being 2/3 of the 

way from unbent to fully bent. (A degree of zero would indicate the 

unbending of a bent arm; this is sometimes called neutralization.) The 

direction of a bending or folding movement is designated by a point on the 

surface of the body which becomes "coveredn by the movement; stretching 

and unfoldirlg take their direction from the complementary movement of 

"uncovering." 

Now let us consider the direction modifiers. Modification of the 

cross of axes involves specification of its origin and orientation: 
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type place~ent modifier= (origin: (internal; (locus: (joint name, surface), 
general : whole oody) ' 

external: (locus: direction description, 
general: whole room) ) ; 

orientation: (right-left: orientation desc; 
low-high: orientation desc; 
backward--forward: orientation desc)). 

The origin of the cross of axes rray be located either on the body or in the 

external envirorunent. In the former case, it may be located at any of the 

joints enumerated in Figure 2.1: 

~joint name = (side-of-body: (right, center, left); 
area: (clavicle, 

shoulder, 
elbow, 
wrist, 
end of hand, 
hip, 
knee, 
a.IJYJ_e' 
end of foot, 
upper rim of pelvis, 
lower rim of r·ib cage, 
neck, 
head)). 

"Center11 is used to describe the :iside-of-bodyn of joints which do not come 

in pairs. Also, "center" is used with 11 shouldera and "hip" to indicate the 

upper chest and lower pelvis, respectively. The cross of axes rray also be 

located at a point on the J::ody sw~face (using a technique described below). 

VJhen 11whole body" is specified as the origin, it is not fixed at a glv~n 

locus; and only the orientation i~formation may be interpreted. Similarly, 

external orientation may be given as a point in the room (by a direction 

description) or by a 11whole room" designation. 

Orientation lS specified by giving a direction for each of the three 

coordinate axes. (Only two of these axes need be specified; the third is 

the perpendicul3r to the other two vJhich forms a right-handed coordinate 

system. ) Orientation m..-=ty be defined by tw::> points in space, two points on 
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the tody, the perpendicular to a l::ody surface, or the tangent to the 

current line of direction: 

~orientation desc = (space: (direction description; 
direction description), 

l::ody: (joi.-·J.t name; joint name), 
perpendicular: surface, 
line of direction: tangent flag). 

Figure 2.4 [12] illustrates a variet)r of orientations which could have 

several possible descriptions. Consider, as an example, the right arm. To 

describe the position of the right arm, it is necessary to locate the 

right wrist with respect to a cross of axes whose origin is at the right 

shoulder. There are at least two ways in which the axes themselves may be 

oriented. One alternative is to align the "low-high" axis with gravity. 

This would entail the 11 spacen description: ((place; lm-1; place); (place; 

high; place)). (IlTh:l.gine Figure 2. 2 as a scheira for selecting points in 

space.) The other possibility is to align the "lm-1-high'' axis r,vith the 

torso. This may be achieved by a t!J::ody" description: ((center; hip); 

(center; shoulder)). In roth cases the nright-leftn axis may be given by 

the "l::odyt' description ((right; shoulder) ; Cleft; shoulder)) ; and the 

11backward-forwardn axis is the perpendicular to the plane described by 

the other --t\.;70 axes. (A more detailed discussion of orientation alternatives 

is given in [9].) Of course, different coordinate-triples are required to 

describe the direction with respect to the alternative sys-tems of reference. 

The former cross of axes requires the coordinate-triple (place; high; place); 

the latter requires (place; middle; forward). 

r.Lnere remains the specification of a point on the surface of the body. 

'l'his rray be determined as folloHs : 

1) Select a body part by specifying its proximal and distal joints. 
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2) Select a point along that l::ody part as a fraction of the total 

distance from the proximal joint to the distal joint. 

3) Select a direction to proceed from the 11bone 1: of that body part 

to the "skin" of the surface; this may be given as a fraction of full 

rotation from a 11 zero" position vJhich is defined for each body part. 

\tJe thus have the following data structure: 

~surface = (body part: segment; 
displacement: fraction; 
point: fraction) . 

~segment = (proximal: joirrt name; 
distal: joint name). 

This description technique may be demonstrated by giving an explicit 

definition of the "ba.ck.ward-forwardn axis for the second alternative given 

above (in vJhich 1'low-high" and nright-·left:1 were both given by 11bodyn 

descriptions). Intuitively, the direction is the perpendicular to the 

front chest surface. This coPresponds to the "surfacen descriptions: 

( ((right; shoulder); (left; shoulder)) ; ~; 0). The n~n indicates the 

point halfway between the two shoulders, and "on indicates the amount of 

rotation to face the front of the chest. 

We conclude this section with a brief description of the remaining 

direction JIDdifiers. A deviation is a slight directional displacement from 

the unmodified direction [12]. It is specified by the a:JIDunt of time it 

endures and by the direction of deviation: 

type deviation description = (duration: rational; 
direction: direction description; 
degree: (greater, normal, lesser)). 

Several deviations nay occur in sequence during the execution of a direction 

SJ.gn. 

An inclusion specifies the participation of other joints m a movement. 
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Figure 2.5 [12] illustrates the effect of L~cluding the upper body in a 

movement of the right ann. Describing an inclusion requires the following 

struct-ure: 

~inclusion = (delay: rational; 
part list: powerset~ joint name; 
degree: (greater, normal, lesser)). 

The components are the time of inclusion (given as a delay following the 

start of the movement being modified), the joints involved in the inclusion, 

and the degree of inclusion. Other movements which directly involve other 

processors are as follows: 

~ intermediate joints = (delay: 
kind: 

rational; 
(leading: powerset (joint name, surface), 
following: powerset (joint name, surface), 
outward: (coordinate-triple, nil) , 
inward: (coordinate-triple , nil) , 
guidance: surface)). ---

A given joint or a surface may be designated as leading the movement or 

following the rrovement of the vJhole (Figure 2. 6 [12]). A movement :may cause 

a sequential use of body parts outward (proximal to distal) or inward (distal 

to proximal) (Figure 2.7 [12]). This sequential use may or may not be 

modified by a direction specified by a coordi..11ate-triple. Finally, a 

movement may be guided by a particular surface [12]. 

_?.-:1.:1_. ,c Revolution signs 

Revolution signs specify movement about some axls. Consequently, the 

instruction must designate a duration, a proximal joint, an axis about which 

revolution occurs, the amount of revolution, and a descriptor to differentiate 

beti.Jeen twist and rotation. A twist is a revolution of a body part where 

the proxinBl end does not move to the same extent as the distal end. For 

example, the lower arm's natural movement about its central axis is a twist. 
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Following 

Figure 2.6 Leading and follmving. 
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figure 2.7 Sequential use of body parts. 
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A rDtation indicates that the body part will turn uniformly, This is seen 

when the body as a whole turns. Hutchinson [12 J discusses this distinction 

at greater length. A modifier may be present to allow for alteration of 

the cross of axes used to determine the axis of rDtation: 

~revolution s1gns = (duration: rational; 
prDximal joint: joint name; 
axis: (direction description, segment); 
aTIDunt: revolution quantity; 
kind: (twist, rotate); 
modifier: (placement modifier, nil)). 

type revolution quantity= (sign: (clockwise, counterclockwise); 
rnagni tude: rational; 
origin: (current, stance, absolute)). 

The "amount" component is given 1n sign-rragnitude form, where the "sign" 

specifies whether the revolution is clockwise or counterclockwise and the 

"rnagni t-ude" is a rational number of full revolutions. In addition, an 

11origin11 component specifies whether 11amount11 is measured from the current 

orien-tation of the l:ody, the orientation of a frDnt-facing stance, or an 

absolute front orientation associated with the external environment. 

2.2.3. Facing signs 

A facing sign indicates a relationship between a body part surface 

and a direction. This relationship may be expressed in terms of direction 

signs and rotation signs, but it entails a different approach to movement 

analysis. Like the other instructions, a facing sign requires a duration. 

Then the body part surface and the direction it faces are given. Finally, 

a mdifier may be present to allow for alteration of the cross of axes used 

to detennine the facing direction: 

type facing signs = (duration: rational; 
area: surface; 
direction: direction description; 
mdifier: (placement modifier, nil)). 
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2.2.4. Contact signs 

Direction signs, revolution slgns, and facing slgns are all 

interpreted in terms of a mvement originated by a single joint. Contact 

signs, on the other hand, are interpreted by the monitor which supervises 

the behavior of all joint processors. A contact sign is represented as 

follows: 

~contact signs = (time: rational; 
contacts: sequence (object; relation)). 

type object = (hum:m: (indicator: person; 
place: surface), 

other: auxiliary object description). 

type relation = (kind: (relate, 
near, 
touch, 
support, 
passive); 

IIDdif iers : pmvePset contact modifiers) . 

type contact :rrodifiers = (in passing, rraintain, slide, surround). 

The fil'st component of a contact sign specifies the time at which the 

contact takes place. The next component specifies a list of contacts as 

object-Pelation pairs. If the "object~1 is a person, that person must be 

identified, together' with the specification of a location on the body. The 

relation classifies the contact as a relationship (mutual 11addl'essing11 [12] 

among the objects involved, witl1out actual physical_contact), nearness (also 

does not involve actual physical contact), touch, bearing of weight, or a 

passive approach to the relation. Optional modifiers may specify the contact 

taking place 11 in passing, 11 rraintaining the relation, sliding after contact 

has been established, or surl'Ounding the contacted object. (Cancellation of 

surrounding, rraintained, or sliding contact my be represented by an 

· instruction at a later time without the appropriate rrodifier. ) 
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2.2.5. Shape descriptions 

Shape descriptions specify paths or configurations of body parts. 

(At a higher level they my also be used to describe shapes of groups of 

·people.) They require a duration, designation of a proximl joint, a plot 

of points in three-space to determine the shape, and a designation of 

whether the shape indicates a position or movement description. A modifier 

may be present to alter the specification of the cross of axes: 

~ shape descriptions = (duration: rational; 
proximal joint: joint name; 
path: sequence vector; 
kind: (position, movement); 
modifier: (placement modifier, nil)). 

type vector = (x: real; y: real; z : real) . 

2 . 3. An Overview of Instruction Interpr·etation 

The primary purpose of the compilation stage of our system, as cited 

lll Section 1, is the preparation of a set of disjoint programs for the 

individual joint processors, the monitor, and the progression processor. 

Figure 2.8 shows how these processors are organized for the simulation stage, 

during which their programs are interpreted. The monitor is responsible for 

synthesizing a program which ~-.Jill then be passed on to a graphic processor. 

All contact signs are collected together in a single program for the monitor. 

Instructions affecting support are sent to the progression processor, and 

all remaining instructions are placed in the instruction streams of their 

respective joint processors. Within the progression processor instruction 

stream, support instructions are further partitioned: each block accounting 

for the movement of a single supporting joint. This partitioning is handled 

by the compilation stage since no instruction, in itself, indicates which 

joint processor it is meant to direct. 
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INDIVIWAL STPLAMS OF DIRECTION, REVOLUTION, FACING, AND SHAPE INSTRUCTIONS 

Figure 2.8 Prugra.-rn.s ·tor the system ne~rk. 
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All timing information for a joint processor lS provided by the 

duration fields of its instructions. However, block-structured parallelism 

enables the representation of concurrent execution of several instructions 

by a single processor [9], Thus, the absence of movement must be explicitly 

represented by a "null" instruction (a.Tlalogous to a rest in music notation 

[19]); and all substreams of a concurrency block must fill the same duration 

interval. The structure of a possible instruction stream is illustrated 

in Figure 2. 9. All instructions express time in terms of a rational number 

of time units. This unit is related to the simulation process by defining 

a simulation interval to be the real time between successive "snapshots!! of 

the human figure desired by the graphic processor. The simulation interval 

is represented as a nonzero number, where the only res-triction is that no 

instruction my be .gin or end between simulator 11 snaps rots 11 or movle frames. 

TI1e simulation interval rray be fixed by the user or may be computed by the 

monitor based on the earliest starting time of the upcoming set of instructions. 

(Each processor can supply this information to the IIDnitor.) By permitting 

the interval to vary, the simulator can treat quiescent periods more 

efficiently. 

The genera~ control of the simulator involves the iterative execution 

of the following six steps for each simulation interval: 

1. Tile monitor generates instructions to initiate contacts. 

2. All current activities are represented by (joint processor, 

instruction) pairs; these pairs are assigned a priority ordering 

based on body structure. 

3. Tile monitor allows_the progression processor to implement any 

currently active support movements. 
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figure 2.9 Structure of an instruction stream. 
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4. The JlDnitor allows the imp1ementatl.on of each (joint processor, 

instruction) pair according to the priority order established ln 

Step 2. Pairs with the same priority (and therefore the same 

joint processor) are executed concurrently by the joint processor. 

5. The progression processor adjusts balance, if necessary. 

6. The JlDnitor calculates all final body positions and prepares the 

output for the graphic processor. 

For each simulation interval, the 11Dnitor must first establish how 

contact instructions may be executed. Since contacts have no explicit 

duration prior to achievement, the monitor must utilize suitable existing 

instructions or synthesize new ones for appropriate joint processors. The 

monitor must next organize the actual execution of the other processes so 

that thej~ sequential execution will in fact appear logically parallel. A 

·priority ordering is computed by the monitor to insure an overall determL~ism 

to joint JlDvements and to facilitate the manipulation of joint location 

information stored in the body data base (Section 3. 2) . Since a joint 

processor may be executing several instructions in a conceptually parallel 

fashion, a priority is computed for each active instruction of each processor. 

Should these priorities be the s~~e, the processor itself establishes the order 

of execution 1.vithin the set. The monitor now transfers control to the 

progression processor, signalling that modifications to the body data base 

my be performed. After support JIDvements, the joint processors execute their 

instructions based on the order scheduled by the monitor. vJhen all the joint 

processors have completed their current instructions for this cycle, the 

monitor again calls upon the progression processor to balance the body, if 

necessary. 
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At the completion of all processing for a simulation interval, the 

monitor outputs a single stream of commands to a graphic prDcessor which 

constructs and displays an inage of a human figure [ 2]. Over a sequence of 

simulation cycles an an:Una.tion is pYDduced. If desired, the monitor also 

generates a textual report of the model's position, contacts, and collisions. 

2 . 4. An Exarr.ple 

As an example of the simulation pYDcess, consider the interpretation 

of the labanotation segment illustrated in Figure 2 .10. I-t describes one 

cycle of a norml forward walk: first the left foot steps forward, the_n the 

right foot follows. Because the direction signs for support actually desc-£>ibe 

the transference of weight, the feet do not move with respect to the floor 

during a forward direction sign; rather~ the center of gravity moves fonJard 

[12]. During this forward movement of the center of gravit'J, the right arm 

first moves so as to point stralght down fYDm the shoulder, then moves to a 

position slightly forward of the body. The left arm moves in a complementary 

fashion. The final arm positions are shown in Figure 2.11. 

The Labanotation segment is compiled ir~o three instruction streams: 

two direction signs for the left v . .Jrist, two mre for the right wrist, and two 

direction signs for the progression processor: 

left wrist processor: 

1. (l; 
(place; low; fonvard); 
(left; shoulder); 
position; 
(((left; shoulder); 

(((right; shoulder); (left; shoulder)); 
((place; low; place); (place; high; place)); 

(((right; shoulder); (left; shoulder)),~; 0))))) 
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Figure 2 .10 labanotation segment for a simple walk. 
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- 2. (1· ? 

(place; low; place); 
(left; shoulder); 
position; 
nil) 
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right wrist processor: 

1. (1; 
(place; low; place); 
(right; shoulder); 
position; 
( ((right; shoulder); 

2. (1; 

(((right; shoulder); (left; shoulder)); 
((place; low; place); (place; high; place)); 
( ((right; shoulder·) ; (left; shoulder)) ; ~; 0) ) ) ) ) 

(place; low; forward); 
(right; shoulder); 
position; 
nil) 

progression processor: 

1. ((left; ankle); 
0; 
(l; 
(place; middle; forward); 
(left; hip) ; 

ITDvement; 
((whole tody; 

(((right; hip); (left; hip)); 
( (place ; lovJ; place) ; (place ; high; place) ) ; 
(((right; hip); (left; hip)); ~; 0))))))) 

2. ((right; ankle); 
l; 
(l; 
(place; middle; forward); 
(right; hip); 
ITDvement; 
( (whole tody; 

(((right; hip); (left; hip)); 
((place; low; place); (place; high; place)); 
(((right; hip); (left; hip));~; 0))))))) 

All instructions are structured according to the descriptions glven lD Section 

2.2.1. However~ progression processor instructions are prefixed by two 

fields: one which designates the joint processor to '\-lhich the instruction 
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will be dispatched, and one which gives the ab.solute time at which the 

instruction is to be executed. Initial placement modifiers are provided for 

all joint processors; the absence of further placement JIDdifiers indicates 

that current description of the cross of axes is to be maintained. Also, 

all durations in this example are equal to one W1i t; in general, this will 

be a larger number, depending upon the temporal resolution required for 

describing other rnove~ents. 

Movements of the two arms are easily achieved by displacements of the 

wrists since there are no other instructions wl1ich affect any other joints 

in either arm. These (joint processor, instruction) pairs therefore receive 

a low priority and are executed after support move~ents in each cycle. The 

two instructions to the progression processor each describe a forward 

"movement"; the center of gravity is moved forward from its present location 

by a fixed amount depending on the step length. Because a support movement 

requires a "preparation phase" [12], execution of the current inst-ruction for• 

a supporting joint depends on the instruction which follows. The progression 

processor must alvJays look beyond those instructions it is currently execu.ting 

to establish the proper context. In this example, the left heel strike actually 

occurs at the star•t of the segment; therefore, the position at this time will 

appear to be in the midst of the walk. When the final instructions to the 

progression processor are interpreted, it notes that there are no further 

instructions for the left ankle and therefore leaves the body balanced by 

bringing the center of gravity over the contact area of the right foot. 

To achieve the appropriate leg movements i~mplied by the support 

instructions, the progression processor generates contact instructions which 

are dispatched to the rnonitor. These contacts define the timing of the foot 
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:rrovements and, together with the step length, the :rrovement of the center of 

gravity, and the geometry of the supporting surface, implicitly define the jojnt 

angles at the ankles, knees, and hips. For example, to prepare for the 

step onto the right foot, the progression processor issues two contact 

instructions to the :rronitor: one to break the right foot contact with the 

floor at time 0.5, ill1d the second to achieve a right heel contact with the 

floor at time 1.0 (the beginning of the first progression processor instruction 

to the right foot). 

In this example a complex movement has been specified by a few 

instructions, but much of this complexity is accounted.for by default 

conditions which may be overridden by additional detail in the instructions. 

By choosing a very small simulation interval, smooth animations can be 

produced. ~Vhile this would divide each movement into many intermediate 

positions, there would be no additional overhead in the number of instructions 

actually sent to each processor. 
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3. THE BODY DATA BASE 

We shall limit our discussion to movements which are skeletal, that 

is, which can be realized by a rody model composed of joints and segme...'1ts. 

Figure 3 .1 is a rrore detailed version of Figure 2 .1 vJi th an itemization 

of all joint processors. The segments are drawn as lines connecting joint 

nodes. They are used in the data structure primarily to define coordinate 

systems and surface features of the body. 

It will be useful to define a standard position for the body lll order 

to fix certain coordinate system relationships which we shall use later. In 

the standard position the rody is standing upright, all segments untwisted; . 
feet flat, toes forward; and hands at sides, palms toward thighs (Figure 3.2). 

In our first encounter with the data ba.se, we shall also find the rody 

standing on the floor of a room, at the origin of a rectangular coordinate 

system. In this position the Z-axis of the room points "up" (that is, 

opposed to gravity), the X-axis points "forward" (as indicated by the arrow 

in Figure 3. 2), and the Y-axis points 11left. 11 We shall frequently refer to 

room coordinates as "global" or "absolute." 

The body is positioned with respect to the room through a chain of 

special instances of joints and segments. The room is regarded as such a 

segment establishing the global reference system. It only articulates with 

a ·single joint named "center of gravity." This joint, in turn, connects 

the room segment to a segment named 11whole rody." Finally, this "whole 

body 11 segment is connected to the root of the body tree, generally the 

center hip joint. If necessary, however, any other joint may be substituted 

as the root, since the graph structure of Figure 3.1 is undirected. (Figure 

3.3 illustrates these relationships.) 
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Figure 3.2 Standard position of J:xxly. 
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Figure 3. 3 Relating the body to the room. 



'The center of gravity is represented as a "joint" and is naintained 

directly by the progression processor. It is the only joint allowed to 

translate with respect to its adjacent segment The whole body 

segment permits JIDVements of the body with respect to a line of direction; 

it effectively JIDdels the "stance" orientation described by Hutchinson [12]. 

3 .1. Segments 

Segments provide the rigid but articulated skeletal framework of the 

body and determine its external (surface) appearance. These functions are 

incorporated into the "segrnent11 data type, whose components describe the 

relationship between the joints connected by a segment and also store 

inforrration related to physical description of tl1e associated body surface: 

~ segment = (name: sequence character; 
prox.inal : joint ; 

!Y:P.e sphere 

!YP_~- feature 

distal: joint; 
distance: real; 
local directions: (forv;rard: vector; 

left: vector; 
up: vector) ; 

twist: (positive limit: real; 
negative limit: ·real; 
current: real) ; 

orientation: vector; 
stop: proc (vector) logical; 
enclosure: sphere; 
centroid: vector; · 
mss: real; 
surface: sequence sphere). 

= (origin: vector; 
radius : real; 
features: sequence feature). 

= (name: sequence character; 
direction: - vector) . 



36 

Each segment has an internal name~ glven as a, character string. Of the two 

joints connected by the segment, the one which lies closer to tl1e root of 

the body tree (as defined above) is called the proximal joint and the other 

is called the distal joint. (A joint likewise connects proximal and distal 

segments.) 

A cross of axes is defined for a segment such that the proximal joint 

is the origin and the ray connecting the proximal and distal joints defines 

the Z-axis direction. The coordinates of the distal joint are therefore 

(0,0 distance) where "distance" is the fixed length between the joints. The 

X-axis is chosen to lie in a vertical plane perpendicular to the global Y-axis 

through the proximaJ. job1t and also to have a positive forward component 

when the body is in the standard position (Figure 3. 4) . (If the Z-axis 

and the front direction coincide, then the X-axis is chosen to point 

upwards.) TheY-axis is the direction which yields a right-h,~ded coordinate 

system. 

As a segment ITDves, its cross of axes moves rigidly ,,Jith it. Certain 

directions are defined in this local coordinate system to correspond to the 

conventional front, left, and up directions of the segment. For example, 

the negative Z-axis is up for the lower arm and the positive X-axis is front 

for the head, independent of the current oriQ1tation of these segments ln 

the overall body p:::>sition. Since a body segme.nt may be capable of twisting 

along its Z-axis, the cross of axes may be rotated at the distal joint 

(Figure 3. 5). Positive and negative rotation limits from the normal position 

of the X-axis (established above) define admissible twists. 

A segment's orientation is given as a vector which is the position of 

the distal joint in the cross of axes of ·the proximal segment of the proximal 
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joint (Figure 3. 6) , Movements of the proximal segment cu;e naturally 

transrni tted thruugh the common joint with no further computation. In 

addition, a "stop" function specifies whether or not a particular orientation 

is admissible. It may be used, for example, to limit movement to part of one 

plane, as at the eltow or knee. 

Segments carry information to aid collision detection and support 

computations. Tne "enclosure" is the minimum sphere wr.ich includes the 

entire surface of the segment. It is used to approximate the location of 

the segment when comparing it against other (non-adjacent) segments and 

is fixed when the body model is dimensioned. A segment also has a fixed 

centroid (a vector in the local cross of axes) and a mass value which the 

monitor uses to compute the overall center of gravity for the body. 

The "skin" (surface) of a segment is defined by a set of overlapping 

spheres [ 2 J. The origin of each sphere lS glven as a vector in the 

segment's cross of axes. If the segment lS twisted the sphere center is 

rotated about the Z-axis by an amount proportional to its distance along 

the segment from the proximal joint, which is just the Z component of 

the sphere's "origin" vector (Figure 3.7). Certain "features" of a segment 

may be distinguished by giving a point on a specific sphere a na~e which will 

allow it to be specified for a contact location or used in collision reports 

from the monitor. The feature direction is indicated by a vector in the 

segment cross of axes; normally this direction from the sphere origin will 

define the surface perpendicular (Figure 3.8). 

3.2. Joints 

Joints may be regarded from t\\0 points of view. First of all, they are 

distinguished points within the body which trace paths in space and determine 
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how the entire l::x:::>dy is positioned, Secondly~ they are points of articulation 

of segments. At each joint the articulated segment which lies along the 

path connecting that joint to the root of the body tree (as defined al::x:::>ve) 

is called the proximal segment of the joint. All other segments articulating 

at that joint are called distal segments. These two views of a joint are 

both incorporated in the following data structure: 

~ joint = (name: sequence. character; 
connection : (proximal : segment ; 

distal: powerset segment); 
location: (previous: vector; 

new: vector; 
forbidden: sequence vector; 
valid: logical)). 

The joint must connect a proximal segment with a non-empty set of distal 

segments unless it is an extremity. Finally, a joint has a dlill'acter string 

name which serves as a label. 

In Section 2.2.1 we defined position and movement descriptions for 

direction signs. In the simulator, these concepts are generalized to apply 

to any instruction. A position description indicates the location of the 

joint irrespective of any previous location (dir,ection signs and shape 

descriptions of the "position!! kind, facing signs, contact signs, and some 

revolution signs). A move~ent description indicates the joint location 

relative to its location at the start of the instruction (direction signs 

and shape descriptions of the !!movement!! kind and some revolution signs). 

Since an instruction is discarded by the joint processor after its 

interpretation is complete, it is necessary for the monitor to save the 

current locations of each joint for possible use in the next simulation 

cycle. At the beginning of each cycle, every valid Hnew11 joint location 

·is copied into the corresponding "previous11 register. (Initially the 
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standard position of the body provides this data, ) During instruction 

execution this previous location may be used to establish a joint location 

with respect to a particular cross of axes. This cross of axes may be 

different from that originally used to achieve the position. For example, 

there are different "holds" to preserve various aspects of a position [12]; 

and it is primarily for ITDvement instructions which arise from "hold" 

conditions (Section 4.2.2) that the previous location is necessary. 

For a ITDVeT11ent description the "previous" location must be used to 

establish the desired goal location; although this information is obtained 

directly from a position description. In either case after the new position 
. 

is computed, the 11newn register receives the location of the joint in the 

global coordinate system and the 11valid" flag is set to 11true. 11 The ''valid11 

flags of all other joints vJi thin the scope of the instruction are set to 

11false" since their absolute locations may no longer be accurate. They will 

be brought up to date when that information is needed. 

Once a joint is positioned, the "forbiddenn register prevents further 

JIDvement in one or JIDre directions during the remainder of the simulation 

cycle. This register is initially nil (except for ankle and end of foot 

processors in standard position which cannot move downward any further) . It 

is used to maintaLD contacts with parts of the room (such as the floor), to 

limit the movement of the center of gravity (so gestural movements will not 

perturb its path), and to execute multiply--constrained movements (for example, 

whole body twists while supported on both feet). 

3. 3. Data Base Management. 

Joint processors may obtain any information stored in the body data 

base upon request to the monitor. Only a limited set of JIDdifications to the 
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data ba.se are penni tted, hmvever, and these are also mediated by . the 

monitor. The primary reason is that all movements are ultimately executed 

by general algorithms wl1ich are shared by all processors (via the monitor) 

[5]. These general algorithms are the data base "primitives" which the 

other processes use to irr~lement their movement instructions. A second 

reason is that. during the execution of these algorithms, .certain body 

limitations may be reached, such as joint stops or segment collisions, and 

the monitor may be able to invoke some general strategy to finish executing 

the movement (such as t'ivisting the proximal segment or trying an alternative 

movement path in a linkage situation). If these heuri::;tics fail, control 

may be returned to the processor issuing the request. 

The penni tted movements are: 

l. MOVE a joint to a point in a reference system from a given 
fixed end. 

2. ROTATE a joint by a glven angle about some axis from a given 
fixed end. 

3. 1WIST a joint by a glven amoWlt from a glven fixed end. 

4. BEND a joint to some angle. 

Each of these functions is outlined below. 

The MOVE function requires that one- , two-, or three-segment linkages 

be moved in space from an initial position to the given fjnal position. 

One and two segment solutions are straightforward, while the three segment 

case involves choosing reasonable heuristics to select a solution among 

the many possible. All cases must take into account joint limits and 

forbidden directions. These algorithms and their :implementation are discussed 

by O'Rourke [17], TWIST, BEND, and ROTATE directly update the orientation 

and twist jnformtion on the distal segment of the indicated joint· TWIST 
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merely alters the twist angle, possibly twisting proximal s.egments if a 

limit is reached, BEND changes the orientation vector by changing the 

angle betvJeen the z.,..axes of the segments adjacent to the joint. The ROTATE 

function specifies an axis of rotation about which the orientation vector is 

transformed. Other segments may be affected if the rotation attempts to 

move the joint into a region restricted by the stop function. In the case 

of either BEl'JTI or ROTATE, the twist of limbs which have significant f-reedom 

of rotation (at the shoulder or hip) are adjusted by a standard orientation 

function for the 1£~ to conform to the conventions of Labanotation [12]. 
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4. JOINT PROCESSORS 

The joint processors are responsible for ~terpreting the active 

direction, revolution, facing, and shape description instructions during a 

simulation cycle. While the monitor provides some scheduling between the 

various processors, each joint processor is responsible for determining 

the proper sequence of actions needed to implement concurrent instructions 

with the same priori ties (Section 2. 3) . We shall nmv describe the data 

structures maintained by each j oiJlt processor, after which we shall show 

how each movement or concurrency of movements is achieved. 

4.1. Data Structures of a Joint Processor 

There are three groups of registers within each joint processor. The 

first contains the instruction stream, the second consists of input sequence 

control, and the third is composed of register subsets specific to each 

instruction type. The first two sets will b2 described in this section, 

and the instruction registers will be described in the follovJing sections. 

As we briefly discussed Li Section 2.3, instructions to a joint 

processor are formed into strea~s. Each stream consists of sequences of 

instructions or concurrent instruction streams. These are formatted so that 

only one level of parallelism is necessary: 

~ stream = sequence (sub stream, concurrency) • 

!.Y;ee concurrency = sequence substream. 

~ sub stream = sequence instruction. 

~ instruction = (direction signs, 
revolution signs, 
facing signs, 
shape descriptions). 

d · '-' · 2 9 Wl. thl. n a substream all timing This structure is reflecte m 1 1.gure • . 

information is based on the sequence of inst~uction durations; likewise, 
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substreams and concurrencles are assumed to be sequent;i..al, w;i.. thout time "gaps, " 

Since each joint processor is responsible for handling an instruction 

stream, program control consists of one or more program_ counters: There is 

one program counter for each parallel substream of the instruction stream. 

Each program counter stores a 9elay va1ue which indicates tvhen the associated 

instruction substrearn must be "advanced," that is, the 1ead e1ement dele~ed. 

~program counter = sequence (delay: rational; 
association: substream). 

Initially the joint processor contains a single program counter with a delay 

of zero. 

At the beginning of a simulation cycle, the joint processor checks the 

program counters. For each program counter whose delay is zero, the following 

steps are repeated until the delay is nonzero : 

1. Fetch and interpret the instruction in its associated substream. 
If the substream is nil, then there are rno possibilities: 

1.1 If this is the end of a substream or concurrency, the old 
program counters are replaced by a new set, each referring 
to a new substream. 

l. 2 If this is the end of the entire stream, the joint processor 
becomes dormant for the renBinder of the simulation. 

2. Increment the delay value by the duration (possibly zero) of the 
instruction just interpreted. 

3. Delete the interpreted instruction from the substream. An empty 
substream is represented by nil. 

An interpreted instruction is placed lD the appropriate registers for 

its instruction type. After these registers are set, the monitor interrogates 

each active joint processor to determine the "scope" of each (joint processor, 

instruction) pair (Section 5.1) and the shortest (nonzero) delay among all 

the program counters. The simula-tion interval is· the smller of this delay 

value and a fixed minimum interval. Every program counter delay is then 
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decremented by the simulation interval. The monitor can now proceed to 

schedule instruction execution. 

4.1.1. Direction registers 

Interpretation of a direction sign depends essentially on the 

extraction of three pieces of information. Most important is the 

specification of a movement destination. This destination is interpreted 

with respect to an environment, which is constructed from the fields of 

the direction s1gn. Finally, it is necessary to keep track of the duration 

remaL~ing for the achievement of the destination. Additional modifiers 

may be supplied to further define the movement. A set of direction 

registers thus has the following structure: 

~ direction registers = (goal: destination; 
env: environment; 
duration remaining: 
modifiers: po~·7erset 

The environment has the following structure: 

type environment = (cross: reference; 
fixed end: joint~ 

rational; 
constraints) • 

augmented scope joint: joint; 
current position: vector). 

The "fixed end" register is filled directly from the "proximal joint" field 

of the instruction; and 11cross" is established by a placement m::xiifier or, 

if a placement modifier is not specified, by a default associated with the 

join-t processor. The "augmented scope joint" is normally the same as the 

fixed end but may be altered by the joint processor in response to specific 

commands (inclusions in a direction sign) or specific movements (destinations 

which physically force inclusions). It is used by the monitor to establish 

an instruction's priority (Section 5.1). 

The "current position" is obtained from the nonitor as the location of 
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the joint relative to the "cross", The m::m;i,tqr mu:;;t use the latest 

information in establishing the reference; hence the "current position" will 

take into account the results of any other mvements which have already been 

executed during this cycle. This may force the computation of the absolute 

locations of any required joints which are currently flagged as not valid. 

The system of reference for an environment is given by the following 

substructure: 

~reference= (origin: (joint, vector, local vector); 
orientation: (forward: direction; 

left: direction; 
up: direction)). 

~ local vector = (segment; vector) . 

~direction= (fixed: (vector, local vector), 
body: (from: (joint, local vector); 

to: (joint, local vector)), 
tang8I1t : (real ; real) ) . 

A system of reference is established by locating its origin and giving the 

directions of its three coordinate axes. The location of the origin may be 

given in terms of a joint, a vector of absolute coordinates, or a vector 

defined in terms of the local cross of axes associated with a segment. 

Similarly, axis direction may be given by a vector, either in absolute 

coordinates or in terms of some segment's local cross of axes; alternatively, 

the direction may be glven by a line connecting any two points of the body 

or by the tangent to the current path (given as a vector in the plane of the 

floor). 

The structure of "destination" depends on whether the ''kind" field of 

the direction sign is 11position" or "movement": 

type destination = Cposi tion: 

mvement: 

(to: vector; 
path: (straight, radial)), 

(toward: vector; 
from: vector) ) . 
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All vectors are interpreted with respect to "cross'' as provided by the 

environment, If the destination is a ''position", the joint will be noved 

"to" that position from its "current position" along a straight or curved 

( 
11radial") path. A "movement11 description is always interpreted as being m 

a straight line from the location of the joint at the start of the instruction 

interpretation. (This location, expressed in terms of "cross", is stored 

in the "from" register.) The magnitude of the movement vector C:'towardn) 

is detennined by either the joint processor (for gestural movements) or the 

progression processor (for support movements). 

Finally, we have several possible modifiers: 

type constraints = (contacts, deviation, bends). 

type contacts = sequence contact block. 

type deviation = proc (real) vector. 

type bends = sequence (location: joint; 
surface: local vector; 
begin: rational; 
duration: rational; 
achieve: (fraction, nil)). 

Information regarding contacts is supplied by the monitor as part of the 

interpretation of contact signs. We shall pursue this further in Section 5.2. 

The directional displacement is a 17deviation description" (Section 2. 2 .1) 

represented as a vector-valued function of time, where -the vector output 

is defined in terms of the system of reference given by the environment. We 

shall see in Section 4.2 how this function is integrated into the actual 

movement implementation. 

Bends account for the remainder of the information specified by a 

direction sign. The affected joints will normlly include all body joints 

betvJeen the augmented scope joint and the joint processor. Omitted joints 
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are assumed to be unaltered by this particular ;instruction, Each joint is 

given a bending surface, a starting time~ and the length of time allovved 

until the bending angle lS achieved, The bending surface is a local vector 

which translates into a rotation axis at the joint; and the angle is 

expressed as a fraction of the total possible bend in that direction; this 

value can be computed by the rronitor from the current joint position and 

the joint stop function. A value of nil in this register is interpreted as 

11Whatever bending is necessaryn and can be used to implement multiple bends 

whenever explicit bends have not been specified [17]. By including jo~1ts 

in the bending list which lie further from the joint than the fixed end, 

inclusions (Section 2. 2 .1) may be implemented. The degree of inclusion lS 

translated into default bending fractions which will be used as maxima, 

not necessarily as values to be strictly achieved. 

The bending registers are also used to effect most !!intermediate joints!! 

rrodifiers (Section 2.2.1). Leading and following are implemented by srrall 

bending rrovements followed by bends in the opposite sense. Inward a.'!d 

outward successions are sequences of such bends and cancellations. Default 

values for these movemerrts are established by the processor whenever they 

are not specified in the instruction. Guidance by a body surface is 

handled differently: a facing sign is generated by the joint processor to 

orient the surface toward the direction of travel during an initial fraction 

of the direction sign. 

4.1.2. Revolution registers 

Revolution signs require for their interpretation the same timing and 

environment information as do direction Slgns. In this case, however, 

the movement is represented as the remaining orientation change about an 
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ax1s~ along with a modifier indicating whether this change ~$ to be 

achieved as a twist or a rotation: 

type revolution registers = (env; environment; 
duration reiiBining: rational ; 
axis : vector; · 
change remaining: real; 
revolution modifier: (twist, rotate)). 

Orientation changes are specified as multiples of a full revolution about 

the 11axis", expressed as a vector in terms of the environment "cross" 

Initially the "change remaining" value is the same as the "amount" field 

of th~ revolution sign. The "sign" value is subsumed into the "axis". 

vector direction so that the rotation Gr twist follows the right-hand rule. 

We shall make the restriction that the fixed end of the revolution be 

identical to the origin of the environment 11cross", except for instructions 

to the progress1on processor. Also, for a twist the joint itself must lie 

on the axis. 

Revolution may describe particcliar positions or relative changes in 

the orientation of a joint with respect to its current "fixed end". These 

cases are distinguished by the "origin" field of the revolution 

sign. If this value is "stance" or nabsolute", an appropriate direction 1s 

computed from the "sign" artd "amountn values. This direction is then used 

as the "direction" field in a facing sign generated by the joint processor. 

The facing sign replaces the revolution sign and inherits its other attributes, 

transformed as necessary. 

When the revolution sign "origin" is "current", a relative angle change 

1s assumed. The joint processor will execute the total aJnowJ.t of change 

requested, even if other D1ptructions augment or diminish the apparent 

rrovement. For example, the orientation of the proximal segment may change. 
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While this may induce an additional twist? la,banotation conventions 

[12] preclude any alteration to the "change remaining" register. 

4.1.3, Facing registers 

The interpretation of facing Slgns requlres nearly the same information 

as is provided by revolution signs. This makes sense, since a facing sign 

invokes twists or rotations indirectly and is the position description 

analog to a revolution sign: 

~ facing registers = ( env: environment; 

~ facing = (area: 
goal: 
axls: 

duration remaining: rational; 
facing modifier: (twist, rotate), 
action: facing). -

vector; 
vector; 
vector). 

The "goal" register stores the orientation which the surface "area" ls to 

achieve. Eoth vectors (as well as the '~axis") are e).'})ressed in the local 

coordinate system of the segment containing the surface to be oriented. The 

origin of this system will then be situated at the joint whose processor 

received the instruction. 

The llaxis" vector is derived rather than supplied by the instruction. 

It is chosen as that perpendicular to the plane formed by the "areal! and 

"goal" vectors such that the former is rotated toward the latter through an 

acute angle. (If the other direction is desired, a simultru1eous revolution 

or an intermediate facing must be used.) If the tv.Jo vectors are directly 

opposed, then the axis is chosen to lie as close as possible to the Z-axis 

of the distal segment containing the surface area. If this cannot be done 

(the vectors are parallel to the Z-axis), the X-axis of the segment is chosen 

arbitrarily. If the two vectors represent the same direction, then the 

joint has achieved the facing goal. Since a fixed end is not provided in 
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the facing sign, the joint processor itself is used, The facing is then 

implemented as a rotation or twist of the d~stal joint of the segment 

containing the surface about the ''axis". Facings of the "twist" type can 

only arise from modified revolution instructions (Section 4.1.2). 

4.1.~ Shape registers 

Shape descriptions, like direction signs, may be either position 

descriptions or mov~~ent descriptions: 

type shape registers = ( env: environment; 
duration remammg: rational; 
action: shape) . 

type shape= (kind= (position, movement); 
configuration: proc (real) vector). 

For a position description the body parts between the joint processor and 

its fixed end are to achieve some configuration in space. This 1s g1ven 

as a vector function whose input 1s the distance along the path connecting 

the processor's associated joint to the fixed end. TI1e configuration may 

then be achieved by iteratively fitting body segments to the shape. A 

movement description, on the other hand, describes the path of the joint 

associated with the processor for the indicated duration. The "configuration" 

is now interpreted as a vector function of time, appropriately scaled so 

that the final position is achieved at the end of the ins·truction. 

4.2. Increment and Destination Computation 

The rrost elementary fllilction of each joint processor is to move its 

joint towards a destination point, direction, or orientation during each 

simulation cycle. At the beginning of a simu1ation cycle, the joint 

determines its current position with respect to the appropriate reference 

system. This is necessary because the joint nBy have moved from its goal 

at the end of the previous cycle; other processors or chctnges in the location 

or orientation of the reference system could have moved it. We shall assume 
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that the destination (or final goal) of the movement i~ kna\'XDt How much 

the joint will move depends on the simulation interval: 

if duration remaining .::_ simulation interval 
the12 do nmove :t from current position to destination; 

delete instr11ction; (it's completed) 
end 

else do "move" (simulation interval/duration remaining) 
of the way from current position to 
destination; 
duration remaining = duration rernctining 

- simulation interval; 
end 

The definition of "move" varles from instruction to instruction. It will 

be helpful to define three functions to perform various interpolations, 

NVRI , NVLI, and NPRI: 

NVRI: ~ (current: vector; destination: vector; amount: fraction) 
returns (vector). 

This procedure (New Vector; Radial Interpolation) returns the vector which 

is the fractional amount of the positive rotation from the current vector 

to the destination vector. The length of the result is linearly interpolated 

between the current and destination vector lengths (Figure 4.1). 

NVLI: proc (current: vector; destination: vector; 
-- amotmt: fraction) returns (vector) . 

This procedure (New Vector; Linear Interpolation) returns a vector which 

represents the fractional amount of distance from the current to the 

destination vector (Figure 4.2). 

NPRI: proc (current: vector; axis: vector; total: real; 
amount: fraction) returns (vector). 

In NVRI the axls of rotation is implicitly perpendicular to the two vectors. 

For NPRI (New Position; Radial Interpolation) the axis is provided. The 

result is the current vector-rotated about the axis by tl1e fractional amount 

of the total rotation desired (Figure 4.3). 
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figure 4. 3 Interpolation with NPRI. 
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Although these ;functions linearly interpolate to compute the result 

vector, we can scale the fraction by any function F such that F(O)=O, 

F(l)=l, and 0 ~ F(x) ~ l for 0 < x < 1. The identity function F(x)=x lS 

implicit in the above; but other non-linear functions may be used to emphasize 

smooth accelerations and decelerations [7,16,22]. We are avoiding this 

route for the present, however, since phrasing information is not 

specifically encoded into the instructions to the simulator. 

4. 2 .1. Position compu-tation 

For a position description direGtion instruction we must determine 

wh1ch type of path is to be used. The following decision procedure has 

been abstracted from Labanotation [12]: 

~ = arc length distance between current position and goal; 

ifli=0° 
then path = straight; 
---- use NVLI for interpolation; 

if oo < ~ < 900 
then path = radial; 
use ~~RI for interpolation; 

if goo < ll < 1soo 
then path = straight; 
---- include a slight deviation 

(depending on joints and position); 
use NVLI, then compute deviation; 

Changes of the first type arise when position and goal lie along the s~ne 

direction or when either is zero in the current reference system. The 

direction change in the second case does not, in itself, cause a change ln 

the distance between the joint and its fixed end. In the third case, however, 

length changes are mandatory and must be compensated by bending intermediate 

joints. The timing and degree of bending are stored in the bend registers 

of the direction instruction. Both this inforrration and the indicated 

deviation are supplied by the joint processor depending on its physical 
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capabilities and the current and goal directions~ 

For shape descriptions of the position type, the movement process lS 

one of matching joint angles to the path of direction vectors. Starting 

at the fixed end, successive joints are adjusted by radial interpolation 

(NVRI) to approach the tangent to the shape at the appropriate distance. 

(The fixed end is "pinned" to the start of the shape; thus the first 

adjacent distal joint lS the first to be moved.) The arc length of the 

shape can be compared to the total body length between the joint processor 

and the fixed end (obtained from the monitor), so.that the distances 

involved are easily scaled. 

Revolution and facing instructions interpolate rotations with NPRI. 

Additional effort must be expended, however, in insuring that intemediate 

joints rotate, or segments twist, by the appropriate amounts. For the 

ell:::ows, wrists, knees, and ankles we can use the "1..miversal joint" property 

of these hinge connections to transmit a rotation in a distal se~nent 

to a twist or rotation of equal magnitude in the proximal segment. This 

lS not true for joints ln the torso because of the pivot-like spinal 

connection; nor is it true for the ball joints of the hips, shoulder and 

head. Generally, these joints nabsorb" rotations up to their physical 

maximu.'TIS . 

An additional problem must be confronted in twists or facings which 

include more than one fixed support or contact point, for example, a twist 

of the center hip with respect to the (fixed) foot positions on the floor. 

We cannot simply distribute these twists over the leg segments. Instead, 

a line connecting the left and right hips is rotated; and the positions of 

the knees are computed based on the hip and ankle locations. These positions 
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are then used to compute the actu~l rel~tive orientations ~t the knees and 

hips and the twists of the lower legs. If one or both feet are not restricted 

to immobile support contacts then some other action any occur. For example, 

if one foot is not supporting body weight then the normal twist 

calculations can be perfonned on the supporting foot. These and similar 

situations are processed by the monitor since they are caused by various 

external constraints on joint positions, namely contacts. 

4.2.2. Movement computatio~ 

Movement descriptions have uvo possible interpretations, depending on 

whether or not a direction of movement is specified. hlhen it is given, the 

joint rroves in that direction along a straight path. Intermediate positions 

are interpolated using NVLI with a "cu...r.rentn location of (0,0,0). Although 

the direction of movement lS glven in the direction sign, the length of the 

"destination" vector must be determined indirectly. Most direction 

instructions specifying movement alter support and are therefore handled 

by the progression processor. The "destination" vector is determined by 

the default step length or an appropriate modification of the default by a 

bend or stretch indication in the instruction. For non-support movements 

the magnitude of the movement may depend on a maximum displacement or some 

reasonable default movement rate. 

When no direction is specified the instruction is interpreted as a 

"hold"; that is, the joint is expected to maintain some fixed relationship 

to a given reference cross of axes ttrruughout the duration of the instruction. 

In this case, the position must be re-established every simulation cycle 

rather than achieved only at the end of the duration interval; so the location 

d l th "d t . t . " of the joint is used as the "current 11 vector an a so as e es ma lon 
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vector in NVLl, Any fraction of the total du:0a.t;i,on \v;i,ll therefore achieve 

the same position, 

For shape descriptions movement is specified by a three-dimensional 

path of points. As we have previously noted, we will.assillne that the 

intent is to distribute the movement evenly over the total length of the 

path. It is therefore easy to compute the total path length over the 

point set, if only as the surruned linear distances between the points. (Cubic 

interpolations could be used to "smooth" the path, making the path length 

that of the interpolated curve.) At any simulatiof! time the direct.ion of 

movement is toward that point on the curve lying (length/simulation 

interval) distance away from the current point along the path. For long 

simulation intervals the e:A'})ected shape may be somewhat distorted; but as 

these are again primarily paths for the progression processor, we can expect 

the simulation interval to be short with respect to the total time needed 

to traverse the path. 

4. 3. Simultaneous Ins·truction Execution 

During a simulation cycle a joint processor may be executing more than 

one instruction affecting the same sequence of body parts. A reasonable 

execution sequence for these instructions must be determined, although 

conceptually they are to be executed in parallel. Among concurrent 

instructions the default execution order is: 

l. shape descriptions of "movement" kind 

2. shape descriptions of nposition'' kind 

3. revolution signs of Protation" kind 

4. revolution slgns of "twist" kind 

5. facing signs 
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6. direction signs of "ITDvementn kind 

7. direction slgns of "position" kind 

The general rules used to construct this ordering can be summarized: 

* Shape descriptions are executed first since they define global 

ITDvements or configurations of body parts. 

Revolution signs are executed next since they tend to orient 

limb units. 

Facing signs are executed next since they may cause joint rotations 

or twists to achieve the facing direction. 

Direction signs are executed last since they move joints to 

specific locations in space, subject to the constraints established 

by the preceding instructions. 

In addition, the following factors were influential: 

1: "Position11 instructions are executed after "rrovement" instructions, 

since a position must be achieved regardless of the movements which 

co-occur with it. 

~·: Rotations are performed before twists because rotations do not affect 

intermediate joints; facing signs and twists do, so they must be 

concerned with the admissible positions and movements of the 

intermediate joints. 

1: Direction signs must be executed after facing signs to assure that 

contact processing will establish the desired relationships 

(Section 5. 2. 2) . 

~·: "Position" direction signs are executed after "movement11 direction 

signs so that contacts (maintained by 11movement" direction signs) 

may be broken by subsequent positioning instructions. 
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The modifiers of a direction sign are applied to the ~sic direction 

movement. The deviation function is applied to obtain an absolute 

displacement which is added to the current position. From this adjusted 

position bends are executed, proceeding along successive joints toward the 

augmented scope joint. Finally, contacts are approached or maintained 

according to the process described in Section 5.2. 
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5. MONITOR 

In Section 2,3 we indic~ted how the.monitor structures the overall 

control flow during a simulation cycle. We have noted that the monitor 

manages the body data base and provides computational utilities for 

maintaining and modifying the data base in response to requests from 

the other processors. In this section we shall discuss the remaining 

duties of the monitor: scheduling the current set of concurrent 

processes, and moderating the achievement and maintenance of contacts. 

5.1 Priorities of Processing 

Since the monitor maintains the body data base, it must also be 

responsible for the order in which changes are allowed during a sim­

ulation cycle. Because the body must remain connected, all movements 

(with the exception of movement of the body as a whole) must be real­

ized by rotations. This is achieved by changL~g the orientation 

vector of the individual segment data structures. As we have noted, 

however, rotating one joint may invalidate the absolute positions of 

all other joints which lie "beyond" that joint in the body tree (i.e. 

further from the root) . Since a processor controlling one of these 

joints may be executing an instruction, it is imperative that that 

processor have current information on the location of its joint. 

During a simulation cycle the monitor must schedule the active 

processes to insure the determinism of the resulting movement. Thus, 

the semantics of a particular set of concurrent instructions should not 

be different from one execution to the next. Put somewhat differently, 

the individual joint processors determine the semantics of the instructions 

they are currently executing, while the monitor determines the semantics 

of the collection of executing processes with respect to the structure 



66 

of the body. 

I~ is the~efore necessary to determine ~ priority for the order of 

execution of all concurrent ;instructions, This priority is based on 

whether one subtree of the body tree is contained in another, and which 

of these are the 11largest" among the Cl...lr';r'ent set of trees. The scope 

of an instruction is defined as the subtree of the body tree formed by 

the directed path from the fixed end of the instruction through the 

joint receiving the instruction, followed by the remainder of the body 

tree rooted at that joint (excluding the path already defined to the 

joint). We shall call a particular kind of subtree an augmented scope 

tree if the initial path is rooted at the augmented scope joint. For 

example, if an instruction to the center shoulder specifies the center 

hip as fixed end, but the left hip is the augmented scope joint, then 

the augmented scope tree is shown in Figure 5 .1. 

The instruction priorities can now be derived from relationships 

between the set of augmented scope trees. vJe first de£ ine a maximal 

instruction and compute priorities among the set of maximal instructions. 

A maximal instruction is one whose augmented scope tree is completely 

contained in no other augmented scope. The remaining instructions can be 

assigned priorities through an ordering defined among the subtrees of-

an augme~ted scope tree (based on containment of one subtree in another). 

A maximal instruction augmented scope may still intersect that of another 

instruction, so we distinguish an isolated maximal instruction as one whose 

augmented scope lS disjoint from or else shares only the root joint witl1 

any other maximal instruction, Otherwise the maximal instructions overlap: 

at least one edge (segment) of the body tree is corrrrnon to both. 

1m isolated maximal instruction is independent of any other maximal 
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instruction and receives the lowest pri0ri,ty. To d;i.fferentiate i3,JIDng over-,-, 

lapped ~irrBl instructions, we use two heuristics; 

l, Assign higher priority to the maxirrBl instruction having a support­

ing joint Hi thin its augmented scope. 

2. Assign higher priority to the rraxirrBl instruction having a passive 

contact point within its augmented scope (Section 5.2.1). 

These are applied so that (1) has precedence over (2). The first heuristic 

arises from the fact that a supporting joint carries weight ru1d cill1not be 

moved with respect to the point of support; thus the remainder of the 

rody must be positioned relative to that constraint. The second heuristic 

derives from the execution of contacts: an active con~'l:act point must 

adjust to the movements of a passive partner contact point and therefore 

must be moved last. In case of ties, a choice is made arbitrarily, although 

it is expected tl1at this case will arise infrequently: overlapping scopes 

are apt to be ambiguous even to a humru1 interpreter. 

Once the priorities of the max:im:::tl instructions are established, 

priorities for the remaining instructions depend only on subtree contain­

ment. vJe will also adopt a "depth-first" ordering such that all inst-ructions 

"less than" a maxirrBl instruction of highest priority are executed before 

the maximal instruction of next highest priority. The non-maximal instruc­

tion priorities therefore fall "beu,;~een" those of the maximal instructions. 

Consider two trees contained within the augmented scope of another instruc­

tion. They may intersect in one of seven ways (Figure 5.2): 

1. Same joint processors and augmented scopes. The order of 

execution is determined by the joint processor, not the monitor 

(Section 4. 3). 
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2. Same aup;nented scope, but joint of instruction one lies on path 

between augmented scope joint and joint processor of instruction 

two. Instruction one is executed first. 

3. Same joint processor, but augmented scope joint of instruction 

two lies between augmented scope joint and joint processor of 

instruction one. Instruction one is executed first. 

4. Different augmented scope joints and the joint processor of 

instruction tvvo lies in the subtree rooted at the joint processor 

of instruction one. Instruction one is executed first. 

5. Different augmented scope joints and joint processors, and the 

augmented scope joint of instruction two lies in the subtree rooted 

at the joint processor of instruction one. Instruction one is 

executed first. 

6. Same augmented scope joint, but joint processors are roots of disjoint 

subtrees. The relative priorities of the instructions are computed 

as if they were maximal instructions using the heuristics described above. 

7. Same as case 6, but with the augmented scope joint of instruction two 

between the augmented scope joint and joint processor of instruction 

one. Instruction one is executed first. 

5.2 Contact Processing 

Contact instructions are handled by the monitor s1nce contacts may occur 

between arbitrary body surfaces. We shall make the assumption that contacts 

are essentially local phenomena, in the sense that suitable instructions of the 

other types will approximately position the involved surfaces. We can therefore 

avoid defining a unique scope for a contact instruction;'rather, its effective 

scope will depend upon the instructions currently being executed by the 

affected processors. 

Contact signs in the monitor input stream are read and interpreted 
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at the very begin..11ing of the simulation 7 slnce the nlQni tor cannot know 

a priori what subsequent direction signs will be used to actually implement 

the contact. The contact signs are compiled into ~ontactblocks, one for 

each pair of objects in the "contacts" sequence of the instruction: 

type current contacts :::: sequence contact block, 

Whatever information cannot be compiled is inserted when suitable direction 

signs are found vJhich overlap the contact time. Many contact Slgns are 

generated during the simulation by the progression processor, and the 

monitor simply assimilates them into the "contacts" data structure as soon 

as they are received. Achieved and inactive contacts are deleted. 

The goal of contact processing is to convert the relational specifica­

tion in a contact sign into explicit points, distances, and directions. 

Achievement of a contact is thus dependent upon bringing two points together 

Hi thin a certain distance tolerance. Each contact block describes a single 

relationship between tvJo points (not necessarily fixed) on the surface of 

the body or on an auxiliary object. For each active contact point (there 

rrllst be at least one for each contact block), a joint processor is dele­

gated responsibility for moving the point to achieve the correct contact. 

These joint processors have (or else will be supplied with) a suitable 

direction instruction \..Jhose "contacts11 register (Section 4 .1.1) will refer 

to the contact block. The "influence" registers are used to control the 

rate of contact achievement. The "duration in-terval" registers contain 

the difference between the contact time and the starting time of each 

direction sign with its contact modifier: 
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(timing; ( sJt; ;r~tional ; 
duration remaining: rational; 
until; (rational, nil))); 

relationship: (upper limit:-real;. 
lower limit; real; 
initial distance; . real; 
current distance: real; 
difference vector: vector; 
weight: (real, nil)); 

contact 1: (place 1; virtual contact; 
delegate 1: joint; 
influence 1: real; 
duration interval 1: rational) ; 

contact 2 : (place 2 : virtual. contact; 
delegate 2: joint; 
influence 2 : real; 
duration interval 2: rational; 
role: (active, passive))). 

Timing information consists of the time at which the contact occurs 

("at"), the "dur>ation remaining" until the contact time, and the time when 

the contact is to terminate. The "until" register may contain an explicit 

termination time, determined from a later contact sign (see Section 2.2.4), 

or nil, in which case IIDvements of the joints 1:-Jill break the contact 

naturally. The "at" and "until" registers will hold the same value when 

the contact is "in passing". 

Because a contac·t sign need not describe an actual touch relationship 

between two contact points, we must allow the specification of any point 

related to a body or object surface. The "places" of contact are "virtual" 

points described by the "virtual contact" data structure: 

~virtual contact = (source: (body: (which: segment; 
using: (sphere, nil)), 

other: object); 
location: (fixed, sliding); 
direction: (vector, nil) ; 
point: vector). ---

The contact point may be associated with a body segment or another object. 

In the former case, a specific sphere 1nay be used; or the contact point may 
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"float" alx:mt the segment surface, The "location" O,f the contact point may 

be fixed or may be free to slide about within the prescribed domain. (for 

example, if a fingertip sphere is specified Ln a lKLnd segment, then a 

sliding "location" will allow a contact to occur anywhere on the sphere, 

not just in some specific sp::>t.) The location is further constrained by 

optionally specifying a contact "direction" in the local cross· of axes of 

the segment or object (figure 5.3). The "point" register contains the 

actual fixed s:wface contact point or the (variable) sliding surface 

point found during contact achievement, subject to the constraints in the 

other registers. 

Achievement of a contact involves two "places" and a relationship. 

If the virtual contacts have any locational freedom, then the points 

actually used are those representing any closest pair of points satisfying 

"the constraints on the two virtual contact sources. The "direction" 

registers (when non-nil) define the desired alignment of the virtual contact 

points (Figure 5.4). The monitor achieves the alignment by generating 

suitable facing instructions for the joint processors responsible for 

these contacts (Section 5.2.1). 

The remaining degree of freedom lS the distance between the contact 

llplacesH, and this is described by an "upper limit" and "lower limit" 

distance range. The "initial distance" and "current distance" between the 

contact "places" are also stored (figure 5.5). The distance tolerance lS 

set from defaults associated with the "kind" field of the contact sign: 

both limits are zero for ntouch" or 11 support", both are smll positive 

values for "near", and the "lower limit" is zero and the "upper limit" lS 

some maximum possible distance for "relate". A "surround" modifier is sep-
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arated into several contact blocks, each of which will be achieved 

independently but concurrently. Finally, "support" contacts indicate the 

weight they currently bear, since the rnon:i,tor obtains this infornation when 

computing the body center of gravity from the individual segment positions. 

Contacts which are not expected to be supports have a value of nil in the 

"weight" register. 

5.2.1 DeterniLDing contact scope 

The monitor must determine which joint processors are to implement 

each contact. Since at least one virtual contact must always move toward 

the other by explicit effort of a joint processor; it is designated as 

(active) "contact 1". The other virtual contact ("contact 2") my or may 

not be actively moved as part of the contact relationship (indicated by the 

"role" register). The delegate joint processors for each active contact 

are chosen by examining the set of instructions preceding the contact time: 

a delegate is a joint processor having the direction sign with the latest 

starting time prior to the contact, with its duration containing the contact 

time, and also with the virtual contact point in its augmented scope. If 

there is more than one joint processor and direction pair satisfying these 

conditions for a virtual contact poli1t, then that used is the one whose 

associated joint lies closest to the segment containing the virtual contact 

and whose augmented scope joint lies furthest from it. 

If there are no such processors, then a direction instruction is 

generated for the distal joint of the segment containing the virtual contact. 

The default fixed end for that processor becomes the fixed end of the 

instruction. The duration is the ;:;ingle simulation interval prior to the 

. contact, The instruction is interpreted as a movement of the virtual 

contact point (not the joi~t) to the zero vector in a reference systen with 
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origin at the location of the other virtual contact1s lower l~it ~l~ng 

the contact direction (Figure 5,6), (Bow this is done is described in the 

next section. ) Once the direction instructions are determined, their 

"contacts11 registers are set to refer to the appropriate contact block, 

Any difference betvJeen the contact directions is adjusted by generating 

facing instructions for each active delegate joint processor. These will 

have the same fixed ends and durations as their respective direction 

instructions. The ''area" facing register holds the contact direction, 

while the "goal" is the other virtual contact point (Section 4.1.3). 

If both passive and active joint processors are involved in a contact, 

then the monitor will perform any m::Nements of the passive joint first 

(subject to the established priority order). The active joint will then 

have the role of "pursuing" the passive one .. If both segments are active 

in the contact, then each is given its turn at achieving the relationship. 

Since either could reach its goal first, there is some nondeterminism 

in this procedure; but this should only cause unusual results when the 

simulation interval is inordinately large. 

5.2.2 Contact implementation 

We have reduced the problem of achieving a set of arbitrary contacts 

to the problem of defining how a single contact modifier affects the 

execution of a direction Slgn. If a single direction sign has :rrore than one 

modifying contact block, the movement of the contact point is the vector 

average of the set of contributing contact displacements which we shall 

define below, Multiple contacts may be achieved by a joint processor even 

if they occur at different times within the same specified instruction. If 

one such contact is not achieved to the specified tolerance, an error is 

reported. 
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By the joint selection criteri~ described m the J!receding section, 

a delegate joint processor should approach the general vicinity of the 

contact; thus the contact will modify the normal path of the joint. The 

desired relationship is effected by altering the normal joint paths by 

two factors: one, the distance influenc~, to push or pull the virtual 

contact points toward or away from one another; the second, the time 

influence, to postpone the maxj~um effect of one point on the other until 

the very end of the direction sign duration. For example, consider forwcu~ 

middle movements of each arm from side middle positions (Figure 5.7a), 

modified at the end by a hand clap contact (Figure 5.7b). The first factor 

will insure that the hands continue beyond the forward middle position to 

achieve the contact in the saggital plane of the body. The second factor 

causes the additional movement to occur primarily at the end of the direction 

moveJnent for each arm, otherwise the hands would approach one another too 

quickly and tend to cause contractions at the elbows (Figure 5.7, c and d). 

The distance influence has been chosen to be the piecewise linear 

function shown in Figure 5. 8 . The closer the virtual contact points, the 

more they affect each other's position. If the two points should move 

further apart than their initial· distance (and this were not desired), then 

the distance influence remains at some minimal level. If the contact is 

still required, the points will tend toward each other no matter how far 

apart they get. On the other hand, if no other contact sign explicitly 

cancels a contact once achieved, the points are allowed to drift away 

naturally when moved by other instructions. The time influence is simply a 

linear function which is zero when the contact is first encountered as a 

rrodifier in a direction instruction and one when the contact is expected 
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(a) start 

(b) finish 

(c) correct (curved path) 

(d) incorrect (deformed path) 

Figure 5.7 F.and clap :rrodifying forward middle positions for both arms. 
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(Figure 5,9), The time influence y~lue is undefined ~ter the contact is 

achieved, 

The two weighting factors are combined into a single ,influence value 

by multiplying them together and associp,t:i,ng h~lf of the resulting weight 

with each cont~ct, even if only one is active (otherwise the active point 

approaches the passive point too quickly). Thus each delegate joint pro­

cessor is responsible for achieving half the contact relationship; a passive 

contact does not participate at all. Since one active processor must move 

to actually achieve the desired relationship at the contact time, its 

influence is set to one on the very last cycle, otherwise the virtual 

contact points v;ould still be in a state of "approaching the relationship." 

Finally, the influence value is used to scale the distance between 

the tv;o contacts (the contact displacement) so that they approach or repel 

one another. In eacl:: simulation cycle, the virtual contact is first (roughly) 

positioned by the direction instruction to the delegate joint processor. 

Then the contact displacement shifts the point position~ and the monitor 

updates the body data base accordingly. 

The t~ning information needed to process a contact is shown diagram­

nB.tically in Figure 5.10. The direction duration is the given duration 

of the direction sign chosen to implement the contact. The contact "dilration 

interval" registers are assigned the difference between the beginning of the 

direction sign and the contact time for each delegate joint processor. (Thus 

the contact duration interval is less than or equal to the direction sign 

duration.) The 11 duration remaining" register of the contact block contains 

the difference between the current sirnulator' time and the contact time. 

The moveJnent of the delegate joint processor for each contact can now 
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be computed in the reference systerrt of the direction instruction, The 

(jojnt processor~ instruction) pair implementing the contact is allowed to 

execute according to the usual priority order, The joint is moved according 

to the direction destination (npdified by any deviations and bends) ; then the 

following additional steps are performed: 

l. Set the 11difference vector" register of the contact block to the 

vector between the two virtual contact points. (The facing 

instructions vJill insure that the actual contact directions line 

up if required.) The length of the difference vector is placed in 

the "current distance" register of the contact block. 

2. Compute the distance influence (Figure 5.8), a measure of how 

strongly the two contact points will attract one another: 

starting difference = !initial distance - lower limit! ; 

current difference= !current distance- lower limit! ; 

distance influence = 

max(l - m:m (current difference l) mln~~um influence) 
starting difference' ' 

where the minimum influence is some small positive number such as 0.01. 

3. Compute the time influence (Figure 5.9), a measure of how the 

contact achievement will be distributed over the contact duration. 

time influence = 1 - (contact duration remaining 
/contact duration interval). 

4. Since two contacts are involved, each is assumed to achieve half 

of the contact (even if one is passive). The value stored in the 

11influence" register lS therefore: 

inflU6lCe = (distance influcnce)(tune influence)~. 

During the final movement in the last cycle when the time :influence 

is 1, the processor moving last hc-:ts influence = 1. 
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5, Finally the contact displqcement lS computed by scqling the 

difference vector by the lower limit tolerance and the influence: 

contqct displacement ~ 

(difference vector) (current distance - lower limit) 
current d~stance (influence) 

This may reverse the d~ection of the difference vector, but that 

only indicates that the contacts are to be moved apart, not 

together. The virtual contact point is then moved from its current 

position by the contact displacement. 

In order to accomplish the last step, the joint processor substitutes 

the vir-tual contact point for its associated joint in the "current position'' 

direction register. It then executes a straight or radial path IIDvement to 

the position computed in Step 5, as if the joint itself were situated at the 

virtual contact point. The joint position in this configuration is then 

computed, and intennediate joint bends are adjusted as necessary. This 

process will additionally bring the contact points together precisely at the 

end of the contact duration interval. 

5.2.3 Contact maintenance 

Contact maintenance is controlled by the "until" register of the 

contact block. If this value should be the same as the time at wl1ich the 

contact is achieved, then the contact is transient. The contact block is 

deleted; and the direction instructions to the delegate joint processors 

implBnenting this contact are free to assume their original destinations (if 

they have any rerraining duration). 

Jf the contact is to be maintained the contact block is not deleted, 

but its 11duration remining" register is left at zero. lt will continue to 

affect the direction instruction it modifies until either that instruction's 
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norrral end or the contact 11untiJ 11 time. Duripg this ;Lnterya,l the ;rnaintena,nce 

process is exactly the same as tha,t used to achieve the actual contact by 

the last processor in the final cycle; the contact displacement is evaluated 

with an influence of 100% for one delegate joint processor or, if there are 

two, then 50% for the first and 100% for the second. 

When the direction instruction ends before the "until" time, the 

monitor must generate a new direction instruction to accorrmndate the contact 

block. This instruction specifies a movement direction of (0,0,0) in the 

(new) reference system situated at the other virtual contact point and 

parallel to the reference system of the containing segment or object. The 
. 

direction duration is the difference between the current simulator time and 

the "until n value; instruction processing (Section 4. 2. 2) will now ll1sure 

that the contact is maintained in each simulation cycle dtwing this interval. 
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6. PROGRESSION PROCESSOR 

The prqgression processor has three primary responsibilities: to control 

the movement of the whole body lD space? to determine the path of the 

center of gravity of the whole body, and to maintain balance when necessary. 

The :rrovements are described by instructions to joints which support the 

body, but these instructions are collected together into a single stream 

for the progression processor: 

type progression stream = sequence progression instruction. 

type progression instruction = (agent: (joint, whole body); 
starti rational; 
action: concurrency) . 

A "concurrency" has already been defined for joint processors (Section 4 .1). 

Each substream of a concurrency has an associated program counter with the 

same semantics as that of a joint processor. 

Because support movements depend upon succeeding instructions (perhaps 

to different support joints), the progression processor must determine a 

:rrovement in advance of its actual starting time. The progression processor 

may dispatch any of these instructions to another joint processor; so the 

original instruction, as well as its interpretation into the appropriate 

set of joint registers, must be saved: 

~ progression registers = (supports: sequence support joint; 
interpreted: JOlDt registers). 

type support joint = (present: ~equence instruction; 
begin: rational; 
prepare: sequence instruction; 
onset: ratlonal; 
between: (ground, step, jump)). 

The ,,present" instructions have starting time "begin", while the "prepare" 

instructions are the next set with starting time "onset" not equal to i'begin~'. 

The action in the interval between these two times is determined by the 
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"present" and "prepare" instructions, For exa,mple~ ;Lf these registers 

contain direction signs such that the duration of the "present" causes 

its end to coincide with ''onset'', then the "between" action is .''ground"; 

that is, that supporting joint will maintain its contact with the ground. 

Time gaps between direction signs result in a value of "step"; and if no 

other support joint has a direction sign during this gap, then the result 

is "jump". 

6.1 Progression Implementation 

We shall assume that the support joints are the two ankles to simplify 

the discussion. An instruction may cause local changes to the body center 

of gravity or more global changes requiring instructions to be sent to other 

processors. Effects will be described from sirr~lest to most complex, to 

aid understanding. 

A shape description of the position kind must describe the relative 

positions of support joints. This position is assumed by a process similar 

to that presented in Section 4.2.1. When the shape description is a move­

ment, it defines the (approximate) path of the center of gravity. (Although 

the path is defined in three dimensions, it is convenient to assume that if 

all the z-coordinates of the path are zero, it is actually a projection of 

the path onto the floor.) The path is approximate because the center of 

gravity is allowed to oscillate about that path during movements. A reason­

able rule is to require the midpoint of the path of the center of gravity 

during a step to lie on the global shape path (Figure 6.1) whenever the step 

direction does not coincide with the shape direction. 

Facing signs for a support joint are passed on to their respective 

processor input streams. A facing sign for the whole body causes a whole 

oody rotation (chc:mging "stance" [12 J and similar cr.anges in facing to the 
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feet, These foot movements will appear as swivels (with friction) unless 

a simultaneous step is called for in the "between" register. Revolutions 

to the whole body change its orientation and introduce revolution signs to 

the support joints unless these already exist. Revolutions of the support 

joints, on the other hand, may induce a change in the orientation of the 

whole body depending on the current positions of those joints on the floor. 

Direction signs provide the most concise means of specifying a complex 

novement and, as such, require that the instruction be expanded to include 

the significant preparation, propulsion, and "follow-through" stages of the 

movement. We have chosen to implement direction sign movements under the 

following assumptions: 

1. The propulsion arises from a consta'lt angular velocity at the 
fixed end. (Evidence for this assumption comes from biomechanical 
sources [ 6].) 

2. The preparation phase lS a fixed percentage of the previous 
direction sign [12]. 

Intermediate joint movements are constrained by the segment orientation 

limits, the fixed segment lengths, and the "bo1.mdary conditions" imposed by 

the segment positioned by assumption (1) and the geometry of the floor. 

Consider a leg, for example, which is to move forward from a starting 

posi·tion. During this movement we know the step length (hence the. displace-

ment of the center of gravity) , the angle through which the upper leg must 

JIDve to displace the center of gravity/, the time of toe lift-off and heel 

contact in the step, and the initial and final tilt angles at the knee. This 

informa.tion fully constrains the movement of the leg, provided that the center 

of gravity is forbidden from movements other than that required by the forward 

progression. The progression processor determines the contact times from 

the "present" and "prepare" direction instructions and generates contact 
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instructions for the monitor in advance, vfuen comb~ned with the direction 

instructions passed on to tl1e ankle processors~ smooth movement will result
1 

6, 2 Balance 

When the progression processor determines that balance is necessary 

during or at the end of a sequence of progression instructions it may adjust 

the body position. The progression processor bases its decision on the 

instructions it is preparing for and the number and geometry of current 

support points from the contact blocks in the monitor. If the number of 

contact points is zero, the body is in the air; and no adjustment is made. 

If there is one support, then whether or not an adjustment is made depends 

on the time until the next support instruction. (If this interval is too 

long, balance is necessary unless a new supporting joint is indicated: 

for example, falling from feet onto hands. ) If there are three or more 

supports and the body center o£ gravity projects within the polygon formed 

by; these points on the floor, then the body is presumed balanced. When 

this is not the case or when there are only two support points, then balance 

is established by rotating the center of gravity (in a non-·forbidden 

direction) to bring its projection within the support line or polygon. The 

remainder of the body (that is, the set of parts not between the center of 

gravity and the supports) is simply displaced horizontally to the new 

position (subject to the separate forbidden vectors at individual joints). 
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7 . CONCLUSIONS 

In seeking a digital representation of human movement? an established 

movement notation system) Labanotation, has provided a wealth of well~ 

structured information. The variety of human moyeJnent has been abstracted 

to five types of movement concepts; these fo1~ instructions which are 

interpreted by a sj~ulator with knowledge of support requirements, body 

structure, and body surfaces. By designing the simulator as a network of 

communicating processes, we obtain very general and flexible control over 

individual joints, body segments, and the whole body. 

Components of the slinulator have been implemented ln LISP and FORTRAN 

on a UNIVAC 90/70. While the simulator itself is not expected to produce 

graphic commands at a real-time rate, these comrrands will be stored in a file 

and interpreted in nbatches" by the graphic display prograi'Tl. We expect that 

this process will be fast enough to animate the body model (drawn with circles 

or shaded disks to represent each sphere) on a graphics configuration consisting 

of a PDP-11/60 computer and a Vector General 3404 refresh display. Sequential 

snapshots may be produced on our Ramtek GX-lOOB color video display to obtain 

permanent video or film records of the solid figure in motion. 
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