
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

9-1978

The Simulation of Human Movement by Computer The Simulation of Human Movement by Computer

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Joseph O'Rourke

Stephen W. Smoliar

Lynne Weber

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Norman I. Badler, Joseph O'Rourke, Stephen W. Smoliar, and Lynne Weber, "The Simulation of Human
Movement by Computer", . September 1978.

University of Pennsylvania Department of Computer and Information Science Technical Report.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/999
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F999&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F999&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F999&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/999
mailto:repository@pobox.upenn.edu

The Simulation of Human Movement by Computer The Simulation of Human Movement by Computer

Abstract Abstract
This paper is concerned with a software simulation of movement of the human body. This simulation is
being designed to drive a system for computer animation as part of a larger program concerned with the
translation of movement notation into animated graphics. The simulation is based on a model of the
human body as a network of special-purpose processors -- one processor situated at each joint of the
body -- each with an instruction set designed around a set of "primitive movement concepts." We shall
discuss the extent to which all these processors may employ the same architecture and the function of
the network structure.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/999

https://repository.upenn.edu/cis_reports/999

The Simulation of
Humm Movement

by Computer

Movement Project Report No. 14

Norman I. Badler
Joseph O'Rourke

Stephen W. Smoliar
Lynne Weber

September 1978

Work reported herein was supported by a grant from the National Science Foundation,
Grant No. MCS76-19464.

The Simulation of
Hurran Movement

by Computer

Movement Project Report No. 14

Norman I. Badler
Joseph O'Rourke

Stephen W. Smoliar
Lynne Weber

September 1978

Work reported herein was supported by a grant from the National Science Foundation,
Grant No. MCS76-19464.

The Simulation of Human Movement by Computer

Norman I. Ba.dler1' ·
Department of Computer and Information Science
The Moore School of Electrical Engineering/D2

University of Pennsylvania
Philadelphia, PA 19104

Joseph O'Rourke
Department of Computer and Information Science
The Moore School of Electrical Engineering/D2

University of Pennsylvania
Philadelphia, PA 19104

Stephen W. Smoliar
General Research Corporation

P.O. Box 6770
Santa Barbara, CA 93111

Lynne Weber
__ P_ea!_, _M~T·wick, Mitchell1_&._Co.

345 Park Ave.
New York, NY 10022

September 1978

* Author to whom correspondence should be addressed.

The Simulation of Human Movement by Computer

Norm:m I. Badler
Joseph O'Rourke
Stephen W. Smoliar
Lynne Weber

Abstract

This paper is concerned with a software simulation of movement of the

hUJIB11 oody. 'This simulation is being designed to drive a systein for computer

animation as part of a larger program concerned with the translation of

nDvement notation into animated graphics. 'The simulation is based on a

model of the human body as a network of special-purpose processors -- one

processor situated at each joint of the oody -- each with an instruction

set designed around a set of 11primitive movement concepts." We shall

discuss the extent to which all these processors may employ the same

architecture and the function of the network structure.

The Simulation of Human Hovement by Computer

Table of Contents

1. In't:r'oduct ion . 1
2. The architecture of the simulator ;... 3

2 .1. A oodel of body structure .. ·. 4
2 . 2 . Instruction structure . 6

2. 2 .1. Direction signs . 6
2. 2. 2. Revolution signs.. 15
2. 2. 3. Facing signs ·. 18
2. 2. 4. Contact signs. 19
2. 2 . 5 . Shape descriptions . 2 0

2.3. An overview of instruction interpretation................... 20
2. 4 . An exaJll.ple . 2 5

3. The body data base. • . 31
3.1. Segments.. 35
3 . 2 . Joints ! • • • • • • • • • • • • • • • • 3 9
3. 3. Data base rranagement ·. 44

4. Joint processors . 4 7
4.1. Data structures of a joint processor........................ 47

4 .1.1. Direction registers . 4 9
4 .l. 2. Revolution registers. 52
4 .1. 3. Facing registers . 54
4 .1. 4. Shape registers . 55

4.2. Increment and destination computation....................... 55
4. 2 .l. Position computation. 59
4. 2. 2. Movement computation. 61

4.3. Simultaneous instruction execution.......................... 62
5 . Monitor. 6 5

5 .1. Priori ties of processing. 6 5
5. 2. Contact processing.. 70

5.2.1. Determining contact scope........................... 77
5.2.2. Contact implementation............................. 78
5. 2. 3·. Contact rna.intenance. 86

6. Progression processor····· . · . · · ... ·......... 88
6.1. Progression implementation.................................. 89
6.2. Ba.lance... 92

7. Conclusions. 9 3
8. Ac:lalowledgements. 94
9. Refe~nces-. 95

List of Figures

2.1 Major oody joints.

2.2 The orientations represented by a coordinate triple.

2. 3 Angular modification of orientation.

2.4 Demonstration of alternative systems of reference.

2.5 Inclusion.

2.6 Leading and following.

2.7 Sequential use of body parts.

2.8 Programs for the system network.

2. 9 Structure of an instruction stream.

2.10 Labanotation segment for a simple walk.

2.11 Body orientation while walking.

3 .1 Joint processors and body tree.

3.2 Standard position of body.

3.3 Relating the body to the room.

3.4 Segment cross of axes

3.5 Affect of segment twist on cross of axes.

3. 6 Orientation of segment with respect to distal segment.

3. 7 Transmitting segment twist to the surface.

3.8 Specifying features.

4.1 Interpolation with NVRI.

4.2 Interpolation with NVLI.

4.3 Interpolation with Nj?RI.

5.1 Example of augmented scope tree.

5.2 Augmented scope overlap cases.

5.3 Virtual contact points.

5. 4 Alignment of virtual contacts.

5. 5 Distances involved in contacts ("near" illustrated).

5. 6 Goal of :rroving contact point.

5.7 Hand clap :rrodifying forward middle positions for both arms.

5.8 Distance influence.

5. 9 Time influence (for each contact point).

5.10 Contact timing for delegate joint processors.

6.1 Approximating a shape description affecting support.

~ INTRODUCTION

We wish to enable a digital computer to translate.movement notation

into an animated display of human figures performing the represented

novements. This process involves analyzing the descriptive content of

novement notation systems, evaluating structures for the animation of human

rrovement, and formulating a suitably realistic human body model [3]. The

fundamental premise involves modelling the human body as a netmrk of

special-purpose processors -- one processor situated at each joint of the

body -- each with an instruction set designed around a set of "primitive

novement concepts." The translation of notation mto animated movement may

then be divided into two stages: a compilation stage in which·the movement

notation gets translated into programs for these special-purpose processors,

and a simulation stage which simulates the behavior of these processors as

they interpret their respective programs [21].

We are currently working with Iabanotation [12], a rrovernent notation

system chosen for its logic, its flexibili t"'J, and the extensive arrount of

nat erial recorded in it. As a result of research into the development of

a text editor, we have established a structured description of La.banotation

text in terms of graphic primitives [20]. What we require for an instruction

set for our special-purpose processors is a structured description of the

same informa.tion in terms of movement primitives. vJhile the structure of

this instruction set has been influenced by the semantics of the graphic

primitives of Labanotation, it is sufficiently general to be used to

represent information recorded by other movement notations. For purposes

of this discussion, we shall regard each instruction type as a data

structure and describe it using the notation of Hoare [11]. A sequence

of instructions associated with a joint processor specifies the movement of

2

that joint over a period of time. Thus, the compilation of Labanotation

text produces a set of sequences of instructions , one sequence for each

joint whose movement is notated.

Alternative methods for specifying movements nay be found in

teclmiques for computer anirration. A three-dimensional model of the hunan

body is constructed, articulated at joints and movable in space [2 J . A

number of techniques for describing the movements of such a model are

reviewed elsewhere [3 J ; the method we have chosen is to simulate the

rnovements of each joint of the rody. The simulation bears some resemblance

to the control structures for robot mcmipulators incorp:::>rated in AL [lOJ

and lAMA [15]. These systems are primarily goal-directed and maintain an

internal model of the device and its environment. Constraints such as those

used by Spegel [22] are also used to control. joint movements when external

contact surfaces are involved in movements affecting support. Other

graphic languages for animation offer subsets of the set of instructions

we shall describe next.

3

2. THE ARCHITEC'IURE OF THE SIMUlATOR

The abstracted movement concepts fall into five categories: 1) direction

signs, 2) revolution signs, 3) facing signs, 4) contact signs, and 5) shape

descriptions. Direction signs include Uose symbols which essentially

describe the translation of some joint of the body, while revolution signs

allow for the description of various forms of rotational movement, such as

turning, twisting, and pivoting. Facing signs involve the establishment

of an orientation, which is generally accomplished through a joint

translation, a rotation, or a combination of the tv.D. Contact signs

indicate contact of body parts with other body parts, other people, the

floor, the performer's clothing, or other physical objects. Shape

descriptions are used to describe the tracing of a path or formation of a

shape by some part of the body.

Each category stems from a different way of analyzing motion. Different

movement notation systems tend to concentrate more heavily on one type of

analysis over another. Iconographic systems, which are essentially based

on stick figures, such as Jay notation [13], Sutton notation [18], and, to

some extent, Benesh notation, [4], rely heavily on shape descriptions.

I..ab:motation tends to use direction signs most heavily, while the system

developed by Eshkol and Wachmann [8] concentrates on rotations and circular

JIDVements, Animation languages usually offer geometric transformations,

such as rotational movements, and shape descriptions [7 , 22 J. Manipulator

langauges include limited contact specifications [10,15]. A system to

describe movements of rigid or articulated objects permitted concepts

related to direction, revolution, and contacts [1].

The instruction set discussed herein should be adequate for the

4

representation of any notation or animation system currently used. Before

we consider the structure of each category in detail, let us first discuss

how the selection of the individual joint processors relates to the

structure of the human body.

2 .1. f2 Model of Body Structure

Figure 2.1 [12] presents a "first approximation" of an assignment of

processors to body joints. In this illustration each joint is labeled by

the Labanotation symbol which represents it. (We have generalized the term

"joint" to include body extremities.) This assignment of processors may,

if necessary, be further refined for greater detail. However, for the

purposes of the discussion in this paper, the detail in Figure 2.1 is

sufficient.

Each joint processor positions its associated joint with respect to

a cross of axes which defines a rectangular coordinate system. This cross

of axes is generally situated at a second joint of the body. For example,

rrovement of the right lower arm is determined by the processor at the right

wrist with respect to a cross of axes situated at the right elbow.

Alternatively, JIDvernent of the entire right arm is determined by the same

processor at the right wrist but with respect to a cross of axes situated

at the right shoulder. In describing any movement, the distal joint is

defined to be the joint at which the active processor is located; and the

proximal joint is the joint from which movement is effected. (In the above

tw:J examples the proximal joint is also the location of the cross of axes.)

The term "body part" will be used to refer to a portion of the body which

lies between a given proximal joint and a given distal joint.

All joint processors are essentially llcomputationally independent." All

information exchanged among processors is transferred through a common monitor.

5

head

wrist
elix:>w shoulder shoulder elbow

t'
wrist

hand J l------L-----'--§ hand

hip +r-----.---t+ hip

knee knee

Figure 2.l Major l::ody joints.

6

One of the rrajor r-esponsibilities of this monitor is the maintenance of a

data base regarding l::xJdy position. Through this data base any joint

processor may obtain current information on all joint positions. Since

these positions may be specified with respect to an arbitrary cross of

axes, the monitor is responsible for conversion of positional jnformation

between the vcu"ious systems of reference. In addition, the monitor

determines the timing and sequencjng of corrrrnand execution by scheduling

individual joint processors to minimize conflicts bet:vJeen their actions.

Finally, the monitor assumes prirrary responsibility for the interpretation

of contact signs.

In addition to the classification of movements according to the

instruction categories given al::xJve, a movement may also be described as

either a gesture or a support movement. A support is a movement of the

body's center of gravity. (Ths center of gravity IDnY be slightly displaced

as a result of gestural movement; but ln a gesture, displacement of the

center of gravity is an effect, while ln a suppor-t movement its displacement

is the cause of the movement.) Support movements are implemented by a

progression processor capable of dispatching commands to any joint processors

involved in locomotion. The progression processor is also responsible for

maintaining the l::xJdy' s balance (i.e. the center of gravity over the base of

support). Now let us discuss the actual instructions executed by the joint

processors.

2.2. Instruction Structure

2.2.1. Direction signs

A direction sign specifies the translation of a joint as either a

position description or a movement description. The former describes the

7

orientation of a distal joint with respect to a cross of axes, while the

latter describes a path of motion with respect to the initial position of

the joint. T'ne necessary components of a direction sign are duration (given

in terms of a simulation time tmit), direction, designation of proximal

joint, and the specification of either position or movement description.

Optional components allow for modification of the path of motion, which may

involve the movement of other joints. This may be SUJlllYlal"ized by the following

type declarations:

typ~.direction slgns = (duration: rational;
direction: direction description;
proximal joint: joint name;
kind: (position, mover;~:;nt) ;
modifiers: powerset direction IIDdifiers).

type direction modifiers = (placement modifier,
sequence deviation description,
sequence iDclusion,
sequence intermediate joints) .

A brief explanation of this data structure notation is in order. The

semicolon lS a delimiter of components of a data structure, all of which

must be present. The name of each component lS given to the left of the

colon. The comma is a delimiter of elements of a set. Normally, this is

interpreted as a list of alternatives, exactly one of which is present.

(Thus, the 11kind11 component contains either the element 11position11 or the

element "move.'1lent 11
.) Powerset indicates a subset of any size (including

the empty set) of its argument; and sequence indicates a sequence of any

length (including the empty sequence) of elements of a designated set.

The structure of a "direction description11 involves further detail:

~ du"ection description = (normal: coordinate-triple;
modified: modified coordinate-triple) .

8

~coordinate-triple = (horizontal; (right, place, left);
level: (low, middle, high);
saggi tal : (backward, place, forwarx:l)) .

~ rrodified coordinate-triple = (head: (normal: coordinate-triple,
null: nil);

tail: sequence orientation mods).

A no:rrnal coordinate-triple is capable of specifying one of 27 possible

orientations with respect to a cross of axes. These are illustrated in

Figure 2.2 [14]. The cross of axes is situated in the center of the middle

plane, with the "forward" direction pointing into the page and the "right"

direction pointing to the right. (The symbols at each of the points give

the representation of each triple in Labanotation.) The actual distance

to these points is determined by the length of the body part being moved.

Any other orientation is specified by apply~1g a list of modifiers

to a given coordinate-triple. (If the head of a rrodified coordinate--triple

1s nil, the modifiers are taken to apply to the current orientation of the

processor.) There are two classes of orientation modifiers. An angular

modifier specifies a direction with greater precision than a normal

coordinate-triple, and a radial modifier specifies an alteration in the

distance along the given orientation:

.~ orientation mods = (angular:

radial:

(amount : fraction;
direction: coordinate-triple) ,

bend/ stretch) .

An angular rrodifier 1s given by a fraction and a coordinate-triple. For

example, the triple (place; middle; forward) may be modified by (~; (place;

high; forward)) to indicate a direction halfway between middle-level forward

and high-level forward. (This is illustrated in Figure 2.3 [12].)

One might ask why we have not chosen a direction description to be

represented simply by an ordered triple of real ntL'11bers. The reason is that

we are li1terested bl the simulation of the rravement behavior of the human body.

9

Figure 2. 2 The orientations represented by a coordinate triple.

10

Figt.rr>e 2.3 Angular nodification of orientation.

Figt.rr>e 2 • 4 Demonstration of alternative systems of refe~1ce.

Arm alone Upper body included

Figt.rr>e 2.5 Inclusion.

ll

While the rody is quite poor at picking out arbitrary points ID space,

it is fairly good at establishing the direction of "right" or Hforward. 11

We have tried to follow a philosophy that those orientatior1s which are

more difficult for the body to determine should be reflected by rrore

complex expressions in the instruction set.

Radial modification arises from the ways a rody part rray be bent

or stretched:

~ bend/ stretch = {kind: bend/ st.L'etch description;
direction: surface).

type bend/stretch description = (kind: (bend,
stretch,
fold,
unfold);

degree: fraction).

The distinguishing features of bending, stretching, folding, and unfolding

have been discussed by Hutchinson [12]. Each specification is quantified

by a fraction. For example, the arm may be described as being 2/3 of the

way from unbent to fully bent. (A degree of zero would indicate the

unbending of a bent arm; this is sometimes called neutralization.) The

direction of a bending or folding movement is designated by a point on the

surface of the body which becomes "coveredn by the movement; stretching

and unfoldirlg take their direction from the complementary movement of

"uncovering."

Now let us consider the direction modifiers. Modification of the

cross of axes involves specification of its origin and orientation:

12

type place~ent modifier= (origin: (internal; (locus: (joint name, surface),
general : whole oody) '

external: (locus: direction description,
general: whole room)) ;

orientation: (right-left: orientation desc;
low-high: orientation desc;
backward--forward: orientation desc)).

The origin of the cross of axes rray be located either on the body or in the

external envirorunent. In the former case, it may be located at any of the

joints enumerated in Figure 2.1:

~joint name = (side-of-body: (right, center, left);
area: (clavicle,

shoulder,
elbow,
wrist,
end of hand,
hip,
knee,
a.IJYJ_e'
end of foot,
upper rim of pelvis,
lower rim of r·ib cage,
neck,
head)).

"Center11 is used to describe the :iside-of-bodyn of joints which do not come

in pairs. Also, "center" is used with 11 shouldera and "hip" to indicate the

upper chest and lower pelvis, respectively. The cross of axes rray also be

located at a point on the J::ody sw~face (using a technique described below).

VJhen 11whole body" is specified as the origin, it is not fixed at a glv~n

locus; and only the orientation i~formation may be interpreted. Similarly,

external orientation may be given as a point in the room (by a direction

description) or by a 11whole room" designation.

Orientation lS specified by giving a direction for each of the three

coordinate axes. (Only two of these axes need be specified; the third is

the perpendicul3r to the other two vJhich forms a right-handed coordinate

system.) Orientation m..-=ty be defined by tw::> points in space, two points on

13

the tody, the perpendicular to a l::ody surface, or the tangent to the

current line of direction:

~orientation desc = (space: (direction description;
direction description),

l::ody: (joi.-·J.t name; joint name),
perpendicular: surface,
line of direction: tangent flag).

Figure 2.4 [12] illustrates a variet)r of orientations which could have

several possible descriptions. Consider, as an example, the right arm. To

describe the position of the right arm, it is necessary to locate the

right wrist with respect to a cross of axes whose origin is at the right

shoulder. There are at least two ways in which the axes themselves may be

oriented. One alternative is to align the "low-high" axis with gravity.

This would entail the 11 spacen description: ((place; lm-1; place); (place;

high; place)). (IlTh:l.gine Figure 2. 2 as a scheira for selecting points in

space.) The other possibility is to align the "lm-1-high'' axis r,vith the

torso. This may be achieved by a t!J::ody" description: ((center; hip);

(center; shoulder)). In roth cases the nright-leftn axis may be given by

the "l::odyt' description ((right; shoulder) ; Cleft; shoulder)) ; and the

11backward-forwardn axis is the perpendicular to the plane described by

the other --t\.;70 axes. (A more detailed discussion of orientation alternatives

is given in [9].) Of course, different coordinate-triples are required to

describe the direction with respect to the alternative sys-tems of reference.

The former cross of axes requires the coordinate-triple (place; high; place);

the latter requires (place; middle; forward).

r.Lnere remains the specification of a point on the surface of the body.

'l'his rray be determined as folloHs :

1) Select a body part by specifying its proximal and distal joints.

14

2) Select a point along that l::ody part as a fraction of the total

distance from the proximal joint to the distal joint.

3) Select a direction to proceed from the 11bone 1: of that body part

to the "skin" of the surface; this may be given as a fraction of full

rotation from a 11 zero" position vJhich is defined for each body part.

\tJe thus have the following data structure:

~surface = (body part: segment;
displacement: fraction;
point: fraction) .

~segment = (proximal: joirrt name;
distal: joint name).

This description technique may be demonstrated by giving an explicit

definition of the "ba.ck.ward-forwardn axis for the second alternative given

above (in vJhich 1'low-high" and nright-·left:1 were both given by 11bodyn

descriptions). Intuitively, the direction is the perpendicular to the

front chest surface. This coPresponds to the "surfacen descriptions:

(((right; shoulder); (left; shoulder)) ; ~; 0). The n~n indicates the

point halfway between the two shoulders, and "on indicates the amount of

rotation to face the front of the chest.

We conclude this section with a brief description of the remaining

direction JIDdifiers. A deviation is a slight directional displacement from

the unmodified direction [12]. It is specified by the a:JIDunt of time it

endures and by the direction of deviation:

type deviation description = (duration: rational;
direction: direction description;
degree: (greater, normal, lesser)).

Several deviations nay occur in sequence during the execution of a direction

SJ.gn.

An inclusion specifies the participation of other joints m a movement.

15

Figure 2.5 [12] illustrates the effect of L~cluding the upper body in a

movement of the right ann. Describing an inclusion requires the following

struct-ure:

~inclusion = (delay: rational;
part list: powerset~ joint name;
degree: (greater, normal, lesser)).

The components are the time of inclusion (given as a delay following the

start of the movement being modified), the joints involved in the inclusion,

and the degree of inclusion. Other movements which directly involve other

processors are as follows:

~ intermediate joints = (delay:
kind:

rational;
(leading: powerset (joint name, surface),
following: powerset (joint name, surface),
outward: (coordinate-triple, nil) ,
inward: (coordinate-triple , nil) ,
guidance: surface)). ---

A given joint or a surface may be designated as leading the movement or

following the rrovement of the vJhole (Figure 2. 6 [12]). A movement :may cause

a sequential use of body parts outward (proximal to distal) or inward (distal

to proximal) (Figure 2.7 [12]). This sequential use may or may not be

modified by a direction specified by a coordi..11ate-triple. Finally, a

movement may be guided by a particular surface [12].

?.-:1.:1. ,c Revolution signs

Revolution signs specify movement about some axls. Consequently, the

instruction must designate a duration, a proximal joint, an axis about which

revolution occurs, the amount of revolution, and a descriptor to differentiate

beti.Jeen twist and rotation. A twist is a revolution of a body part where

the proxinBl end does not move to the same extent as the distal end. For

example, the lower arm's natural movement about its central axis is a twist.

16

Leading

Following

Figure 2.6 Leading and follmving.

17

figure 2.7 Sequential use of body parts.

18

A rDtation indicates that the body part will turn uniformly, This is seen

when the body as a whole turns. Hutchinson [12 J discusses this distinction

at greater length. A modifier may be present to allow for alteration of

the cross of axes used to determine the axis of rDtation:

~revolution s1gns = (duration: rational;
prDximal joint: joint name;
axis: (direction description, segment);
aTIDunt: revolution quantity;
kind: (twist, rotate);
modifier: (placement modifier, nil)).

type revolution quantity= (sign: (clockwise, counterclockwise);
rnagni tude: rational;
origin: (current, stance, absolute)).

The "amount" component is given 1n sign-rragnitude form, where the "sign"

specifies whether the revolution is clockwise or counterclockwise and the

"rnagni t-ude" is a rational number of full revolutions. In addition, an

11origin11 component specifies whether 11amount11 is measured from the current

orien-tation of the l:ody, the orientation of a frDnt-facing stance, or an

absolute front orientation associated with the external environment.

2.2.3. Facing signs

A facing sign indicates a relationship between a body part surface

and a direction. This relationship may be expressed in terms of direction

signs and rotation signs, but it entails a different approach to movement

analysis. Like the other instructions, a facing sign requires a duration.

Then the body part surface and the direction it faces are given. Finally,

a mdifier may be present to allow for alteration of the cross of axes used

to detennine the facing direction:

type facing signs = (duration: rational;
area: surface;
direction: direction description;
mdifier: (placement modifier, nil)).

19

2.2.4. Contact signs

Direction signs, revolution slgns, and facing slgns are all

interpreted in terms of a mvement originated by a single joint. Contact

signs, on the other hand, are interpreted by the monitor which supervises

the behavior of all joint processors. A contact sign is represented as

follows:

~contact signs = (time: rational;
contacts: sequence (object; relation)).

type object = (hum:m: (indicator: person;
place: surface),

other: auxiliary object description).

type relation = (kind: (relate,
near,
touch,
support,
passive);

IIDdif iers : pmvePset contact modifiers) .

type contact :rrodifiers = (in passing, rraintain, slide, surround).

The fil'st component of a contact sign specifies the time at which the

contact takes place. The next component specifies a list of contacts as

object-Pelation pairs. If the "object~1 is a person, that person must be

identified, together' with the specification of a location on the body. The

relation classifies the contact as a relationship (mutual 11addl'essing11 [12]

among the objects involved, witl1out actual physical_contact), nearness (also

does not involve actual physical contact), touch, bearing of weight, or a

passive approach to the relation. Optional modifiers may specify the contact

taking place 11 in passing, 11 rraintaining the relation, sliding after contact

has been established, or surl'Ounding the contacted object. (Cancellation of

surrounding, rraintained, or sliding contact my be represented by an

· instruction at a later time without the appropriate rrodifier.)

20

2.2.5. Shape descriptions

Shape descriptions specify paths or configurations of body parts.

(At a higher level they my also be used to describe shapes of groups of

·people.) They require a duration, designation of a proximl joint, a plot

of points in three-space to determine the shape, and a designation of

whether the shape indicates a position or movement description. A modifier

may be present to alter the specification of the cross of axes:

~ shape descriptions = (duration: rational;
proximal joint: joint name;
path: sequence vector;
kind: (position, movement);
modifier: (placement modifier, nil)).

type vector = (x: real; y: real; z : real) .

2 . 3. An Overview of Instruction Interpr·etation

The primary purpose of the compilation stage of our system, as cited

lll Section 1, is the preparation of a set of disjoint programs for the

individual joint processors, the monitor, and the progression processor.

Figure 2.8 shows how these processors are organized for the simulation stage,

during which their programs are interpreted. The monitor is responsible for

synthesizing a program which ~-.Jill then be passed on to a graphic processor.

All contact signs are collected together in a single program for the monitor.

Instructions affecting support are sent to the progression processor, and

all remaining instructions are placed in the instruction streams of their

respective joint processors. Within the progression processor instruction

stream, support instructions are further partitioned: each block accounting

for the movement of a single supporting joint. This partitioning is handled

by the compilation stage since no instruction, in itself, indicates which

joint processor it is meant to direct.

COMMANDS TO
GRAPHIC

·PROCESSOR

JOINT
PROCESSORS

CONTACT
INSTRUCTIONS

21

. MONITOR

INSTRUCTIONS
.AFFECTING
SUPPORT

PROGRESSION
PROCESSOR

• • •

INDIVIWAL STPLAMS OF DIRECTION, REVOLUTION, FACING, AND SHAPE INSTRUCTIONS

Figure 2.8 Prugra.-rn.s ·tor the system ne~rk.

22

All timing information for a joint processor lS provided by the

duration fields of its instructions. However, block-structured parallelism

enables the representation of concurrent execution of several instructions

by a single processor [9], Thus, the absence of movement must be explicitly

represented by a "null" instruction (a.Tlalogous to a rest in music notation

[19]); and all substreams of a concurrency block must fill the same duration

interval. The structure of a possible instruction stream is illustrated

in Figure 2. 9. All instructions express time in terms of a rational number

of time units. This unit is related to the simulation process by defining

a simulation interval to be the real time between successive "snapshots!! of

the human figure desired by the graphic processor. The simulation interval

is represented as a nonzero number, where the only res-triction is that no

instruction my be .gin or end between simulator 11 snaps rots 11 or movle frames.

TI1e simulation interval rray be fixed by the user or may be computed by the

monitor based on the earliest starting time of the upcoming set of instructions.

(Each processor can supply this information to the IIDnitor.) By permitting

the interval to vary, the simulator can treat quiescent periods more

efficiently.

The genera~ control of the simulator involves the iterative execution

of the following six steps for each simulation interval:

1. Tile monitor generates instructions to initiate contacts.

2. All current activities are represented by (joint processor,

instruction) pairs; these pairs are assigned a priority ordering

based on body structure.

3. Tile monitor allows_the progression processor to implement any

currently active support movements.

23

TIME = 0

® NULL INSTRUCTION

G) DIRECTION INSTRUCTION

0) DIRECTION INSTRUCTION

CD DIRECTION 0 FACING .
INSTRUCTION INSTRUCTION

G) DIRECTION 0 REVOLUTION
INSTRUCTION INSTRUCTION

0 DIRECTION 0 NULL
INSTRUCTION INSTRUCTION

Q) NULL INSTRUCTION

(§) REVOLUTION CD NULL @ SHAPE
INSTRUCTION INSTRUCTION DESCRIPTION

QREVOLUTION
@DIRECTION G) SHAPE INSTRUCTION

INSTRUCTION DESCRIPTION G1: NULL
NSTRUCTION

0 = DURATION or INSTRUCTION

figure 2.9 Structure of an instruction stream.

24

4. The JlDnitor allows the imp1ementatl.on of each (joint processor,

instruction) pair according to the priority order established ln

Step 2. Pairs with the same priority (and therefore the same

joint processor) are executed concurrently by the joint processor.

5. The progression processor adjusts balance, if necessary.

6. The JlDnitor calculates all final body positions and prepares the

output for the graphic processor.

For each simulation interval, the 11Dnitor must first establish how

contact instructions may be executed. Since contacts have no explicit

duration prior to achievement, the monitor must utilize suitable existing

instructions or synthesize new ones for appropriate joint processors. The

monitor must next organize the actual execution of the other processes so

that thej~ sequential execution will in fact appear logically parallel. A

·priority ordering is computed by the monitor to insure an overall determL~ism

to joint JlDvements and to facilitate the manipulation of joint location

information stored in the body data base (Section 3. 2) . Since a joint

processor may be executing several instructions in a conceptually parallel

fashion, a priority is computed for each active instruction of each processor.

Should these priorities be the s~~e, the processor itself establishes the order

of execution 1.vithin the set. The monitor now transfers control to the

progression processor, signalling that modifications to the body data base

my be performed. After support JIDvements, the joint processors execute their

instructions based on the order scheduled by the monitor. vJhen all the joint

processors have completed their current instructions for this cycle, the

monitor again calls upon the progression processor to balance the body, if

necessary.

25

At the completion of all processing for a simulation interval, the

monitor outputs a single stream of commands to a graphic prDcessor which

constructs and displays an inage of a human figure [2]. Over a sequence of

simulation cycles an an:Una.tion is pYDduced. If desired, the monitor also

generates a textual report of the model's position, contacts, and collisions.

2 . 4. An Exarr.ple

As an example of the simulation pYDcess, consider the interpretation

of the labanotation segment illustrated in Figure 2 .10. I-t describes one

cycle of a norml forward walk: first the left foot steps forward, the_n the

right foot follows. Because the direction signs for support actually desc-£>ibe

the transference of weight, the feet do not move with respect to the floor

during a forward direction sign; rather~ the center of gravity moves fonJard

[12]. During this forward movement of the center of gravit'J, the right arm

first moves so as to point stralght down fYDm the shoulder, then moves to a

position slightly forward of the body. The left arm moves in a complementary

fashion. The final arm positions are shown in Figure 2.11.

The Labanotation segment is compiled ir~o three instruction streams:

two direction signs for the left v . .Jrist, two mre for the right wrist, and two

direction signs for the progression processor:

left wrist processor:

1. (l;
(place; low; fonvard);
(left; shoulder);
position;
(((left; shoulder);

(((right; shoulder); (left; shoulder));
((place; low; place); (place; high; place));

(((right; shoulder); (left; shoulder)),~; 0)))))

26

....---·

•

r-=

,...-

•

Figure 2 .10 labanotation segment for a simple walk.

27

- 2. (1· ?

(place; low; place);
(left; shoulder);
position;
nil)

28

right wrist processor:

1. (1;
(place; low; place);
(right; shoulder);
position;
(((right; shoulder);

2. (1;

(((right; shoulder); (left; shoulder));
((place; low; place); (place; high; place));
(((right; shoulder·) ; (left; shoulder)) ; ~; 0)))))

(place; low; forward);
(right; shoulder);
position;
nil)

progression processor:

1. ((left; ankle);
0;
(l;
(place; middle; forward);
(left; hip) ;

ITDvement;
((whole tody;

(((right; hip); (left; hip));
((place ; lovJ; place) ; (place ; high; place)) ;
(((right; hip); (left; hip)); ~; 0)))))))

2. ((right; ankle);
l;
(l;
(place; middle; forward);
(right; hip);
ITDvement;
((whole tody;

(((right; hip); (left; hip));
((place; low; place); (place; high; place));
(((right; hip); (left; hip));~; 0)))))))

All instructions are structured according to the descriptions glven lD Section

2.2.1. However~ progression processor instructions are prefixed by two

fields: one which designates the joint processor to '\-lhich the instruction

29

will be dispatched, and one which gives the ab.solute time at which the

instruction is to be executed. Initial placement modifiers are provided for

all joint processors; the absence of further placement JIDdifiers indicates

that current description of the cross of axes is to be maintained. Also,

all durations in this example are equal to one W1i t; in general, this will

be a larger number, depending upon the temporal resolution required for

describing other rnove~ents.

Movements of the two arms are easily achieved by displacements of the

wrists since there are no other instructions wl1ich affect any other joints

in either arm. These (joint processor, instruction) pairs therefore receive

a low priority and are executed after support move~ents in each cycle. The

two instructions to the progression processor each describe a forward

"movement"; the center of gravity is moved forward from its present location

by a fixed amount depending on the step length. Because a support movement

requires a "preparation phase" [12], execution of the current inst-ruction for•

a supporting joint depends on the instruction which follows. The progression

processor must alvJays look beyond those instructions it is currently execu.ting

to establish the proper context. In this example, the left heel strike actually

occurs at the star•t of the segment; therefore, the position at this time will

appear to be in the midst of the walk. When the final instructions to the

progression processor are interpreted, it notes that there are no further

instructions for the left ankle and therefore leaves the body balanced by

bringing the center of gravity over the contact area of the right foot.

To achieve the appropriate leg movements i~mplied by the support

instructions, the progression processor generates contact instructions which

are dispatched to the rnonitor. These contacts define the timing of the foot

30

:rrovements and, together with the step length, the :rrovement of the center of

gravity, and the geometry of the supporting surface, implicitly define the jojnt

angles at the ankles, knees, and hips. For example, to prepare for the

step onto the right foot, the progression processor issues two contact

instructions to the :rronitor: one to break the right foot contact with the

floor at time 0.5, ill1d the second to achieve a right heel contact with the

floor at time 1.0 (the beginning of the first progression processor instruction

to the right foot).

In this example a complex movement has been specified by a few

instructions, but much of this complexity is accounted.for by default

conditions which may be overridden by additional detail in the instructions.

By choosing a very small simulation interval, smooth animations can be

produced. ~Vhile this would divide each movement into many intermediate

positions, there would be no additional overhead in the number of instructions

actually sent to each processor.

31

3. THE BODY DATA BASE

We shall limit our discussion to movements which are skeletal, that

is, which can be realized by a rody model composed of joints and segme...'1ts.

Figure 3 .1 is a rrore detailed version of Figure 2 .1 vJi th an itemization

of all joint processors. The segments are drawn as lines connecting joint

nodes. They are used in the data structure primarily to define coordinate

systems and surface features of the body.

It will be useful to define a standard position for the body lll order

to fix certain coordinate system relationships which we shall use later. In

the standard position the rody is standing upright, all segments untwisted; .
feet flat, toes forward; and hands at sides, palms toward thighs (Figure 3.2).

In our first encounter with the data ba.se, we shall also find the rody

standing on the floor of a room, at the origin of a rectangular coordinate

system. In this position the Z-axis of the room points "up" (that is,

opposed to gravity), the X-axis points "forward" (as indicated by the arrow

in Figure 3. 2), and the Y-axis points 11left. 11 We shall frequently refer to

room coordinates as "global" or "absolute."

The body is positioned with respect to the room through a chain of

special instances of joints and segments. The room is regarded as such a

segment establishing the global reference system. It only articulates with

a ·single joint named "center of gravity." This joint, in turn, connects

the room segment to a segment named 11whole rody." Finally, this "whole

body 11 segment is connected to the root of the body tree, generally the

center hip joint. If necessary, however, any other joint may be substituted

as the root, since the graph structure of Figure 3.1 is undirected. (Figure

3.3 illustrates these relationships.)

LEFT
END
Of
FOOT

Figure 3.1

32

RIGHT
ANKLE

Joint processors and body tree.

RIGHT ThTD
OF HAND

33

Figure 3.2 Standard position of J:xxly.

WHOLE BODY
SEGHENI'

ROOM
SEGMENT

34

SOME BODY JOINT,
USUALLY CENTER HIP

CENTFR OF GRA VITI

Figure 3. 3 Relating the body to the room.

'The center of gravity is represented as a "joint" and is naintained

directly by the progression processor. It is the only joint allowed to

translate with respect to its adjacent segment The whole body

segment permits JIDVements of the body with respect to a line of direction;

it effectively JIDdels the "stance" orientation described by Hutchinson [12].

3 .1. Segments

Segments provide the rigid but articulated skeletal framework of the

body and determine its external (surface) appearance. These functions are

incorporated into the "segrnent11 data type, whose components describe the

relationship between the joints connected by a segment and also store

inforrration related to physical description of tl1e associated body surface:

~ segment = (name: sequence character;
prox.inal : joint ;

!Y:P.e sphere

!YP_~- feature

distal: joint;
distance: real;
local directions: (forv;rard: vector;

left: vector;
up: vector) ;

twist: (positive limit: real;
negative limit: ·real;
current: real) ;

orientation: vector;
stop: proc (vector) logical;
enclosure: sphere;
centroid: vector; ·
mss: real;
surface: sequence sphere).

= (origin: vector;
radius : real;
features: sequence feature).

= (name: sequence character;
direction: - vector) .

36

Each segment has an internal name~ glven as a, character string. Of the two

joints connected by the segment, the one which lies closer to tl1e root of

the body tree (as defined above) is called the proximal joint and the other

is called the distal joint. (A joint likewise connects proximal and distal

segments.)

A cross of axes is defined for a segment such that the proximal joint

is the origin and the ray connecting the proximal and distal joints defines

the Z-axis direction. The coordinates of the distal joint are therefore

(0,0 distance) where "distance" is the fixed length between the joints. The

X-axis is chosen to lie in a vertical plane perpendicular to the global Y-axis

through the proximaJ. job1t and also to have a positive forward component

when the body is in the standard position (Figure 3. 4) . (If the Z-axis

and the front direction coincide, then the X-axis is chosen to point

upwards.) TheY-axis is the direction which yields a right-h,~ded coordinate

system.

As a segment ITDves, its cross of axes moves rigidly ,,Jith it. Certain

directions are defined in this local coordinate system to correspond to the

conventional front, left, and up directions of the segment. For example,

the negative Z-axis is up for the lower arm and the positive X-axis is front

for the head, independent of the current oriQ1tation of these segments ln

the overall body p:::>sition. Since a body segme.nt may be capable of twisting

along its Z-axis, the cross of axes may be rotated at the distal joint

(Figure 3. 5). Positive and negative rotation limits from the normal position

of the X-axis (established above) define admissible twists.

A segment's orientation is given as a vector which is the position of

the distal joint in the cross of axes of ·the proximal segment of the proximal

37

VERTICAL PlANE THROUGH PROXll1AL JOINT,

UP

FRONT~ 1\1\CK

~
DOWN

y

/
/

/

Figure 3.4

/
/

X (LIES ll~ VERTICAL PlANE)

Segment cross of axes

NEGATIVE
LJMIT

I
I

/
/

/

Figure 3. 5

.......
/

PROXIMAL
JOINT

Z'

38

z

TRANSlATED AND ROTATED
CROSS OF AXES

.......

' ' " \
\

POSITIVE
LJMIT

SEGMENT

SEGMENT
CROSS OF AXES

y

Affect of segment twist on cross of axes.

39

joint (Figure 3. 6) , Movements of the proximal segment cu;e naturally

transrni tted thruugh the common joint with no further computation. In

addition, a "stop" function specifies whether or not a particular orientation

is admissible. It may be used, for example, to limit movement to part of one

plane, as at the eltow or knee.

Segments carry information to aid collision detection and support

computations. Tne "enclosure" is the minimum sphere wr.ich includes the

entire surface of the segment. It is used to approximate the location of

the segment when comparing it against other (non-adjacent) segments and

is fixed when the body model is dimensioned. A segment also has a fixed

centroid (a vector in the local cross of axes) and a mass value which the

monitor uses to compute the overall center of gravity for the body.

The "skin" (surface) of a segment is defined by a set of overlapping

spheres [2 J. The origin of each sphere lS glven as a vector in the

segment's cross of axes. If the segment lS twisted the sphere center is

rotated about the Z-axis by an amount proportional to its distance along

the segment from the proximal joint, which is just the Z component of

the sphere's "origin" vector (Figure 3.7). Certain "features" of a segment

may be distinguished by giving a point on a specific sphere a na~e which will

allow it to be specified for a contact location or used in collision reports

from the monitor. The feature direction is indicated by a vector in the

segment cross of axes; normally this direction from the sphere origin will

define the surface perpendicular (Figure 3.8).

3.2. Joints

Joints may be regarded from t\\0 points of view. First of all, they are

distinguished points within the body which trace paths in space and determine

Figure 3.6

/
I

I

PROXlliAL
JOINT

z

40

-- _.._ __
/

/

.,...
/

•

' ' '\.
\
\

(Z-AXIS)

CROSS OF AXES OF
PROXll1AL SEGMENT
AT JOINT

PROXTI1AL
SEGMENT

Orientation of segment with respect to distal segment.

SPHERE
Z COORDINATE

41

DISTAL
JOINT

z

PROXll1AL
JOINT

SPHERE

CURRENT TiviST
TWIST OF SPBERE = Z OF SPHERE ORIGIN

Figure 3. 7 Transmitting segment twist to the surface.

42

DISTI\L
JOINT

SEGMENT

PROXIMAL
JOINT

POINT ON SURFACE

ORIGIN

SPHE..~

FEATUP.E
DIRECTION

(ORIGIN +
FEATURE DIRECTION)

Figure 3 . 8 Specifying features.

43

how the entire l::x:::>dy is positioned, Secondly~ they are points of articulation

of segments. At each joint the articulated segment which lies along the

path connecting that joint to the root of the body tree (as defined al::x:::>ve)

is called the proximal segment of the joint. All other segments articulating

at that joint are called distal segments. These two views of a joint are

both incorporated in the following data structure:

~ joint = (name: sequence. character;
connection : (proximal : segment ;

distal: powerset segment);
location: (previous: vector;

new: vector;
forbidden: sequence vector;
valid: logical)).

The joint must connect a proximal segment with a non-empty set of distal

segments unless it is an extremity. Finally, a joint has a dlill'acter string

name which serves as a label.

In Section 2.2.1 we defined position and movement descriptions for

direction signs. In the simulator, these concepts are generalized to apply

to any instruction. A position description indicates the location of the

joint irrespective of any previous location (dir,ection signs and shape

descriptions of the "position!! kind, facing signs, contact signs, and some

revolution signs). A move~ent description indicates the joint location

relative to its location at the start of the instruction (direction signs

and shape descriptions of the !!movement!! kind and some revolution signs).

Since an instruction is discarded by the joint processor after its

interpretation is complete, it is necessary for the monitor to save the

current locations of each joint for possible use in the next simulation

cycle. At the beginning of each cycle, every valid Hnew11 joint location

·is copied into the corresponding "previous11 register. (Initially the

44

standard position of the body provides this data,) During instruction

execution this previous location may be used to establish a joint location

with respect to a particular cross of axes. This cross of axes may be

different from that originally used to achieve the position. For example,

there are different "holds" to preserve various aspects of a position [12];

and it is primarily for ITDvement instructions which arise from "hold"

conditions (Section 4.2.2) that the previous location is necessary.

For a ITDVeT11ent description the "previous" location must be used to

establish the desired goal location; although this information is obtained

directly from a position description. In either case after the new position
.

is computed, the 11newn register receives the location of the joint in the

global coordinate system and the 11valid" flag is set to 11true. 11 The ''valid11

flags of all other joints vJi thin the scope of the instruction are set to

11false" since their absolute locations may no longer be accurate. They will

be brought up to date when that information is needed.

Once a joint is positioned, the "forbiddenn register prevents further

JIDvement in one or JIDre directions during the remainder of the simulation

cycle. This register is initially nil (except for ankle and end of foot

processors in standard position which cannot move downward any further) . It

is used to maintaLD contacts with parts of the room (such as the floor), to

limit the movement of the center of gravity (so gestural movements will not

perturb its path), and to execute multiply--constrained movements (for example,

whole body twists while supported on both feet).

3. 3. Data Base Management.

Joint processors may obtain any information stored in the body data

base upon request to the monitor. Only a limited set of JIDdifications to the

45

data ba.se are penni tted, hmvever, and these are also mediated by . the

monitor. The primary reason is that all movements are ultimately executed

by general algorithms wl1ich are shared by all processors (via the monitor)

[5]. These general algorithms are the data base "primitives" which the

other processes use to irr~lement their movement instructions. A second

reason is that. during the execution of these algorithms, .certain body

limitations may be reached, such as joint stops or segment collisions, and

the monitor may be able to invoke some general strategy to finish executing

the movement (such as t'ivisting the proximal segment or trying an alternative

movement path in a linkage situation). If these heuri::;tics fail, control

may be returned to the processor issuing the request.

The penni tted movements are:

l. MOVE a joint to a point in a reference system from a given
fixed end.

2. ROTATE a joint by a glven angle about some axis from a given
fixed end.

3. 1WIST a joint by a glven amoWlt from a glven fixed end.

4. BEND a joint to some angle.

Each of these functions is outlined below.

The MOVE function requires that one- , two-, or three-segment linkages

be moved in space from an initial position to the given fjnal position.

One and two segment solutions are straightforward, while the three segment

case involves choosing reasonable heuristics to select a solution among

the many possible. All cases must take into account joint limits and

forbidden directions. These algorithms and their :implementation are discussed

by O'Rourke [17], TWIST, BEND, and ROTATE directly update the orientation

and twist jnformtion on the distal segment of the indicated joint· TWIST

46

merely alters the twist angle, possibly twisting proximal s.egments if a

limit is reached, BEND changes the orientation vector by changing the

angle betvJeen the z.,..axes of the segments adjacent to the joint. The ROTATE

function specifies an axis of rotation about which the orientation vector is

transformed. Other segments may be affected if the rotation attempts to

move the joint into a region restricted by the stop function. In the case

of either BEl'JTI or ROTATE, the twist of limbs which have significant f-reedom

of rotation (at the shoulder or hip) are adjusted by a standard orientation

function for the 1£~ to conform to the conventions of Labanotation [12].

47

4. JOINT PROCESSORS

The joint processors are responsible for ~terpreting the active

direction, revolution, facing, and shape description instructions during a

simulation cycle. While the monitor provides some scheduling between the

various processors, each joint processor is responsible for determining

the proper sequence of actions needed to implement concurrent instructions

with the same priori ties (Section 2. 3) . We shall nmv describe the data

structures maintained by each j oiJlt processor, after which we shall show

how each movement or concurrency of movements is achieved.

4.1. Data Structures of a Joint Processor

There are three groups of registers within each joint processor. The

first contains the instruction stream, the second consists of input sequence

control, and the third is composed of register subsets specific to each

instruction type. The first two sets will b2 described in this section,

and the instruction registers will be described in the follovJing sections.

As we briefly discussed Li Section 2.3, instructions to a joint

processor are formed into strea~s. Each stream consists of sequences of

instructions or concurrent instruction streams. These are formatted so that

only one level of parallelism is necessary:

~ stream = sequence (sub stream, concurrency) •

!.Y;ee concurrency = sequence substream.

~ sub stream = sequence instruction.

~ instruction = (direction signs,
revolution signs,
facing signs,
shape descriptions).

d · '-' · 2 9 Wl. thl. n a substream all timing This structure is reflecte m 1 1.gure • .

information is based on the sequence of inst~uction durations; likewise,

48

substreams and concurrencles are assumed to be sequent;i..al, w;i.. thout time "gaps, "

Since each joint processor is responsible for handling an instruction

stream, program control consists of one or more program_ counters: There is

one program counter for each parallel substream of the instruction stream.

Each program counter stores a 9elay va1ue which indicates tvhen the associated

instruction substrearn must be "advanced," that is, the 1ead e1ement dele~ed.

~program counter = sequence (delay: rational;
association: substream).

Initially the joint processor contains a single program counter with a delay

of zero.

At the beginning of a simulation cycle, the joint processor checks the

program counters. For each program counter whose delay is zero, the following

steps are repeated until the delay is nonzero :

1. Fetch and interpret the instruction in its associated substream.
If the substream is nil, then there are rno possibilities:

1.1 If this is the end of a substream or concurrency, the old
program counters are replaced by a new set, each referring
to a new substream.

l. 2 If this is the end of the entire stream, the joint processor
becomes dormant for the renBinder of the simulation.

2. Increment the delay value by the duration (possibly zero) of the
instruction just interpreted.

3. Delete the interpreted instruction from the substream. An empty
substream is represented by nil.

An interpreted instruction is placed lD the appropriate registers for

its instruction type. After these registers are set, the monitor interrogates

each active joint processor to determine the "scope" of each (joint processor,

instruction) pair (Section 5.1) and the shortest (nonzero) delay among all

the program counters. The simula-tion interval is· the smller of this delay

value and a fixed minimum interval. Every program counter delay is then

. 49

decremented by the simulation interval. The monitor can now proceed to

schedule instruction execution.

4.1.1. Direction registers

Interpretation of a direction sign depends essentially on the

extraction of three pieces of information. Most important is the

specification of a movement destination. This destination is interpreted

with respect to an environment, which is constructed from the fields of

the direction s1gn. Finally, it is necessary to keep track of the duration

remaL~ing for the achievement of the destination. Additional modifiers

may be supplied to further define the movement. A set of direction

registers thus has the following structure:

~ direction registers = (goal: destination;
env: environment;
duration remaining:
modifiers: po~·7erset

The environment has the following structure:

type environment = (cross: reference;
fixed end: joint~

rational;
constraints) •

augmented scope joint: joint;
current position: vector).

The "fixed end" register is filled directly from the "proximal joint" field

of the instruction; and 11cross" is established by a placement m::xiifier or,

if a placement modifier is not specified, by a default associated with the

join-t processor. The "augmented scope joint" is normally the same as the

fixed end but may be altered by the joint processor in response to specific

commands (inclusions in a direction sign) or specific movements (destinations

which physically force inclusions). It is used by the monitor to establish

an instruction's priority (Section 5.1).

The "current position" is obtained from the nonitor as the location of

50

the joint relative to the "cross", The m::m;i,tqr mu:;;t use the latest

information in establishing the reference; hence the "current position" will

take into account the results of any other mvements which have already been

executed during this cycle. This may force the computation of the absolute

locations of any required joints which are currently flagged as not valid.

The system of reference for an environment is given by the following

substructure:

~reference= (origin: (joint, vector, local vector);
orientation: (forward: direction;

left: direction;
up: direction)).

~ local vector = (segment; vector) .

~direction= (fixed: (vector, local vector),
body: (from: (joint, local vector);

to: (joint, local vector)),
tang8I1t : (real ; real)) .

A system of reference is established by locating its origin and giving the

directions of its three coordinate axes. The location of the origin may be

given in terms of a joint, a vector of absolute coordinates, or a vector

defined in terms of the local cross of axes associated with a segment.

Similarly, axis direction may be given by a vector, either in absolute

coordinates or in terms of some segment's local cross of axes; alternatively,

the direction may be glven by a line connecting any two points of the body

or by the tangent to the current path (given as a vector in the plane of the

floor).

The structure of "destination" depends on whether the ''kind" field of

the direction sign is 11position" or "movement":

type destination = Cposi tion:

mvement:

(to: vector;
path: (straight, radial)),

(toward: vector;
from: vector)) .

51

All vectors are interpreted with respect to "cross'' as provided by the

environment, If the destination is a ''position", the joint will be noved

"to" that position from its "current position" along a straight or curved

(
11radial") path. A "movement11 description is always interpreted as being m

a straight line from the location of the joint at the start of the instruction

interpretation. (This location, expressed in terms of "cross", is stored

in the "from" register.) The magnitude of the movement vector C:'towardn)

is detennined by either the joint processor (for gestural movements) or the

progression processor (for support movements).

Finally, we have several possible modifiers:

type constraints = (contacts, deviation, bends).

type contacts = sequence contact block.

type deviation = proc (real) vector.

type bends = sequence (location: joint;
surface: local vector;
begin: rational;
duration: rational;
achieve: (fraction, nil)).

Information regarding contacts is supplied by the monitor as part of the

interpretation of contact signs. We shall pursue this further in Section 5.2.

The directional displacement is a 17deviation description" (Section 2. 2 .1)

represented as a vector-valued function of time, where -the vector output

is defined in terms of the system of reference given by the environment. We

shall see in Section 4.2 how this function is integrated into the actual

movement implementation.

Bends account for the remainder of the information specified by a

direction sign. The affected joints will normlly include all body joints

betvJeen the augmented scope joint and the joint processor. Omitted joints

52

are assumed to be unaltered by this particular ;instruction, Each joint is

given a bending surface, a starting time~ and the length of time allovved

until the bending angle lS achieved, The bending surface is a local vector

which translates into a rotation axis at the joint; and the angle is

expressed as a fraction of the total possible bend in that direction; this

value can be computed by the rronitor from the current joint position and

the joint stop function. A value of nil in this register is interpreted as

11Whatever bending is necessaryn and can be used to implement multiple bends

whenever explicit bends have not been specified [17]. By including jo~1ts

in the bending list which lie further from the joint than the fixed end,

inclusions (Section 2. 2 .1) may be implemented. The degree of inclusion lS

translated into default bending fractions which will be used as maxima,

not necessarily as values to be strictly achieved.

The bending registers are also used to effect most !!intermediate joints!!

rrodifiers (Section 2.2.1). Leading and following are implemented by srrall

bending rrovements followed by bends in the opposite sense. Inward a.'!d

outward successions are sequences of such bends and cancellations. Default

values for these movemerrts are established by the processor whenever they

are not specified in the instruction. Guidance by a body surface is

handled differently: a facing sign is generated by the joint processor to

orient the surface toward the direction of travel during an initial fraction

of the direction sign.

4.1.2. Revolution registers

Revolution signs require for their interpretation the same timing and

environment information as do direction Slgns. In this case, however,

the movement is represented as the remaining orientation change about an

53

ax1s~ along with a modifier indicating whether this change ~$ to be

achieved as a twist or a rotation:

type revolution registers = (env; environment;
duration reiiBining: rational ;
axis : vector; ·
change remaining: real;
revolution modifier: (twist, rotate)).

Orientation changes are specified as multiples of a full revolution about

the 11axis", expressed as a vector in terms of the environment "cross"

Initially the "change remaining" value is the same as the "amount" field

of th~ revolution sign. The "sign" value is subsumed into the "axis".

vector direction so that the rotation Gr twist follows the right-hand rule.

We shall make the restriction that the fixed end of the revolution be

identical to the origin of the environment 11cross", except for instructions

to the progress1on processor. Also, for a twist the joint itself must lie

on the axis.

Revolution may describe particcliar positions or relative changes in

the orientation of a joint with respect to its current "fixed end". These

cases are distinguished by the "origin" field of the revolution

sign. If this value is "stance" or nabsolute", an appropriate direction 1s

computed from the "sign" artd "amountn values. This direction is then used

as the "direction" field in a facing sign generated by the joint processor.

The facing sign replaces the revolution sign and inherits its other attributes,

transformed as necessary.

When the revolution sign "origin" is "current", a relative angle change

1s assumed. The joint processor will execute the total aJnowJ.t of change

requested, even if other D1ptructions augment or diminish the apparent

rrovement. For example, the orientation of the proximal segment may change.

54

While this may induce an additional twist? la,banotation conventions

[12] preclude any alteration to the "change remaining" register.

4.1.3, Facing registers

The interpretation of facing Slgns requlres nearly the same information

as is provided by revolution signs. This makes sense, since a facing sign

invokes twists or rotations indirectly and is the position description

analog to a revolution sign:

~ facing registers = (env: environment;

~ facing = (area:
goal:
axls:

duration remaining: rational;
facing modifier: (twist, rotate),
action: facing). -

vector;
vector;
vector).

The "goal" register stores the orientation which the surface "area" ls to

achieve. Eoth vectors (as well as the '~axis") are e).'})ressed in the local

coordinate system of the segment containing the surface to be oriented. The

origin of this system will then be situated at the joint whose processor

received the instruction.

The llaxis" vector is derived rather than supplied by the instruction.

It is chosen as that perpendicular to the plane formed by the "areal! and

"goal" vectors such that the former is rotated toward the latter through an

acute angle. (If the other direction is desired, a simultru1eous revolution

or an intermediate facing must be used.) If the tv.Jo vectors are directly

opposed, then the axis is chosen to lie as close as possible to the Z-axis

of the distal segment containing the surface area. If this cannot be done

(the vectors are parallel to the Z-axis), the X-axis of the segment is chosen

arbitrarily. If the two vectors represent the same direction, then the

joint has achieved the facing goal. Since a fixed end is not provided in

55

the facing sign, the joint processor itself is used, The facing is then

implemented as a rotation or twist of the d~stal joint of the segment

containing the surface about the ''axis". Facings of the "twist" type can

only arise from modified revolution instructions (Section 4.1.2).

4.1.~ Shape registers

Shape descriptions, like direction signs, may be either position

descriptions or mov~~ent descriptions:

type shape registers = (env: environment;
duration remammg: rational;
action: shape) .

type shape= (kind= (position, movement);
configuration: proc (real) vector).

For a position description the body parts between the joint processor and

its fixed end are to achieve some configuration in space. This 1s g1ven

as a vector function whose input 1s the distance along the path connecting

the processor's associated joint to the fixed end. TI1e configuration may

then be achieved by iteratively fitting body segments to the shape. A

movement description, on the other hand, describes the path of the joint

associated with the processor for the indicated duration. The "configuration"

is now interpreted as a vector function of time, appropriately scaled so

that the final position is achieved at the end of the ins·truction.

4.2. Increment and Destination Computation

The rrost elementary fllilction of each joint processor is to move its

joint towards a destination point, direction, or orientation during each

simulation cycle. At the beginning of a simu1ation cycle, the joint

determines its current position with respect to the appropriate reference

system. This is necessary because the joint nBy have moved from its goal

at the end of the previous cycle; other processors or chctnges in the location

or orientation of the reference system could have moved it. We shall assume

56

that the destination (or final goal) of the movement i~ kna\'XDt How much

the joint will move depends on the simulation interval:

if duration remaining .::_ simulation interval
the12 do nmove :t from current position to destination;

delete instr11ction; (it's completed)
end

else do "move" (simulation interval/duration remaining)
of the way from current position to
destination;
duration remaining = duration rernctining

- simulation interval;
end

The definition of "move" varles from instruction to instruction. It will

be helpful to define three functions to perform various interpolations,

NVRI , NVLI, and NPRI:

NVRI: ~ (current: vector; destination: vector; amount: fraction)
returns (vector).

This procedure (New Vector; Radial Interpolation) returns the vector which

is the fractional amount of the positive rotation from the current vector

to the destination vector. The length of the result is linearly interpolated

between the current and destination vector lengths (Figure 4.1).

NVLI: proc (current: vector; destination: vector;
-- amotmt: fraction) returns (vector) .

This procedure (New Vector; Linear Interpolation) returns a vector which

represents the fractional amount of distance from the current to the

destination vector (Figure 4.2).

NPRI: proc (current: vector; axis: vector; total: real;
amount: fraction) returns (vector).

In NVRI the axls of rotation is implicitly perpendicular to the two vectors.

For NPRI (New Position; Radial Interpolation) the axis is provided. The

result is the current vector-rotated about the axis by tl1e fractional amount

of the total rotation desired (Figure 4.3).

Figure I.J..l

figure 4. 2

57

DESTINATION VECTOR

RESULT VECTOR

' ' \
'

Interpolation with N~RI.

Interpolation with NVLI.

CURRENT VECTOR

58

TOTAL ROTATION AMOUNT

•

~~=========== -------=-+-----~AXIS
FRACTION (OF TOTAL N10UNT)

figure 4. 3 Interpolation with NPRI.

59

Although these ;functions linearly interpolate to compute the result

vector, we can scale the fraction by any function F such that F(O)=O,

F(l)=l, and 0 ~ F(x) ~ l for 0 < x < 1. The identity function F(x)=x lS

implicit in the above; but other non-linear functions may be used to emphasize

smooth accelerations and decelerations [7,16,22]. We are avoiding this

route for the present, however, since phrasing information is not

specifically encoded into the instructions to the simulator.

4. 2 .1. Position compu-tation

For a position description direGtion instruction we must determine

wh1ch type of path is to be used. The following decision procedure has

been abstracted from Labanotation [12]:

~ = arc length distance between current position and goal;

ifli=0°
then path = straight;
---- use NVLI for interpolation;

if oo < ~ < 900
then path = radial;
use ~~RI for interpolation;

if goo < ll < 1soo
then path = straight;
---- include a slight deviation

(depending on joints and position);
use NVLI, then compute deviation;

Changes of the first type arise when position and goal lie along the s~ne

direction or when either is zero in the current reference system. The

direction change in the second case does not, in itself, cause a change ln

the distance between the joint and its fixed end. In the third case, however,

length changes are mandatory and must be compensated by bending intermediate

joints. The timing and degree of bending are stored in the bend registers

of the direction instruction. Both this inforrration and the indicated

deviation are supplied by the joint processor depending on its physical

60

capabilities and the current and goal directions~

For shape descriptions of the position type, the movement process lS

one of matching joint angles to the path of direction vectors. Starting

at the fixed end, successive joints are adjusted by radial interpolation

(NVRI) to approach the tangent to the shape at the appropriate distance.

(The fixed end is "pinned" to the start of the shape; thus the first

adjacent distal joint lS the first to be moved.) The arc length of the

shape can be compared to the total body length between the joint processor

and the fixed end (obtained from the monitor), so.that the distances

involved are easily scaled.

Revolution and facing instructions interpolate rotations with NPRI.

Additional effort must be expended, however, in insuring that intemediate

joints rotate, or segments twist, by the appropriate amounts. For the

ell:::ows, wrists, knees, and ankles we can use the "1..miversal joint" property

of these hinge connections to transmit a rotation in a distal se~nent

to a twist or rotation of equal magnitude in the proximal segment. This

lS not true for joints ln the torso because of the pivot-like spinal

connection; nor is it true for the ball joints of the hips, shoulder and

head. Generally, these joints nabsorb" rotations up to their physical

maximu.'TIS .

An additional problem must be confronted in twists or facings which

include more than one fixed support or contact point, for example, a twist

of the center hip with respect to the (fixed) foot positions on the floor.

We cannot simply distribute these twists over the leg segments. Instead,

a line connecting the left and right hips is rotated; and the positions of

the knees are computed based on the hip and ankle locations. These positions

61

are then used to compute the actu~l rel~tive orientations ~t the knees and

hips and the twists of the lower legs. If one or both feet are not restricted

to immobile support contacts then some other action any occur. For example,

if one foot is not supporting body weight then the normal twist

calculations can be perfonned on the supporting foot. These and similar

situations are processed by the monitor since they are caused by various

external constraints on joint positions, namely contacts.

4.2.2. Movement computatio~

Movement descriptions have uvo possible interpretations, depending on

whether or not a direction of movement is specified. hlhen it is given, the

joint rroves in that direction along a straight path. Intermediate positions

are interpolated using NVLI with a "cu...r.rentn location of (0,0,0). Although

the direction of movement lS glven in the direction sign, the length of the

"destination" vector must be determined indirectly. Most direction

instructions specifying movement alter support and are therefore handled

by the progression processor. The "destination" vector is determined by

the default step length or an appropriate modification of the default by a

bend or stretch indication in the instruction. For non-support movements

the magnitude of the movement may depend on a maximum displacement or some

reasonable default movement rate.

When no direction is specified the instruction is interpreted as a

"hold"; that is, the joint is expected to maintain some fixed relationship

to a given reference cross of axes ttrruughout the duration of the instruction.

In this case, the position must be re-established every simulation cycle

rather than achieved only at the end of the duration interval; so the location

d l th "d t . t . " of the joint is used as the "current 11 vector an a so as e es ma lon

62

vector in NVLl, Any fraction of the total du:0a.t;i,on \v;i,ll therefore achieve

the same position,

For shape descriptions movement is specified by a three-dimensional

path of points. As we have previously noted, we will.assillne that the

intent is to distribute the movement evenly over the total length of the

path. It is therefore easy to compute the total path length over the

point set, if only as the surruned linear distances between the points. (Cubic

interpolations could be used to "smooth" the path, making the path length

that of the interpolated curve.) At any simulatiof! time the direct.ion of

movement is toward that point on the curve lying (length/simulation

interval) distance away from the current point along the path. For long

simulation intervals the e:A'})ected shape may be somewhat distorted; but as

these are again primarily paths for the progression processor, we can expect

the simulation interval to be short with respect to the total time needed

to traverse the path.

4. 3. Simultaneous Ins·truction Execution

During a simulation cycle a joint processor may be executing more than

one instruction affecting the same sequence of body parts. A reasonable

execution sequence for these instructions must be determined, although

conceptually they are to be executed in parallel. Among concurrent

instructions the default execution order is:

l. shape descriptions of "movement" kind

2. shape descriptions of nposition'' kind

3. revolution signs of Protation" kind

4. revolution slgns of "twist" kind

5. facing signs

63

6. direction signs of "ITDvementn kind

7. direction slgns of "position" kind

The general rules used to construct this ordering can be summarized:

* Shape descriptions are executed first since they define global

ITDvements or configurations of body parts.

Revolution signs are executed next since they tend to orient

limb units.

Facing signs are executed next since they may cause joint rotations

or twists to achieve the facing direction.

Direction signs are executed last since they move joints to

specific locations in space, subject to the constraints established

by the preceding instructions.

In addition, the following factors were influential:

1: "Position11 instructions are executed after "rrovement" instructions,

since a position must be achieved regardless of the movements which

co-occur with it.

~·: Rotations are performed before twists because rotations do not affect

intermediate joints; facing signs and twists do, so they must be

concerned with the admissible positions and movements of the

intermediate joints.

1: Direction signs must be executed after facing signs to assure that

contact processing will establish the desired relationships

(Section 5. 2. 2) .

~·: "Position" direction signs are executed after "movement11 direction

signs so that contacts (maintained by 11movement" direction signs)

may be broken by subsequent positioning instructions.

64

The modifiers of a direction sign are applied to the ~sic direction

movement. The deviation function is applied to obtain an absolute

displacement which is added to the current position. From this adjusted

position bends are executed, proceeding along successive joints toward the

augmented scope joint. Finally, contacts are approached or maintained

according to the process described in Section 5.2.

65
5. MONITOR

In Section 2,3 we indic~ted how the.monitor structures the overall

control flow during a simulation cycle. We have noted that the monitor

manages the body data base and provides computational utilities for

maintaining and modifying the data base in response to requests from

the other processors. In this section we shall discuss the remaining

duties of the monitor: scheduling the current set of concurrent

processes, and moderating the achievement and maintenance of contacts.

5.1 Priorities of Processing

Since the monitor maintains the body data base, it must also be

responsible for the order in which changes are allowed during a sim­

ulation cycle. Because the body must remain connected, all movements

(with the exception of movement of the body as a whole) must be real­

ized by rotations. This is achieved by changL~g the orientation

vector of the individual segment data structures. As we have noted,

however, rotating one joint may invalidate the absolute positions of

all other joints which lie "beyond" that joint in the body tree (i.e.

further from the root) . Since a processor controlling one of these

joints may be executing an instruction, it is imperative that that

processor have current information on the location of its joint.

During a simulation cycle the monitor must schedule the active

processes to insure the determinism of the resulting movement. Thus,

the semantics of a particular set of concurrent instructions should not

be different from one execution to the next. Put somewhat differently,

the individual joint processors determine the semantics of the instructions

they are currently executing, while the monitor determines the semantics

of the collection of executing processes with respect to the structure

66

of the body.

I~ is the~efore necessary to determine ~ priority for the order of

execution of all concurrent ;instructions, This priority is based on

whether one subtree of the body tree is contained in another, and which

of these are the 11largest" among the Cl...lr';r'ent set of trees. The scope

of an instruction is defined as the subtree of the body tree formed by

the directed path from the fixed end of the instruction through the

joint receiving the instruction, followed by the remainder of the body

tree rooted at that joint (excluding the path already defined to the

joint). We shall call a particular kind of subtree an augmented scope

tree if the initial path is rooted at the augmented scope joint. For

example, if an instruction to the center shoulder specifies the center

hip as fixed end, but the left hip is the augmented scope joint, then

the augmented scope tree is shown in Figure 5 .1.

The instruction priorities can now be derived from relationships

between the set of augmented scope trees. vJe first de£ ine a maximal

instruction and compute priorities among the set of maximal instructions.

A maximal instruction is one whose augmented scope tree is completely

contained in no other augmented scope. The remaining instructions can be

assigned priorities through an ordering defined among the subtrees of-

an augme~ted scope tree (based on containment of one subtree in another).

A maximal instruction augmented scope may still intersect that of another

instruction, so we distinguish an isolated maximal instruction as one whose

augmented scope lS disjoint from or else shares only the root joint witl1

any other maximal instruction, Otherwise the maximal instructions overlap:

at least one edge (segment) of the body tree is corrrrnon to both.

1m isolated maximal instruction is independent of any other maximal

LEFT END
OF HAND

67

~ROOT OF "-\
AUGMENTED ROOT OF
SCOPE TREE SCOPE TREE

Figure 5.1 Example of augmented scope tree.

RIGHI' END
OF HAND

68

instruction and receives the lowest pri0ri,ty. To d;i.fferentiate i3,JIDng over-,-,

lapped ~irrBl instructions, we use two heuristics;

l, Assign higher priority to the maxirrBl instruction having a support­

ing joint Hi thin its augmented scope.

2. Assign higher priority to the rraxirrBl instruction having a passive

contact point within its augmented scope (Section 5.2.1).

These are applied so that (1) has precedence over (2). The first heuristic

arises from the fact that a supporting joint carries weight ru1d cill1not be

moved with respect to the point of support; thus the remainder of the

rody must be positioned relative to that constraint. The second heuristic

derives from the execution of contacts: an active con~'l:act point must

adjust to the movements of a passive partner contact point and therefore

must be moved last. In case of ties, a choice is made arbitrarily, although

it is expected tl1at this case will arise infrequently: overlapping scopes

are apt to be ambiguous even to a humru1 interpreter.

Once the priorities of the max:im:::tl instructions are established,

priorities for the remaining instructions depend only on subtree contain­

ment. vJe will also adopt a "depth-first" ordering such that all inst-ructions

"less than" a maxirrBl instruction of highest priority are executed before

the maximal instruction of next highest priority. The non-maximal instruc­

tion priorities therefore fall "beu,;~een" those of the maximal instructions.

Consider two trees contained within the augmented scope of another instruc­

tion. They may intersect in one of seven ways (Figure 5.2):

1. Same joint processors and augmented scopes. The order of

execution is determined by the joint processor, not the monitor

(Section 4. 3).

CASE

1

2

3

5

6

. 7

'-V
71"

*
><

><

X
+

Figure 5. 2

69

~
~ /
~

exeC:

-I
= INSTRUCTION 1 AUGMENTED SCOPE JOINT

= INSTRUCTION 2 AUGMENTED SCOPE JOINT

= INS1RUCTION 1 JOINT PROCESSOR

= INSTRUCTION 2 JOINT PROCESSOE

Augmented scope overl2p cases.

70

2. Same aup;nented scope, but joint of instruction one lies on path

between augmented scope joint and joint processor of instruction

two. Instruction one is executed first.

3. Same joint processor, but augmented scope joint of instruction

two lies between augmented scope joint and joint processor of

instruction one. Instruction one is executed first.

4. Different augmented scope joints and the joint processor of

instruction tvvo lies in the subtree rooted at the joint processor

of instruction one. Instruction one is executed first.

5. Different augmented scope joints and joint processors, and the

augmented scope joint of instruction two lies in the subtree rooted

at the joint processor of instruction one. Instruction one is

executed first.

6. Same augmented scope joint, but joint processors are roots of disjoint

subtrees. The relative priorities of the instructions are computed

as if they were maximal instructions using the heuristics described above.

7. Same as case 6, but with the augmented scope joint of instruction two

between the augmented scope joint and joint processor of instruction

one. Instruction one is executed first.

5.2 Contact Processing

Contact instructions are handled by the monitor s1nce contacts may occur

between arbitrary body surfaces. We shall make the assumption that contacts

are essentially local phenomena, in the sense that suitable instructions of the

other types will approximately position the involved surfaces. We can therefore

avoid defining a unique scope for a contact instruction;'rather, its effective

scope will depend upon the instructions currently being executed by the

affected processors.

Contact signs in the monitor input stream are read and interpreted

7l

at the very begin..11ing of the simulation 7 slnce the nlQni tor cannot know

a priori what subsequent direction signs will be used to actually implement

the contact. The contact signs are compiled into ~ontactblocks, one for

each pair of objects in the "contacts" sequence of the instruction:

type current contacts :::: sequence contact block,

Whatever information cannot be compiled is inserted when suitable direction

signs are found vJhich overlap the contact time. Many contact Slgns are

generated during the simulation by the progression processor, and the

monitor simply assimilates them into the "contacts" data structure as soon

as they are received. Achieved and inactive contacts are deleted.

The goal of contact processing is to convert the relational specifica­

tion in a contact sign into explicit points, distances, and directions.

Achievement of a contact is thus dependent upon bringing two points together

Hi thin a certain distance tolerance. Each contact block describes a single

relationship between tvJo points (not necessarily fixed) on the surface of

the body or on an auxiliary object. For each active contact point (there

rrllst be at least one for each contact block), a joint processor is dele­

gated responsibility for moving the point to achieve the correct contact.

These joint processors have (or else will be supplied with) a suitable

direction instruction \..Jhose "contacts11 register (Section 4 .1.1) will refer

to the contact block. The "influence" registers are used to control the

rate of contact achievement. The "duration in-terval" registers contain

the difference between the contact time and the starting time of each

direction sign with its contact modifier:

~ contact block

72

(timing; (sJt; ;r~tional ;
duration remaining: rational;
until; (rational, nil)));

relationship: (upper limit:-real;.
lower limit; real;
initial distance; . real;
current distance: real;
difference vector: vector;
weight: (real, nil));

contact 1: (place 1; virtual contact;
delegate 1: joint;
influence 1: real;
duration interval 1: rational) ;

contact 2 : (place 2 : virtual. contact;
delegate 2: joint;
influence 2 : real;
duration interval 2: rational;
role: (active, passive))).

Timing information consists of the time at which the contact occurs

("at"), the "dur>ation remaining" until the contact time, and the time when

the contact is to terminate. The "until" register may contain an explicit

termination time, determined from a later contact sign (see Section 2.2.4),

or nil, in which case IIDvements of the joints 1:-Jill break the contact

naturally. The "at" and "until" registers will hold the same value when

the contact is "in passing".

Because a contac·t sign need not describe an actual touch relationship

between two contact points, we must allow the specification of any point

related to a body or object surface. The "places" of contact are "virtual"

points described by the "virtual contact" data structure:

~virtual contact = (source: (body: (which: segment;
using: (sphere, nil)),

other: object);
location: (fixed, sliding);
direction: (vector, nil) ;
point: vector). ---

The contact point may be associated with a body segment or another object.

In the former case, a specific sphere 1nay be used; or the contact point may

73

"float" alx:mt the segment surface, The "location" O,f the contact point may

be fixed or may be free to slide about within the prescribed domain. (for

example, if a fingertip sphere is specified Ln a lKLnd segment, then a

sliding "location" will allow a contact to occur anywhere on the sphere,

not just in some specific sp::>t.) The location is further constrained by

optionally specifying a contact "direction" in the local cross· of axes of

the segment or object (figure 5.3). The "point" register contains the

actual fixed s:wface contact point or the (variable) sliding surface

point found during contact achievement, subject to the constraints in the

other registers.

Achievement of a contact involves two "places" and a relationship.

If the virtual contacts have any locational freedom, then the points

actually used are those representing any closest pair of points satisfying

"the constraints on the two virtual contact sources. The "direction"

registers (when non-nil) define the desired alignment of the virtual contact

points (Figure 5.4). The monitor achieves the alignment by generating

suitable facing instructions for the joint processors responsible for

these contacts (Section 5.2.1).

The remaining degree of freedom lS the distance between the contact

llplacesH, and this is described by an "upper limit" and "lower limit"

distance range. The "initial distance" and "current distance" between the

contact "places" are also stored (figure 5.5). The distance tolerance lS

set from defaults associated with the "kind" field of the contact sign:

both limits are zero for ntouch" or 11 support", both are smll positive

values for "near", and the "lower limit" is zero and the "upper limit" lS

some maximum possible distance for "relate". A "surround" modifier is sep-

spHERE

SEGMENT

"POINTn IN
~ ''DIRECTION"

INDICATED
ON SPHERE

74

POSSIBLE
VIRTUAL
CONTACT
ronrrs

"DIRECTION"
/:;J

Figure 5. 3 Virtual contact points.

SEGMENT

"DIRECTION"

z

''DJRECT10N''
Qf
yiRTUAlJ
com:Acr

figD)-'"B 5 .l~

p}.ACE 2

SEGMENT

Figure 5.5

76

INITIAL
IE:-~--t---- DISTANCE

LOlv.ER Lll1IT

SEGMENT

Distances involved in contacts ("near" illustrated).

77

arated into several contact blocks, each of which will be achieved

independently but concurrently. Finally, "support" contacts indicate the

weight they currently bear, since the rnon:i,tor obtains this infornation when

computing the body center of gravity from the individual segment positions.

Contacts which are not expected to be supports have a value of nil in the

"weight" register.

5.2.1 DeterniLDing contact scope

The monitor must determine which joint processors are to implement

each contact. Since at least one virtual contact must always move toward

the other by explicit effort of a joint processor; it is designated as

(active) "contact 1". The other virtual contact ("contact 2") my or may

not be actively moved as part of the contact relationship (indicated by the

"role" register). The delegate joint processors for each active contact

are chosen by examining the set of instructions preceding the contact time:

a delegate is a joint processor having the direction sign with the latest

starting time prior to the contact, with its duration containing the contact

time, and also with the virtual contact point in its augmented scope. If

there is more than one joint processor and direction pair satisfying these

conditions for a virtual contact poli1t, then that used is the one whose

associated joint lies closest to the segment containing the virtual contact

and whose augmented scope joint lies furthest from it.

If there are no such processors, then a direction instruction is

generated for the distal joint of the segment containing the virtual contact.

The default fixed end for that processor becomes the fixed end of the

instruction. The duration is the ;:;ingle simulation interval prior to the

. contact, The instruction is interpreted as a movement of the virtual

contact point (not the joi~t) to the zero vector in a reference systen with

78

origin at the location of the other virtual contact1s lower l~it ~l~ng

the contact direction (Figure 5,6), (Bow this is done is described in the

next section.) Once the direction instructions are determined, their

"contacts11 registers are set to refer to the appropriate contact block,

Any difference betvJeen the contact directions is adjusted by generating

facing instructions for each active delegate joint processor. These will

have the same fixed ends and durations as their respective direction

instructions. The ''area" facing register holds the contact direction,

while the "goal" is the other virtual contact point (Section 4.1.3).

If both passive and active joint processors are involved in a contact,

then the monitor will perform any m::Nements of the passive joint first

(subject to the established priority order). The active joint will then

have the role of "pursuing" the passive one .. If both segments are active

in the contact, then each is given its turn at achieving the relationship.

Since either could reach its goal first, there is some nondeterminism

in this procedure; but this should only cause unusual results when the

simulation interval is inordinately large.

5.2.2 Contact implementation

We have reduced the problem of achieving a set of arbitrary contacts

to the problem of defining how a single contact modifier affects the

execution of a direction Slgn. If a single direction sign has :rrore than one

modifying contact block, the movement of the contact point is the vector

average of the set of contributing contact displacements which we shall

define below, Multiple contacts may be achieved by a joint processor even

if they occur at different times within the same specified instruction. If

one such contact is not achieved to the specified tolerance, an error is

reported.

PLACE 1
•

Figure 5.6

ORIGIN OF
REFERF.NCE
SYSTEM
USED TO
POSITION
PLACE 1
CONTACT

79

DISTANCE =
LOWER LIMIT

"DIRECTION' OF ,__,_7
VIRTUAL/

CONTACT

Goal of IIDving contact point.

80

By the joint selection criteri~ described m the J!receding section,

a delegate joint processor should approach the general vicinity of the

contact; thus the contact will modify the normal path of the joint. The

desired relationship is effected by altering the normal joint paths by

two factors: one, the distance influenc~, to push or pull the virtual

contact points toward or away from one another; the second, the time

influence, to postpone the maxj~um effect of one point on the other until

the very end of the direction sign duration. For example, consider forwcu~

middle movements of each arm from side middle positions (Figure 5.7a),

modified at the end by a hand clap contact (Figure 5.7b). The first factor

will insure that the hands continue beyond the forward middle position to

achieve the contact in the saggital plane of the body. The second factor

causes the additional movement to occur primarily at the end of the direction

moveJnent for each arm, otherwise the hands would approach one another too

quickly and tend to cause contractions at the elbows (Figure 5.7, c and d).

The distance influence has been chosen to be the piecewise linear

function shown in Figure 5. 8 . The closer the virtual contact points, the

more they affect each other's position. If the two points should move

further apart than their initial· distance (and this were not desired), then

the distance influence remains at some minimal level. If the contact is

still required, the points will tend toward each other no matter how far

apart they get. On the other hand, if no other contact sign explicitly

cancels a contact once achieved, the points are allowed to drift away

naturally when moved by other instructions. The time influence is simply a

linear function which is zero when the contact is first encountered as a

rrodifier in a direction instruction and one when the contact is expected

81

(a) start

(b) finish

(c) correct (curved path)

(d) incorrect (deformed path)

Figure 5.7 F.and clap :rrodifying forward middle positions for both arms.

DISTANCE
INFLUENCE

(%)

100

MINll1UM

TIME
INFLUENCE

(%)

0

Figure 5.8

100

0

0

Figur>e 5.9

82

STARTING DIFFERENCE

CURRENT DIFFERENCE

Distance influence.

START OF CONTACT PROCESSING

CONTACT DURATION REMAINING

Time influence (for each contact };X)int).

83

(Figure 5,9), The time influence y~lue is undefined ~ter the contact is

achieved,

The two weighting factors are combined into a single ,influence value

by multiplying them together and associp,t:i,ng h~lf of the resulting weight

with each cont~ct, even if only one is active (otherwise the active point

approaches the passive point too quickly). Thus each delegate joint pro­

cessor is responsible for achieving half the contact relationship; a passive

contact does not participate at all. Since one active processor must move

to actually achieve the desired relationship at the contact time, its

influence is set to one on the very last cycle, otherwise the virtual

contact points v;ould still be in a state of "approaching the relationship."

Finally, the influence value is used to scale the distance between

the tv;o contacts (the contact displacement) so that they approach or repel

one another. In eacl:: simulation cycle, the virtual contact is first (roughly)

positioned by the direction instruction to the delegate joint processor.

Then the contact displacement shifts the point position~ and the monitor

updates the body data base accordingly.

The t~ning information needed to process a contact is shown diagram­

nB.tically in Figure 5.10. The direction duration is the given duration

of the direction sign chosen to implement the contact. The contact "dilration

interval" registers are assigned the difference between the beginning of the

direction sign and the contact time for each delegate joint processor. (Thus

the contact duration interval is less than or equal to the direction sign

duration.) The 11 duration remaining" register of the contact block contains

the difference between the current sirnulator' time and the contact time.

The moveJnent of the delegate joint processor for each contact can now

•

~N~CURRENT \
CON"TACT Tll1E

INTERVAL SIMULATION ("1\T")
TIME

Figure 5 .10 Contact tim.:ing for delegate joint processors.

DIRECTION
DURATION 1

DIRECTION
DURA.TION 2

CONTACT
"DURATION

INTERVAL 1"

CONTACT
"DURATION

INTERVAL 2"

CONTACT
"DURATION

RE!'1AINING 11

"UNTIL"

85

be computed in the reference systerrt of the direction instruction, The

(jojnt processor~ instruction) pair implementing the contact is allowed to

execute according to the usual priority order, The joint is moved according

to the direction destination (npdified by any deviations and bends) ; then the

following additional steps are performed:

l. Set the 11difference vector" register of the contact block to the

vector between the two virtual contact points. (The facing

instructions vJill insure that the actual contact directions line

up if required.) The length of the difference vector is placed in

the "current distance" register of the contact block.

2. Compute the distance influence (Figure 5.8), a measure of how

strongly the two contact points will attract one another:

starting difference = !initial distance - lower limit! ;

current difference= !current distance- lower limit! ;

distance influence =

max(l - m:m (current difference l) mln~~um influence)
starting difference' '

where the minimum influence is some small positive number such as 0.01.

3. Compute the time influence (Figure 5.9), a measure of how the

contact achievement will be distributed over the contact duration.

time influence = 1 - (contact duration remaining
/contact duration interval).

4. Since two contacts are involved, each is assumed to achieve half

of the contact (even if one is passive). The value stored in the

11influence" register lS therefore:

inflU6lCe = (distance influcnce)(tune influence)~.

During the final movement in the last cycle when the time :influence

is 1, the processor moving last hc-:ts influence = 1.

86

5, Finally the contact displqcement lS computed by scqling the

difference vector by the lower limit tolerance and the influence:

contqct displacement ~

(difference vector) (current distance - lower limit)
current d~stance (influence)

This may reverse the d~ection of the difference vector, but that

only indicates that the contacts are to be moved apart, not

together. The virtual contact point is then moved from its current

position by the contact displacement.

In order to accomplish the last step, the joint processor substitutes

the vir-tual contact point for its associated joint in the "current position''

direction register. It then executes a straight or radial path IIDvement to

the position computed in Step 5, as if the joint itself were situated at the

virtual contact point. The joint position in this configuration is then

computed, and intennediate joint bends are adjusted as necessary. This

process will additionally bring the contact points together precisely at the

end of the contact duration interval.

5.2.3 Contact maintenance

Contact maintenance is controlled by the "until" register of the

contact block. If this value should be the same as the time at wl1ich the

contact is achieved, then the contact is transient. The contact block is

deleted; and the direction instructions to the delegate joint processors

implBnenting this contact are free to assume their original destinations (if

they have any rerraining duration).

Jf the contact is to be maintained the contact block is not deleted,

but its 11duration remining" register is left at zero. lt will continue to

affect the direction instruction it modifies until either that instruction's

87

norrral end or the contact 11untiJ 11 time. Duripg this ;Lnterya,l the ;rnaintena,nce

process is exactly the same as tha,t used to achieve the actual contact by

the last processor in the final cycle; the contact displacement is evaluated

with an influence of 100% for one delegate joint processor or, if there are

two, then 50% for the first and 100% for the second.

When the direction instruction ends before the "until" time, the

monitor must generate a new direction instruction to accorrmndate the contact

block. This instruction specifies a movement direction of (0,0,0) in the

(new) reference system situated at the other virtual contact point and

parallel to the reference system of the containing segment or object. The
.

direction duration is the difference between the current simulator time and

the "until n value; instruction processing (Section 4. 2. 2) will now ll1sure

that the contact is maintained in each simulation cycle dtwing this interval.

88

6. PROGRESSION PROCESSOR

The prqgression processor has three primary responsibilities: to control

the movement of the whole body lD space? to determine the path of the

center of gravity of the whole body, and to maintain balance when necessary.

The :rrovements are described by instructions to joints which support the

body, but these instructions are collected together into a single stream

for the progression processor:

type progression stream = sequence progression instruction.

type progression instruction = (agent: (joint, whole body);
starti rational;
action: concurrency) .

A "concurrency" has already been defined for joint processors (Section 4 .1).

Each substream of a concurrency has an associated program counter with the

same semantics as that of a joint processor.

Because support movements depend upon succeeding instructions (perhaps

to different support joints), the progression processor must determine a

:rrovement in advance of its actual starting time. The progression processor

may dispatch any of these instructions to another joint processor; so the

original instruction, as well as its interpretation into the appropriate

set of joint registers, must be saved:

~ progression registers = (supports: sequence support joint;
interpreted: JOlDt registers).

type support joint = (present: ~equence instruction;
begin: rational;
prepare: sequence instruction;
onset: ratlonal;
between: (ground, step, jump)).

The ,,present" instructions have starting time "begin", while the "prepare"

instructions are the next set with starting time "onset" not equal to i'begin~'.

The action in the interval between these two times is determined by the

89

"present" and "prepare" instructions, For exa,mple~ ;Lf these registers

contain direction signs such that the duration of the "present" causes

its end to coincide with ''onset'', then the "between" action is .''ground";

that is, that supporting joint will maintain its contact with the ground.

Time gaps between direction signs result in a value of "step"; and if no

other support joint has a direction sign during this gap, then the result

is "jump".

6.1 Progression Implementation

We shall assume that the support joints are the two ankles to simplify

the discussion. An instruction may cause local changes to the body center

of gravity or more global changes requiring instructions to be sent to other

processors. Effects will be described from sirr~lest to most complex, to

aid understanding.

A shape description of the position kind must describe the relative

positions of support joints. This position is assumed by a process similar

to that presented in Section 4.2.1. When the shape description is a move­

ment, it defines the (approximate) path of the center of gravity. (Although

the path is defined in three dimensions, it is convenient to assume that if

all the z-coordinates of the path are zero, it is actually a projection of

the path onto the floor.) The path is approximate because the center of

gravity is allowed to oscillate about that path during movements. A reason­

able rule is to require the midpoint of the path of the center of gravity

during a step to lie on the global shape path (Figure 6.1) whenever the step

direction does not coincide with the shape direction.

Facing signs for a support joint are passed on to their respective

processor input streams. A facing sign for the whole body causes a whole

oody rotation (chc:mging "stance" [12 J and similar cr.anges in facing to the

90

..--~-=--~~ACTUAL PA'IH OF
CF..NTER OF GRAVITI

Figure 6.1 Approximating a shape description affecting support.

91

feet, These foot movements will appear as swivels (with friction) unless

a simultaneous step is called for in the "between" register. Revolutions

to the whole body change its orientation and introduce revolution signs to

the support joints unless these already exist. Revolutions of the support

joints, on the other hand, may induce a change in the orientation of the

whole body depending on the current positions of those joints on the floor.

Direction signs provide the most concise means of specifying a complex

novement and, as such, require that the instruction be expanded to include

the significant preparation, propulsion, and "follow-through" stages of the

movement. We have chosen to implement direction sign movements under the

following assumptions:

1. The propulsion arises from a consta'lt angular velocity at the
fixed end. (Evidence for this assumption comes from biomechanical
sources [6].)

2. The preparation phase lS a fixed percentage of the previous
direction sign [12].

Intermediate joint movements are constrained by the segment orientation

limits, the fixed segment lengths, and the "bo1.mdary conditions" imposed by

the segment positioned by assumption (1) and the geometry of the floor.

Consider a leg, for example, which is to move forward from a starting

posi·tion. During this movement we know the step length (hence the. displace-

ment of the center of gravity) , the angle through which the upper leg must

JIDve to displace the center of gravity/, the time of toe lift-off and heel

contact in the step, and the initial and final tilt angles at the knee. This

informa.tion fully constrains the movement of the leg, provided that the center

of gravity is forbidden from movements other than that required by the forward

progression. The progression processor determines the contact times from

the "present" and "prepare" direction instructions and generates contact

92

instructions for the monitor in advance, vfuen comb~ned with the direction

instructions passed on to tl1e ankle processors~ smooth movement will result
1

6, 2 Balance

When the progression processor determines that balance is necessary

during or at the end of a sequence of progression instructions it may adjust

the body position. The progression processor bases its decision on the

instructions it is preparing for and the number and geometry of current

support points from the contact blocks in the monitor. If the number of

contact points is zero, the body is in the air; and no adjustment is made.

If there is one support, then whether or not an adjustment is made depends

on the time until the next support instruction. (If this interval is too

long, balance is necessary unless a new supporting joint is indicated:

for example, falling from feet onto hands.) If there are three or more

supports and the body center o£ gravity projects within the polygon formed

by; these points on the floor, then the body is presumed balanced. When

this is not the case or when there are only two support points, then balance

is established by rotating the center of gravity (in a non-·forbidden

direction) to bring its projection within the support line or polygon. The

remainder of the body (that is, the set of parts not between the center of

gravity and the supports) is simply displaced horizontally to the new

position (subject to the separate forbidden vectors at individual joints).

93

7 . CONCLUSIONS

In seeking a digital representation of human movement? an established

movement notation system) Labanotation, has provided a wealth of well~

structured information. The variety of human moyeJnent has been abstracted

to five types of movement concepts; these fo1~ instructions which are

interpreted by a sj~ulator with knowledge of support requirements, body

structure, and body surfaces. By designing the simulator as a network of

communicating processes, we obtain very general and flexible control over

individual joints, body segments, and the whole body.

Components of the slinulator have been implemented ln LISP and FORTRAN

on a UNIVAC 90/70. While the simulator itself is not expected to produce

graphic commands at a real-time rate, these comrrands will be stored in a file

and interpreted in nbatches" by the graphic display prograi'Tl. We expect that

this process will be fast enough to animate the body model (drawn with circles

or shaded disks to represent each sphere) on a graphics configuration consisting

of a PDP-11/60 computer and a Vector General 3404 refresh display. Sequential

snapshots may be produced on our Ramtek GX-lOOB color video display to obtain

permanent video or film records of the solid figure in motion.

94

8. ACKNOWLEIGEMENTS

The authors gratefully ackno1dedge the partial support of NSF Grant

MCS76-l9464. \'le also wish to thank Bill Wood? Jr. for his valuable suggestions

which arose from an initial implementation of the simulator control

structure, and John Fedak for his role in refining the movement instructions

while implementing the Labanotation compiler.

95

9. REfERENCES

l. Ba?ler, N.I.~ Te~poral scene analysis: Conceptual descriptions of
obJect movements, Report No. UP--:HS-CIS~76-4, Department of Computer
and Information Science; University of Pennsylvania~ Philadelphia,
PA., (February 1975). · ·

2. Eadler, N. I . , 0 'Rourke, J. , and Tol tzis, H. , A human body JIDdelling
system for Jnotion studies, Movement Project Report No. 13, Department
of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA (July 1978).

3. Badler, N.I., and Smoliar, S.vJ., Digital representations of human
JIDvement, Computing Sm"veys (to appear 1979).

4. Benesh, R. , and Benesh, J. , An Introduction to Benesh Dane~ Notation,
A. & C. Black, London, 1956.-- --

5. Brinch--Hansen, P. , Operating System Principles, Prentice Hall, New
York, 1973.

6. Cappozzo, A., Figura, F., Marchetti, M., and Pedotti, A.'} The interplay
of muscular and external forces in human a~ulation, J. Biomechanics 9
(1976) 35-43.

7. Catmull, E., A syste~ for computer generated movies, in Proceedings of
ACM Annual Conference, Vol. l (1972) 422-431.

8. Eshkol, N., and Wachmann, A., Movement Notation, Weidenfeld and
Nicolson, London, 1958.

9. Fedak, J., An initial design specification of a syntactic analyzer for
labanotation, Movement Project Report No. l 0 , Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, PA
(January 1978).

10. Flilkel, R., Taylor, R., Bolles, R., Paul, R., and Feldm:m, J., An
overview of AL, a pYDgramming syste_m for automation, in Proceedings
of the Fourth International Joint Conference on Artificial
Inte:Ilfgen~-o-,ugust Efi5T-7ss-=-·r6-s. -

11. Hoare, C.A.R., Notes on data structur:ing, in Dahl, 0.-J., Dijkstra, E.V.l.,
and Hoare, C.A.R. (Eds.), S!ructu_!'ed Programming, Academic Press,
New York, 1972.

12. Hutchinson, A., labanotati~, 'l11eatre Arts Books, New York, 1970.

13. Jay, L., A stick--man notation~])ance .Q.P_~_E)'_E?!:. (January 1957) 7--8 •

. 14. laban, R., Chor_eul_:_ics:. Ullm:m, L. (Ed.), Macdonald and Evans, London,
1966.

96.

15. Lozano-Perez, T., The design of a mecha,nica,l asseJTJbly sys·tem, Report
AI--TR-397 ~ Artificial Intelligence labora,tory, Ma,ssa,chusetts ·
Institute o.:f Technology, Cambridge, MA (December 197 6) •

16. Mezei, L., and Zivian, A., ARTA, an interactive anima.tion system> in
Proceedings 1ll.P Congress 0971), North Holland Pub., Amsterdam,
429-434.

17. O'Rourke, J., Three dimensional rrotion of a three link system, Movement
Project Report No. 11, Department of Computer a11d Information Science,
University of Pennsylvania, Philadelphia, PA (June 1978).

18. Pikula, J., Sutton notates Bournonville, Dance Magazine (November 1975)
31.

19. Smoliar, S.W., A parallel processing model of musical structures,
Report AI-TR-242, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA (1971).

20. Smoliar, S.H., and Tracton, H., A lexical analys~s of Labanotation
with rui associated data structure, Proceedings of ACM Annual
Conference (1978).

21. Smoliar, S.v.J.,. and vJeber, L., Using the computer' for a semantic
representation of Labanotation, in Computing in the H1..lilL::mities,
Lusignan, S. , and Nort~ J. S. (Eds.) -;l}niversi ty of hiaterloo Press,
Waterloo, Ontario, 1977.

22. Spegel, M., Programming of mechanism motion, Report No. CRL-43,
Division of Applied Science, New York University, New York, NY
(November 1975).

	The Simulation of Human Movement by Computer
	Recommended Citation

	The Simulation of Human Movement by Computer
	Abstract
	Disciplines
	Comments

	tmp.1451943021.pdf.cEJEy

