
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2013

Is a Rigorous Agile Methodology the Best Development Strategy Is a Rigorous Agile Methodology the Best Development Strategy

for Small Scale Tech Startups? for Small Scale Tech Startups?

Alex Yau
University of Pennsylvania, ayau@sas.upenn.edu

Christian Murphy
University of Pennsylvania, cdmurphy@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Alex Yau and Christian Murphy, "Is a Rigorous Agile Methodology the Best Development Strategy for Small
Scale Tech Startups?", . January 2013.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-13-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/980
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F980&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F980&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/980
mailto:repository@pobox.upenn.edu

Is a Rigorous Agile Methodology the Best Development Strategy for Small Scale Is a Rigorous Agile Methodology the Best Development Strategy for Small Scale
Tech Startups? Tech Startups?

Abstract Abstract
Recently, Agile development processes have become popular in the software development community,
and have been shown to be effective in large organizations. However, given that the communication and
cooperation dynamics in startup companies are very different from that of larger, more established
companies, and the fact that the initial focus of a startup might be significantly different from its ultimate
goal, it is questionable whether a rigid process model that works for larger companies is appropriate in
tackling the problems faced by a startup. When we scale down even further and observe the small scale
startup with only a few members, many of the same problems that Agile methodology sets out to solve
do not even exist. Then, for a small scale startup, is it still worth putting the resources into establishing a
process model? Do the benefits of adopting an Agile methodology outweigh the opportunity cost of
spending the resources elsewhere? This paper examines the advantages and disadvantages of adopting
an Agile methodology in a small scale tech startup and compares it to other process models, such as the
Waterfall model and Lean Startup. In determining whether a rigorous agile methodology is the best
development strategy for small scale tech startups, we consider the metrics of cost, time, quality, and
scope in light of the particular needs of small startup organizations, and present a case study of a
company that has needed to answer this very question.

Keywords Keywords
Agile methodology, Lean Startup, small scale tech startup.

Disciplines Disciplines
Computer Engineering

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-13-01.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/980

https://repository.upenn.edu/cis_reports/980

Is a Rigorous Agile Methodology the Best

Development Strategy for Small Scale Tech Startups?

Alex Yau and Christian Murphy

Department of Computer and Information Science

University of Pennsylvania

Philadelphia PA 19104

ayau@sas.upenn.edu, cdmurphy@seas.upenn.edu

Abstract— Recently, Agile development processes have become

popular in the software development community, and have been

shown to be effective in large organizations. However, given that

the communication and cooperation dynamics in startup

companies are very different from that of larger, more

established companies, and the fact that the initial focus of a

startup might be significantly different from its ultimate goal, it is

questionable whether a rigid process model that works for larger

companies is appropriate in tackling the problems faced by a

startup.

When we scale down even further and observe the small scale

startup with only a few members, many of the same problems

that Agile methodology sets out to solve do not even exist. Then,

for a small scale startup, is it still worth putting the resources into

establishing a process model? Do the benefits of adopting an

Agile methodology outweigh the opportunity cost of spending the

resources elsewhere? This paper examines the advantages and

disadvantages of adopting an Agile methodology in a small scale

tech startup and compares it to other process models, such as the

Waterfall model and Lean Startup. In determining whether a

rigorous agile methodology is the best development strategy for

small scale tech startups, we consider the metrics of cost, time,

quality, and scope in light of the particular needs of small startup

organizations, and present a case study of a company that has

needed to answer this very question.

Index Terms—Agile methodology, Lean Startup, small scale

tech startup.

I. INTRODUCTION

In recent years, there has been an increased focus on the

managerial and organizational aspects of software engineering

in tech startups. Software process models are being created and

changed constantly with the belief that better process models

can ultimately lead to the success of a company. Recently,

Agile methodology has become popular in the software

development community. Some consider this the best thing that

has to the software industry, and perhaps a possible “Silver

Bullet” to solve the problems of software development. Over

the years, the Agile methodology has proven successful in

many large companies [12]. However, we must understand that

the communication and cooperation dynamics in startups are

very different from that of larger, more established companies

and therefore startups may have different problems and

concerns that do not apply to giant corporations. Although

companies ultimately have the same business goals, “Faster,

Cheaper and Better”, the initial focus of a startup might be

significantly different from its ultimate goal. Depending on the

current business environment, the immediate business goal for

a startup may change constantly to react to these changes.

Therefore, a rigid process model that works for larger

companies may be inefficient in tackling the problems faced by

a startup.

Furthermore, startups are faced with limitations that their

larger counterparts may take for granted. With limited

resources and, in many cases, constant direct competition,

allocating human resources to defining and maintaining a

rigorous methodology is out of the question for some.

However, the Agile methodology has been shown as successful

in many case studies and research [8]. But is it a “one-size-fits-

all”? In tech startups, Agile definitely has clear benefits over

some of the other, traditional methods. It has a solid principle

and has been shown from past case studies to mitigate certain

problems faced by companies. However when we scale down

even further and observe the “small scale” startup with, say,

only three members, a lot of the same problems that Agile

methodology sets out to solve do not even exist. For example,

with three members working in a small office, the problem of

communication becomes insignificant compared to the problem

of communication among a 100 person startup. Then, for a

small scale startup, is it still worth putting the resources into

establishing a process model? Do the benefits of adopting an

Agile methodology outweigh the opportunity cost of spending

the resources elsewhere?

This paper examines the advantages and disadvantages of

adopting an Agile methodology in a small scale tech startup

and compares it to other process models, such as the Waterfall

model and Lean Startup, and attempts to answer the question,

“Is a rigorous Agile methodology the best development

strategy for small scale tech startups?”

II. SCOPE

Before we begin, it is essential to define the scope of the

proposed question. Since Agile software development can be

considered as merely “a collection of practices, a frame of

mind” [6], it is difficult to tell whether a company‟s process

model is defined as Agile. Some may choose to follow those

Agile beliefs loosely while others may employ a strict Agile

system. Therefore it is important to distinguish companies with

different levels of “agility” in order to properly analyze the

effectiveness of the agile system. In the scope of this paper, a

rigorous Agile methodology will be defined as one that follows

all the Agile principles and strict practices, similar to Extreme

Programming and Scrum.

Secondly, as briefly mentioned earlier, Agile development

may have different effects on a company depending on its stage

and size. The cost of implementing the Agile methodology and

the benefits vary as the company grows. This paper focuses on

the effects of Agile on a “small scale” startup, one composed of

roughly eight members or less. This is a good scope to focus on

since a majority of startups begin with roughly two to three

founding members and perhaps a few more engineers [26].

Thus, the discussion will be mostly concentrated on the cost of

implementing the Agile system in a startup of such a scale and

the benefits and impact it has in the perspective of the early

small scale startup.

Lastly, in order to answer the proposed question and

determine if a rigorous Agile methodology is “the best

development strategy”, we must first discuss the scope of the

metrics that we are using to determine the effectiveness of a

process model. The metrics used in this discussion are cost,

time, quality and scope as they apply to a startup. This paper

will thus compare the effectiveness of different process models

based on their effects on the four areas mentioned. These

metrics will be defined fully in Section IV below.

III. METHODOLOGY

This section outlines the necessary steps required to answer

the proposed question, “Is a rigorous Agile methodology the

best development strategy for small scale tech startups?” We

first begin by observing the problems of software development

and defining the four metrics – cost, time, quality and scope –

and the tradeoffs associated in the perspective of a small scale

startup (Section IV). We will then discuss some of the

traditional process models, such as the Waterfall model, and

their effects on the four metrics (Section V).

The paper will then follow with a detailed definition of the

Agile methodology, its principles and the practices associated,

such as Extreme programming and Scrum. The impact of Agile

methodology on the four metrics will be compared with the

traditional process models and their implications on small scale

tech startups will be addressed (Section VI).

A popular alternative to the Agile methodology, the Lean

Startup will then be discussed and compared to Agile (Section

VII). A thorough case study on a small scale tech startup,

Everyme, will be presented and used as an example of a Lean

Startup that does not employ a strict Agile methodology

(Section VIII). The paper ends with a proposed solution to the

question raised.

IV. METRICS

Since process models are tools of project management, in

order to analyze the quality of a process model, we must first

consider the goals of project management itself. According to

Olsen‟s article “Can Project Management Be Defined?”,

project management is “the application of a collection of tools

and techniques...toward the accomplishment of a...task within

time, cost and quality constraints” [17]. Similarly, the British

Standard for project management [24] defines project

management as “the planning, monitoring and control of all

aspects of a project...to achieve the project objectives on time

and to the specified cost, quality and performance.” In the

scope of this paper, we focus on the process model as the tool

that is used to accomplish a task according to the metrics of

time, cost and quality constraints.

Time, cost, scope and quality make up what is commonly

known as the iron triangle [2][9] or triple constraints of project

management. The iron triangle is a visual representation of the

common tradeoffs of project management. It suggests that in

order to increase the scope of a project, time and cost must

suffer in order to keep the same quality, vice versa. Therefore,

by analyzing the impact of a process model on the time, cost,

scope and quality of software being developed, we can assess

the effectiveness of the model or methodology.

In the scope of software development in small scale tech

startups, the four metrics can be defined as:

Time - The total time taken from start of the project to a public

release of the product or service

Cost - The total cost spent by the startup, including cost of

hiring engineers

Scope - The number of features and extensions (such as

language localization) of the product

Quality - This includes both internal quality, such as testability

and maintainability, and external quality, such as usability and

reliability

V. TRADITIONAL PROCESS MODELS

One of the more popular traditional process models is the

Waterfall model. The Waterfall model has been around since

the 1970s and is “a framework for software development in

which development proceeds sequentially through a series of

phases” [14]. The progress flows from one phase to another in

order, although short feedback loops are allowed. It is possible

to move backwards and make modifications based on the

feedback, but other than that the system generally follows these

distinct steps:

1. Requirements analysis - The first step is to gather

information, define the scope and understand and analyze the

specifications of the project.

2. Design - The second step is to define the hardware and/or

software architecture, modules, interfaces, etc. to satisfy the

requirements specified in the first step.

3. Implementation - This step consists of actually coding and

constructing the software based on the design and requirements

established from the previous two steps.

4. Testing - In this step, all the components are integrated

together and tested to ensure they meet the customer‟s

specifications as specified in the first step.

5. Installation - This step prepares the product for delivery for

commercial use.

6. Maintenance - The last step involves making modifications

to improve the quality and performance on the system based on

the feedback from the customer.

From the outline of the Waterfall model, we can see some

immediate benefits to software development in startups. The

model provides a clearly defined structure that enforces

discipline for a startup. It provides a clear direction with a

transparent way of assessing progress through the use of

milestones. Since a direction is not immediately obvious to

young startups, and the software development process may be

quite unstructured and unorganized, the Waterfall model can

not only provide a clear vision and goal for the startup but also

a clean software development structure through the use of

stages.

The Waterfall model also puts a huge emphasis on

customer specification analysis, the first step in the model, and

the design structure of the software even before the team starts

writing code. If done correctly, this can reduce both cost and

time in the software development phase as it minimizes the

time and effort wasted on writing code that does not meet

customer specifications or constantly refactoring because of

bad code design.

Lastly, the Waterfall model may improve the overall quality

of software since flaws in the design and misunderstanding of

specifications are handled in the first two steps before the code

is written rather than trying to catch those mistakes in the

testing stage. Furthermore, since all specifications and design

architectures are properly documented after the first two stages,

communication time between team members can be greatly

reduced.

However, since this model relies on the customer

specifications being clearly defined in step one, the

specification documents created in the first step may become

outdated if the customer changes his mind. In startups, the

vision and the scope of the product are usually not fully formed

and thus customer specifications may change drastically from

one day to another. Since the phases of the Waterfall model are

built on top of each other such that the design phase follows the

specifications defined in step one and the implementation stage

depends on the design structure, a lot of time may be wasted if

specifications change. This problem is amplified especially in

startups because their scope tends to change constantly to adapt

to the needs of the customer (or the market) and the need to

refine their product. As a result, the cost and time may increase

drastically in some cases.

Therefore, unless the specifications are clearly defined and

unchanging, which is rare in a startup, the Waterfall model may

be more detrimental than beneficial to a small scale tech

startup.

VI. AGILE

Agile methods are a reaction and a proposed solution to

traditional methodologies like the Waterfall model that

acknowledge “the need for an alternative to documentation

driven, heavyweight software development processes” [8]. In

fact, according to Cockburn and Highsmith, Agile software

development does not necessarily introduce new practices but

is the “recognition of people as the primary drivers of project

success, coupled with an intense focus on effectiveness and

maneuverability” [7].

At its core, the Agile methodology focuses on incremental

and iterative development similar to the spiral model. It aims to

avoid detailing and defining the entire project at the beginning

like the Waterfall model, but instead to plan out and deliver

small parts of the project at a time. The methodology is similar

to having small loops of the Waterfall model for each feature in

the software. The development process starts with the most

basic set of deliverables, followed by planning, implementing

and testing the next set of features in subsequent iterations. The

purpose of this development process is to increase the agility of

the development team, by minimizing the time and cost wasted

if the customer decides to change his mind.

According to Cohen, Lindvall and Costa, being Agile

“involves more than simply following guidelines that are

supposed to make a project Agile” [8]. Andrea Branca also

states that some “processes may look Agile, but they won‟t feel

Agile” [6]. However, there are some methodologies and

processes with such a great emphasis on Agile beliefs that they

can be considered the core of Agile methodology and have

been widely adopted by top companies in the world. This paper

will now explore a few of these Agile methodologies and

discuss their effectiveness in a small scale startup.

A. Scrum

Scrum, first introduced by Ken Schwaber in 1996, is a

widely used Agile methodology that focuses on developing

software in short iterations known as sprints. The process

consists of the following stages:

Pre-sprint planning - Features and functionalities are selected

from a backlog, and a collection of features are planned and

then prioritized to be completed in the next sprint.

Sprint - The team members choose the features they want to

work on and begin development. Scrum meetings are held

daily, every morning, to aid communication between

developers and product managers. A sprint usually last between

one to six weeks.

Post-spring meeting - In this meeting, the team analyzes the

progress in the past sprint.

In the perspective of a small startup, this process provides a

couple of benefits. The enforced daily meetings can improve

communication between team members. This can not only

decrease the time and cost due to possible miscommunication

otherwise, but can also improve the quality of software since

software can be better designed when each member

understands the overall scope of the project and how others are

implementing certain parts. Since the overall structure of the

software changes much faster in a startup than in a larger

company, it is necessary to keep everyone updated in order to

achieve good quality of software.

On the other hand, the pre-sprint planning helps the team

narrow down their to-do list and focus on the immediate goal.

This is particularly important to startups because the final

product is not fully defined and thus it is easy for developers to

fall into the trap of developing too many features instead of

concentrating on the main features. Therefore, by imposing a

constraint of time with short iterations, the process helps the

team focus on its goal and deliver the necessary features.

However, although a constraint of time in Scrum and Agile

can narrow the focus and discourage startups from

implementing unnecessary features, some may argue that this

process harms the scope of the project and limits the creativity

that is important in a startup. Iterative development of

prioritized features with a time constraint discourages the

development team from exploring different ways to implement

a certain feature that may perhaps be more efficient or provide

more value to the project. Since it is difficult for startups to

break into an existing market, innovative designs and

implementation of features are particularly important in

determining the success of a startup. Therefore, a startup must

consider the tradeoffs of scope and creativity to time and cost

when thinking about adopting a more focused and iterative

development process.

B. Extreme Programming

Extreme Programming is another methodology that

encompasses the core concepts of Agile development similar to

Scrum. In “Extreme Programming Explained: Embrace

Change”, Beck outlined the 12 rules of Extreme Programming

[3]. In addition to the rules mentioned in Scrum, like the focus

on pre-iteration planning, short releases and simple design,

Extreme Programming also encourages other Agile practices.

Extreme Programming encourages test-driven development

and suggests that the developers write acceptance test for their

code before they implement the features. The benefits of test-

driven development are clear: writing test cases before

implementing a feature can ensure the feature fulfils the

specifications that were set out originally. Furthermore, the

quality of software is also improved not only because of the

decrease in bugs and faults in the software but also because of

improved maintainability of the software. With tests written for

all the features implemented, it is easy to tell whether changing

a section of the code is going to affect another section simply

by running the test suite. Therefore, test-driven development

can definitely increase the quality of software and decrease the

cost and time wasted on debugging afterwards.

However, do the same benefits apply to a small scale

startup? A small scale startup has a limited number of

developers, a list of features that is probably being changed and

refined constantly and a limited amount of time and money. Is

it worth spending time writing comprehensive test cases for

every feature before implementing it? It is very possible that by

the time the tests were written, the customer has changed his

mind and the tests will be rendered useless. On the other hand,

if the same amount of time has been spent on developing the

feature, the code may be recycled for another feature.

Furthermore, in many cases, the customer may request a

few features as prototypes to test out some ideas in order to

make up his mind. When that happens, it does not seem

reasonable to write out all the tests but instead it would be

preferable to implement those prototypes as fast as possible in

order to speed up the decision and design process.

Lastly, a small scale startup that has not obtained much

funding will probably have a short runway, and thus a limited

amount of time and money. The priority in this case will be to

create an MVP, or minimal viable product, which may lack in

quality but is at least functional enough to pitch to and show

investors.

Overall, the test-driven development aspect of Agile is a

tradeoff between cost and time to achieve improved quality of

software. Although quality is important, as startups usually

only have a few chances to make a strong impression on

investors and users in the market, cost and time may be a larger

deciding factor. Once the startup runs out of funding or if a

close competitor releases a similar product, a higher quality of

half a product isn‟t going to help much.

The Extreme Programming process also places emphasis on

pair programming, a process that requires two developers to

write code together on the same machine. This is often used

with the purpose of creating better written code, increasing

discipline and emphasizing collective code ownership [13].

The idea is that paired programmers are less likely to take

longer breaks and are more likely to “do the right thing” under

someone else‟s watch. Pair programming can also allow the

programmers to bounce ideas off each other and thus be less

likely to overthink a simple problem or to reach a

programmer‟s block. It also encourages collective code

ownership by increasing a programmer‟s knowledge of the

code base through pairing with different programmers. The

benefits listed above can again increase quality of the software

at the cost of money and time. In addition, pair programming

usually provides a good morale boost within the team and is

often used in large companies due to the benefits it provides to

the project management of large teams.

 However, for a small scale startup with fewer than eight

employees, the benefits of pair programming may be limited.

As discussed earlier, small startups have a tight constraint of

time and money, and thus improving quality with twice the cost

(of hiring two developers) may be out of scope for a small

startup. Furthermore, since the team is very small, each

developer is probably responsible writing code in different

areas of the code base, and thus already reaps the benefits of

collective code ownership advertised by pair programming.

A common system of assessing progress and defining

features in Agile methods such as Scrum and Extreme

Programming is the use of user stories, velocity and backlogs

[19]. A user story is a description of a feature in everyday

language that can be easily understood by non-technical

persons. For example, a user story can be “As a user, I want to

be able to log into the site with my Facebook account”. Each

user story can then be assigned points based on the time it takes

for the feature to be implemented as estimated by the

developer. The velocity of the team can be calculated as “the

sum of the time estimated of user stories implemented within

an iteration/release” [11], in other words, the sum of the points

given to the user stories. By describing features in a non-

technical language, the system encourages the integration of

business and marketing to the implementation of the product

which can improve the usability of the software. The use of

velocity to measure the team‟s progress can also provide a

quantitative assessment to the project manager and can help

estimate the features that can be delivered before a certain

deadline.

Other than velocity, there are other metrics that are used to

assess a team‟s performance, such as defect rates, defined as

the number of defects made by a team and by each programmer

during each iteration.

However, are these metrics that important to a small scale

startup? From the above discussion, we can definitely note the

importance of the Agile process and methodologies in software

development. As a good “tool for project management”, it

proves to be beneficial to improve quality and decrease time

and cost of the project while keeping it in scope and focused in

projects with a large team. The Agile methodology is a well

established system that can also act as a guide and provide a

good structure for startups that do not have a clear plan for

managing their team and analyzing the progress.

However, we remain skeptical of whether small scale

startups can actually reap the full benefits of following a

rigorous Agile process. Agile may be popular in the startup

world, but startups that are in a much earlier stage, with much

fewer employees, are beginning to favor a relatively new

process model called Lean Startup. Perhaps this new way of

project management is more lightweight and better suited to the

bootstrapping style of these early small scale startups.

VII. LEAN STARTUP

Lean Startup, a term coined by Eric Ries [21], is a process

model that “builds on many previous management and product

development ideas, including lean manufacturing, design

thinking, customer development, and agile development”.

Although the Lean Startup process does involve some core

principles of Agile methodologies discussed earlier, the main

difference between Lean Startup and Agile is that Lean

eliminates anything that is not absolutely necessary, including

possibly team meetings, tasks and documentation.

It is important to note that Agile and Lean are not mutually

exclusive, but rather largely complementary. In “The Lean

Startup” [21], Ries emphasizes the importance of learning in

the process. Lean Startup focuses on learning how to build a

sustainable business, whether to pivot or preserve, and

entrepreneurial management. According to Ries, it is important

to distinguish whether the outcome of a startup‟s effort is

value-creating or wasteful. For example, since customer

specifications change all the time, learning to gain important

insights about customers contains much more value in the long

run than focusing on making the product better by adding

features and fixing bugs based on what the customers want at

the time.

Ries argues that although Agile development

methodologies were designed to eliminate waste by decreasing

the duration of feedback loops, a lot of waste still occurs

because of mistaken assumptions. Agile as well as the “Lean

thinking” in lean manufacturing defines value as effort that

“[provides] benefit to the customer” [21]. However, who the

customer is, what the customer wants and what the customer

may find valuable are unknown and subject to change.

Therefore Ries proposes that the value of a startup should arise

from the effort spent on learning about “what creates value for

customers”.

The majority of Agile methodologies include techniques to

aid in project management and progress analysis, such as the

use of user stories, backlog and velocity, and also on finding

the most efficient way to build features and make corrections

that satisfy the customer‟s current decisions. On the other hand,

Lean Startup focuses on validated learning as the metric in

measuring progress and value. For example, the Agile

methodologies employ acceptance testing, tests that are based

on customer specifications, as the testing strategy while Lean

Startup advertises the use of split testing (an experimental

approach that tests two variations of the software). The Lean

Startup methodology believes that a startup only assumes who

their customer is, but does not know exactly what the customer

wants and what their final product should be. Through using

validated learning methods such as split testing, the startup is

able to learn more about the customer and be able to make

decisions, learn and improve their product in a way that is

meaningful.

Similarly, the release log and backlogs in Agile build

toward a release plan while Lean Startup works towards

deploying a minimal viable product. It is this continuous

deployment and validation that provide startups with

knowledge of their market and customers. Although focusing

on building a minimal viable product may sacrifice the quality

of software in the short term, the startup benefits from the

decrease in overall development time and cost. Through

continuous deployment and validation, startups are able to push

out products very quickly and continue to improve their quality

in the longer run. Furthermore, the scope and quality of their

software ultimately benefits in the long run due to the focus on

learning and customers.

Ultimately, Agile methodologies tend to target the actual

development of software while Lean Startup is more beneficial

to business development and product management. In a small

scale startup, perhaps the benefits gained by improving

business and product development are more important in the

long run than improving the actual process to develop the

software behind it. In the next section, we will take a look at a

typical small scale startup that has employed a mix of both

Agile and Lean process models to observe both process models

in practice.

VIII. CASE STUDY: EVERYME

In the Summer of 2012, the first author had the opportunity

to intern at Everyme, a Y-Combinator startup that was building

a private social network app for friends, families and partners.

At the time of employment, they had a team of five, which falls

under our definition of a small scale startup. The team

consisted of a designer, an iPhone developer, an Android

developer and a web developer (who is also a co-founder); the

CEO also worked on iOS development from time to time. This

is a typical setup of a small tech startup, with very small teams

of one to two working on their part. At the time of the

internship, Everyme was using a process model containing the

elements of both Lean Startup and Agile. The CTO of the

company, Vibhu Norby [16], had also described the effects of

their process model on the management level during an

interview.

From a developer‟s perspective, the model was fairly

simple. Since everyone was basically “in their own

department”, they worked at their own pace and prioritized

work in their own way. Occasionally, integration across the

mobile and web platforms was needed and tasks needed to be

reprioritized. There was a five minute stand-up meeting once

every few days to go over what each person had done

previously, what he would do next and whether he would need

anything from anyone. For example, an Android developer

may ask the designer for templates. This provided everyone

with a rough idea of company‟s progress and whether they had

to re-prioritize their list of tasks. This is similar to the Agile

process Scrum‟s pre-sprint stand-up meeting, but more casual

and without coming up with a list of tasks that are required to

be completed by the week (or sprint). Everyme did not employ

a backlog system but instead had an issue list for people to

assign certain tasks to each other. This gave flexibility to each

developer to work on something he was interested in and

provided the developers with more room for innovative

implementations and features that may not necessarily be in the

backlog. This is very similar to the Lean Startup ideology.

However, Norby argued that this process did bring some

disadvantages. Without an Agile-esque backlog or a required

list of tasks that needed to be completed by a certain time, there

were times when the developers were unclear of what to do.

When a huge decision or possible pivot was being discussed

and formed, which was more often in a small startup than in a

large company, the direction of the project became unclear and

thus time and cost were wasted as developers were unsure of

what they need to do.

Everyme also used a Lean Startup approach when it came

to assessing progress of the team and company. Instead of

using the difficulty and number of features done per week

similar to velocity in Agile, Everyme used a validated

approach, based on the number of downloads, the reviews and

feedback they received and so on. Milestones and inflection

points were also used to observe the general progress of the

company. It was found to be much more effective as a

motivational tool to set up inflection points, such as a release

date, or important dates, such as meetings with investors that

required the product to be done. People performed better under

constraints. However, Lean Startup‟s validated approach may

only be beneficial up to a certain point. Norby noted that

“progress measured by downloads, as done in Lean, may not be

effective in the long run. You can have up to millions of

downloads, but that doesn‟t tell you which direction to go

next.”

When asked about whether they have tried adopting a more

rigorous Agile methodology, Norby described that they have

tried using Sprint.ly [23], an online system that uses the Scrum

process. Similar to Scrum, it defines tasks as user stories with a

certain difficulty. These tasks are then stored in the backlog

and taken out when a developer decides to implement it.

However, implementing Sprint.ly into their current process

model was too costly and time consuming. For a small scale

startup like Everyme, everyone has his own process model and

work schedule. Employees have their to-do list in their mind

and they all know roughly how long it will take. Spending time

writing it down, modifying it and crossing it off later is just too

unnecessary.

Norby went on to describe how they had tried test-driven

development, another important aspect of the Agile process,

but found that it was also too time consuming. “We would

spend a lot of time writing test cases for features that may end

up not being implemented, because you know, specifications

change all the time.”

For small scale tech startups similar to Everyme, we can see

that although the Agile principles are important, they may be

too costly to implement. “We don‟t even have a project

manager… it takes too much effort for us to take time out of

our schedule to manage this”. With a small enough team that

functions well without management, it may seem unnecessary

to insist upon a strict process model. Therefore, a combination

of the Lean Startup approach and Agile principles may mitigate

the problem by having less of a structured process but still

provides the benefits that Agile proposes.

IX. RELATED WORK

There has been much research in the past that considered

the suitability of Agile processes to various software

organizations, but this prior work does not consider the

challenges of small scale startups in particular [1][20] and/or

does not address the impact of the process on the metrics of

cost, scope, time, and quality [5][22], as we do here.

Others have assessed various aspects of Agile software

development (e.g., pair programming [15] or test-driven

development [4]) but have not related the overall effect in a

small startup environment.

Additionally, some researchers have investigated the

combinations of Lean Startup and Agile [25], and the tradeoffs

between Agile and traditional approaches [18], while others

have compared the two when used in a startup [10], but we

believe that we are the first to specifically address the issues

related to Agile processes and a small scale startup company of

eight or fewer employees.

X. CONCLUSION

We have discussed process models such as the Waterfall

model, the Agile methodologies, Extreme Programming and

Scrum, and Lean Startup and their effects on small scale tech

startups. We also looked at the effects of these process models

on a startup in practice. Through our discussion, we concluded

that different process models have different tradeoffs between

the four metrics – cost, time, quality and scope – and are most

beneficial when employed during the different stages of a

company.

While the Waterfall model is effective for companies with a

solid, unchanging end goal, it performs badly with startups that

are unsure of their final products. The model can help

companies decrease the cost and time of development by

defining the specifications and design architectures at the

beginning but suffers when specifications change drastically.

This may be beneficial to large companies with unchanging

goals, but becomes ineffective for startups, which are likely to

be unsure of their end goals and may change their

specifications constantly.

The Agile methodologies attempt to solve this issue by

decreasing the feedback loops by integrating customer

feedback to the development process. Tasks are translated into

user stories, a format understood by business persons, in order

to aid communications between business and development.

Unlike the Waterfall model, customer feedback can then be

easily integrated into the development process and the startup

is able to make changes easily with minimal waste of time and

money. A rigorous, purely Agile process model can no doubt

increase the quality of the software, but at a cost of extra time

and money required to manage and maintain the system. At a

hundred person startup or even a large established company,

the cost of maintaining such a system is fixed and spread out,

making the tradeoff of quality against time and cost worth the

implementation of an Agile process model. On the other hand,

the fixed cost and time of implementing a similar system in a

small scale startup may be too high for the quality gained.

The Lean Startup model largely complements the Agile

methodologies but argues that the Agile way of using velocity,

the difficulty and number of features implemented in each

iteration, is a poor indicator of progress and suggests the use of

validated learning as a process model to determine the progress

of a company. The Lean Startup methodology observes the

excessive amount of process in the Agile model and attempts to

mitigate the problem by decreasing the number of rigorous

practices in a startup to strike a balance between quality, time

and cost that is suitable for a small scale startup.

In a small scale startup at Everyme, we saw that although

the Agile methodology does provide a good process for

managing teams of large sizes, a small scale startup may not

experience the same problems as a large company and thus

may not reap the full benefits of adopting an Agile

methodology. While it is important to understand the Agile

principles so the team does not fall into the trap of premature

optimization and planning similar to the Waterfall process, a

rigorous process may be too costly for a startup. Many Agile

practices, such as test-driven development and pair

programming, provide increased quality of software at an

expense of cost and time. Furthermore, a heavy process model

may in fact limit the scope of the project by discouraging

innovation through a strict backlog or to-do list.

Thus, when considering whether a rigorous Agile

methodology is the best development strategy for a startup, we

have to consider the different tradeoffs of cost, time, quality

and scope. For a small scale startup containing fewer than eight

members, a rigorous, purely Agile methodology may not

provide enough benefits to outweigh the cost and time put into

implementing and managing the process model. It is definitely

important to understand Agile principles but perhaps following

the Agile methodology strictly is out of scope for a small

startup.

Thus, to answer the question, “Is a rigorous agile

methodology the best development strategy for small scale tech

startups?”, we have to determine the ultimate goal of the

startup. In general, the Agile process model is most beneficial

to improving the process of software development while Lean

Startup is most beneficial to business and product development.

A startup that is developing software for another company may

already have a clearly defined product and does not have to

worry about business development. In such a case, a rigorous,

purely Agile approach will be most beneficial. On the other

hand, if the startup is in charge of the business and product

development, or when the software plays a huge part in the

product, a hybrid of Agile and Lean may provide the most

benefits in terms of the four metrics.

Ultimately, a process model should be transparent enough

to allow the team to know how the company is doing but at the

same time not burden the developers and allow them to

concentrate on what they do best. In a startup, the developers

tend to be more invested and interested at the product that they

do not require a strict to-do list or motivational benefits from

the Agile methods.

A possible area for future research is the analysis of the

effects of process models on mobile-centric startups. Practices

such as continuous integration in Agile or continuous

deployment in Lean Startup become nearly impossible in a

startup with heavy focus on mobile development. Since iOS

apps have to get approved by Apple, the deployment process

usually takes around a week. Even then, a startup cannot force

its customers to upgrade to the newer version straight away,

unlike web applications. Then, the process models that focus

heavily on the ability to integrate and deploy continuously or

split testing may not be effective for mobile-centric startups. In

this new era in which mobile development is becoming more

and more popular, perhaps a new process model is required.

ACKNOWLEDGMENT

The authors would like to thank Kristin Fergis for her initial

investigation into this topic, and Vibhu Norby for providing

insight into Everyme‟s organization and processes.

REFERENCES

[1] S. W. Ambler, “Lessons in agility from Internet-based

development,” IEEE Software, vol. 19 no. 2, Mar/Apr 2002, pp.

66-73.

[2] R. Atkinson, “Project Management: Cost, Time And Quality,

Two Best Guesses and a Phenomenon, Its Time to Accept Other

Success Criteria”, International Journal of Project Management

1999, vol. 17 no.6, pp. 337-42

[3] K. Beck, “Extreme Programming Explained: Embracing

Change.” Addison-Wesley, 1999. Print.

[4] T. Bhat and N. Nagappan, “Evaluating the efficacy of test-

driven development: industrial case studies,” Proc. of the 2006

ACM/IEEE International Symposium on Empirical Software

Engineering, 2006, pp. 356-363.

[5] J. Chong, “Social behaviors on XP and non-XP teams: a

comparative study,” Proc. of the 2005 Agile Conference, July

2005, pp. 39-48.

[6] A. Cockburn, “Agile software development joins the „would-be‟

crowd.” Cutter IT Journal, vol 15, no. 1, 2002. pp. 6–12.

[7] A. Cockburn and J. Highsmith “Agile software development:

The business of innovation” Computer, vol 34 no.9 2001. pp.122

[8] D. Cohen, M. Lindvall, P. Costa. “An Introduction to Agile

Methods.” Advances in Computers vol 62, 2004

[9] A. De Wit, “Measurement of Project Success”, International

Journal of Project Management 1988, vol 6, no.3, pp. 164-170

[10] J. Dorette Jacob, “Comparing Agile XP and Waterfall software

development processes in two start-up companies,” Master‟s

Thesis, Chalmers Univ. of Technology, Göteborg, Sweden, Nov.

2011.

[11] S. Ilieva, P. Ivanov, E. Stefanova. “Analyses of an agile

methodology implementation.” Euromicro Conference, 2004.

Proceedings. 30th pp.326-33

[12] P. Krill, “Agile software development is now mainstream,”

InfoWorld, 2010, [Downloaded: January 31, 2012.]

http://www.infoworld.com/d/developer-world/agile-software-

development-now-mainstream-190.

[13] T. Machinnon. “XP: Have you got the discipline?” TickIt

Internation magazine. Issue #2Q04, 2004

[14] Melonfire. “Understanding the pros and cons of the Waterfall of

software development.” Tech Republic, 2006. [Downloaded:

January 31, 2012.] http://www.techrepublic.com/article/unders

tanding -the-pros-and-cons-of-the-waterfall-model-of-software-

development/6118423

[15] F. Padberg and M. Müller, “Analyzing the cost and benefit of

pair programming,” Proc. of the Ninth International Software

Metrics Symposium, Sept. 2003, pp. 166-177.

[16] V. Norby, Personal Interview. 24 Aug. 2012.

[17] Olsen, Richard P. "Can Project Management Be Defined?"

Project management quarterly, vol. 2, no. 1 Mar. 1971, pp. 12-

14

[18] K. Petersen and C. Wohlin, “A comparison of issues and

advantages in agile and incrementeal development between state

of the art and an industrial case,” Journal of Systems and

Software, vol. 82 no. 9, Sept. 2009, pp. 1479-1490.

[19] M.J. Rees, “A feasible user story tool for agile software

development?” Software Engineering Conference, 2002. Ninth

Asia-Pacific 2002 pp. 22-30

[20] D. J. Reifer, “How good are agile methods?” IEEE Software,

vol. 19 no. 4, Jul/Aug 2002, pp. 16-18.

[21] E, Ries. “The Lean Startup, How Today‟s Entrepreneurs Use

Continuous Innovation to Create Radically Successful

Businessess” Crown Business. 2011. Print.

[22] O. Salo and P. Abrahamsson, “Agile methods in European

embedded software development organizations: a survey on the

actual use and usefulness of Extreme Programming and Scrum,”

IET Software, vol. 2 no. 1, Feb 2008, pp. 58-64.

[23] Sprint.ly (2012) From Sprint.ly Inc website https://sprint.ly

[24] “The British Standard for project management” 6079. ISBN. 0

580 25594 8.

[25] X. Wang, “The combination of Agile and Lean in software

development: an experience report analysis,” Proc. of the 2011

Agile Conference, 2011, pp. 1-9.

[26] YCPages (2012) http://ycpages.info/ [Download: February 2,

2013]

	Is a Rigorous Agile Methodology the Best Development Strategy for Small Scale Tech Startups?
	Recommended Citation

	Is a Rigorous Agile Methodology the Best Development Strategy for Small Scale Tech Startups?
	Abstract
	Keywords
	Disciplines
	Comments

	Paper Title (use style: paper title)

