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Encoding Mini-Graphs with Handle Prefix Outlining
Anne Weinberger Bracy and Amir Roth

Abstract— Recently proposed techniques like mini-graphs,
CCA-subgraphs, and static strands exploit application-specific
compound or fused instructions to reduce execution time, energy
consumption, and/or processor complexity. To achieve their full
potential, these techniques rely on static tools to identify common
instruction sequences that make good fusion candidates. As a
result, they also rely on ISA extension facilities that can encode
these chosen instruction groups in a way that supports efficient
execution on fusion-enabled hardware as well as compatibility
across different implementations, including fusion-agnostic im-
plementations.

This paper describes handle prefix outlining, the ISA extension
scheme used by mini-graph processors. Handle prefix outlining
can be thought of as a hybrid of the encoding scheme used
by three previous instruction aggregation techniques: PRISC,
static strands, and CCA-subgraphs. It combines the best features
of each scheme to deliver both full compatibility and execution
efficiency on fusion-enabled processors.

Index Terms— Instruction fusion, ISA extension, outlining.

I. INSTRUCTION FUSION AND MINI-GRAPH PROCESSING

M INI-GRAPH processing is a form of instruction fusion (the
grouping of multiple operations into a single processing

unit) that increases the efficiency of superscalar designs [?], [?].
Rather than targeting performance improvement by executing
fused instructions on custom functional units, mini-graph pro-
cessing targets performance efficiency via resource amplification.
Because a mini-graph processor operates on fused instructions
rather than singleton instructions throughout the pipeline, the
capacity and bandwidth of structures that manipulate instructions
can be reduced with no performance penalty (on average). Mini-
graph processing is the logical generalization and extension of
micro-op fusion, a technique used in recent Intel processors [?].
It extends the benefits of fusion to more structures and pipeline
stages and to more dynamic instructions.

Mini-graph processing works by changing the internal rep-
resentation of fused instruction groups. Inside the pipeline, an
N-instruction mini-graph is represented as a single instruction
handle and an N-instruction template. The handle encodes the
mini-graph’s interface: it includes a special opcode, the mini-
graph’s interface registers, and an immediate value (MGID) that
identifies the mini-graphs template. The template is sequential
micro-code that implements the instruction sequence represented
by the mini-graph: it encodes the opcodes and immediates of the
original instructions and their register dataflow. Multiple static
mini-graphs with the same dataflow shape and immediate inputs
can share templates. An on-chip memory called the mini-graph
table (MGT) caches the most recently used templates.

Figure ?? shows two two-instruction sequences whose dataflow
graphs have the same shape, operations (addi and cmple),
and immediate operands, (1), but use different register names.
Figure ?? shows the same instruction stream executing on a mini-
graph processor. Each two-instruction sequence is replaced with
a single-instruction handle. Because the original sequences can

Instruction Stream

 cmple r4,r5,r6
 addi r4,1,r4

 ...

 cmple r3,r5,r6
 addi r3,1,r3

(a) singleton

 Mini-Graph Table

 Instruction Stream
 mg 12  r4,r5,r6

...

 cmple m0,i1
 addi i0,1

 mg 12  r3,r5,r6

12

(b) mini-graph

Fig. 1. Mini-Graph Representation.

share a mini-graph template, the handles have the same MGID
(12). Each handle includes the register names used in the original
sequence as parameters. In the MGT, logical register names are
replaced by specifiers that denote a parameterized input or output
or a value produced by an earlier instruction in the mini-graph.

The change of representation from instruction sequence to
handle-template is the key to amplification. Most of the pipeline
processes the handle; the template is invoked only during ex-
ecution. The handle representation itself amplifies issue queue
and reorder buffer capacity as well as decode, issue, and commit
bandwidths. A statically enforced atomicity restriction means
that mini-graph “interior” register communication can take place
without actual registers and enables amplification of register file
capacity and read/write bandwidth as well as rename bandwidth.
Amplification is proportional to coverage, the percent of dynamic
instructions that are embedded in mini-graphs. Each of the mini-
graphs in Figure ?? provides coverage of one dynamic instruction
per instance.

II. ENCODING SCHEME CRITERIA

A mini-graph encoding scheme is responsible for encoding
the statically-chosen mini-graphs into the binary in a way that
enables the split handle-template representation to be constructed
at runtime. This section lists the desired attributes of an encoding
scheme. The attributes are sorted roughly in descending order of
importance in the context of mini-graph processing. Mini-graph
processing differs from other forms of instruction fusion in that
it emphasizes capacity and bandwidth amplification and that it
targets general-purpose implementations where compatibility is
valued. We define two primary criteria:

• Instruction cache capacity and fetch bandwidth am-
plification. In the context of mini-graphs this is the most
important feature. Supporting this feature essentially requires
representing each mini-graph as a single instruction in the
instruction cache.

• Support for singleton execution of mini-graphs. This
feature has several uses. It provides functional compatibility
across different mini-graph processor implementations. It
potentially simplifies the handling of exceptions that occur
in mini-graphs. It potentially simplifies debugging on a mini-
graph processor. And it provides a mechanism for minimiz-
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ing MGT misses. Specifically, mini-graphs that overflow the
MGT can simply execute in singleton form.

We also define several secondary criteria:

• Support for and control over template sharing. Template
sharing is potentially important for making efficient use of
the MGT and for minimizing MGT misses.

• Control over mapping of template to MGT set. Explicit
control over MGID assignment is another feature that is
potentially important in increasing MGT efficiency and
avoiding MGT misses. A simple policy assigns MGIDs to
templates in order of decreasing coverage. Templates with
MGIDs that are larger than the number of entries in the MGT
execute in singleton form. A more sophisticated policy could
assign templates from different program phases to MGIDs
that would map to the same MGT set, a scheme analogous
to instruction cache conscious code placement [?].

• Functional compatibility with non mini-graph processors.
This is a superset of the ability to execute mini-graphs
in singleton form. It implies that mini-graph execution in
singleton form should be the default behavior if mini-graph
annotations are simply ignored, i.e., treated as nops.

• Simplicity of dynamically constructing handle-template
representation. If the handle-template representation is not
explicit in the binary, then it must be constructed at runtime.
The most difficult aspect of constructing this representation
is determining the identity of the “liveout” register.

Finally, we define two tertiary criteria or non-criteria:

• MGT miss penalty. Control over template sharing and MGT
indexing help maximize amplification while reducing MGT
misses. However, some MGT misses are unavoidable.

• Performance of singleton execution of mini-graphs. Like
MGT misses, singleton execution of a mini-graph should
also be a rare event. Mini-graphs must execute in singleton
form when a mini-graph binary is executed on a non-mini-
graph processor. We consider it unlikely that a user will
execute a mini-graph enabled binary without having access
to both a mini-graph processor and the original singleton
binary, and very unlikely that she will have access to neither.
Even on a mini-graph processor, the dynamic instances of a
particular mini-graph may need to execute in singleton form
if the processor does not support the particular template. Or
if the number of templates exceed the capacity of the MGT.
We consider these to be unlikely scenarios as well, as we
asssume that mini-graph code will be created specifically
for the processor on which it is intended to run, perhaps
even “just in time”. An individual dynamic mini-graph may
need to execute in singleton form for debugging purposes
or to simplify the handling of a difficult exception that is
embedded in it. Again, both of these scenarios are rare.

III. ENCODING SCHEMES

This section describes four mini-graph encoding schemes. The
first three were proposed for use with other fusion techniques,
but we describe them in the context of mini-graphs here. The
fourth is the one used by mini-graphs. Figure ?? shows the mini-
graph from Figure ?? as it would be represented by each encoding
scheme, both in the binary and in the instruction cache.

A. PRISC: Handle Replacement

Handle replacement is the name we give the PRISC encoding
scheme as it would apply to mini-graphs [?]. Each mini-graph is
replaced with the corresponding handle; the templates are stored
in a new section in the binary (e.g., .mg). section. On a miss,
the MGT loads the appropriate template from this section. This
scheme resembles the DISE [?]-based scheme described in the
initial mini-graph proposal [?]. Figure ?? illustrates.

Handle replacement has several advantages. It obviously sup-
ports amplification—each mini-graph is represented in the instruc-
tion cache as a single instruction. The fact that handle-template
representation is explicit in the binary makes it trivial to construct
that representation at runtime. Handle replacement also allows
explicit control over template sharing and MGT placement. And
while MGT contents can be managed precisely to reduce misses,
MGT miss cost is also moderately low. The PRISC proposal
suggests using an exception handler to fill the template cache.
With a hardware implementation of this handler—similar to the
x86 TLB miss handler—the cost of a miss would roughly equal
the cost of an L2 access.

The primary drawback of handle replacement is its inability
to support singleton execution of mini-graphs. This jeopardizes
compatibility across both mini-graph and non-mini-graph proces-
sors and potentially complicates exception handling. These were
lesser issues for PRISC itself which targeted application-specific
processors and limited fusion to integer operations.

B. Static Strands: Prefix Tagging

The encoding scheme used by static strands [?] leaves mini-
graph instruction sequences in their original positions in the code.
It prepends each mini-graph with a tag instruction that encodes its
length. A mini-graph processor recognizes the tag, accumulates
the following instructions into a buffer, and performs the handle-
template conversion on the fly. This scheme, which we call prefix
tagging, is shown in Figure ??.

Prefix tagging is trivially compatible across both mini-graph
and non-mini-graph processors. And because the original instruc-
tion sequences are in the program mainline—both in the binary
and the instruction cache—the penalties to fill the MGT and to
execute mini-graphs in singleton form are low.

The drawback of prefix tagging is that instruction cache and
fetch bandwidth amplification are forfeited. In fact, both are
effectively reduced by the presence of tagging instructions. Static
Strands overcame this problem by “over-fetching”—fetching two
instructions per cycle for an otherwise scalar pipeline. The
particular instantiation of prefix tagging used in static strands
also doesn’t support easy conversion into handle-template format,
template sharing, or control over template placement in the
MGT. In fairness, the last two criteria are not applicable to the
static strands design itself which uses a FIFO dynamic template
buffer—analogous to a reorder buffer—as opposed to a cache in
which templates persist for multiple invocations.

C. CCA Subgraphs: Outlining

CCA subgraphs are encoded using outlining—as opposed to
inlining—or code factoring [?], a technique initially proposed for
code compression [?], [?]. In outlining, the mini-graph instruction
sequence is replaced in the binary not with the handle but with
a special call instruction. The call points to the new location of
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Fig. 2. Mini-Graph Encoding Schemes. Binary and insruction cache representations.

the outlined instruction sequence, which itself is appended with a
return. Outlining is shown in Figure ??. A mini-graph processor
recognizes the special call and fetches the target block from the
L2. However, it doesn’t place it into the instruction cache. Instead,
it scans the block, compiles the instructions (up to the return) into
template form, and places them in the MGT. It marks the call’s
BTB entry with a bit and replaces the call target with the MGT
index. On subsequent encounters of the call, the control transfer is
suppressed and mini-graph header information from the MGT—
the handle—is inserted into the pipeline instead.

Outlining meets both primary criteria. It provides amplification
and supports singleton execution of mini-graphs on mini-graph
enabled processors. However, it falls short in meeting some of
the secondary criteria.

Outlining does not support functional compatibility on non-
mini-graph processors because the special outlining call instruc-
tion cannot be correctly interpreted as a nop. Its use of call and
return supports template sharing but requires mini-graphs that
share templates to use the same logical register names. Although
a mini-graph aware compiler could orchestrate this, doing so may
require additional instructions, defeating amplification. Outlining
does not support explicit management of template to MGT set
assignment. It also does not help in constructing the handle-
template representation because it doesn’t explicitly identify the
“liveout” register. CCA-subgraphs’ authors suggest identifying
this register indirectly by adding instructions that explicitly kill
the transient registers. Outlining was presented in the context
of embedded processors for which both functional compatibility
with non-embedded implementations as well as performance
compatibility across different embedded implementations is less
important. This de-emphasizes features that support explicit MGT
management.

Outlining has moderate singleton execution and MGT miss
penalties. In singleton form, each dynamic mini-graph requires
two additional instructions, both of which are control transfers.
And although both call and return targets are predictable, the
resulting fetch discontiguities reduce fetch throughput. The cost
of an MGT miss—beyond the cost of template “compilation”—is
a single L2 cache access.

D. Mini-Graphs: Handle Prefix Outlining

The encoding scheme mini-graphs use is a hybrid of these
three schemes. We give it a fittingly hybrid name—handle prefix
outlining. Handle prefix outlining is shown in Figure ??. The basic
design is that of outlining, the mini-graph instruction sequence
is outlined from the mainline code using a pair of control
transfers. However, rather than using a special call instruction
and a return, the two instructions are conventional jumps. The fact
that the outlined instruction sequence is a mini-graph is denoted
by prepending the sequence with a tag instruction—a feature
borrowed from static strands. Finally, borrowing from PRISC,
the tag instruction is the handle itself, explicitly specifying the
interface registers and the template identifier. When the outlining
jump is first encountered and resolved and the line containing
the mini-graph is fetched from the L2, a mini-graph processor
recognizes the handle. It uses the register identifiers in the handle
to scan and compile the instruction sequence up to the return
jump. The compiled instruction sequence is placed into the MGT
at the index indicated by the MGID. Finally, the original outlining
jump is over-written with the handle itself. Subsequent fetches
of the line encounter the handle instead of the jump. The handle
persists in the instruction cache until the containing line is evicted.

Like the classic outlining scheme it derives from, handle prefix
outlining satisfies the primary encoding criteria. However, it also
satisfies many of the secondary criteria.

Handle prefix outlining is compatible with non mini-graph
processors because the instruction that tags the mini-graph is
not a control transfer and can be safely interpreted as a nop.
It also supports template sharing without the potentially onerous
requirment that different static instances of the same template use
the same logical register names for both interface and interior
registers. In classic outlining, two mini-graphs share a template
by “calling” the same outlined instruction sequence. In handle
prefix outlining, two mini-graphs share a template if the MGID
field in the handle instruction has the same value. In other
words, mini-graphs can share templates without sharing static
code sequences. This is the reason handle prefix outlining uses
conventional jumps rather than a call-return pair. Using a separate
outlined static code sequence for each static mini-graphs enlarges
the binary, but doesn’t increase instruction cache footprint because
outlined sequences bypass the instruction cache en route to the
MGT. In addition to easy template sharing, the explicit presence
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Fig. 3. Mini-Graph Encoding Scheme Speedup over Non-Mini-Graph Processor (c = coverage, p = performance).

of the handle in the representation enables control over MGID
assignment and eliminates the need for additional instructions to
indirectly identify the liveout register.

The downside of handle prefix outlining are that its singleton
mini-graph execution and MGT miss penalties are higher than
those of classic outlining. Singleton execution requires fetching
and decoding the handle in addition to the two jumps. Also, the
instruction cache contains handles, not calls, and so on an MGT
miss the location of the mini-graph instructions in the binary must
itself be fetched from the L2. The cost of handling an MGT miss
is therefore two L2 accesses taken in series.

E. Performance Comparison

We use cycle-level simulation to compare the instructions-per-
cycle (IPC) performance of these encoding schemes relative to
a baseline 3-way fetch/issue/commit non-mini-graph processor.
We use the 78 programs from the SPECint2000, MediaBench1.0,
CommBench, and MiBench suites. Each encoding experiment is
shown using an S-curve; it contains data from all programs sorted
worst-to-best. Each S-curve is sorted independently.

The experiment in Figure ?? uses binaries with 256 encoded
mini-graph templates and a 256-entry MGT. It isolates bandwidth
and instruction cache capacity amplification while minimizing
the effects of template sharing and MGT misses. Unsurpris-
ingly, all encoding schemes provide similar coverage (30–31%).
Also, handle replacement (HR), outlining (O) and handle prefix
outlining (HPO) show the same performance—an average 17%
improvement. Prefix tagging (PT), which does not provide fetch
bandwidth amplification, has a much lower average performance
gain, 6%.

The experiment in Figure ?? uses binaries with 32 encoded
templates and a 32-entry MGT. This experiment focuses on ampli-
fication but also emphasizes template sharing. Handle replacement
and handle prefix outlining support full template sharing. With
32 entries, they achieve coverage rates of 24% and performance
improvements of 14%. For outlining, mini-graphs can share tem-
plates only if they share logical register names. Our experiments
discount the possibility that a mini-graph aware compiler would
assign registers to facilitate more template sharing. However, we
also do not model additional instructions that would be needed to
kill the liveout register. With a smaller MGT, outlining provides
21% coverage and 12% performance.

For the third experiment, shown in Figure ??, the binary
encodes 256 templates but the MGT has space for only 32. Here,
both outlining schemes assign MGIDs to templates in order of

decreasing coverage and deal with MGT overflow by executing
mini-graphs with MGIDs larger than the largest MGT index in
singleton outlined form. We give outlining this additional benefit.
Despite this additional benefit and the fact that its singleton
execution penalty is lower, outlining under-performs handle prefix
outlining by 3% on average. Handle prefix outlining’s better
support for template sharing and superior coverage give it the
advantage. The handle replacement scheme does not support
singleton execution of mini-graphs—it deals with MGT overflow
simply by filling the misses. The cost of this compatibility strategy
is severe, however. It results in a 34% average slowdown despite
30% coverage. The performance of prefix tagging is essentially
independent of the size of the MGT.

The final experiment, shown in Figure ??, simulates a binary
with 32 encoded templates executing on a non-mini-graph proces-
sor. This graph has only two S-cures, because handle replacement
and outlining are not compatible with non-mini-graph processors.
Handle prefix encoding greatly under-performs prefix tagging in
this scenario. However, as we have argued, this is a somewhat
contrived scenario that should not be optimized for at the expense
of the first two.
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