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Abstract

The growing use of Internet service in the past few years have facili-
tated an increase in the denial of service (DoS) attacks. Despite the best
preventative measures, DoS attacks have been successfully carried out
against high-profile organizations and enterprises, including those that
took down Chase, BOA, PNC and other major US banks in September
2009, which reveal the vulnerability of even well equipped networks. These
widespread attacks have resulted in significant loss of service, money, and
reputation for organizations, calling for a practical and efficient solution
to DoS attack detection and mitigation.

DoS attack detection and mitigation strengthens the robustness and
security of network or computer system, by monitoring system activities
for suspicious behaviors or policy violations, providing forensic informa-
tion about the attack, and taking defensive measures to reduce the impact
on the system. In general, attacks can be detected by (1) matching ob-
served network traffic with patterns of known attacks; (2) looking for
deviation of traffic behavior from the established profile; and (3) train-
ing a classifier from labeled dataset of attacks to classify incoming traffic.
Once an attack is identified, the suspicious traffic can be blocked or rate
limited.

In this presentation, we present a taxonomy of DoS attack detection
and mitigation techniques, followed by a description of four representative
systems (Snort, PHAD, MADAM, and MULTOPS). We conclude with a
discussion of their pros/cons as well as challenges for future work.
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1 Introduction

The growing use of Internet service in the past few years have facilitated an
increase in the denial of service (DoS) attacks [20]. Despite the best preventative
measures, DoS attacks have been successfully carried out against high-profile
organizations and enterprises [1], including those that took down Chase, BOA,
PNC and other major US banks in September 2009, which reveal the vulnera-
bility of even well equipped networks. These widespread attacks have resulted
in significant loss of service, money, and reputation for organizations, calling for
a practical and efficient solution to DoS attack detection and mitigation.

Network intrusion detection system (NIDS) provides avenues to detect DoS
attacks and other types of intrusions, and produces reports to help system ad-
ministrator perform further analysis on the attacks. Some NIDSs aim to detect
attacks in real-time and stop an attack in progress, whereas others focus pri-
marily on providing after-the-fact forensic information about attacks to help
repair damage, understand the attack mechanism, and reduce future attacks of
the same type. It is well recognized that NIDS has become an essential part for
developing robust and secure network systems against DoS attack. While its
importance is recognized, designing and implementing effective NIDS remains
challenging, due to the ever increasing scale and complexity of network traffic
and unpredictability of unforeseen attacks.

Over the past few years, there have been extensive research activities de-
veloping effective DoS detection techniques. Various techniques have been pro-
posed for detecting DoS and are evaluated systematically on network traffic
trace collected from testbed or production networks [17, 18, 4]. In general, at-
tacks can be detected by (1) matching network traffic against a set of rules that
encodes patterns of known attacks [22, 24, 30]; (2) looking for deviation of traffic
behavior from established profile [19, 4, 32, 7, 5]; and (3) training a classifier
from labeled dataset of attacks to classify incoming network traffic [16, 21]. De-
pending on the choice of detection paradigms, these techniques differ in their
detection rate, false alarm rate, adaptability to attack variations, among other
performance metrics.

Once an attack is detected, attack mitigation mechanism uses the character-
ization of suspicious traffic to take defensive measures, e.g. packet filtering and
rate limiting. To further reduce the impact on the target network, suspicious
traffic can be blocked remotely at upstream router via pushback [10], or redi-
rected to and from a cleaning center that has sufficient network and computation
resource to filter out malicious traffic [2].

The rest of the paper is organized as follows. We first provide an overview
of denial-of-service attacks in Section 2. Section 3 provides a taxonomy of the
techniques and systems proposed for denial-of-service attack detection. We then
present four representative systems to explain different detection techniques:
we discuss Snort in Section 4, PHAD in Section 5, MADAM in Section 6, and
MULTOPS in Section 7. Section 8 discusses two techniques for mitigating
distributed denial-of-service attacks. Finally, Section 9 provides a comparison
of surveyed systems and discusses challenges.

3



2 Overview

In this section, we first provide a taxonomy of intrusions against computer
systems, followed by a detailed description of denial-of-service attacks that dis-
cusses their method, impact, detection, and recent incidence.

2.1 Intrusion against Computer Systems

Denial-of-service attack belongs to a broader class of intrusion against com-
puter systems. Its detection techniques, in general, are also applicable to other
types of intrusions. In practice, DoS attack is usually detected together with
other types of intrusions in a single system, namely, network intrusion detection
system. Here we provide a taxonomy of intrusions against computer systems.

• Probe: Probe describes activities that can systematically scan a network
of machines to gather information or to find known vulnerabilities. Its use
is typically followed by other more dangerous attacks because it provides
a map of machines or service that have known vulnerability in a network.

• Remote-to-local (R2L): In R2L attack, an attacker who doesn’t have
user account on the target machine gains unauthorized access to that ma-
chine via remote connection. The specific examples include buffer overflow
attack, network worm, and trojan program.

• User-to-root (U2R): U2R describes attacks where local users of the sys-
tem obtain unauthorized access to confidential information or root privi-
lege. These attacks typically exploit the weakness in the operating system
or system programs running with root privilege, including those programs
which are susceptible to buffer overflow attack.

• Denial-of-service (DoS): DoS attack is generally characterized by an
explicit attempt to make a system or network resource unavailable to its le-
gitimate user. This is typically achieved by (1) exploiting the software bug
in the target system to crash it completely, or (2) sending large amounts
of useless traffic towards target system to simply exhaust its computer or
network resource.

2.2 Denial-of-service Attack

DoS Classification: Denial-of-service attack, as its name suggests, attempts
to deny the service of target system from its legitimate users. Depending on
exploits it uses, DoS can be further classified into vulnerability DoS and flood
DoS.

• Vulnerability DoS exploits the weakness in system design, implementa-
tion or configuration to reduce system performance or crash it completely.
As a typical example, a teardrop attack attempts to crash the target
system by sending intentionally malformed packets which are incorrectly
handled by the target machine.
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• Flood DoS exploits the resource asymmetry between the attacker and
victim, and attempts to exhaust the computation or network resource of
the victim by sending huge amounts of malicious traffic at the same time.

– Distributed-denial-of-service attack (DDoS) is a primary ex-
ample of flood DoS, in which attackers or compromised hosts form
a coordinated attack against a common target. Attacks can be
launched from millions of compromised hosts around world in such a
way that easily overload the target network and system.

Although DDoS attack is easy to detect by measuring the traffic
load on the target network, it is extremely hard to mitigate, for two
reason: (1) it does not rely on any particular system weakness except
for resource asymmetry. (2) it would be prohibitively expensive or
even impossible to deploy enough computation and network resources
at each enterprise network to combat large scale DDoS attack.

DoS Examples: DoS attack can be carried out in a variety of ways, each
exploiting different vulnerability of target system. Here we present several rep-
resentative DoS attacks to explain their method, impact, and detection.

• Teardrop attack: Teardrop attack is a vulnerability DoS attack. It
involves sending mangled IP fragments with overlapping, over-sized pay-
loads that can crash various operating systems which have a bug in their
TCP/IP fragmentation reassembly code. Therefore, teardrop attack can
be detected by looking at the fragmentation flag in the IP packet header;
it can also be prevented by simply upgrading operating system.

• Ping of death (PoD): PoD is another vulnerability DoS attack, which
involves sending an oversized ping packet to crash the target operating sys-
tem. Specifically, PoD exploits the bug in operating systems that can not
handle a ping packet larger than the maximum IPv4 packet size (65,535
bytes). It can therefore be detected by looking for oversized ICMP packet.
Nowadays this attack is mostly historical because this bug is fixed in most
systems.

• ICMP flood: ICMP flood is a typical example of reflector-based DoS
flood attack. Instead of flooding the victim directly, the attacker sends
ICMP echo requests to broadcast addresses of mis-configured networks,
where each host on the network responses with an ICMP packet to the
victim. As a result, the mis-configured network amplifies the flood on the
victim. This attack can be prevented by filtering out ICMP packets with
broadcast address.

• SYN flood: SYN flood is another form of DoS flood attack that attempts
to exhaust connection state tables in the target system. Specifically, it
exploits the TCP three-way handshake process by initiating many TCP
connections but not completing them, until no new connections can be
made by legitimate traffic. Nowadays even high capacity devices capable
of maintaining states on millions of connections can be taken down by
such attacks.
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• Bandwidth attack: Bandwidth attack is a primary form of DDoS attack
that simply overloads the target network by generating huge amounts
of normal-looking network traffic, such as HTTP request, DNS request,
etc. Nowadays bandwidth attacks routinely exceed 100Gbps. As a well
known example, in Feb 2000, a number of high-profile websites were taken
down for several hours, including Yahoo!, eBay, Amazon, CNN, and many
others.

DoS Detection: DoS attacks can be detected in a variety of ways. Here we
briefly discuss it in the context of vulnerability DoS and flood DoS separately.

• Vulnerability DoS: In general, vulnerability DoS can be detected on
per-packet basis by examining the packet header values, and comparing
the observed values with either patterns of known attacks or those of
legitimate packets. For instance, teardrop attack can be detected by ex-
amining the fragmentation flag in the packet header, as we will show later
in Figure 4.

• Flood DoS: Flood DoS is much straightforward to detect, since it typ-
ically involves abnormally large amounts of packets or connections that
can be easily observed using simple statistical measures, e.g. number of
connections made in a given time window. However, it can be extremely
difficult to tell flood DoS traffic from legitimate traffic, because it can be
composed of entirely normal-looking traffic that simply overloads victim’s
system capacity.

3 Taxonomy of Denial-of-service Detection

Here we present an overview of existing systems that performance DoS de-
tection, and classify them according the taxonomy in Figure 1.

!!!!!!!!DoS!Detec(on!

Audit!Source�

Usage!Frequency�

Model!Genera(on�

Detec(on!Paradigm�

Network>based�

Host>based�
Real>(me�
Delayed�

Programmed�
Learned�

Signature>based�
Anomaly>based�
Classifica(on>based�

Figure 1: Classification of DoS Detection Systems
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3.1 Network-based vs. Host-based Detection

Based on the source of audit data, we categorize DoS detection systems into
network-based detection and host-based detection. Host-based detection employs
the host operating system’s audit trails as the main source of input to detect
malicious activity [26, 14], whereas network-based detection builds its detection
mechanism on monitored network traffic [22, 31].

Network-based and host-based detection usually differ in their deployment
location and the impact on the target system. Network-based detection can be
deployed at enterprise network gateway or ISP core routers. A single network-
based detection system, when properly placed, can monitor a large network of
heterogeneous systems with little or no impact on their performance, whereas
host-based system usually has the potential to degrade host’s operating system
performance due to the processor time needed to perform monitoring functions.

With ever-increasing scale of distributed systems and rapid development of
Internet, there has been growing interest and trend towards developing network-
based detection system, largely due to its advantage in 1) monitoring a large
network of heterogeneous systems simultaneously with single deployment and
central management; 2) causing little or no impact on the performance of ex-
isting systems; 3) capability to effectively detect and mitigate DoS attacks. For
this reason, we will focus on the network-based detection system in this survey.

3.2 Real-time vs. Delayed Detection

Based on the time of detection, we categorize detection systems into real-
time detection and delayed detection. Real-time detection processes data con-
tinuously and performs DoS detection in real-time [22, 4], whereas delayed de-
tection processes data at regular interval, which in turn delays the time of
detection [9, 27].

Real-time detection has the advantage of detecting attacks and enabling
mitigation response as soon as possible before further damage are inflicted.
However, this may not be possible when (1) the audit data is collected from
multiple source and aggregated at regular interval; and when (2) the system
processing capacity can not keep up with the network throughput.

3.3 Programmed vs. Learned Detection

In programmed DoS detection system, the model or rules used for DoS at-
tack detection are manually written by security experts. For instance Snort [24]
performs real-time analysis on collected traffic data using rules that character-
ize the patterns of known attacks. However, this approach requires significant
amount of manual effort to analyze and extract patterns from malicious traffic.
In addition, the resulting rules may not extend well to other environment.

In recognition of this deficiency of programmed approach, there are increas-
ing interest in developing learned DoS detection system where the rule-set or be-
havior model is learned from the traffic data using data mining or machine learn-
ing techniques in an automated way. Example systems include Honeycomb [13],
which creates attack detection signatures using longest common string match-
ing algorithm on malicious traffic captured by honeypot, and PAYL [31], which
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profiles byte frequency distribution of packet payload from the attack-free traffic
observed in the past.

3.4 Detection vs. False Alarm rate

The key performance metric in DoS detection systems is of course the extend
to which they can correctly detect attacks and avoid false alarms. The detection
rate is defined as the percentage of actual attacks that are detected, whereas
false alarm rate is calculated as the percentage of legitimate traffic that are
classified as attacks. High false alarm rate essentially renders system impractical
to deploy, because either legitimate traffic will be affected as a result of attack
mitigation, or significant manual effort is required to analyze the output and
exclude false alarms generated by the legitimate traffic.

Despite the interest in achieving high detection rate and low false alarm
rate altogether, there is inevitable tradeoff between these two metrics in DoS
detection systems. In anomaly-based DoS detection, the tradeoff is usually made
by varying the detection threshold, such that high threshold provides lower false
alarm rate at the cost of lowing detection rate, and vice versa.

The tradeoff between detection and false alarm rate depends on the choice
of detection paradigm when designing the DoS detection system. In general,
signature detection has low false alarm rate, but usually have low detection rate
on unforeseen attacks; anomaly detection has potentially high detection rate,
but its false alarm rate is also higher; classification-based detection is somewhere
between the other two paradigms in terms of detection and false alarm rate.
In recognition of this problem, hybrid systems have been designed which use
both signature detection and anomaly detection to combine the benefits of both
paradigms.

3.5 Denial-of-service Detection Paradigms

There are essentially three DoS attack detection paradigms, i.e. signature
detection, anomaly detection, and classification-based detection. Here we present
a brief overview of the paradigms and systems proposed, and discuss their ad-
vantages and limitations in detail.

3.5.1 Signature Detection (a.k.a misuse detection)

In signature detection the DoS detection decision is formed on the basis of
knowledge accumulated of known attacks or system vulnerabilities. A repository
of signatures is first generated by security expert to characterize the patterns
of known attacks. These signatures are then matched against observed traffic
to identify DoS attacks. An alarm is raised whenever a match is discovered.
Example systems include NSM [9], Bro [22], and Snort [24].

Since signature detection looks for patterns that are known to cause security
problems, it has the advantage of low false alarm rate and is able to provide
forensic information about the cause of alarms, which can be used by security
expert for further analysis. However, it is unable to detect any attacks that lie
beyond its knowledge, thus resulting in low detection rate on unforeseen attacks.
In addition, manually extracting representative signatures from large amounts
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of traffic data is usually time-consuming and labor-intensive, particularly with
the increasing complexity and scalability of today’s network traffic.

3.5.2 Anomaly Detection (a.k.a behavior detection)

Anomaly DoS detection techniques assume that an attack can be detected by
observing a deviation from the normal behavior of network traffic. The profile
of normal behavior is first extracted from normal traffic observed in the past
or synthesized traffic that are known to be attack-free. Later in the detection
mode, the observed network traffic is checked against the established profile of
traffic behavior. An alarm is generated when the traffic deviates from the profile
beyond a threshold. For instance, MULTOPS [8] uses disproportional packet
rates to and from hosts as a heuristic to detect flood DoS attack. PAYL [31]
detects occurrence of worm by profiling the byte distribution of packet payload
and looking for deviation from the established profile in the monitored network
traffic.

Advantages of anomaly detection lies in its capability to detect unforeseen
attacks, since no priori knowledge about specific attacks is required. However,
the observed anomaly does not necessarily indicate attacks, and false alarm rate
can be high, because the entire scope of the behavior of network traffic may not
be covered during the learning phase.

3.5.3 Classification-based Detection

Classification-based detection systems form a compound decision in view of
both normal behavior of network traffic and abnormal pattern of the attacks.
This is usually achieved by applying machine learning techniques to a labeled
dataset, in which the attack and normal traffic are correctly labeled, to generate
a classifier. The resulting classifier will then be used to classify monitored traffic
into ”normal” or ”attack”. For example, ADAM [3] and MADAM [15] build
their classifier using decision tree algorithm, whereas Mukkamala et.al [21] builds
the classifier using support vector machine and neural network algorithms.

In comparison to signature and anomaly detection, which derive their detec-
tion model from either attack-only or attack-free dataset, classification-based
detection derives its classifier from labeled dataset containing both attack and
normal traffic in an automated way that combines the benefits from both ap-
proaches.

3.6 Summary

Paradigm Training Data Model Systems

Signature-based Attack-only
Programmed NSM, Bro, Snort, EMERALD,

GrIDS, NetSTAT, Shield
Learned Honeycomb, Earlybird, Autograph

Anomaly-based Normal-only
Programmed NSM, MULTPOS

Learned PAYL, PHAD, IMAPIT, EMERALD

Classification-based Labeled Mixture Learned MADAM, ADAM, ANN&SVM

Table 1: DoS Detection Paradigms
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System Ref Year
Detection Paradigm1 Real-time

Detection
Techniques

Signature Anomaly Classification DoS
P L P L P L Detection

NSM [9] 1990 X X rule-based
GrIDS [27] 1996 X rule-based

EMERALD [23] 1997 X X X rule-based
NetSTAT [29] 1998 X X rule-based

Bro [22] 1999 X X rule-based
Snort [24] 1999 X X rule-based

Honeycomb [13] 2004 X pattern
matching

Earlybird [25] 2004 X pattern
matching

Autograph [12] 2004 X pattern
matching

PHAD [19] 2002 X X header field
distribution

IMAPIT [5] 2002 X wavelet
analysis

PAYL [32] 2004 X X payload
byte distri-
bution

MULTOPS [8] 2001 X X packet ratio
MADAM [15] 1999 X X decision tree

ADAM [3] 2001 X X X naive bayes
ANN&SVM [21] 2002 X X artificial

neural
network

Table 2: Classification of surveyed systems according to the proposed taxonomy

In table 1 we conclude the classification of DoS detection paradigms with
example systems. We further provide a classification of surveyed systems ac-
cording to our proposed taxonomy in table 2, with a brief description of used
techniques for each system.

In the following sections, we are going to selectively present the design and
implementation of some representative systems (shown in bold in both tables).
These include: (1)Snort, a system that provides signature-based light-weight
intrusion detection; (2)PHAD, an anomaly-based nonstationary model for de-
tecting novel attacks; (3)MADAM, an automated framework for constructing
models for intrusion detection using machine learning algorithm; and (4) MUL-
TOPS, a data structure for bandwidth attack detection. These systems cover
most of the detection paradigms in our proposed taxonomy;

4 Snort: Signature-based Intrusion Detection
for Networks

Snort [24] is a signature-based network intrusion detection system that per-
forms real-time traffic analysis and packet logging on IP networks. It is intended
to be a lightweight cost-efficient IDS that can be deployed to monitor small
and lightly utilized networks. As one of the most widely deployed open-source

1Abbreviation used: P stands for Programmed, and L stands for Learned
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IDS, Snort’s architecture and rule language serve as a representative example
of signature-based IDS.

4.1 System Architecture

Packet!Decoder�

Preprocessor�

Detec(on!Engine�

Alert!and!logging�

Network!
Packets�

Figure 2: System Architecture of Snort

Figure 2 shows the system architecture of Snort. In attack detection mode,
Snort monitors network traffic, analyzes it based on a rule set that encodes
attack signature, and performs specific actions as identified in the rules that are
matched by the network packets. The analysis is typically carried out in the
following components:

• Packet Decoder: The Packet Decoder decodes the raw packets observed
on the network according to the protocol that is used, from IP layer up to
application layer. The decoded packet header values are stored in a data
structure for later use in the Detection Engine.

• Preprocessor: The Preprocessor performs a variety of preprocessing
other than the standard packet decoding, before the data can be ana-
lyzed by Detection Engine. These include IP fragment assembly, TCP
stream assembly, packet header normalization, etc.

• Detection Engine: The Detection Engine carries out the actual attack
detection by matching various values obtained in the previous steps against
a set of rules that encodes patterns of known attacks. If a match is found,
the corresponding action that is defined in rule will be executed, e.g. drop
the packet, log the packet, generate alert to system administrator.

• Logging and Alerting System: This last component logs or generates
system alerts based on the action specified in the matched rules as well as
the options given at the start of the system.
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4.2 Snort Rules

Snort rules are simple to write, yet powerful enough to detect a wide range
of intrusive network traffic. Generally, each Snort rule is composed of action
directive and attack signature. The action directive specifies the action to take
when a packet matches the attack signature specified in the rule, which include:
1) pass rules that simply drop the packet, 2) log rules that write the full packet
to the logging routine, and 3) alert rules that generate an event notification and
log the full packet to enable later analysis. The attack signature specifies the
combination of packet values that warrents further actions.

log tcp any any -> 10.1.1.0/24 22

Figure 3: A simple Snort rule

alert udp $EXTERNAL NET any -> $HOME NET any

(msg:"DOS Teardrop attack"; id:242; fragbits:M;)

Figure 4: Alert rule for teardrop attack

Figure 3 shows a most basic rule that specifies only protocol, direction, IP
address and port number of interest. This rule would record all TCP packets
that are destined to port 22 (ssh) and 10.1.1 class C network address space,
regardless of its source IP address and port number. As a more advanced
example, Figure 4 shows a rule that detects teardrop attack. This rule would
fire for any UDP packet that is sent from outside network towards home network
when the IP id of the packet is 242 and the ”More Fragment” bit is set.

4.3 Evaluation

According to the taxonomy presented in Section 3, Snort is a signature-based
network intrusion detection system that can detect DoS attack. We summarize
the strength and weakness of Snort as follows.

Strengths:

• Snort employs a clear and concise rule language that describes per packet
tests and actions. The ease of use simplifies and expedites the development
of new attack detection rules, and allows Snort to rapidly respond to zero-
day attacks. Therefore, Snort can be used to fill holes in commercial
vendor’s network-based IDS when signature updates are slow to come
from vendor in response to new attack.

• Snort is easy to deploy and run on all of today’s most popular operating
systems and is not confined to a fully vested server hardware platform. It
also provides an interactive GUI environment that allows user to configure
the system and analyze incoming traffic. This makes Snort easy to use for
even un-sophisticated users.

• Snort provides a signature repository that is actively updated on a daily
basis to detect most recent attacks. The real-time access to these attack
signatures enables users to respond to latest trends in intrusive activities
and DoS attacks.
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Limitations:

• Since the mechanism used for attack detection in Snort is based on signa-
ture matching, system administrators have to apriori specify the patterns
of intrusive activity to look for. However, priori knowledge of attacks is not
always available; incomplete signatures will result in undetected attacks
and reduce detection rate.

• Snort is not designed to run in high speed networks without dropping
packets or slowing down the traffic. Instead, it is intended to be deployed
only in small and lightly utilized networks, or as a part of an integrated
network security infrastructure with other systems.

5 PHAD: Nonstationary Models for Detecting
Novel Attacks

PHAD [19] provides network anomaly detection by modeling normal behav-
ior of attack-free network traffic. In contrast to other anomaly-based IDS whose
model remains stationary after the model training, PHAD uses a nonstationary
model that is continuously updated based on the monitored traffic. It monitors
the entire data link, network, and transport layer, and assigns anomaly score to
each packet based on the observed packet header values.

5.1 Learning Nonstationary Models

An important features provided by PHAD is the ability to adapt to state
changes over time, as opposed to other stationary anomaly detection model
which depends exclusively on the profile of training data. This is based on
the observation that many types of network processes, such as the rate of a
particular type of packet, are nonstationary. No matter how short or long the
sample data is, the stationary model can not predict rate of events for other
samples.

In order to find events that have the lowest probability, i.e. most anomalous,
PHAD assigns to each event an anomaly score that is inversely proportional to
the estimated probability of the event. As a simplification, the anomaly score
is only assigned to novel events that have never occurred in the training data.
Specifically, if an experiment is performed n times and r different values are
observed in the training data, and the novel event is last observed t seconds ago
in the monitored traffic, then the novel event is scored as tn/r. Note that n and
r remain stationary after the model training, whereas t is continuously updated
based on the monitored traffic during attack detection.

5.2 Packet Header Anomaly Detection

PHAD monitors 33 fields from Ethernet, IP, and transport layer (TCP, UDP,
or ICMP) packet header for intrusion detection. For each field that has a value
never observed in training, an anomaly score of tn/r is computed, and the sum
of scores across different fields is assigned to the packet. If the final score exceeds
a threshold, then an alarm is signaled.
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anomaly score =
∑
i

tini/ri,where field i is novel in training.

Clustering: In order to generalize continuous field values that span across a
large range (e.g. TCP port), the set of observed values is clustered into a set of
continuous ranges. Each newly observed value forms a cluster by itself; if the
number of clusters exceeds a limit C, then two closest ones are merged into a
single cluster. For purpose of anomaly detection, r is the number of times the
set of clusters is updated.

Attribute r/n Observed Values

Ethernet Size 508/12814738 46 60-1181 1182. . .
Ether Dest Hi 9/12814738 x0000c0 x00105A. . .
Ether Dest Lo 12/12814738 x000009 x09B949. . .
Ether Protocol 4/12814738 x0136 x0800 x0806. . .
IP Header Len 1/12715589 x45
IP TOS 4/12715589 x00 x08 x10 xC0
IP Length 527/12715589 38-1500. . .
IP Frag ID 4117/12715589 0-65461 65462. . .
IP Frag Ptr 2/12715589 x0000 x4000. . .
IP Protocol 3/12715589 1 6 17
IP Checksum 1/12715589 xFFFF
IP Source Addr 293/12715589 12.0.169.104. . .
IP Dest Addr 287/12715589 0.67.97.110. . .
. . . . . . . . .

Table 3: Example PHAD Model [19]

Table 3 shows the example PHAD model for Ethernet and IP header fields
after training on 7 days of attack-free network traffic with C = 32. It shows
the name of each packet header, the observed values of n and r, and a partial
list of observed values or clusters. For example, the first line says that out of
12,814,738 packets with an Ethernet size field, there are 508 times when the set
of clusters are updated. Three of these clusters are 42, 60-1181, and 1182.

5.3 Application Layer Anomaly Detection

Application Layer Anomaly Detection (ALAD) can be combined with PHAD
to improve detection rate. Instead of assigning anomaly scores to packets, ALAD
assigns scores to incoming TCP connections that are assembled from packets.
In particular, the anomaly scores are aggregated over the following five classes
of attributes.

• P(src IP | dest IP), where src IP is the external source address of the
client making the request, and dest IP is the local host address. A separate
pair of r and n is generated for each local dest IP based on the observed
value of srcIP that connects to it. This class learns the normal set of
clients for each host.

• P(src IP | dest IP, dest port). This is similar to the class defined
above except that there is a separate (r, n) for each server on each host.
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It learns the normal set of clients for each server on each host, which may
be different across servers on the same host.

• P(dest IP, dest port). This class learns the set of local servers which
normally receive requests. It should catch probes that attempts to access
nonexistent hosts or services.

• P(TCP flags | dest port). This model learns the set of normal TCP
flag sequence for the first, next to last, and last packet of a connection.
Separate models are generated for each port number, which usually indi-
cates the type of service (e.g. mail, FTP, http). An anomaly can result if a
connection is opened or closed abnormally, indicating an abuse of service.

• P(keyword | dest port). This model examines the text in the incoming
TCP stream to learn the allowable set of keywords for each service. A
keyword is defined as the first word on a line of input. An anomaly
indicates the use of a rarely used feature of service, which is common in
many R2L attack.

Attribute r/n Observed Values

80 (HTTP) 13/83650 Accept-Charset:
Accept-Encoding:
Accept-Language:
Accept:
Cache-Control:
Connection:
GET
Host:
(5 values . . . )

25 (SMTP) 34/142610 (34 values . . . )
21 (FTP) 11/16822 (11 values . . . )

Table 4: Example ALAD Model [19]

Table 4 shows the example ALAD model for P(keyword|dest port) for ports
80, 25, and 21 after training on the same 7 days of attack-free network traffic as
used in Table 3. For example, the first line says that only 13 different keywords
were observed out of 83,650 TCP connections to port 80. Part of these keywords
are listed in the third column.

5.4 Evaluation

Table 5 shows the detection rate of PHAD and ALAD on DARPA 1999
dataset. The anomaly threshold is configured to allow 10 false alarms per day. It
shows that PHAD and ALAD can achieve 54.2% detection rate on DoS attacks
without requiring any prior knowledge of attacks. Further, notice that there
is almost no overlap between PHAD and ALAD. PHAD detects mostly probes
and DoS attacks that exploit low level network protocols, whereas ALAD detects
user behavior anomalies (all U2R and some R2L) at the application layer. We
summarize their strength and limitations as follows.

Strengths:
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Category Total Detected (%) By PHAD (%) (By ALAD (%))

Probing 32.4 21.6 13.5
DoS 54.2 28.8 25.4
U2R 34.7 0.0 34.7
R2L 25.7 0.0 25.7

Overall 38.9 13.9 25.6

Table 5: Detection Rate of PHAD and ALAD on DARPA 1999 Dataset [19]

• There is significant non-overlap between PHAD and other systems that
use signature detection. Therefore, they can be deployed in combination
with other signature-based systems to improve detection performance.

• PHAD and ALAD are non-stationary models that adapt to system state
changes over time. This approach avoids the problem of stationary model
whose performance degrades as a result of established profile of traffic
behavior becoming outdated with the evolving network traffic.

Limitations:

• There is combinatorial explosion problem of combining attributes. ALAD
uses combination of the form P(X, Y) and P(Y|X), but these were ad-hoc.
It will be helpful to automate the selection of attributes from among the
exponential number of possibilities in an efficient way.

• Even when an anomaly is detected, PHAD can not provide much forensic
information to characterize detected attack (e.g. the specific vulnerabil-
ity that the attack exploits). As an anomaly-based detection system,
PHAD detects anomaly by comparing the current system behavior with
established profile using high level statistics. Consequently, it does not
necessarily have enough information to analyze the cause of intrusion.

6 MADAM: A Data Mining Framework for In-
trusion Detection

MADAM [15] is a classification-based automated framework for building
intrusion detection models. The previous signature-based Snort and anomaly-
based PHAD require either manual process to analyze and encode attack sig-
nature, or guesswork to select statistical measures for normal usage profiles. In
contrast, MADAM enables automated selection of predictive features by using
data mining algorithms, and applies machine learning algorithm on the labeled
audit data to generate intrusion detection models. Therefore, MADAM presents
a systematic and automated approach for building intrusion detection systems.

6.1 System Framework

Figure 5 shows the system framework of MADAM. In the process of applying
MADAM, (1) raw audit data is first processed into ASCII network packet infor-
mation; (2) these are in turn summarized into connection records containing a
number of basic features, such as destination port and connection duration; (3)
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components of the framework include programs for learning classifiers and
meta-classifiers [Chan and Stolfo 1993], association rules [Agrawal et al.
1993] for link analysis, and frequent episodes [Mannila et al. 1995] for
sequence analysis. It also contains a support environment that enables
system builders to interactively and iteratively drive the process of con-
structing and evaluating detection models. The end products are concise
and intuitive rules that can detect intrusions, and can be easily inspected
and edited by security experts when needed.

The process of applying MADAM ID can be summarized in Figure 1. Raw
(binary) audit data is first processed into ASCII network packet informa-
tion (or host event data), which is in turn summarized into connection
records (or host session records) containing a number of basic features,
such as service, duration, and the like. Data mining programs are then
applied to the connection records to compute the frequent patterns (i.e.,
association rules and frequent episodes), which are in turn analyzed to
construct additional features for the connection records. Classification
programs, for example, RIPPER [Cohen 1995], are then used to inductively
learn the detection models. This process is of course iterative. For example,
poor performance of the classification models often indicates that more
pattern mining and feature construction is needed.

In our approach, the learned rules replace the manually encoded intru-
sion patterns and profiles, and system features and measures are selected
by considering the statistical patterns computed from the audit data.
Meta-learning is used to learn the correlation of intrusion evidence from
multiple detection models, and to produce a combined detection model.

Fig. 1. The data mining process of building ID models.

Framework for Constructing Features and Models • 231
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Figure 5: System Framework of MADAM [15]

data mining programs are then applied to the connection records to compute
the frequent patterns; 4) finally, machine learning program is applied to the
processed connection records to generate the detection model. Note that the
whole process is iterative. For example, poor performance of the machine learn-
ing model often indicates that more pattern mining and feature construction is
needed at earlier steps.

6.1.1 Basic Feature Construction

Raw audit data is first analyzed into network connection records using pre-
processing programs, where each record has a set of predefined feature, such as
connection duration, source IP, destination port, number of bytes transferred.
Note that these are all basic features that characterize general aspects of the
observed traffic, rather than some features that are intentionally selected for
attack detection. Table 6 shows an example connection record.

timestamp duration service src ip dst ip src byte dst byte flag . . .
1.1 0 http spoofed 1 victim 0 0 S0 . . .
1.1 0 http spoofed 2 victim 0 0 S0 . . .
1.1 0 http spoofed 3 victim 0 0 S0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 2 ftp addr1 addr2 200 300 SF . . .
12.3 1 smtp addr2 addr4 250 300 SF . . .
13.4 60 telnet addr1 addr4 200 12100 SF . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6: Network connection records [15]

6.1.2 Automatic Feature Construction

Frequent episode analysis is applied to both normal connection data and
attack data. The resulting patterns are then compared to find the attack-only
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patterns. Briefly, frequent episode analysis can discover those time-based se-
quence of audit events which frequently occur together, and use those patterns
to provide guidelines for incorporating temporal statistical measures into intru-
sion detection models.

For example, consider the SYN flood attack record shown in table 6. Here
the attacker used many spoofed source addresses to send a lot of S0 connections
to HTTP port of the victim in a short time interval. Table 7 shows the top
attack-only pattern extracted from this record using frequent episode analysis.

Frequent episode Meaning

(service = http, flag=S0, dst ip = victim),
(service = http, flag = S0, dst ip = victim)
→ (service = http), flag = S0, dst ip =
victim [0.93, 0.03, 2]

93% of the time, after two http connec-
tions with S0 flag are made to host victim,
within 2 seconds from the first of these two,
the third similar connection is made, and
this pattern occurs in 3% of the time.

Table 7: Example Attack Pattern [15]

Each of these intrusion patterns is used as a guideline for incorporating ad-
ditional features into the connection models to build better classification model.
In particular, for a given intrusion pattern with reference feature F0 and a time
window of w seconds, the following features are added.

• A count of these connections.

• Let F1 be service, src ip or dst ip other than F0. If the same F1 value
is in all item sets of the episode, add a percentage of connections that
share the same F1 (e.g. http) value as current connection; otherwise, add
a percentage of different values of F1.

• Let V2 be a value (e.g. S0) of a feature F2 (e.g. flag) other than F0 and F1.
If V2 is in all the item sets of the episode, add a percentage of connections
that have the same V2 ; otherwise, if F2 is a numerical feature, add an
average of the F2 values.

To provide a better understanding of the output from automatic feature
construction, Here we provide a summary of temporal and statistical features
that are constructed by MADAM from network audit data.

• The ”same host” features that examine only the connections in the past
2 seconds that have the same destination host as the current connection:
the count of such connection, the percentage of connections that have the
same service as current connection, the percentage of different service, the
percentage of S0 flag, and the percentage of REJ flag.

• The ”same service” features that examine only the connections in the
past 2 seconds that have the same service as current connections: the
count of such connections, the percentage of different destination host,
the percentage of S0 flag, and the percentage of REJ flag.

18



6.1.3 Classification

Provided with the labeled audit data and a set of features constructed from
previous steps, machine learning algorithm can be used to automatically learn
the classification model. Specifically, MADAM uses RIPPER [6], a classification
rule learning algorithm, to generate rules for classifying connection records into
”normal” or ”attack”. Table 8 shows an example RIPPER rule for detecting
smurf DoS attack.

RIPPER rule Meaning

smurf :- service=ecr i, host count > 5,
host srv count > 5

If the service is icmp echo request, and for
the past 2 seconds, the number of connec-
tions that have the same destination host
as the current one is at least 5, and the
number of connections that have the same
service as the current one is at least 5, then
this is a smurf attack (a DOS attack)

Table 8: Example RIPPER Rule for Detecting Smurf Attack [15]

Meta-classification: Finally, meta-classification mechanism can be used to
combine the results from multiple detection models to further improve detection
performance. In particular, three base classification models can be generated
based on different sets of features to detect different categories of attacks. The
output from these base models are converted into meta-level records that consist
of four features: the three predications from each of the base models, plus the
true class label. RIPPER is then applied to learn the rules that combine the
results to make a final prediction on a connection.

6.2 Evaluation

Category Old (%) New (%)

Probing 97.0 96.7
DoS 79.9 24.3
U2R 75.0 81.8
R2L 60.0 5.9

Overall 80.2 37.7

Table 9: Detection Rate of MADAM on DARPA 1998 Dataset [15]

Table 9 shows the detection rate of MADAM on DARPA 1998 dataset. Here,
new intrusions refer to those that did not have corresponding instance in the
training data. Note that MADAM achieves 79.9% detection rate on known DoS
attacks and 24.3% detection rate on novel DoS attacks. We summarize the
strength and weakness of MADAM as follows.

Strengths:

• MADAM provides an automated framework for selecting predictive fea-
tures and building intrusion detection models by applying data mining
algorithms. This automatic approach eliminates the need to manually
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analyze and encode attack signatures, as well as guesswork in selecting
predictive statistical features for normal traffic behavior.

• Enabled by the use of meta-learning, MADAM provides adaptability and
extensibility in building intrusion detection systems. Meta-learning im-
proves detection performance by combining results from multiple models.
Thus new mechanisms can be introduced into existing IDS without signif-
icant re-engineering.

Limitations:

• The classification-based approach adopted in MADAM requires a labeled
dataset that contains both target intrusions and normal traffic, which itself
is hard to obtain. Improper labeling in the training dataset may lead to
false positive or false negative.

• The MADAM assumes the presence of representative target attacks in
the training dataset. Consequently, the features constructed based on
available attack instance are potentially specialized to known attacks.

7 MULTOPS: A Data Structure for Bandwidth
Attack Detection

MULTOPS [8] is a data structure that enables router or network monitors
to detect ongoing bandwidth attack. It uses disproportional packet rates to
and from hosts and subnets as a heuristic to detect attacks. To keep track of
ratio of forwarding packets to reverse packets for each address prefix, a tree-
shaped data structure is used to collect these statistics in real-time to look for
disproportional packet rate behavior. Further, tree expansion and contraction
are used to avoid memory explosion and reduce CPU utilization.

Unlike prior systems that examine the value of packet payload and header
fields for attack detection, MULTOPS relies only on the destination IP address
extracted from the IP header. This is due to the distinct nature of band-
width attacks: attackers release high volume of network traffic towards victim
to exhaust its network or system resource where attack traffic (i.e. header and
payload value) can be completely indistinguishable from legitimate traffic.

7.1 Proportional Packet Rate Assumption

MULTOPS is based on the assumption that under normal operations, the
packet rate in one direction is proportional to the packet rate in the opposite
direction. The heuristic appears to hold broadly for most TCP and UDP ap-
plications: (1) TCP acknowledges every single—or every k—received packets,
and, therefore, has proportional packet flows; (2) Although UDP does not pro-
vide delivery confirmation, in benign UDP-based applications there is usually a
mechanism in the application layer that makes sure the other party has received
the packets, similar to TCP ACK. Note that the second assumption is empir-
ically validated on UDP traffic collected from a large number of production
networks [4].
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MULTOPS collects packet rates to and from address prefixes so that, given
an address prefix P , ratio R(P ) of forward packet with destination address
prefix P to reverse packet with source address prefix P can be calculated. Under
normal circumstances, ratio R(P ) is close to some constant k for all prefix P .
If ratio R(P ) drops below Rmin or exceeds Rmax, then future packets destined
for a host with address prefix P may be dropped. The sensitivity of MULTOPS
can be tuned by changing the values of Rmin and Rmax.

7.2 Data Structure

In order to carry out the detection technique proposed above at network
routers where throughput can be more than 100Gbps, an efficient design and
implementation of data structure is needed to keep track of packet rate with
reasonable precision while maintaining acceptable memory footprint. To meet
this requirement, MULTOPS maintains a tree of nodes that collects packet
rate statistics for subnet prefixes at different aggregation levels. Further, it
dynamically expands and contracts its shape to (1) locate the longest common
prefix of victims’ IP address(es), and (2) avoid (maliciously intended) memory
exhaustion.

router routing ’s packets to will detect the dispro-
portional packet rates between them and could decide to
drop packets going to . Consequently, will not have
to cope with ’s packets.

Let be the ratio between the packet rate going to
and coming from addresses with prefix . Under normal
circumstances, is close to some constant for all ,
i.e., packet rates are proportional for all prefixes. If
drops below or exceeds , then a (host in)
subnet with prefix is either under attack or a subnet
with prefix harbors an attacker.

MULTOPS collects packet rates to and from address pre-
fixes so that, given a certain , can be calculated.
Packets may be dropped if they are destined for a host or
subnet from which disproportionally fewer packets are
coming back, i.e., if is not between and

. The sensitivity of MULTOPS can be tuned by
changing the values of and .

4.3 Data structure

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

130.16.*.*16.128.*.*

Figure 2: MULTOPS

MULTOPS is organized as a 4-level 256-ary tree to con-
veniently cover the entire IPv4 address space. Each
node in the tree is a table consisting of 256 records,
each of which consists of 3 fields: 2 rates—to-rate and
from-rate—and 1 pointer potentially pointing to a node
in the next level of the tree. A table stores all packet
rates to and from IP addresses with a common 0-bit, 8-
bit, 16-bit, or 24-bit prefix, depending on the level of
the tree. Deeper levels of the tree contain packet rates
for addresses with a longer prefix. Thus, the root node
contains the aggregate packet rates to and from address
0.*.*.*, 1.*.*.*, 2.*.*.*, etc. The 90th record in the root
node, for example, contains the packet rates to and from
addresses with 8-bit prefix 89, and a pointer to a node
that keeps tracks of the aggregate packet rates to and

from addresses with that prefix, i.e., 89.0.*.*, 89.1.*.*,
89.2.*.*., etc. The sum of all 256 to-rates and the sum of
all 256 from-rates in a node are equal to the to-rate and
the from-rate in the parent record of that node. Figure 2
shows a sample MULTOPS.

When the packet rate to or from a subnet reaches a cer-
tain threshold, a new subnode is created on the fly to
keep track of more fine-grained packet rates, potentially
down to per-IP address packet rates. For example, if
the aggregate packet rate to or from subnet 130.17.*.*
exceeds , a new node is created to keep track of
packet rates to and from subnets 130.17.0.*, 130.17.1.*,
etc. Creating new nodes is called expansion. The re-
verse, i.e., removing nodes or entire subtrees, is called
contraction. Contraction is done when the packet rate
from and to a given IP address prefix drop below a cer-
tain threshold, or when memory is running out, possibly
due to a memory exhaustion attack against MULTOPS
itself.

Expansion and contraction enable MULTOPS to exploit
the hierarchical structure of the IP address space and the
fact that a bandwidth attack is usually directed at (or
coming from) a limited set of IP addresses—with a com-
mon prefix—only. MULTOPS detects the attack on a
high level in the tree (where prefixes are short) and ex-
pands toward the largest possible common prefix of the
victim’s IP address(es), potentially establishing single IP
address(es) that are under attack.

4.4 Algorithm

Each packet (or every th packet) that is routed causes
packet rates in applicable nodes in the tree to be updated;
starting in the root, and going down to the deepest avail-
able node. This works as follows. The first byte of the
IP destination address of a forward packet is used as an
index in the root node to find the record in which to up-
date the to-rate. For reverse packets the first byte of the
IP source address is used as an index in the root node
to find the record in which to update the from-rate. If
the record has a child, the process descends down to the
child and continues. If no child exists, it is created if ei-
ther the from-rate or the to-rate exceeds a certain thresh-
old. In any case, the process may follow the pointer in
the record to the child node. In this child node, the sec-
ond byte of the IP address is used as an index to find the
record and update the packet rates. This process may de-
scend down to the deepest level in the tree where per-IP
address packet rates are kept. The full algorithm is given
in pseudo-code in Algorithm 4.1.

Figure 6: MULTOPS Data Structure [8]

Figure 6 shows a sample MULTOPS Data Structure. MULTOPS is orga-
nized as 4-level 256-ary tree to cover the entire IPv4 address space. Each node
in the tree is a table consisting of 256 records, each of which consists of 3 fields:
traffic rates to and from the represented address prefix, and a pointer pointing
to a node in the next level of the tree. A table stores packet rates to and from
IP addresses with a common 0-bit, 8-bit, 16-bit, and 24-bit prefix, depending
on the level of the tree. Thus, the root node contains the aggregate packet rates
to and from address 0.*.*.*, 1.*.*.*, 2.*.*.*, etc.

Expansion: If the to-rate or the from-rate for an address with n-bit prefix P
exceeds the expand threshold, MULTOPS creates a child node under the record
for prefix P to keep track of packet rates for addresses with (n+8)-bit prefix
P ′. Lowering this expand threshold increases precision of MULTOPS, but also
increases its memory use. Figure 7 shows how a new node is added to the tree
to keep track of all packet rates to and from addresses with prefix 130.16.120.*

Contraction: The reverse of expansion is contraction. Contracting a record
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Algorithm 4.1: UPDATE( )

TABLE t root
for i to

do

RECORD r t[addr[i]]
if fwd
then update r’s to-rate
else update r’s from-rate

if r has no child node
then break

t r’s child node
annotate packet with r’s from-rate and to-rate (1)
if r’s from-rate threshold
or r’s to-rate threshold
and t is not a node in deepest level of tree
then create child table t’ under r

Method UPDATE ) is called by method
HANDLE PACKET ) described in Section 5.2. Pa-
rameter is the 4-byte IP source or destination
address of packet , depending on whether MUL-
TOPS is set up in victim-oriented or attacker-oriented
mode. Parameter tells UPDATE ) whether this
packet is a forward packet or a reverse packet. State-
ment 1 immediately after the for -loop annotates the
packet with r’s from-rate and to-rate. This annotation
can later be used by a part of the system that implements
the heuristic to determine whether or not this packet is
part of a malicious flow and should, thus, be dropped.

4.5 Expansion and contraction

If the to-rate or the from-rate for an address with an -bit
prefix exceeds the expand threshold, MULTOPS cre-
ates a child node under the record for prefix to keep
track of packet rates for addresses with -bit prefix

. Lowering this expand threshold increases precision
of MULTOPS, but also increases its memory use. Fig-
ure 3 shows how a new node is added to the tree to keep
track of all packet rates to and from addresses with prefix
130.16.120.

The reverse of expansion is contraction. Contracting a
record involves removing a subtree from under a record.
A subtree is contracted when the aggregate packet rate
for that subtree drops below . Contraction is done
to constrain memory use and to avoid (maliciously in-
tended) memory exhaustion. Figure 3 shows how a node
is contracted.

130.16.120.*

CONTRACT

EXPAND

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

16.128.*.*

*.*.*.*

16.*.*.* 89.*.*.* 130.*.*.*

16.128.*.* 130.16.*.*

130.16.*.0

Figure 3: Expansion and contraction

Traversing the entire tree in search of subtrees to con-
tract is potentially expensive and its frequency should
be chosen with care. Traversing the tree for every
routed packets is dangerous because a router should have
its resources free for routing, not for contracting when
packet rates go up. Traversing the tree every ms is
safer, but choosing correctly is tricky: if is too high,
memory might run out before traversal starts. The strat-
egy we chose is to never allocate more memory than
a certain limit —thereby making memory exhaustion
impossible—and to traverse the tree every ms in search
of subtrees to contract. In the time period between reach-
ing memory limit and the next “cleanup,” MULTOPS
cannot create new nodes. It is, therefore, important to
choose low, but not so low as to trigger cleanups too
often and, thus, waste the router’s resources.

An attacker might try to launch a memory exhaustion
attack against MULTOPS by causing it to branch pro-
fusely. The two opposing forces are the attacker causing
nodes to be created versus contraction causing nodes to
be destroyed. Since a subtree is contracted when the
packet rates to and from addresses with a certain prefix
are less than the expand threshold, the attacker will have
to sustain a higher packet rate for as many different ad-
dress prefixes as possible. Section 5.4 deals with this
issue in a quantitative context.

Figure 7: Expansion and Contraction [8]

involves removing a subtree from under a record. A subtree is contracted when
the aggregate packet rate for that subtree drops below Rmax. Contraction is
done to constrain memory use and to avoid (maliciously intended) memory
exhaustion. Figure 7 shows how a node is contracted.

7.3 Evaluation

MULTOPS is a programmed anomaly-based system that focuses exclusively
on detecting DDoS bandwidth attacks at network router. We summarize its
strength and limitation as follows:

Strengths:

• MULTOPS enables routers or network monitors to detect ongoing band-
width attacks which create disproportional packet flows between sender
and receiver.

• MULTOPS performs detection at router rather than at the victim net-
work, so that malicious packets can be stopped before they cause any
damage.

Limitations:

• MULTOPS may cause collateral-damage to legitimate traffic when it rate-
limits or drops all packets destined to those hosts that are identified as
being under attack.

• MULTOPS fails to detect those attacks that deploy a large number of
proportional flows to cripple a victim. For example, attackers can use
FTP or HTTP connections with relatively low but still proportional packet
rates.
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8 Distributed Denial-of-service Mitigation

Once an attack is detected, immediate action can be taken to mitigate its
impact on the network. This typically involves rate limiting or blocking sus-
picious traffic at the local network. Although such mitigation approach can
effectively stop DoS vulnerability attack, it is essentially useless against DDoS
attack, because the presence of malicious traffic on the local network itself is
already denying the use of resources to legitimate users.

Two alternative approaches have been proposed to mitigate DDoS attack by
filtering out suspicious traffic before they can reach victim. The first approach,
called Pushback [10], filters out suspicious traffic at upstream routers closer
to source of attack, whereas the second approach redirects traffic to a cleaning
center [2] that performs traffic cleaning before sending them back to the original
destination.

8.1 Pushback

In Pushback [10], once an attack is detected at the victim, the characteriza-
tion of the suspicious traffic, such as source or destination IP address of packets,
can be sent to the upstream router, which blocks the traffic that matches the
given characterization.

R1�
R2� R3�

R0�

Server!
A�

Server!
B�

Figure 8: DDoS attack in progress

To illustrate Pushback, consider the network in Figure 8. Rn are ISP routers
with processing capacity 100Gbps; A, B are commercial servers. Suppose DDoS
attack is launched against server A via router R1 and R2 with a throughput of
60Gbps each, denoted in red and blue. Consequently, router R0 is overloaded,
causing collateral damage to the legitimate traffic from R3 to B. Simply blocking
traffic destined to server A at router R0 will not help mitigate its impact, since
it is still overloading processing capacity at server A.

By using Pushback, R0 can request server R1 and R2 to block all the traffic
that are destined to server A. This approach immediately provides two benefits:
(1) server B can now successfully receive legitimate traffic via router R0; (2)
router R1 and R2 can perform more complex analysis to filter out malicious
traffic, since the traffic load on them is within their capacity. Further, this
process can be repeated until it reaches the router that is closest to the source
of attack.
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8.2 Cleaning Center
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still has the effect of shutting down valid traffic. Traceback may
require some time before filters can be applied at the appropri-
ate places, and some traceback methods require router software
modifications.
A more sophisticated method using packet shaping tech-

niques can also be employed. This method uses queues to rate-
limit traffic destined for the machines under attack. For exam-
ple, all the traffic from a particular source address might be al-
lowed to consume at most a fraction of the available bandwidth.
Though this technique can be useful, an attacker can defeat it by
adding more zombies to an attack, each with a different source
address. Packet shapers alone are not the answer. They can be
a useful part of a DDoS defense but they need to be coordinated
with other DDoS techniques in order to be effective.

C. Specialized Filtering Devices

Specialized filtering devices, which we describe in more de-
tail in the next section, are typically used in two configurations
in an enterprise network. In the inline method, the device is
placed directly in the path of the incoming traffic, just before
the ingress traffic hits the edge router of the enterprise network.
Here the device is always on, continually filtering packets with
knownmalicious payload signatures and anomalous behavior. A
variety of anomaly detection, filtering, and rate shaping methods
may be employed by this hardware. In the on demand setting,
the device may sit on a separate port of the edge router, and
ingress traffic may get shunted through this port if an attack is
suspected.
While these devices are starting to become more popular in

enterprise networks, their current use is lacking in many re-
spects. Firstly, since these devices are on the enterprise network
side, DDoS attacks that attempt to saturate under-provisioned
edge links to ISP customers will still be successful. Even if the
malicious traffic is successfully filtered by the device, since the
network connection is saturated by this traffic, legitimate traffic
cannot flow through.
Secondly, such a deployment results in a single point of fail-

ure. If the filtering device malfunctions, malicious traffic may
be let in or all traffic may get blocked. Placing multiple devices
can get prohibitively expensive for small enterprise networks.
Thirdly, this technique requires all enterprise networks to de-

ploy filtering devices before DDoS attacks can become a thing
of the past. This cannot easily scale to the large number of en-
terprise networks that exist today and those that are yet to join
the Internet.

D. Cleaning Centers

In this work, we present a technique to address all three of
these drawbacks. We propose that large numbers of these de-
vices be deployed in a cleaning center, and multiple cleaning
centers be deployed inside ISPs. By deploying them inside ISP
backbones, we are no longer victim to DDoS attacks saturating
under-provisioned edge links. We are no longer placing the bur-
den of DDoS attack mitigation with large numbers of enterprise
networks, but instead placing the burden with the fewer numbers
of ISPs. Further, large numbers of devices and cleaning centers
in an ISP are amortized among many enterprise customers. A
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Fig. 2. DDoS Attack Operation

single point of failure will no longer exist in a well designed
solution.
This deployment requires the consideration of traffic diver-

sion and redirection techniques. During normal operation, traf-
fic will flow across an ISP’s network from multiple sources to
a particular destination, as in Figure 1. When an attack occurs,
suspect traffic to this destination is diverted to a cleaning cen-
ter in the ISP, as shown in Figures 2 and 3. When this traffic
is cleaned by one or more specialized filtering devices in the
center, the legitimate traffic is redirected to the destination.
This method takes advantage of the fact that the capacity of

the backbone is large. Thus, it can absorb the attack traffic with-
out the need to install router filters which could block all traffic
to the victim. Apart from traffic cleaning, there are other ap-
plications that could benefit from the cleaning center concept.
These include traffic logging, sinkholing, blackholing, moni-
toring of misbehaving customers or peers, and selective traffic
analysis for re-engineering of service level agreements (SLAs).
In this work, we focus on issues in the deployment of filter-

ing devices, not on the effectiveness of the individual devices in
blocking malicious traffic. Our contribution is the introduction
of the concept of regional cleaning centers for DDoS mitigation
in a large IP backbone network. We describe an architecture
for a cleaning center and the various metrics under which such
centers should be designed. We examine several techniques for

Figure 9: Cleaning Center Operation [2]

An alternative approach to address the problem of DDoS attacks is to redi-
rect traffic to and from a cleaning center [2] that performs the necessary traffic
cleaning when a set of destination hosts is under attack.

In comparison to detecting and mitigating DDoS attack at each individual
enterprise network, cleaning center provides this service at ISP level for multiple
networks, thus achieving two advantages: (1) the cost of purchasing specialized
equipment and employing security experts is greatly amortized among many
enterprise customers; (2) the capacity of backbone is large enough to absorb the
attack traffic without having to drop network packets.

9 Discussion

In this section, we conclude our survey paper with a comparison of the
systems that we have presented in previous sections, followed by a discussion of
the challenges.

9.1 Comparison of Denial-of-service Detection Techniques

Here we evaluate the each of the four presented denial-of-service detection
systems with regard their key performance metrics. The results are summarized
in Table 10, where the cells with the highest performance on each line are
denoted in red color.

• Detection rate of known DoS vulnerability attack: Among the
systems we have surveyed, Snort has the highest detection rate on known
DoS vulnerability attacks by using its actively updated attack signatures.
MADAM also provides high detection rate due to its uses of a labeled
dataset of known attacks. PHAD has moderate detection rate since it
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Performance Snort MADAM PHAD MULTOPS

Detection rate of known vulnerability attack High High Medium Low
Detection rate of unknown vulnerability attack Low Low Medium Low
Detection rate of flood attack Yes Yes No Yes
False alarm rate Low Low Medium Low
Ease of model construction Medium High High High
DoS flood attack mitigation No No No Yes

Table 10: A Summary of Performance Evaluation for Surveyed Systems

does not have any prior knowledge of attack. MULTOPS is not able to
detect DoS vulnerability attacks.

• Detection rate of unknown DoS vulnerability attack: Snort has the
lowest detection rate on unknown attacks due to its reliance on existing
attack signatures. MADAM has somewhat better, but still low, detection
rate on known attacks. PHAD does not require prior knowledge of specific
attacks, and achieves moderate detection rate. Again, MULTOPS is not
able to detect DoS vulnerability attacks.

• DoS flood attack mitigation: MULTOPS is the only system here that
provides mitigation against DoS flood attacks before they can reach victim.
The other three systems can not mitigate DoS flood attacks.

• False alarm rate: Both Snort and MADAM have low false alarm rate
due to their focus on detecting known attacks. PHAD, as an anomaly
based detector, has relatively high false alarm rate. The false alarm rate
of MULTOPS depends on the effectiveness of proportional packet rate
assumption.

• Ease of training: Snort requires the most effort to manually analyze
and write attack signatures. MADAM provides an automated framework
for building detection models, thus requiring much less manual effort.
Similarly, PHAD constructs the behavior profile of normal traffic in an
automated way. MULTOPS is the easiest to build among all four systems,
since only a predefined threshold for expected packet ratio is required.

9.2 Challenges

• Extensibility: Extensibility is critical in today’s network computing en-
vironment. Specifically, an extensible detection system should 1) allow
additional modules or functionalities to be incorporated into existing sys-
tem without significant re-engineering; (2) enabling emerging attacks to
be detected without having to re-train the entire model. Currently, most
anomaly-based systems (e.g. PHAD) need to completely re-train the be-
havior model when the traffic changes. More recent systems, such as
Bro [22], have made extensibility their primary goal.

• Forensic Information: In addition to detecting attacks, an ideal de-
tection system should also provide forensic information that could help a
security analyst identify important characteristics of the attack and take
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immediate response. Relevant information includes the system vulnerabil-
ity exploited, the common substring in the packet payload, and the impact
on the system. Currently, there lacks a standard and focus on providing
these information.

• Scalability: It is becoming increasingly difficult for uniprocessor systems
to process rapidly growing network throughput with increasingly complex
analysis required for attack detection. In order to meet this performance
requirement, a scalable design that can exploit today’s multi-core proces-
sors is needed. That requires careful design, however, to (1) evenly balance
load across cores and (2) support exchange of states across threads. It is
a popular area of research in recent years to parallelize existing intrusion
detection systems on commodity PC [11] or specialized hardware [28].

• DDoS Attack Mitigation: Despite the growing popularity and interest,
DDoS attack remains a major threat facing enterprise networks of all
size, specifically, for two reasons: (1) it would be prohabitively expensive
or even impossible to deploy enough computation and network resources
at each enterprise network that can combat DDoS attack. (2) dropping
suspicious packets usually cause collateral damage to legitimate packets,
because the attack traffic behaves like the normal traffic from legitimate
users. As an alternative solution, efforts have been made to mitigate DDoS
attack at upstream router [10] or at cleaning center [2] which has enough
resource to filter out attack traffic.
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