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Dual Periodic Resource Model
Jaewoo Lee Linh T.X. Phan Sanjian Chen Oleg Sokolsky Insup Lee
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Abstract—The paper considers compositional scheduling for
hierarchical real-time systems using periodic resource models,
which has been extensively studied in the past. We identify an
unrealistic assumption in the existing literature that can make
the computed component interfaces unimplementable. Namely,
resource bandwidth can be expressed using arbitrary rational
numbers. We show that resource bandwidth, computed by an al-
gorithm that removes this assumption becomes overly pessimistic,
and offer a new notion of adual-periodic resource model (DPRM)
interface that improves resource bandwidth of the interface. We
study composition using DPRM interfaces and show properties
of the new approach in terms of required resource bandwidth
and preemption overhead.

Index Terms—hierarchical real-time scheduling; periodic re-
source model; interface generation; interface composition

I. I NTRODUCTION

Component-based design has become the widely used tech-
nology for the construction of complex computer-based sys-
tems. Component technologies allow us to apply the divide-
and-conquer approach to reduce design complexity. Com-
ponents provide well-defined interfaces that abstract away
implementation details and enable reuse of a component in
different applications. Furthermore, many modern systems
are developed through collaboration of many independent
providers; in this case, components allow us to encapsulate
intellectual properties.

Increasingly, real-time systems are also built using indepen-
dently developed components. However, unlike conventional
systems, real-time components need to satisfy timing and
resource constraints and thus have to be allocated sufficient
computational resources for this purpose. Schedulabilityanal-
ysis is employed to check that all timing constraints of an ap-
plication containing multiple real-time tasks will be satisfied in
the implementation. However, classical schedulability analysis
algorithms are global; that is, they need to know all the tasks
that comprise the system. This global nature of schedulabil-
ity analysis greatly reduces the benefits of component-based
development.
Compositional schedulability analysis. techniques have
been developed to allow component-based development to
be used for systems where multiple independently developed
components share a computational resource [1]. Interfacesof
real-time components contain information about the resource
needs of a component, and the system scheduler uses this
information to allocate resources to components. Within a
component, a separate component-level scheduler further al-
locates the resource to the component workload, which can
contain real-time tasks or other subcomponents.

A common way to represent resource requirements in a
component interface is to use aresource model[2]. Several
resource models have been proposed in the literature, with the
periodic resource model [1] being one of the most commonly
used. A periodic resource modelΓ = (Π,Θ) used as the
interface of a component specifies that the component needs to
be allocated at leastΘ time units of resource access in everyΠ
time units. A necessary part of a resource model-based com-
positional schedulability analysis framework is an algorithm to
calculate parameters of the resource model sufficient to make
the component schedulable. It is also desirable to make such
an algorithm optimal so that the component is not allocated
unnecessary resources.

An optimal algorithm for the calculation of resource in-
terfaces has been introduced in [3]. The algorithm computes
periodic resource model(Π,Θ) that minimizes theresource
bandwidthΘ/Π. While theoretically optimal, the algorithm
cannot always be used in practice, because it calculatesΘ as
a rational number. Practically,Θ should be an integer multiple
of the time slice used by the operating system, which may
not be under the control of the application developer. We
thus restrict the set of acceptable periodic resource models
to have integer values of bothΠ andΘ. While scaling both
Π andΘ by the same factor may yield an acceptable resource
model with the same bandwidth, we remind the reader that
Π cannot be made arbitrarily large, otherwise the component
will become unschedulable due to theblocking interval of
the resource model [1]. It is clear that an approximation of
the optimal resource model with integer values introduces
additional overhead into the scheduling framework. One of
the goals of this paper is to quantify this overhead.

Furthermore, it is not sufficient to round up the value
calculated by the existing algorithm. Consider the following
example. Let the optimal resource model for a component be
(1,0.54). Rounding the result up, we obtain the resource model
(1,1). However, this may not be the minimum bandwidth that
can be obtained with integer values, as a periodic resource
model (4,3) may be able to schedule the component. We thus
set out to develop a new algorithm to calculate an acceptable
periodic resource model with the minimum bandwidth.

We then show that it is possible to characterize resource
demand of a component even more precisely. We introduce
a dual-periodic resource model(DPRM) interface, which
contains two periodic resource models instead of one. It can
be shown that if rational numbers are used in periodic models,
DPRM interfaces do not improve the total resource bandwidth
[3]. However, when restricted to integer parameter values,we



show that it is possible to reduce the overhead of the interface
bandwidth by using DPRM. An extensive simulation study
allows us to demonstrate the scale of the improvement.
Contributions. This paper makes three distinct contributions
related to the use of periodic resource models in the interfaces
of real-time components.

• We propose an efficient algorithm to calculate the
minimum-bandwidth periodic resource model with inte-
ger parameter values.

• All algorithms for resource model calculation, including
the one proposed here, rely on an upper bound on the
value of the resource model periodΠ. In the literature,
the upper bound is a parameter of the algorithm specified
by the designer. In this paper, we derive a theoretical
upper bound for the period of the minimum-bandwidth
resource model.

• Finally, we propose a new resource-demand interface,
DPRM, and show that it allows us to reduce resource
utilization compared to the minimum-bandwidth periodic
resource model with integer parameters. we further pro-
pose a composition technique for DPRM interfaces and
evaluate context switch overhead of DPRM interfaces.

This paper is an extended version of [4]. Composition
of DPRM interfaces and consideration for context switch
overhead is added.
Related work. Since the first two-level hierarchical real-
time scheduling framework introduced by Deng et al. [5] and
its extension to multi-level hierarchical systems [2], several
compositional analysis techniques have been proposed for
such systems (see e.g., [1], [3], [6]). The majority of these
techniques assume independent periodic task models – or their
variations – for the components. However, these techniques
have also recently been extended to analyze hierarchical sys-
tems with dependency, such as systems containing interacting
tasks [7] and resource sharing [8]. Compositional analysis
methods have also been investigated in the context of virtual
machine (VM) environment [9]–[11].

Most of the existing compositional analysis frameworks
represent component interfaces using one of the two resource
models: periodic [1] and explicit deadline periodic [6].
The advantages of these two resource models are that they
can be directly transformed into real-time tasks, which are
required by the upper-level scheduler, and their supply bound
functions have regular structures that allow for optimal
interface generation. All the existing algorithms, however,
assume that the resource model take rational parameter
values, which cannot always be used in practice. Further,
these algorithms rely on a pre-specified bound on the
resource period that is manually chosen by the designer,
which cannot guarantee the optimality of the output interfaces.

Organization. The next section revisits the hierarchical
scheduling framework. Section III-A presents a bound on the
resource period and a revised interface generation algorithm
using this bound, followed by a more efficient algorithm in
Section IV. Section V proposes the DPRM interface that is

able to reduce this overhead suffered by the periodic resource
interface. Finally, we present our evaluation of our proposed
techniques in Section VI before concluding the paper.

II. H IERARCHICAL SCHEDULING BACKGROUND

In a hierarchical scheduling framework, a system is com-
posed of a set of real-timecomponentsthat are scheduled in
a tree-like manner as shown in Figure 1. Each component
C in the system is defined by a tuple(W,Γ, A), whereW
is the component’s workload,Γ is the resource interface of
the component, andA is the scheduling policy that is used to
scheduleW . The workloadW consists of either (i) a finite set
of real-time tasks{T1, T2, . . . , Tn}, if C is a leaf-component;
or (ii) a finite set of subcomponents{C1, C2, . . . , Cn}, other-
wise. The resource interfaceΓ captures the minimum amount
of resource that must be given toC to feasibly schedule the
tasks/components inW . The compositional analysis of the
system involves (1) computing the resource interface for each
leaf-component from the resource demands of its tasks, and
(2) subsequently, computing the resource interface for each
non-leaf component from the interfaces of its subcomponents.
We will focus on the former; the latter can be done using
similar techniques as in [1].

In this paper, we assume that all tasks are periodic tasks
with relative deadlines equal to periods. Each taskT is defined
by a period (deadline)p, a worst-case execution timee, with
p ≥ e > 0. The scheduling policyA is assumed to be
Earliest Deadline First (EDF) and all our discussions pertain
to EDF (without mentioning it explicitly). Note, however, the
methods developed here can easily be extended to the RM
(Rate Monotonic) by substituting the schedulability condition
of EDF with that of RM.

Fig. 1. A hierarchical scheduling system.

Schedulability condition. Given a workloadW , the real-
time resource requirement ofW is characterized by ademand
bound function(DBF) [12], denoted bydbfW (t), which gives
the maximum number of execution (resource) units required
by the tasks/components ofW in any time interval of lengtht
for all t ≥ 0. The DBF of a workloadW = {T1, T2, · · · , Tn},



with Ti = (pi, ei) for all 1 ≤ i ≤ n, under EDF is [12]:

∀ t ≥ 0, dbfW (t) =

n
∑

i=1

(

⌊ t

pi

⌋

ei

)

Similarly, the minimum resource guaranteed by a resource
model Γ is captured by asupply bound function(SBF) [1],
written as sbfΓ(t), which gives the minimum number of
execution units provided byΓ in any time interval of length
t for all t ≥ 0. Lemma 1 states the schedulability condition
based on DBF and SBF [13]. In this lemma and the rest of
the paper,LCMW denotes the least common multiple (LCM)
of all pi where1 ≤ i ≤ n.

Lemma 1:Given a componentC =
(

W,Γ, EDF
)

with
W = {T1, T2, · · · , Tn} andTi = (pi, ei) for all 1 ≤ i ≤ n.
Then, C is schedulable (Γ can feasibly scheduleW ) iff

∀ t s.t. 0 ≤ t ≤ LCMW , sbfΓ(t) ≥ dbfW (t). (1)

Periodic Resource Model. A periodic resource model is
defined byΓ = (Π,Θ) whereΠ is the resource period and
Θ is the execution time guaranteed byΓ within everyΠ time
units. The SBF ofΓ is thus given by [1]:

sbfΓ(t) =

{

yΘ+max
(

0, t− x− yΠ
)

, if t ≥ Π−Θ

0, otherwise
(2)

wherex = 2(Π−Θ) andy = ⌊ t−(Π−Θ)
Π ⌋.

An important concept associated with the periodic resource
model isbandwidth. Specifically, the bandwidth ofΓ = (Π,Θ)
is given bybwΓ = Π

Θ . A resource model isbandwidth-optimal
for a workloadW iff its bandwidth is the smallest among that
of any resource model that can feasibly scheduleW . In this
paper, our notion of optimality refers to bandwidth-optimality

Definition 1 (Bandwidth-Optimal):A periodic resource
modelΓ = (Π,Θ) is bandwidth-optimal for a given workload
W iff bwΓ ≤ bwΓ′ for all Γ′ that can feasibly scheduleW .

Computation of the optimal periodic resource model. Al-
gorithm 1 outlines the conventional procedure for computing
the optimal resource model of a given workload (see e.g., [1],
[14]). In this algorithm,Πmax is a predefined upper bound on
the resource period. The functionMinExec(Π, dbfW , LCMW )
(Line 3) computes the minimumΘ for a givenΠ such that
Γ = (Π,Θ) can feasibly scheduleW (c.f. Lemma 1).

Algorithm 1 the optimal periodic resource model computation
Input: Πmax, anddbfW andLCMW of a workloadW
Output: The minimum bandwidth periodic resource modelΓ

1: minBW = 1
2: for Π = 1 to Πmax do
3: Θ = MinExec(Π, dbfW , LCMW )
4: if Θ

Π < minBW then
5: minBW = Θ

Π
6: Γ = (Π,Θ)
7: end if
8: end for

In existing work, the maximum boundΠmax of the resource
period used in Algorithm 1 is either not discussed (and thus,
ultimately infinite) or manually chosen by the designer. While
the former approach is infeasible, the latter does not guarantee
optimality, as illustrated in the example below.

Example 1:Consider a workloadW = {T1, T2} with T1 =
(51, 23) and T2 = (130, 70). SupposeΠmax is chosen to be
80 in Algorithm 1. Then, the output given by Algorithm 1
is Γ = (1, 1). However, this resource model isnot optimal
because there exists a periodic resource modelΓ′ = (97, 96),
which can feasibly scheduleW (c.f. Lemma 1 and Equation 2)
and has a lower bandwidth than that ofΓ (because9697 < 1

1 ).
Since the optimality of Algorithm 1 depends on how large

Πmax is, the value chosen forΠmax must guarantee that
the algorithm always outputs a minimum bandwidth model.
Simultaneously,Πmax should be as small as possible to limit
the computational complexity. In the next section, we present
our method for computing the boundΠmax theoretically and
a revised version of Algorithm 1 that uses this bound.

III. B OUND ON OPTIMAL RESOURCE PERIOD AND A

REVISED ALGORITHM

A. An upper bound on the resource period

We first define the preliminary results that serve as founda-
tion for our computation. Observe that any SBF of a periodic
resource model can be upper bounded by a linear function.
We define theupper supply bound function(USBF) [6] of a
resource modelΓ to be the linear function with the smallest
slope among all linear functions that upper boundsbfΓ. The
USBF of a periodic resource modelΓ = (Π,Θ) is [6]:

∀ t ≥ 0 : usbfΓ(t) = max
(Θ

Π

(

t− (Π−Θ)
)

, 0
)

. (3)

Lemma 2:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Γ = (Π,Θ). Then, C is schedulable only if

∀ t s.t. 0 ≤ t ≤ LCMW , usbfΓ(t) ≥ dbfW (t). (4)

Proof: Suppose Equation 4 does not hold. Then, there
exists t0 ≥ 0 such thatusbfΓ(t0) < dbfW (t0). By defini-
tion, sbfΓ(t) ≤ usbfΓ(t) for all t ≥ 0. Thus, sbfΓ(t0) ≤
usbfΓ(t0) < dbfW (t0). In other words,C is not schedulable
due to Lemma 1.

One can verify that ifΓ satisfies the schedulability condition
for W (see Lemma 1) then it satisfies Equation 4; however,
the reverse does not hold. Thus Equation 4 gives a necessary
condition for the schedulability ofW under the resource
model Γ. By abuse of notation, we refer to Equation 4 as
the USBF-schedulability conditionfor W and we say that a
modelΓ canpotentiallyscheduleW iff it satisfies Equation 4.

Basic ideas. The upper bound on the resource period of
the optimal periodic resource model for a given workloadW
can be derived based ondbfW and its relationship with the
USBFs of the resource models that can potentially schedule



W . Intuitively, let M be the set of resource models that can
potentially scheduleW . SupposeΓopt = (Πopt,Θopt) is the
optimal resource model forW . Then,

bwΓopt
≥ Bmin

def
= min

{

bwΓ | Γ ∈ M
}

.

To derive the bound onΠopt, we will find all the possible
resource models inM that have the minimum bandwidth equal
to Bmin. Towards this, we vary the resource periodΠ and
compute for eachΠ a (unique) resource modelΓΠ = (Π,ΘΠ)
belonging toM that has the minimum bandwidth among all
the resource models inM with the same resource periodΠ.
Then,Bmin can be computed byBmin = min

{

bwΓΠ
| Π ∈

N
}

. We will show that for allΠ, the USBF ofΓΠ intersects
dbfW at exactly one special point – acritical time point. At
the same time,ΓΠ has the largest bandwidth among all the
resource modelsΓΠ,t with period Π that have their USBF
intersectingdbfW at critical time pointst. In other words,

bwΓΠ
= max

t∈CrTW
ΓΠ,t=(Π,ΘΠ,t)

{bwΓΠ,t
| usbfΓΠ,t

(t) = dbfW (t)},

where CrTW is the set of all critical time points ofW ,
which is determined based solely on the structure ofdbfW .
Further, for given anyΠ and anyt ∈ CrTW , we compute
the bandwidth ofΓΠ,t directly from dbfW (t), Π and t. From
these values, we deriveBmin, which allows us to boundΠopt.

Computation details. First, we define the set of critical time
points of a workloadW .

Definition 2: Given a workloadW = {T1, T2, · · · , Tn}
where n ∈ N and Ti = (pi, ei) for all 1 ≤ i ≤ n. The
set of critical time points ofW is defined by

CrTW =
{

argmax
0<t<LCMW

dbfW (t)

t− s
| s ∈ {1, 2, · · · , l}

}

(5)

wherey = min1≤i≤n pi and l = y − dbfW (y).
Example 2:ConsiderW = {(5, 1), (12, 2), (17, 1)}. The

set of critical time points ofW is CrTW = {5, 36}, which
is shown in Figure 2.

Fig. 2. Relationship betweenCrTW anddbfW .

Lemma 3:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n,
andΓ = (Π,Θ). SupposeΓ satisfies the USBF-schedulability
condition forW . Then, for allt ≥ 0, if usbfΓ(t) = dbfW (t)
then t ∈ CrTW .

Proof: We will prove the lemma by contradiction. Sup-
pose there existst0 /∈ CrTW such thatusbfΓ(t0) = dbfW (t0).
Let s = Π−Θ. Then, by Definition 2,

∃ t′ ∈ CrTW :
dbfW (t′)

t′ − s
>

dbfW (t0)

t0 − s
(6)

On the other hand,

usbfΓ(t
′) ≥ dbfW (t′)

⇒
Θ

Π
(t′ − (Π−Θ)) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
(t′ − s) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
≥

dbfW (t′)

t′ − s
. (7)

Since Equation 7 contradicts Equation 6, the lemma holds.
For any givenΠ and any givent ∈ CrTW . Let ΓΠ,t be the

resource model with periodΠ such that its USBF intersects
dbfW at time pointt. Then,ΓΠ,t is unique and its bandwidth
can be determined using Lemma 4.

Lemma 4:Given anyΠ ∈ N and any t ∈ CrTW . Let
ΓΠ,t = (Π,Θ) be the periodic resource model such that
usbfΓΠ,t

(t) = dbfW (t). Then, Θ = Exec(Π, t, dt) and
bwΓΠ,t

= BW(Π, t, dt), wheredt = dbfW (t) and

Exec(Π, t, dt)
def
=

Π− t+

√

(Π− t)
2
+ 4Πdt

2
,

BW(Π, t, dt)
def
=

Π− t+

√

(Π− t)
2
+ 4Πdt

2Π
.

Proof: We have:

usbfΓΠ,t
(t) = dbfW (t)

⇔
Θ

Π
(t− (Π−Θ)) = dt

⇔ Θ2 +Θ(t−Π)−Πdt = 0

SinceΘ ≥ 0, the above equation has a unique solution:

Θ =
−(t−Π) +

√

(t−Π)
2
+ 4Πdt

2
.

In other words,Θ = Exec(Π, t, dt). As a result, the bandwidth
of ΓΠ,t is bwΓΠ,t

= Θ
Π = BW(Π, t, dt). Hence the lemma.

Lemma 5:For any t ∈ CrTW , the functionBW(Π, t, dt)
defined in Lemma 4 is increasing on the domain ofΠ.



Proof: Since dBW(Π)
dΠ ≥ 0 implies BW(Π) is increasing,

we would like to show

dBW(Π)

dΠ
≥ 0

⇔
(Π− t+

√

(Π− t)2 + 4dtΠ

Π

)′

≥ 0

⇔
(

1−
t

Π
+

√

(Π− t)2 + 4dtΠ

Π2

)′

≥ 0

⇔0 +
t

Π2
+

1

2

(Π− t)2 + 4dtΠ

Π2

(− 1
2 )
( (Π− t)2 + 4dtΠ

Π2

)′
≥ 0

⇔
t

Π2
+

1

2

√

Π2

(Π− t)2 + 4dtΠ

( (2t− 4dt)Π− 2 · t2

Π3

)

≥ 0

⇔2t ·Π+

√

Π2

(Π− t)2 + 4dtΠ

(

(2t− 4dt)Π− 2 · t2
)

≥ 0

by multiplying 2Π3 ≥ 0

⇔

√

Π2

(Π− t)2 + 4dtΠ

(

(
Π2

(Π− t)2 + 4dtΠ
)(−

1
2 )2t ·Π+ (2t− 4dt)Π− 2 · t2

)

≥ 0

⇔

√

(Π− t)2 + 4dtΠ

Π2
2t ·Π+ (2t− 4dt)Π− 2 · t2 ≥ 0

by dividing

√

Π2

(Π− t)2 + 4dtΠ
≥ 0

⇔

√

(Π− t)2 + 4dtΠ

Π2
2t ·Π+ (2t− 4dt)Π− 2 · t2 ≥ 0

⇔

√

(Π− t)2 + 4dtΠ

Π2
≥

t2 − (t− 2dt)Π

t ·Π

⇔
(Π− t)2 + 4dtΠ

Π2
≥

( t2 − (t− 2dt)Π

t ·Π

)2

by applying square in both sides(since the left side≥ 0,
the equation trivailly holds if the right side< 0).

⇔t2(Π− t)2 + t2 · 4dtΠ ≥
(

t2 − (t− 2dt)Π
)2

⇔4dt · (t− dt) ≥ 0

which is obvious sincet ≥ dt = dbfW (t).
The boundΠmax on the optimal periodΘopt can now

be computed based onCrTW and a known resource model
Γc = (Πc,Θc) with Πc ≤ Π that can feasibly scheduleW .
Theorem 1 formally specifies this bound.

Theorem 1:Given a workloadW = {T1, T2, · · · , Tn} with
Ti = (pi, ei) for all 1 ≤ i ≤ n. SupposeΓc = (Πc,Θc) is the
current periodic resource model obtained at some intermediate
execution step of Algorithm 1. Then, the optimal periodic
resource modelΓopt = (Πopt,Θopt) for W satisfies

Πc ≤ Πopt ≤ MaxResPeriod(κ, dbfW , LCMW )

whereκ = Θc

Πc
and

MaxResPeriod(κ, dbfW , LCMW )
def
= min

t∈CrTW

κt− dbfW (t)

κ(1− κ)
.

Proof: Since Algorithm 1 finds the optimal resource
period in an increasing manner,Πopt ≥ Πc. Further, thatΓopt

is optimal implies

bwΓopt
≤ bwΓc

= κ. (8)

Next, for any givent ∈ CrTW , let ΓΠopt,t = (Πopt,Θt)
where Θt = Exec(Πopt, t, dt) and dt = dbfW (t). That is,
the USBF ofΓΠopt,t(t) intersectsdbfW at time pointt. Let
Γ∗
opt = (Πopt,Θ

∗
opt) be the resource model with the minimum

bandwidth among all resource models with periodΠopt that
can potentially scheduleW . Then, its bandwidth must be at
least equal to that ofΓΠopt,t for all t ∈ CrTW (otherwise,Γ∗

opt

does not satisfy the USBF-schedulability condition). Thus,

∀ t ∈ CrTW : bwΓ∗
opt

≥ BW(Πopt, t, dt) (9)

On the other hand, sinceΓopt can feasibly scheduleW , its
bandwidth must be at least equal to that ofΓ∗

opt. That is,

bwΓopt
≥ bwΓ∗

opt
(10)

Combine Equations 8, 9 and 10, we obtain: For allt ∈ CrTW ,
BW(Πopt, t, dt) ≤ κ is equivalent to

⇔

√

(Πopt − t)
2
+ 4Πoptdt ≤ 2κ ·Πopt + t−Πopt

⇔ (Πopt − t)2 + 4Πoptdt ≤
(

(2κ− 1)Πopt + t
)2

⇔ Πopt ≤
κt− dt
κ(1− κ)

=
κt− dbfW (t)

κ(1− κ)

The above can be rewritten asΠopt ≤ mint∈CrTW

κt−dbfW (t)
κ(1−κ)

or Πopt ≤ MaxResPeriod(κ, dbfW , LCMW ).

Example 3:Given a workloadW with CrTW = {10}
and dbfW (10) = 2. Suppose thatΓc = (2, 1) is the
current minimum bandwidth periodic resource model
that can feasibly scheduleW among all models with
period Π ≤ 2. In this case, κ = 0.5. The upper
bound on the resource period is computed to be
Πopt ≤ MaxResPeriod(0.5, dbfW , LCMW ) = 0.5·10−2

0.5(1−0.5) = 12
by Theorem 1. As illustrated in Figure 3, the optimal periodic
resource model forW is Γopt = (3, 1), which indeed satisfies
Theorem 1.

Fig. 3. The upper bound on the resource period in Example 3.



B. A revised algorithm using bound on resource period

Algorithm 2 gives an extension of Algorithm 1 by
incorporating the upper bound on the resource periods
MaxResPeriod(κ, dbfW , LCMW )) defined in Section III-A.

Algorithm 2 A revised algorithm using resource period bound.
Input: dbfW , LCMW for a workloadW
Output: The optimal periodic resource modelΓ for W

1: if dbfW (LCMW ) ≥ LCMW − 1 then
2: Γ = (1, 1)
3: else
4: Θ′ = MinExec(LCMW , dbfW , LCMW )
5: κ = Θ′

LCMW

6: Πmax = MaxResPeriod(κ, dbfW , LCMW )
7: for Π = 1 to Πmax do
8: Θ = MinExec(Π, dbfW , LCMW )
9: if Θ

Π < κ then
10: κ = Θ

Π
11: Γ = (Π,Θ)
12: Πmax=min(Πmax, MaxResPeriod(κ,dbfW ,LCMW ))
13: end if
14: end for
15: end if

In Algorithm 2, Line 1-2 handles the special case
dbfW (LCMW ) ≥ LCMW − 1, which has Γ = (1, 1)
as the minimum bandwidth resource model. This is
because any resource modelΓ′ = (Π,Θ) that can
feasibly scheduleW must satisfy 2(Π − Θ) ≤ 1 (due
to sbfΓ′(LCMW ) ≥ dbfW (LCMW ) ≥ LCMW − 1) and
henceΠ = Θ (since Θ,Π ∈ N). In Line 4-5, Θ′ denotes
the minimum supply forΠ = LCMW and κ denotes the
bandwidth of (LCMW ,Θ′). Since κ is not 1, we can find
the initial Πmax in Line 6. The functionMinExec(Π, dbfW ,
LCMW ) (Line 4,8) is the same as in Algorithm 1. The
function MaxResPeriod(κ, dbfW , LCMW ) in Line 6 and
12 computes the upper bound on the resource period as
defined in Theorem 1. Finally, the minimum bandwidth
acquired during algorithm execution is stored inκ and used
to re-evaluateΠmax (Line 9-13).

Computation complexity. Observe that the time complexity
of Algiorithm 2 is building CrTW and MaxResPeriod(κ,
dbfW , LCMW ) timesMinExec(Π, dbfW , LCMW ).

By definition of CrTW , building CrTW is
O(minPi∈W Pi · LCMW ). We know MinExec(Π, dbfW ,
LCMW ) is O(LCMW ) [1].

The rest is the complexity ofMaxResPeriod(κ, dbfW ,
LCMW ). Sincedbf(LCMW ) < LCMW−1, at least the periodic
resource model(LCMW , LCMW −1) can schedule W. Hence,
our worst-case initialκ is LCMW−1

LCMW
. We know y ∈ CrTW

wherey = minpi∈W pi. Therefore,

O(MaxResPeriod(κ, dbfW , LCMW ))

= O(
LCMW−1
LCMW

y − dbfW (y)
LCMW−1
LCMW

(1− LCMW−1
LCMW

)
)

= O(
y − dbfW (y)

( 1
LCMW

)
)

= O((y − dbfW (y)) · LCMW )

= O((y − 1) · LCMW ) since dbfW (y) ≥ 1

= O( min
pi∈W

pi · LCMW )

Hence, the time complexity of Algorithm 2 is
O
(

minPi∈W Pi · LCMW + LCMW × (minPi∈W Pi · LCMW )
)

,
which is equal toO

(

(LCMW )2 ·minPi∈W Pi

)

.

IV. A NEW ALGORITHM FOR COMPUTING THE OPTIMAL

PERIODIC RESOURCE MODEL

In this section, we present a new algorithm for comput-
ing the optimal resource model that is more efficient than
the revised algorithm in the previous section. Observe that
in searching for the optimal resource model for a work-
load W , Algorithm 2 iterates the resource periodΠ from
1 to the period boundΠmax, which is computed using
MaxResPeriod(κ, dbfW , LCMW ) and updated with respect to
the minimum bandwidthκ obtained thus far. Since computing
the resource execution timeΘ for any given periodΠ has
a constant time complexity, the algorithm’s time complexity
is proportional to the number of iterations ofΠ, which is
MaxResPeriod(κ0,dbfW , LCMW ) in the worst case whereκ0=
MinExec(LCMW ,dbfW ,LCMW )/LCMW . Since Θ ≤ Π, the
upper bound onΘ will always be less than or equal to the
upper bound onΠ. Further, computing the resource period
Π for any givenΘ has the same time complexity as that of
computingΘ from Π. As a result, we can reduce the search
space by iteratingΘ instead ofΠ.

Based on the above observation, Algorithm 3 gives a new
procedure for computing the optimal resource model. We
first explain the different steps involved in the algorithm and
then present theoretical results supporting its correctness. Note
that the result for the special case whendbfW (LCMW ) ≥
LCMW−1 is Γ = (1, 1) for the same reason as in Algorithm 2.

In Algorithm 3, the functionMinExec(Π, dbfW , LCMW )
(Line 1) is the same as in Algorithm 1. The variableκ (Line 1)
indicates the bandwidth of (LCMW ,MinExec(LCMW , dbfW ,
LCMW )). The function MaxResExec(κ, dbfW , LCMW )
(Line 2 and 8) computes the upper bound ofΘ based on
Theorem 3. The initial value ofΘmax is in Line 2. The
function MaxPeriod(Θ, dbfW , LCMW ) (Line 4) computes –
for any givenΘ – an upper bound on the resource periodΠ of
any resource model(Π,Θ) that can feasibly scheduleW . The
functionsMaxPeriod(Θ, dbfW , LCMW ) andMaxResExec(κ,
dbfW , LCMW ) are computed as below.



Algorithm 3 A new interface generation algorithm
Input: dbfW , LCMW for a workloadW with

dbfW (LCMW ) < LCMW − 1
Output: The optimal periodic resource modelΓ for W

1: κ = MinExec(LCMW , dbfW , LCMW )/LCMW

2: Θmax = MaxResExec(κ, dbfW , LCMW )
3: for Θ = 1 to Θmax do
4: Π = MaxPeriod(Θ, dbfW , LCMW )
5: if Θ

Π < κ then
6: κ = Θ

Π
7: Γ = (Π,Θ)
8: Θmax = min(Θmax,MaxResExec(κ, dbfW , LCMW ))
9: end if

10: end for

Computation of MaxPeriod(Θ, dbfW , LCMW ). Theorem 2
gives the upper bound on the periodΠ of any resource model
Γ = (Π,Θ) that can feasibly scheduleW .

Theorem 2:Given a workloadW = {T1, T2, · · · , Tn}
where Ti = (pi, ei) for all 1 ≤ i ≤ n. For any givenΘ,
the resource modelΓ = (Π,Θ) can feasibly scheduleW iff

Π ≤ min
0≤t≤LCMW

IntPeriod(Θ, t)
def
= MaxPeriod(Θ, dbfW , LCMW )

where: IntPeriod(Θ, t)
def
=

{

⌊

t+Θ
m−1

⌋

, if sbfΓ(t) ≥ dbfW (t)
⌊

t+Θ
m

⌋

, otherwise

with m =
⌈

dbfW (t)+Θ
Θ

⌉

.
Before presenting the proof of Theorem 2, we state some

notations. For any givenΘ and any given t such that
1 ≤ t ≤ LCMW , Period(Θ, t) denotes a period value such
that the resource modelRΘ,t = (Period(Θ, t), Θ) satisfies
sbfRΘ,t

(t) = dbfW (t). Then, the following corollary holds.
Corollary 1: For all Θ ≥ 0, and allt s.t. 1 ≤ t ≤ LCMW ,

⌊

Period(Θ, t)
⌋

= IntPeriod(Θ, t).

Proof: For any givenΘ and any givent such that1 ≤
t ≤ LCMW , We can computePeriod(Θ, t) by the definition.
Let d = dbfW (t).

sbf(Period(Θ,t),Θ)(t) = d (11)

⇔ ⌊
t− (Period(Θ, t)−Θ)

Period(Θ, t)
⌋Θ+ rem(t) = d

⇔ ⌊
t+Θ

Period(Θ, t)
⌋ =

d− rem(t) + Θ

Θ

⇔
t+Θ

Period(Θ, t)
=

⌈d− rem(t) + Θ

Θ

⌉

⇔ Period(Θ, t) =
t+Θ

w
where w =

⌈d− rem(t) + Θ

Θ

⌉

Let IntPeriod(Θ, t) =
⌊

Period(Θ, t)
⌋

. Then, we have
sbf(IntPeriod(Θ,t),Θ)(t) ≥ sbf(Period(Θ,t),Θ)(t) = dbfW (t)
which implies

sbf(IntPeriod(Θ,t),Θ)(t) ≥ dbfW (t) (12)

IntPeriod(Θ, t) = ⌊ t+Θ
w

⌋ wherew =
⌈

d−rem(t)+Θ
Θ

⌉

Let

m =
⌈

d+Θ
Θ

⌉

. Then, w = m or w = m − 1 since 0 ≤
rem(t) < Θ. Hence, IntPeriod(Θ, t) = ⌊ t+Θ

m−1⌋ or ⌊ t+Θ
m

⌋.
Since we would like to compute maximum period to schedule
W in Theorem 2, largeIntPeriod(Θ, t) is better.

i) Suppose thatIntPeriod(Θ, t) = ⌊ t+Θ
m−1⌋ first. We should

check whether assumption is right since we don’t know
rem(t) yet. Therefore, Eqaution 12 should hold. LetΠ′ =
⌊ t+Θ
m−1⌋. If sbf(Π′,Θ)(t) ≥ dbfW (t), assumption is right.

Therefore,
⌊

Period(Θ, t)
⌋

= IntPeriod(Θ, t) = ⌊ t+Θ
m−1⌋ where

m =
⌈

dbfW (t)+Θ
Θ

⌉

if sbf(Π′,Θ)(t) ≥ dbfW (t).
ii) Otherwise, assume thatIntPeriod(Θ, t) = ⌊ t+Θ

m
⌋. Agian,

we should check whether assumption is right. Therefore,
Eqaution 12 should hold. Since⌊ t+Θ

m
⌋ ≤ ⌊ t+Θ

w
⌋ where

w =
⌈

d−rem(t)+Θ
Θ

⌉

andm =
⌈

d+Θ
Θ

⌉

, we know

sbf(⌊ t+Θ
m

⌋,Θ)(t) ≥ sbf(⌊ t+Θ
w

⌋,Θ)(t)

⇔ sbf(IntPeriod(Θ,t),Θ)(t) ≥ sbf(Period(Θ,t),Θ)(t)

⇔ sbf(IntPeriod(Θ,t),Θ)(t) ≥ dbfW (t)

which implies Equation 12 holds. Therefore,
⌊

Period(Θ, t)
⌋

=

IntPeriod(Θ, t) = ⌊ t+Θ
m

⌋ where m =
⌈

dbfW (t)+Θ
Θ

⌉

if
sbf(Π′,Θ)(t) < dbfW (t).

Proof of Theorem 2: (⇒) Recall the SBF ofΓ defined
in Equation 2. One can easily verify that for allΠ1,Π2,

Π1 ≤ Π2 ⇔ sbf(Π1,Θ)(t) ≥ sbf(Π2,Θ)(t) ∀t ≥ 0. (13)

SupposeΓ = (Π,Θ) can feasibly scheduleW , i.e.,

∀ 0 ≤ t ≤ LCMW : sbfΓ(t) ≥ dbfW (t).

By definition, dbfW (t) = sbfRΘ,t
(t) where RΘ,t =

(Period(Θ, t), Θ) for all 0 ≤ t ≤ LCMW . Hence,

∀ 0 ≤ t ≤ LCMW : sbfΓ(t) ≥ sbfRΘ,t
(t). (14)

SinceΓ andRΘ,t have the same execution timeΘ, and due
to Equation 13, Equation 14 is equivalent to

∀ 0 ≤ t ≤ LCMW : Π ≤ Period(Θ, t).

Since Π ∈ N, Π ≤ Period(Θ, t) is equivalent toΠ ≤
⌊

Period(Θ, t)
⌋

= IntPeriod(Θ, t) due to Corollary 1. Hence,

Π ≤ min
0≤t≤LCMW

IntPeriod(Θ,W, t)

(⇐) SupposeΠ ≤ min0≤t≤LCMW
IntPeriod(Θ, t). Then,

Π ≤ IntPeriod(Θ, t) ≤ Period(Θ, t), ∀ 0 ≤ t ≤ LCMW .

DenoteΠt = Period(Θ, t). Apply Equation 13, we have

∀ 0 ≤ t ≤ LCMW , sbf(Π,Θ)(t) ≥ sbf(Πt,Θ)(t).

Sincesbf(Πt,Θ) = dbfW (t) by the definition ofΠt, we imply
sbf(Π,Θ)(t) ≥ dbfW (t) for all 0 ≤ t ≤ LCMW . In other
words,Γ = (Π,Θ) can feasibly scheduleW .

Computation of MaxResExec(κ, dbfW , LCMW ). For any
given current minimum bandwidthκ at some intermediate



execution step of Algorithm 3, we can compute the upper
boundMaxResExec(κ, dbfW , LCMW ) on the valueΘ of the
optimal resource modelΓopt = (Πopt,Θopt) in a similar
fashion as done in Section III-A. Theorem 3 formally defines
this bound.

Theorem 3:Given a workloadW = {T1, T2, · · · , Tn} that
is scheduled under EDF, withTi = (pi, ei) for all 1 ≤ i ≤ n.
SupposeΓc = (Πc,Θc) is the current periodic resource model
obtained at some intermediate execution step of Algorithm 3.
Then, the optimal periodic resource modelΓopt = (Πopt,Θopt)
for W satisfiesΘc ≤ Θopt ≤ MaxResExec(κ, dbfW , LCMW )
with κ = Θc

Πc
, and

MaxResExec(κ, dbfW , LCMW )
def
= min

t∈CrTW

κt− dbfW (t)

1− κ
.

Before presenting proof, we show basic idea behind finding
the upper bound of resource execution time of the optimal
periodic resource model.

The upper bound on the resource execution time of the op-
timal periodic resource model for a given workloadW can be
derived based on the DBF of the workload and its relationship
with the USBFs of the resource models that can potentially
scheduleW . Intuitively, let M be the set of resource models
that can potentially scheduleW (i.e., they satisfy the USBF-
schedulability condition). SupposeΓopt = (Πopt,Θopt) is the
bandwidth-optimal resource model forW . Then,

bwΓopt
≥ Bmin

def
= min

{

bwΓ | Γ ∈ M
}

To derive the bound onΘopt, we will find all the possible
resource models inM that have the minimum bandwidth
Bmin. Towards this, we vary the resource execution timeΘ and
compute for eachΘ a (unique) resource modelΓΘ = (ΠΘ,Θ)
belonging toM that has the minimum bandwidth among all
the resource models inM with the same resource execution
time Θ. Then,Bmin can be computed by

Bmin = min
{

bwΓΘ
| Θ ∈ N

}

.

We know that for allΘ, the USBF ofΓΘ intersectsdbfW
at critical time point. Further,ΓΘ has the largest bandwidth
among all the resource modelsΓΘ,t with periodΘ that have
their USBF intersectingdbfW at critical time pointst. In other
words,

bwΓΘ
= max

t∈CrTW
ΓΘ,t=(ΠΘ,t,Θ)

{bwΓΘ,t
| usbfΓΘ,t

(t) = dbfW (t)},

whereCrTW is the set of all critical time points ofW . Further,
for given anyΘ and anyt ∈ CrTW , we can compute the
bandwidth ofΓΘ,t directly fromdbfW (t), Θ andt. From these
values, we can deriveBmin, which in turn allow us to bound
the resource periodΘopt of the bandwidth-optimal resource
model forW . Below we present the details.

For any givenΘ and any givent ∈ CrTW . Let ΓΘ,t be
the resource model with execution timeΘ such that its USBF
intersectsdbfW at time pointt. Then,ΓΘ,t is unique and its
bandwidth can be determined using Lemma 6.

Lemma 6:Given anyΘ ∈ N and any t ∈ CrTW . Let
ΓΘ,t = (Π,Θ) be the periodic resource model such that
usbfΓΘ,t

(t) = dbfW (t). Then, Π = Period(Θ, t, dt) and
bwΓΘ,t

= BW(Θ, t, dt) where

Period(Θ, t, dt)
def
=

Θ(t+Θ)

dt +Θ

and

BW(Θ, t, dt)
def
=

dt +Θ

t+Θ

wheredt = dbfW (t).
Proof: We have:

usbfΓΠ,t
(t) = dbfW (t) = dt

⇔
Θ

Π
(t− (Π−Θ)) = dt

⇔ Θ2 +Θ(t−Π)−Πdt = 0

SinceΘ ≥ 0, the above is equivalent to

Π =
Θ(t+Θ)

dt +Θ
.

In other words,Π = Period(Θ, t, dt). As a result, the band-
width of ΓΘ,t is bwΓΘ,t

= Θ
Π = BW(Θ, t, dt). Hence the

lemma.

Lemma 7:For any givent ∈ CrTW , the bandwidth function
BW(Θ, t, dt) defined in Lemma 6 is increasing on the domain
of Θ.

Proof: for ∀Θ1,Θ2 s.t. Θ1 < Θ2, BW(Θ1, t, dt) <
BW(Θ1, t, dt).

dt +Θ1

t+Θ1
<

dt +Θ2

t+Θ2

⇔ (dt +Θ1)(t+Θ2) < (dt +Θ2)(t+Θ1)

⇔ Θ1t+Θ2dt < Θ2t+Θ1dt

⇔ Θ1(t− dt) < Θ2(t− dt)

⇔ Θ1 < Θ2 since (t− dt) ≥ 0

which is exactly assumption.
Proof of Theorem 3:Since Algorithm algo:new finds the

optimal resource period in an increasing manner,Θopt ≥ Θc.
Further, sinceΓopt is bandwidth-optimal,

bwΓopt
≤ bwΓc

= κ. (15)

Next, for any givent ∈ CrTW , let ΓΘopt,t = (Πt,Θopt)
whereΠt = Period(Θopt, t, dt) wheredt = dbfW (t). That is,
the USBF ofΓΘopt,t(t) intersectsdbfW at time pointt. Let
Γ∗
opt = (Π∗

opt,Θopt) be the resource model with the minimum
bandwidth among all resource models with periodΘopt that
can potentially scheduleW . Then, its bandwidth must be
greater or equal to that ofΓΘopt,t for all t ∈ CrTW (otherwise,
Γ∗
opt does not satisfy the USBF-schedulability condition). In

other words, for allt ∈ CrTW ,

bwΓ∗
opt

≥ BW(Θopt, t, dt) (16)



On the other hand, sinceΓopt can feasibly scheduleW , its
bandwidth must be greater or equal to that ofΓ∗

opt. That is,

bwΓopt
≥ bwΓ∗

opt
(17)

Combine Equations 15, 16 and 17, we obtain: For allt ∈
CrTW ,

BW(Θopt, t, dt)
dt +Θopt

t+Θopt

≤ κ

⇔ dt +Θopt ≤ κ(t+Θopt)

⇔ Θopt ≤
κt− dt
1− κ

Then, we have

Θopt ≤
κt− dbfW (t)

1− κ
, ∀ t ∈ CrTW (18)

which can be rewritten asΘopt ≤ mint∈CrTW

κt−dbfW (t)
1−κ

or
Θopt ≤ MaxResExec(κ,W ).

Fig. 4. The upper bound on the resource execution units in Example 4.

Example 4:Given a workloadW with CrTW = {10}
and dbfW (10) = 2. Suppose thatΓc = (3, 1) is the
current minimum-bandwidth periodic resource model
that can feasibly scheduleW given by Algorithm 3.
In this case,κ = 1

3 . The upper bound on the resource
execution units is computed using Theorem 3 to be
Θopt ≤ MaxResExec( 13 , dbfW , LCMW ) =

1
3 10−2

1− 1
3

= 2. As
illustrated in Figure 4, the optimal resource model forW is
Γopt = (3, 1), which satisfies Theorem 3.

Computation complexity compared to Algorithm 2.
Observe that the time complexity of Algiorithm 3 is
building CrTW and MaxResExec(κ, dbfW , LCMW ) times
MaxPeriod(Θ, dbfW , LCMW Note thatMaxPeriod(Θ, dbfW ,
LCMW ) is O(LCMW ), which is identical to the complexity
of MinExec(Π, dbfW , LCMW ).

Only difference compared to Algorithm 2 isMaxResExec(κ,
dbfW , LCMW ) instead ofMaxResPeriod(κ, dbfW , LCMW ).
From Theorem 3 and 1,MaxResExec(κ, dbfW , LCMW ) =
κMaxResPeriod(κ, dbfW , LCMW ). Sinceκ ≤ LCMW−1

LCMW
, one

can hence verify that Algorithm 3 is at leastLCMW

LCMW−1 times
faster than Algorithm 2.

V. DUAL PERIODIC RESOURCEMODEL

A. Overhead of periodic resource interface with integer values

When assuming rational parameter values for resource
interfaces, the periodic resource interface with period of1
and execution time equal to the utilization of the workload
always has the minimum bandwidth among that of all resource
interfaces [3]. However, this optimality of periodic resource
model is no longer achievable when it is restricted to have
only integer parameters. As an example, consider a workload
W composed of only one taskT = (5, 1). The ideal minimum
bandwidth resource interface (i.e., with rational parameter
values) given by Algorithm 1) is(1, 0.2). Hence, the minimum
bandwidth ofW is 0.2. On the other hand, the minimum
bandwidth resource interface with integer parameter values for
W (given by Algorithm 2) is(3, 1), which has a bandwidth of
1
3 . Thus, the minimum bandwidth periodic resource interface
with integer parameter values incurs at least 66% overheads
compared to the ideal one with rational parameter values.
By the same reason, the new algorithm (Algorithm 3) also
experiences similar bandwidth overhead.

The above overhead introduced by the integer constraints
has prompted a need for new resource interfaces with integer
parameters and their associated interface computation tech-
niques that can achieve better resource utilization than the
periodic resource interface do. In the coming sections, we
present such an interface and its computation. Here, we discuss
the computation for leaf-components only; the computation
for non-leaf components can be established using a similar
technique as in the case of periodic resource interface [1].

B. Dual periodic resource model (DPRM)

A dual periodic resource model (DPRM) interface is defined
by Ω = (Γ1,Γ2) where Γ1 and Γ2 are periodic resource
models. Semantically, each DPRM offers the same amount
of resource as the total resource units given by the two
resource modelsΓ1 andΓ2. Thus, its bandwidth is given by
bwΩ = bwΓ1

+bwΓ2
. Its SBF and schedulability condition are

given by Lemma 8 and 9, respectively.
Lemma 8:The SBF of a DPRMΩ = (Γ1,Γ2) whereΓ1 =

(Π1,Θ1) andΓ2 = (Π2,Θ2) is given by:

sbfΩ(t) = sbfΓ1
(t) + sbfΓ2

(t), ∀t ≥ 0. (19)

Proof: By SBF definition, sbfΩ(t) gives the minimum
number of execution (resource) units that are provided byΩ in
any time interval of lengtht for all t ≥ 0 (see Section II). Since
the minimum number of execution units provided byΓ1 and
by Γ2 are sbfΓ1

(t) and sbfΓ2
(t), respectively, the minimum

number of execution units provided byΩ in any interval of
length t ≥ 0 is sbfΓ1

(t) + sbfΓ2
(t). In other words, for all

t ≥ 0, sbfΩ = sbfΓ1
(t) + sbfΓ2

(t).
Lemma 9:Given a componentC = (W,Ω, EDF ) where

W = {T1, T2, . . . , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and



Ω = (Γ1,Γ2) is a DPRM interface. C is schedulable underΩ
iff

∀t s.t. 0 ≤ t ≤ LCMW , dbfW (t) ≤ sbfΩ(t). (20)

Proof: Immediate from Lemma 1 and Lemma 8.

DPRM interface computation. Given a component with
workload W that is scheduled under EDF, we would like
to compute the optimal DPRM interfaceΩ = (Γ1,Γ2) for
W (i.e., Ω has the minimum bandwidth among that of all
DPRM interfaceΩ′ = (Γ′

1,Γ
′
2) that can feasibly schedule

W ). The basic idea is to iterate the periodΠ1 and execution
time Θ1 of the first elementΓ1 as well as the periodic
Π2 of the second elementΓ2 of the DPRM interfaceΩ =
(Γ1,Γ2). For each runningΠ1, Θ1 andΠ2, we compute the
correspondingΘ2 such thatΩ =

(

(Π1,Θ1), (Π2,Θ2)
)

has
the minimum bandwidth among that of all DPRM interface
Ω′ =

(

(Π1,Θ1), (Π2,Θ
′
2)
)

that can feasibly scheduleW .
We then keep track of the interfaceΩ with the minimum
bandwidth during our iteration.

Algorithm 4 shows the procedure for computing the
minimum-bandwidth DPRM interfaceΩ. The functions
MinExec(Π, dbfW , LCMW ) and MaxResPeriod(κ, dbfW )
(Line 1 and 2, respectively) are the same as in Algorithm 3.
The function MaxResExecDPRM(Π, dbfW , LCMW ) (Line
4) gives an upper bound on the value ofΘ1. The function
getResModel(dbfW , LCMW , Γ1) (Line 7) gives the optimal
periodic resource model for the remaining resource demand of
W afterW has been served by the resource modelΓ1. These
two new functions are computed as below.

Algorithm 4 DPRM interface computation
Input: dbfW , LCMW for a workloadW with

dbfW (LCMW ) < LCMW − 1
Output: The optimal DPRMΩ = (Γ1,Γ2) for W

1: κ = MinExec(LCMW , dbfW , LCMW )/LCMW

2: Πmax
1 = MaxResPeriod(κ, dbfW , LCMW )

3: for Π1 = 1 to Πmax
1 do

4: Θmax
1 = MaxResExecDPRM(Π, dbfW , LCMW )

5: for Θ1 = 1 to Θmax
1 do

6: Γ1 = (Π1,Θ1)
7: Γ2 = getResModel(dbfW , LCMW ,Γ1)
8: if bwΓ1

+ bwΓ2 < κ then
9: κ = bwΓ1

+ bwΓ2

10: Ω = (Γ1,Γ2)
11: Πmax

1 =min(Πmax
1 ,MaxResPeriod(κ,dbfW ,LCMW ))

12: end if
13: end for
14: end for

Computation of MaxResExecDPRM(Π, dbfW , LCMW ).
Given anyΠ1,Θ1 and Π2, the execution timeΘ2 of Ω is
determined such that the resource supplied by the periodic
resource model(Π2,Θ2) must be at least equal to the
remaining demand of the workloadW after W has been
serviced by(Π1,Θ1). Towards this, we define theremaining
demand bound function(RDBF) as below.

Definition 3: Given a workloadW = {T1, T2, ..., Tn} with
1 ≤ i ≤ n. The RDBF ofW after being serviced by a resource
model R, denoted byrdbfW−R(t), specifies the maximum
number of remaining execution units required byW in any
time interval of lengtht afterW has been serviced byW .

One can easily verify that

∀ t ≥ 0 : rdbfW−R(t) = max
(

0, dbfW (t)− sbfR(t)
)

. (21)

Lemma 10 gives the schedulability condition forW underΩ.
Lemma 10:Given a componentC = (W,Ω, EDF ) where

W = {T1, T2, . . . , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Ω = (Γ1,Γ2) is a DPRM. Then,C is schedulable underΩ (Ω
can feasibly scheduleW ) iff

∀t s.t.0 < t ≤ LCMW , rdbfW−Γ1
(t) ≤ sbfΓ2

(t). (22)

Proof: It follows directly from Lemma 9 and Equation 21.

We define the LSBF (lower supply bound function) of a
periodic resource modelΓ to be the linear function with the
smallest slope that lower boundssbfΓ, given by [1]:

∀ t ≥ 0 : lsbfΓ(t) = max
(Θ

Π

(

t− 2(Π−Θ)
)

, 0
)

. (23)

The following lemma is derived from the schedulability con-
dition of Γ (see Lemma 1) and the definition oflsbfΓ.

Lemma 11:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n, and
Γ = (Π,Θ). Then, C is schedulable if

∀ t s.t. 0 ≤ t ≤ LCMW , lsbfΓ(t) ≥ dbfW (t). (24)

One can verify that ifΓ satisfies Equation 24 then it satisfies
the schedulability condition forW (see Lemma 1) ; however,
the reverse does not hold. Thus Equation 24 gives a sufficient
condition for the schedulability ofW under the resource model
Γ. By abuse of notation, we refer to Equation 24 as theLSBF-
schedulability conditionfor W and we say that a modelΓ
satisfies Equation 24 iff it cansufficientlyscheduleW .

Lemma 12:Given a componentC = (W,Γ, EDF ) where
W = {T1, T2, · · · , Tn}, Ti = (pi, ei) for all 1 ≤ i ≤ n,
and Γ = (Π,Θ). SupposeΓ satisfies LSBF-schedulability
condition forW . Then, for allt ≥ 0, if lsbfΓ(t) = dbfW (t)
then t ∈ CrTW .

Proof: We will prove the lemma by contradiction. Sup-
pose there existst0 /∈ CrTW such thatlsbfΓ(t0) = dbfW (t0).
Let s = 2(Π−Θ). Then, by Definition 2, there is a time point
t′ ∈ CrTW such that

dbfW (t′)

t′ − s
>

dbfW (t0)

t0 − s
(25)

On the other hand, we have

lsbfΓ(t
′) ≥ dbfW (t′) ⇒

Θ

Π
(t′ − 2(Π−Θ)) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
(t′ − s) ≥ dbfW (t′)

⇒
dbfW (t0)

t0 − s
≥

dbfW (t′)

t′ − s
(26)



which contradicts Equation 25. Hence, the lemma.
The maximum value ofΘ1 in the optimal DPRM interface

Ω = (Γ1,Γ2) with Γ1 = (Π1,Θ1) can now be computed using
functionMaxResExecDPRM(Π, dbfW , LCMW ) defined in the
following theorem.

Theorem 4:Given a workloadW = {T1, T2, · · · , Tn},
with Ti = (pi, ei) for all 1 ≤ i ≤ n. For any
given Π1, the minimum bandwidth DPRM interfaceΩ =
(

(Π1,Θ1), (Π2,Θ2)
)

for W satisfiesΘ1 ≤ Θmax
1 where

Θmax
1 = max

t∈CrTW

(2Π1 − t) +

√

(2Π1 − t)
2
+ 8Π1dt

4
.

Before presenting proof, we present basic idea of the
theorem and make a helpful lemma first.

To compute optimal DPRMΩ = (Γ1,Γ2) for a given
workloadW , suppose that periodic resource modelΓ1 should
be decided first. For any givenΠ1 in DPRM Ω = (Γ1,Γ2) =
(

(Π1,Θ1), (Π2,Θ2)
)

, the upper bound on the resource ex-
ecution timeΘ1 of the minimum bandwidth DPRM for a
given workloadW can be derived from the upper bound
on resource execution timeΘ∗

Π of the minimum bandwidth
periodic resource modelΓ∗

Π = (Π,Θ∗
Π) for W whenΠ = Π1.

If Θ1 > Θ∗
Π1

, Then
(

(Π1,Θ1), (Π2,Θ2)
)

cannot have the
minimum bandwidth since its bandwidth is greater than that
of

(

(Π1,Θ
∗
Π1

), (0, 0)
)

. Therfore,

Θ1 ≤ Θ∗
Π1

(27)

For any givenΠ, the upper bound on the resource execution
time Θ of the minimum bandwidth periodic resource model
Γ = (Π,Θ) for a given workloadW can be derived from
the DBF of the workload and its relationship with the LSBFs
of the resource models that can sufficiently scheduleW .
Intuitively, let M be the set of resource models that can suffi-
ciently scheduleW (i.e., they satisfy the LSBF-schedulability
condition). for any givenΠ, SupposeΓ∗

Π = (Π,Θ∗
Π) is the

minimum bandwidth resource model forW . Then,

Θ∗
Π ≤ Θmax

Π
def
= min

{

ΘΠ | (Π,ΘΠ) ∈ M
}

(28)

To derive the bound onΘ∗
Π, we will find all the possible re-

source models inM that has the minimum bandwidth periodic
resource modelΓmax

Π = (Π,Θmax
Π ). We will show that for a

givenΠ the LSBF ofΓmax
Π intersectsdbfW at exactlycritical

time point. Further,Θmax
Π is the largest resource execution

time among all the resource modelsΓΠ,t = (Π,ΘΠ,t) with
period Π that have their LSBF intersectingdbfW at critical
time pointst. In other words,

Θmax
Π = max

t∈CrTW

{ΘΠ,t | lsbfΓΠ,t
(t) = dbfW (t)}, (29)

whereCrTW is the set of all critical time points ofW .
For any givenΠ and any givent ∈ CrTW . Let ΓΠ,t be the

resource model with periodΠ such that its LSBF intersects
dbfW at time pointt. Then,ΓΠ,t is unique and its execution
time can be determined using Lemma 13.

Lemma 13:Given anyΠ ∈ N and anyt ∈ CrTW . Let
ΓΠ,t = (Π,ΘΠ,t) be the periodic resource model such that

lsbfΓΠ,t
(t) = dbfW (t). Then, ΘΠ,t = LimitExec(Π, t, dt)

where

LimitExec(Π, t, dt)
def
=

(2Π− t) +

√

(2Π− t)
2
+ 8Πdt

4

wheredt = dbfW (t).
Proof: We have:

lsbfΓΠ,t
(t) = dbfW (t) = dt

⇔
ΘΠ,t

Π
(t− 2(Π−ΘΠ,t)) = dt

⇔ 2Θ2
Π,t +ΘΠ,t(t− 2Π)−Πdt = 0

SinceΘ ≥ 0, the above is equivalent to

ΘΠ,t =
(2Π− t) +

√

(2Π− t)
2
+ 8Πdt

4
.

In other words,ΘΠ,t = LimitExec(Π, t, dt). Hence the lemma.

Proof of Theorem 4:For any givenΠ1, there is the min-
imum bandwidth periodic resource modelΓ∗

Π1
= (Π1,Θ

∗
Π1

)
for W . By Eqaution 27 and 28,Θ1 ≤ Θ∗

Π1
≤ Θmax

Π1
.

Next, for any givent ∈ CrTW , let ΓΠ1,t = (Π1,ΘΠ1,t)
where ΘΠ1,t = LimitExec(Π1, t, dt) where dt = dbfW (t).
That is, the LSBF ofΓΠ1,t(t) intersectsdbfW at time pointt.
Then,Θmin

Π1
must be greater or equal to that ofΘΠ1,t for all

t ∈ CrTW by Eqaution 29(otherwise,Γmin
Π1

does not satisfy
the LSBF-schedulability condition). In other words, for all t ∈
CrTW ,

Θmax
Π1

= max
t∈CrTW

ΘΠ1,t

⇔ Θmax
Π1

= max
t∈CrTW

(2Π1 − t) +

√

(2Π1 − t)
2
+ 8Π1dt

4
.

In other words,Θmax
1 = Θmax

Π1
.

Computation of getResModel(dbfW , LCMW ,Γ1). The func-
tion getResModel(dbfW , LCMW ,Γ1) computes a period re-
source modelΓ2 such thatΩ = (Γ1,Γ2) is the minimum
bandwidth DPRM interface that can scheduleW . Let a work-
loadW ′ be the remaining workload ofW after being serviced
by the resource modelΓ1. This Γ2 can be obtained as the
output of Algorithm 3 on the inputsrdbfW−Γ1

(t) andLCMW

since∀t, dbfW ′(t) = rdbfW−Γ1
(t) andLCMW is sufficient

for LCMW ′ by Theorem 5.
Theorem 5:For any given workloadW , any givenΠ, and

any given periodic resource modelΓ1, if Γ = (Π,Θ) s.t. 0 ≤
t ≤ LCMW , sbfΓ(t) ≥ rdbfW−Γ1

(t), then∀t ≥ 0, sbfΓ(t) ≥
rdbfW−Γ1

(t), which implies schedulability condition for the
remaining workload ofW after being serviced by the resource
modelΓ1.

Before presenting proof, we define helpful lemmas.
Lemma 14:For any periodic resource modelΓ, any i ∈ N

, and anyt ∈ N s.t. t ≥ i,

sbfΓ(t) ≥ sbfΓ(t− i) + sbfΓ(i) (30)



Proof: Let t = i+ x for somex ≥ 0.
We would like to prove

sbfΓ(t) ≥ sbfΓ(t− i) + sbfΓ(i)

⇔ sbfΓ(t)− sbfΓ(i) ≥ sbfΓ(x)

which is true since stravtion time forsbfΓ(x) is 2(Π−Θ) and
stravation time for

(

sbfΓ(t) − sbfΓ(i)
)

is at most 2(Π − Θ)
while both function shapes is same after strvation time.

Corollary 2: For any worload W, any periodic resource
model Γ, any i ∈ N , and anyt ∈ N s.t. i · LCMW ≤ t ≤
(i+ 1) · LCMW ,

sbfΓ(t) ≥ sbfΓ(t− i · LCMW ) + sbfΓ(i · LCMW ) (31)

Proof: Immediate from Lemma 14.
Corollary 3: For any worload W, anyΓ, and anyi ∈ N,

sbfΓ(i · LCMW ) ≥ i · sbfΓ(LCMW ) (32)

Proof: By Corollary 2 ,

sbfΓ(i · LCMW )

≥ sbfΓ((i− 1)LCMW ) + sbfΓ(LCMW )

≥ sbfΓ((i− 2)LCMW ) + 2 · sbfΓ(LCMW )

· · ·

≥ sbfΓ(LCMW ) + (i− 1) · sbfΓ(LCMW )

≥ i · sbfΓ(LCMW )

Proof of Theorem 5: We will prove the theorem by
contradiction. letL = LCMW . Suppose∃t0 s.t. sbfΓ(t0) <
rdbfW−Γ1

(t0). Then, t0 > L since 0 ≤ t ≤ L, sbfΓ(t) ≥
rdbfW−Γ1

(t). Let t0 = a · L + x for somea ∈ N s.t. a ≥ 1
and somex ∈ N s.t. 0 ≤ x ≤ L.

Since∀t > LCMW , dbfW (t) = dbfW (t− L) + dbfW (L),

dbfW (t0) = dbfW (x) + dbfW (a · L) (33)

Since assumption hold whent = L,

sbfΓ(L) ≥ rdbfW−Γ1
(L)

⇔ sbfΓ(L) ≥ dbfW (L)− sbfΓ1
(L)

⇔ sbfΓ1
(L) + sbfΓ(L) ≥ dbfW (L)

⇔ a · sbfΓ1
(L) + a · sbfΓ(L) ≥ a · dbfW (L)

⇔ a · sbfΓ1
(L) + a · sbfΓ(L) ≥ dbfW (a · L)

⇔ sbfΓ1
(a · L) + sbfΓ(a · L) ≥ dbfW (a · L) (34)

by Corollary 3.
By Equation 33 and 34,

dbfW (t0) ≤ dbfW (x) + sbfΓ1
(a · L) + sbfΓ(a · L) (35)

With ∃t0 s.t. sbfΓ(t0) < rdbfW−Γ1
(t0), Corollary 2, and

Equation 35,

sbfΓ(t0) < dbfW (t0)− sbfΓ1
(t0)

⇔ sbfΓ(t0) < dbfW (t)− sbfΓ1
(t0 − a · L)− sbfΓ1

(a · L)

⇔ sbfΓ(t0 − a · L) + sbfΓ(a · L) <

dbfW (t0)− sbfΓ1
(t0 − a · L)− sbfΓ1

(a · L)

⇔ sbfΓ(x) + sbfΓ(a · L) <

dbfW (x) + sbfΓ1
(a · L) + sbfΓ(a · L)

− sbfΓ1
(x)− sbfΓ1

(a · L)

⇔ sbfΓ(x) < dbfW (x)− sbfΓ1
(x)

⇔ sbfΓ(x) < rdbfW−Γ1
(x)

which contradicts assumption whent = x s.t. 0 ≤ x ≤ L.

C. Composition of DPRM interfaces

Consider a composite componentCs consisting of multiple
child components scheduled under EDF scheduling policy. The
workload and DPRM interface ofCs can be computed from
the DPRM interfaces of its child components using the method
outlined in Definition 4. As proven by Theorem 6, our com-
position allows the construction of a hierarchical scheduling
framework that supportscompositional real-time guarantees,
i.e., the real time guarantee of a composite component in the
framework is satisfied if and only if the real-time guarantees
of its child components are satisfied.

Definition 4 (DPRM Interface Composition):Given a
composite componentCs consisting of multiple child
componentsC1, C2, · · · , Cn that are scheduled under EDF.
SupposeΩi = (Γi,1,Γi,2) is the DPRM interface ofCi for all
1 ≤ i ≤ n, whereΓi,j = (Πi,j ,Θi,j) and j ∈ {1, 2}. Then, a
feasible workloadWs and a DPRM interfaceΩs for Cs are
defined by:

• Ws = {T1,1, T1,2, · · · , Tn,1, Tn,2}, where Ti,j =
(pi,j , ei,j), with pi,j = Πi,j and ei,j = Θi,j , is the
periodic task corresponding to the periodic modelΓi,j

of Ωi for all 1 ≤ i ≤ n and j ∈ {1, 2}.
• Ωs is the corresponding DPRM interface ofWs, com-

puted by Algorithm 4.
Theorem 6:Consider a composite component

Cs = (Ws,Ωs, EDF ) composed ofn child components
C1, C2, . . . , Cn that are scheduled under EDF, whereWs and
Ωs are defined by Definition 4. Then,Cs is schedulable if
and only if allC1, C2, · · · , Cn are schedulable.

Proof: (⇒) SupposeCs is schedulable. Then, for all1 ≤
i ≤ n and j ∈ {1, 2}, Ti,j and its corresponding periodic
modelΓi,j are guaranteed to receiveei,j time units everypi,j
time units. In other words,Ci receives fromCs a resource
allocation ofΘi,1 time units everyΠi,1 time units, in addition
to a resource allocation ofΘi,2 time units everyΠi,2 time
units. Thus,Ci is schedulable for all1 ≤ i ≤ n.

(⇐) Suppose allC1, C2, · · · , Cn are schedulable, i.e., the
combined timing requirement ofC1, C2, · · · , Cn are satisfied.
By Definition 4, for all 1 ≤ i ≤ n and j ∈ {1, 2}, eachTi,j

in Ws has the same timing requirement asΓi,j does, where



Ωi = (Γi,1,Γi,2) is the DPRM ofCi. Thus, the combined
timing requirement of allTi,j in Ws are also satisfied. Since
Ωs is a feasible DPRM interface ofWs, it can scheduleWs.
In other words,Cs is schedulable.

Example 5:ConsiderCs consisting of two components,C1

and C2 where Ci = (Wi,Ωi, EDF ). Suppose thatW1 =
{(11, 1), (15, 1), (60, 7)} andW2 = {(16, 1), (19, 2), (50, 6)}.
Algorithm 4 calculates thatΩ1 = ((4, 1), (20, 1)) andΩ2 =
((4, 1), (17, 1)). According to DPRM interface composition in
Definition 4, Ws = {(4, 1), (20, 1), (4, 1), (17, 1)} andΩs is
calculated to((3, 2), (20, 1)) by Algorithm 4. Then, we have
feasible componentCs = (Ws,Ωs, EDF ).

D. Context Switch Overhead

To evaluate context switch overhead, we compare DPRM
interface to periodic resource model with rational number [3]
in terms of the number of preemption. The following lemma
computes the upper bound of the number of preemptions [15].

Lemma 15:Given a workloadW = {T1, T2, · · · , Tn}
whereTi = (pi, ei) for all 1 ≤ i ≤ n. The upper bound of the
number of preemptions under EDF calculates asNPW (t) =
∑n

i=1⌊ t/pi⌋.
Lemma 16 shows that the number of preemptions in optimal

DPRM is smaller than one in optimal periodic resource model
with rational number.

Lemma 16:Consider a composite componentCs composed
of n child componentsC1, C2, . . . , Cn that are scheduled
under EDF. Algorithm in [3] calculates optimal periodic
resource model with rational number for each component.
In interface composition of periodic resource model [1], the
workload for Cs for periodic resource model isWPRM

s =
{T1, T2, · · · , Tn}, where Ti = (1, ei) for all 1 ≤ i ≤ n.
On the other hand, Algorithm 4 computes an optimal DPRM
interface for each component. According to DPRM interface
composition in Definition 4, the workload forCs for DPRM
is WDPRM

s = {T1,1, T1,2, · · · , Tn,1, Tn,2} where Ti,j =
(pi,j , ei,j) for all 1 ≤ i ≤ n and j ∈ {1, 2}. If WPRM

s and
WDPRM

s is scheduled in a dedicated system respectively, then
the upper bound of the number of preemption inWDPRM

s is
smaller than the number of preemption inWPRM

s .
Proof: Since the period of all tasks is 1, the number of

preemption inWPRM
s is n · t for any time intevalt.

The upper bound of number of preemption forW is
NPWDPRM

s
(t) according to Lemma 15. Since scheduling tasks

in WD is repeated everyLCMWDPRM
s

(LCM of the workload
WDPRM

s ) time units and the upper bound of the number of
preemption per time units is largest atLCMWDPRM

s
,in short

LCMW , we would like to prove

NPWDPRM
s

(LCMW ) < n · LCMW

n
∑

i=1

2
∑

j=1

⌊LCMW

pi,j

⌋

< n · LCMW

LCMW

p1,1
+

LCMW

p1,2
+ · · ·+

LCMW

pn,1
+

LCMW

pn,2
< n · LCMW

which is obvious because allpi,j ≥ 2 and at least one
pi,j > 2 and otherwise, utilization ofW > 1 which means
that this hierarchical system is not feasible orW={(2,1),(2,1)}
which is transformed from one component which contradicts
assumption of multiple components.

VI. EXPERIMENTAL RESULTS

A. Simulation Setup

To evaluate our improved algorithms and DPRM interface,
we ran simulations on random component workloads, each
consisting of at least three tasks. The task’s periods were
randomly chosen in the range of 10-100 following the uni-
form distribution. Each task’s execution time was uniformly
distributed random number from 1 to the task’s period. We
constrained the workload utilization to be no more than 0.8.

B. Generating Component Interface

This experiment evaluates the performance of the differ-
ent resource model interfaces for 200 component workloads
generated as above. For each workload, we computed its op-
timal periodic resource model (iPRM) and its optimal DPRM
(iDPRM) with integer parameters using our algorithms. We
additionally computed the optimal periodic resource model
with rational number (rPRM) [3].

Fig. 5. Comparison between Periodic Resource Model and DPRM.

Figure 5 shows the bandwidth of the interfaces of the
first ten component workloads. The X-axis is the workload
identifier sorted by utilization whereas the Y-axis is the optimal
bandwidth of the computed resource models. As shown in
the figure, the iDPRM was always better than or as good as
the iPRM: the iDPRM had smaller bandwidth than the iPRM
did in 77% of the simulated workloads, with a bandwidth
reduction(BW (iPRM)−BW (iDPRM)

BW (iPRM) ) of up to 12.5%. Further,
with respect to the ideal bandwidth given by the rPRM, the
iDPRM incurred only 1.25% bandwidth overhead in average
whereas the iPRM suffered more than 2.56 times as much
(3.22% overhead).

To evaluate the scalability of DPRM interface, we repeated
the above experiment for larger workloads. Our simulation



results showed that as the number of tasks increases, the above
improvement of DPRM interface (over the periodic resource
interface) also increases as Table II.

# of tasks % of iDPRM Maximum iPRM iDPRM
in a with smaller bandwidth overhead overhead (A)/(B)

workload bandwidth reduction (A) (B)
3 77% 12.5% 3.22% 1.25% 2.58
4 81% 15.86% 3.27% 1.15% 2.84
5 86% 9.09% 1.81% 0.46% 3.93

TABLE I
SIMULATION RESULT DEPENDING THE NUMBER OF TASKS IN A

WORKLOAD

This is expected due to the corresponding increase in
complexity of the DBF function of the workload, which can
be more effectively captured by the DPRM interface.

C. Performance of Interface Composition

This experiment evaluates the effectiveness of DPRM in-
terface composition with 4 different scenarios. Experiment
was performed on 200 two-level hierarchical real-time sys-
tems for each scenario. In the first three scenarios, each
system consists of two components, with each containing three
tasks and workload utilization no more than 0.6, 0.7, and
0.8, respectively. In the last scenario, each system consists
of three components, with each containing three tasks and
workload utilization no more than 0.8. For each system, we
first generated the iPRM, rPRM and iDPRM interfaces for
each component as in the above experiment (Section VI-B),
and then computed the interfaces for the root component using
the interface composition technique outlined in Section V-C.
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Fig. 6. Interface composition performance in Scenario 1

Figure 9 shows the bandwidth of the rPRM, iPRM and
iDPRM interfaces of the simulated systems with three com-
ponents and workload utilization less than or equal to 0.8. X-
axis represents the system identification sorted by workload
utilization. As shown in the figure, the iDPRM interface for
the root component has smaller or equal bandwidth compared
to the corresponding iPRM interface, and smaller bandwidth
than the corresponding rPRM interfaces in most cases. It can
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Fig. 7. Interface composition performance in Scenario 2
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Fig. 8. Interface composition performance in Scenario 3
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Fig. 9. Interface composition performance in Scenario 4

also be observed that the bandwidth reduction when using the
iDPRM interfaces is more significant for system with smaller
utilization or larger number of components or both, as further
illustrated in Table II.

We also note that although it is possible to generate
bandwidth-optimal rPRM interfaces for child components,



Scenario 1 2 3 4
Utilization of system workloads 0.6 0.7 0.8 0.8

Number of components 2 2 2 3
BW(iDPRM) < BW(rPRM) 99.5% 89.0% 80% 99.5%
BW(iDPRM) < BW(iPRM) 87.0% 83.0% 77.5% 94.0%
BW(iDPRM) = BW(iPRM) 13.0% 15.5% 16.0% 5.0%
BW(iDPRM) > BW(iPRM) 0.0% 6.5% 4.5% 1.0%
Avg. BW reduction to rPRM 18.8% 11.4% 5.6% 11.6%
Avg. BW reduction to iPRM 22.0% 18.9% 14.9% 13.0%

TABLE II
BANDWIDTH REDUCTION OF IDPRM COMPARED TO RPRM AND I PRM.

rPRM still incurs bandwidth overhead in interface composi-
tion. If the period of parent component interface is close tothe
period of child component interface, parent component inter-
face acquired by interface composition suffers high overheads.
In rPRM, parent and child component interfaces have periods
of 1. As workload utilization decreases, the overhead in rPRM
interface composition increases.

On the other hand, there exist cases when iPRM and iDPRM
cannot find the lower-bandwidth resource model except (1,1).
For example, one interface is generated to (2,1). The interface
is transformed into the task (2,1) in interface composition.
With integer parameter, only interface (1,1) is feasible for the
task, due to the worst-case starvation of resource model. The
example is possible if workload utilization of one component
in the system is larger or equal to511 in this simulation setup.
Since the minimum period of a task in workload is 10, if a task
(5,11) is included in the workloadWC in some component
C. Then, it is possble thatdbfWC

(t) = 5 for t = 11.
There is also possibility that resource model (2,1) is computed
to optimal periodic resource model with Algorithm 1 by
following equation:

sbf(2,1)(t) ≤ dbfWC
(t) if t = 11.

If resource model (2,1) is optimal periodic resource model
for WC , above cases can happen. The utilization of workload
WC is larger or eqaul to5

11 . Based on this observation, if the
workload utilization of some component is larger or eqaul to
5
11 , there is possibility that optimal periodic resource model
is (2,1) or optimal DPRM includes (2,1). Hence, iPRM and
iDPRM resource model for the system cannot find the lower-
bandwidth resource model except (1,1).

For the system with larger number of components, DPRM
interface composition can generate smaller bandwidth inter-
face than other resource models because each component
is transformed into two tasks in interface composition and
the iDPRM interface can be generated effectively for larger
number of tasks.

D. Interface Context Switch Overheads

This experiment evaluates the context switch overheads
incurred by the components in a hierarchical system when
using the iPRM and the iDPRM interfaces. We simulated
the same set of two-level hierarchical systems in Scenario
3 (system with two components and workload utilization no
less than 0.8) in Section VI-C. With the interface for each

component in the system, we constructed the system workload
Ws for each system according to interface composition. Then,
we simulated schedulingWs, which is equivalent to scheduling
components in the system according to interface composition.

Figure 10 shows the number of context switches between
the components within each system observed over a duration
of 10,000 time units for the simulated systems. In the figure,
the X-axis denotes the system identifier sorted by utilization,
whereas the Y-axis denotes the number of context switches
incured by iPRM interface less than iDPRM interface. It can be
observed from the figure that the number of context switches
incurred by the iDPRM interfaces is generally smaller than
that of the iPRM interfaces. Specifically, the iDPRM interfaces
incurred less or equal number of context switches compared
to the iPRM interfaces for 69% of the 200 simulated systems.
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Fig. 10. Difference in the number of context switches of iPRM interfaces
compared to iDPRM interfaces

Since the worst-case context switch overhead between com-
ponents in existing hierarchical scheduling systems is observed
to be less than 0.005 times of the scheduling resolution [11],
we assumed three overhead values in our experiments: 0.01,
0.05 and 0.10 time unit. Figure 14 shows the total bandwidth of
the iPRM and iDPRM interfaces (considering context switch
overheads) of the components within the system for the first
ten systems, given a context switch overhead of 0.1 time unit.
As shown in the figure, and also observed in the remain-
ing simulated systems, the iDPRM interface outperforms the
iPRM in general. In particular, we observed that the iDPRM
interface has a smaller or equal bandwidth compared to the
iPRM interface in 94% of the total workloads (and similarly,
99% and 99.5% assuming an overhead of 0.05 time unit and
0.01 time unit, respectively).

VII. C ONCLUSION

Traditional algorithms for computing the minimum-
bandwidth resource model face two drawbacks: (i) they as-
sume rational parameters for the resource model, which cannot
always be used in practice, and (ii) the resource period is
searched within a range specified by the designer, which
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Fig. 11. Total component interface bandwidth without context switch
overheads.
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Fig. 12. Total component interface bandwidth with context switch overheads
of 0.01 time unit.

0 1 2 3 4 5 6 7 8 9
System ID

0.5

0.6

0.7

0.8

0.9

1.0

1.1

B
a
n

d
w

id
th

iPRM

iDPRM

Fig. 13. Total component interface bandwidth with context switch overheads
of 0.05 time unit.

cannot guarantee optimality. We have presented more efficient
algorithms that tackle these drawbacks by considering integer
parameters and a safe bound on the period. We further
proposed the DPRM interface and an algorithm for computing
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Fig. 14. Total component interface bandwidth with context switch overheads
of 0.1 time unit.

the minimum bandwidth DPRM interface that is more accurate
than the periodic resource interface when restricting the inter-
face to have only integer parameters. Then, we have proposed
a composition technique for DPRM interfaces.

Our simulation results showed that the DPRM achieved a
lower bandwidth than the periodic resource model did in 77%
of the workloads, reducing the overhead compared to the ideal
case by more than half. Including context switch overhead, the
DPRM had a smaller or equal bandwidth to the periodic model
in 99.5% of the hierarchical systems. In interface composition,
the DPRM interfaces were generated with a smaller bandwidth
compared to the periodic model in 94% of the hierarchical
systems.
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