
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

11-2-1993

A Compiler Project for Translating a C Subset to SPARC Assembly A Compiler Project for Translating a C Subset to SPARC Assembly

Language Language

Duncan E. Clarke
University of Pennsylvania

Richard P. Paul
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Duncan E. Clarke and Richard P. Paul, "A Compiler Project for Translating a C Subset to SPARC Assembly
Language", . November 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-89.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/289
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=repository.upenn.edu%2Fcis_reports%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/289
mailto:repository@pobox.upenn.edu

A Compiler Project for Translating a C Subset to SPARC Assembly Language A Compiler Project for Translating a C Subset to SPARC Assembly Language

Abstract Abstract
We present a complete description of a project for a compiler that translates a subset of the C
programming language to SPARC assembler language. The project is suitable for a one semester
undergraduate course on compilers and interpreters based on the text of Aho, Sethi, and Ullman, and has
been used successfully in that context at the University of Pennsylvania. Output that facilitate scoring,
and checkpoints for monitoring the students' progress are integral to the project description.

Disciplines Disciplines
Programming Languages and Compilers

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-89.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/289

https://repository.upenn.edu/cis_reports/289

A Compiler Project for Translating a C Subset to
SPARC

Assembly Language

MS-CIS-93-89
GRASP LAB 364

Duncan E. Clarke
Richard P. Paul

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

November 1993

A Compiler Project for Tra8nslating a C Subset to SPARC
Asssembly Languag-e

Duncan E. Clarke and Richard P. Paul
Department of Coinputer and Iilforinatioil Science

Uiliversity of Pennsylvania
Philadelphia, PA 191 04-6389

Abstract
We present a complet,e descript.iol~ of a project for a cornpiler that translates a subset of the C

programming language to SPARC assembler langua.ge. The project is suitable for a one semester un-
dergraduat,e course on compilers a.nd i~it,erpret,ers based on t,lle text of Aho, Sethi, and Ullrnan, and has
been used successfully in that contest at the Uiiiversit,y of Pennsylvania. Output that facilitate scoring,
and checkpoints for monitoring the students' progress a.re int,egral to the project description.

Preface

Many undergraduate computer science curricula, include a one semester int,roduction to theoretical and
implementation aspects of progran~ming language compilers. Although a textboolr, written assignments,
and in-class exams are an efficient means for impa.rting the theory of compiler design, implementation issues
are best learned by the students f i r~ t~hand , by at,tetript8ing their own appropriately sized implementation.
This document describes one such iinplen~ention project,, a compiler translating a subset of the ANSI C
programming language to SPARC assembly language, used successfully a t the University of Pennsylvania.

The project is intended for a one semester course for advanced undergraduates based on the text by Aho
et al.[ASU86], with the text by Paul[Pau94] as a reference for ma.teria,l covered in past course work. The
implementation as presented is based on the UNIX system Lex and Yacc tools, and the C programming
language, bu t there is 110 reason why programming language curricula with a more functional flavor could
not incorporate the same project using ML-Lex, AIL-\'a,cc, a.nd the hlL programming language.

At the University of Pennsylvania tlist1ribut,ion of t,lle project assignment. followed iiltroductory discussions
of compiler structure, detailed 1ect.ures on lexical a.nalysis, and tutorial material on the Lex lexical analyzer
generator. Students were encouraged to work ill pairs, especially those deficient in either C or SPARC
assembly language, although students who preferred to work individually were a.llowed to d o so. The due
dates given in the project description assume dist.ri11ut.ion of the project during the fourth week of a 15
week semester. Future courses based on this project will probal~ly cover less introductory material so that
distribution can be moved up by a week, adding more slacl; time to the implementation schedule, as students
found the code generation phase more time const~ming tha.11 originally anticipated.

Features of the source language ivere chosen ba.sed on tlleir ability to create an interesting language, with a
spectrum of d a t a types and control coilst ,r~~ct~s broad eno~igh to touch on as nmny interesting implementation
issues as possible, while Beeping the st.nc1ent.s' coding task to a. ma.nageal>le size. Past experience has shown
all of the students capable of implemeating all of the features through t,he sernantic checking phase, with the
completeness of project,^ being determined largely by the nillnher of fea.tures for which code can be generated.
Instructors using this project are encouraged to size the code generation task appropriately, based on the
progress of students u p to that point in the course.

The project structure is based 011 the flow of data through a. typical compiler. A lexical analyzer and
symbol table are implemented first, followed by a parser, various checks on the seinantics of correctly parsed
programs, and finally code generation. The project does not include a phase for generating intermediate
code or optimizing same, due to time limit3ations within the semester. Instead, the target language (SPARC
assembly code) is generated direct.1~ from the int,ernal tree representation of statements. Creation of the
symbol table during the lexical analysis phase is perhaps earlier than solne will tliink logical, but the even
distribution of work across t,he semester required it,, and forwa,rd defi~lit~ion of all variables within the source
language makes it possible.

Grading of projects is fa~ilit~ated by debugging directives in the language, which make it possible to
display internal state and actions as conlpilatio~l progresses. Test strings for grading-checkpoints based on
this feature are given in Appendix A.

The project described was conceived and implemented at the University of Pennsylvania. It is however
heavily influenced by past experience with the A110 et al.[ASU86] text, and borrows some features (most
notably debugging directives) from an Algol/E'ORTRAN compiler project used in courses taught at Michigan
State University in 1985 by M. I<eeney, RII. McCullen, and R. Whitehair. Past success with the project also
owes a great deal to the bright and hard worliing juniors and seniors who have enrolled in CSE 341 on an
elective basis.

Project Description

A Compiler for the CS Programming Language

1 Introduction
In order to give you practical experience with the theory offered by [ASU86] you will be implementing a
compiler for a subset of the ANSI standard version of the C programming language[KR88]. Our C subset,
hereupon referred to as CS, will include many of the control structures of ANSI C, the integer and floating
point data types, the character data type, and at most one level of pointers to each of these types.

Input files for your CS compiler will have two sections. An optional external declarations section will be
followed by the definition of exactly one function. The input will not include # directives (#include, # l ine ,
etc.). After lexical analysis, parsing, semantic processing, and code generation, your compiler will produce
a SPARC1 assembler source file that can be assembled using as.

The implementation of the compiler has been decomposed into four major phases that build upon one an-
other. The structure of the compiler to be constructed is shown in Figure 1. The phases of the implementation
correspond to construction of each of the boxes labeled "Lexical Analyzer," "Parser," "Semantic Checking,"
and "Code Generator." The "Symbol Table" data structure will be constructed during the "Lexical Analy-
sis" phase and augmented during the "Parser," "Semantic Checking," and "Code Generator" phases. The
"Syntax Trees" will be defined during the "Parser" phase, augmented by the "Sernanlic Checking" phase,
and used as input for the "Code Generator" phase.

Figure 1: Project structure

Notably absent from the project are phases for error recovery during the parse and any optimization.
While these are both interesting phases tjo implement, the time that would be required to explain the
underlying theory, and design and code the implementation would make it impossible to finish the entire
project in one semester. If you like, you can add these features on your own once the semester is over, since
they can be added to your existing compiler in a modular fashion.
p~ - ' SPARC is a registered trademark of SPARC International, Inc.

1.1 Goals
The goal of the project is for each team to construct a working compiler capable of generating code for a few
simple programs by the end of the semester. The phrase "working compiler" is key, and you should use it as
a guiding principle throughout your project. If you are concerned that implementing some obscure feature
is likely t o keep you from finishing, then consult the professor or the TA and see if it is reasonable to restrict
your input language to eliminate pathological cases exploiting arcane features.

An assumption that you may adopt from the start is that you will only be asked to process syntactically
"correct" input, meaning there will be no parsing errors.

1.2 A Few Words About Due Dates
There are always questions about all the different shades of meaning that can be inferred from due dates.
So here are the policies that we're all going to abide by, in black and white.

The due dates are to be taken seriously, and you should not expect them to be extended. The pace of
work that is implicit in the due dates is necessary if you're going to finish by the end of the semester, and
extensions of individual assignments will only extend the final completion date beyond the semester's end.
Work is to be turned in at class by the end of the week it is due. Any time after that will be considered late.
Work is not to be left in mailboxes (electronic or otherwise) or slipped under doors, as it tends to get lost
or trodden upon.

1.3 Organization and References
The remainder of this document is divided into four sections describing the specifications, requirements, and
deliverables for each phase of the project. These descriptions and the more detailed discussion in [KR88] are
to be considered your primary reference for all questions regarding syntax and semantics of the language.
The course text[Pau94] will be your primary reference for the SPARC assembler code to be generated by
your code generator. The article by Muchnick et al.[MAG+88] touches on a number of important points
without going into much detail, but provides pointers to other more technical papers.

2 The Lexical Analyzer

You will be using the lex lexical ana,lyzer generator tool (or the G N U version, flex if you prefer) described
in lecture, on-line in the lex(1) man' page, briefly in [I<P84], and in detail in [LMB92]. As you have
already learned, the primary purpose of the lexical analyzer is to divide the input stream of characters into
aggregate groups, called tokens, in order to simplify the operation of the parser. The construction of your
lexical analyzer will also require you to define and construct a symbol table and possibly several auxiliary
literal tables to record the values of identifiers and literals that are passed to the parser.

2.1 The Syinbol Table
Your symbol table should provide all of the classic dictionary services, including efficient lookup and insertion.
For the most part symbol table organization is left at your discretion, including such issues as data structure,
representation of literals, and whether literals are stored in the main symbol table or separate literal tables.
Care should be taken in the choice of your symbol table data structure as some structures are too inefficient
to be used (e.g. a single linear list) and some are more complex than their efficiency merits for a project of
this size (e.g. B-t<rees, red-black trees, etc.).

Since you will be augmenting the symbol table entries throughout the project, document their structure
carefully and always keep the need for future expansion in mind. The symbol table is the single most
important data structure in your compiler, so give it the time and thought it deserves.

2.2 Lexical Entities
There are ten classes of lexical entities, eight of which generate tokens to be returned to the parser. The
remaining two classes (comments and white space) are to enhance the readability of the program and may
be "skipped," meaning that they will not be returned as tokens.

C o m m e n t s Comments are delimited by /* and */, and they are skipped except for information on de-
bugging flags. Flags will be used to control debugging aids and diagnostic information throughout
the project. The flag field immediately follows the opening delimiter and may not be preceded by, or
include white space. The format of the flag field is:

/*debug(debug-directive) ... remainder of comment ... */
where, for the lexical analysis phase of the project, debug-directive is one of:

tokenlisting-on-Begin listing tokens to the standard output as they are created. The output
format is: <token~code,loken~value>. For example, if the token code for the keyword while is
289, then immediately before returning this token to the parser you write <289,while> to the
standard output.

tokenlis t ing-off-Stop listing tokens until directed to do so again.

syrntab-stats-Report information on symbol table usage and performance. Values that might
be of interest include the number of symbols inserted in the table, the number of unique identifiers,
the number of each type of constant, the number of look-ups, the average number of items searched
on each look-up, etc. This is by no means an exhaustive list, and you should report any and all
values that are appropriate for your symbol table organization.

a symtab-dump-Display the contents of the symbol table. Your output listing should include each
symbol's value, its reference count, and any attributes.

halt-Halt execution of the compiler without processing any further input.

W h i t e Space Spaces, tabs, newlines, and formfeeds are used throughout the input text to delimit tokens
and enhance readability. White space outside the context of character or string constants should be
skipped.

Ident if iers An identifier is any string of characters made up of a-z,A-Z,O-9, and underscore (-). The
first character of an identifier may not be a digit or underscore, there is no bound on length, and all
characters are significant.

Reserved W o r d s Table 1 contrains trhe reserved words, or keywords, of our language. Each one should be
assigned a unique t,oken code, and you may differentiate them from ordinary identifiers by whatever
means you like.

char do f l o a t e l s e
ex tern f o r i f i n t
r e t u r n void while r e g i s t e r

Table 1: Reserved words

Special Cha rac t e r s Table 2 contains the special characters, and atomic sequences of special characters
that your lexical analyzer should recognize.

In t ege r Cons t an t s Your lexical analyzer should recognize the three types of integer constants defined in
section A2.5.1 of [KR88]. You needn't handle the prefixes for unsigned and long types however, since
our language will not use these representations.

Table 2: Special characters

F loa t ing Point C o n s t a n t s Floating point constants should be recognized in keeping with the definition
of section A2.5.3 of [KR88]. Again, there is no need to handle the suffixes for "float" and "long" types
since our language will compute all floating point quantities in single precision.

C h a r a c t e r C o n s t a n t s You are responsible for recognizing character constants as defined in section A2.5.2
of [KR88], including escape sequences, with the exception of the \xhh format. The choice of internal
representation for character constants is a t your discretion. We will be treating characters as signed
integers when we reach the code generation phase.

S t r i n g C o n s t a n t s A sequence of ASCII characters delimited by double quotes (" ...") represents a string
constant, which is in truth just an array of type char padded with a NULL character. Double quotes
may appear in strings if they are preceded by \, as may all of the escape sequences defined for character
constants above. A newline may not appear in a string unless it is preceded by \, in which case it is .
ignored.

Il legal Cha rac t e r s Any character not included in the token classes described above ("?" for example) is
illegal as part of the input. You should assign a special code to this class of characters and return that
code t o the parser when an illegal character is encountered.

2.3 Food for Thought

The debugging flags serve a dual purpose. They are intended both to make it easier to produce output
that demonstrates the operation of your project for the purpose of grading, and to provide you with
invaluable data during the debugging of each project phase. Implen~ent them first, not last.

Even without the embedded debugging flags comments are difficult to describe to l e x . Consequently,
comments are typically recognized by their opening sequence (/*), and then a C function is called to
search for the closing "*/." The l e x (i) man' page has a good example of this.

Two values are returned to represent each token-the return value of the l ex (vo id) function, and
auxiliary data returned in the yy lva l variable. The yy lva l variable is typically defined as a union
and upon return from the lexical analyzer usually contains a pointer to an appropriate symbol table
or literal table entry.

Once the const~ruction of the parser 11a.s begun, you will #include a.n output file produced by yacc to
define symbols that correspond to token codes. To save you the work of building your own file full of
#define's for token codes, you can start building your yacc input file now. The f0rma.t of the file is
shown in figure 2. If you process the file using the command

yacc -d token-F1e.y

the files y . t a b . c and y . t a b . h will be produced. The y . tab. c file can be ignored for now, and y . t a b . h
should be #include'ed at the top of your lexical analyzer description file.

For the sake of readability in your pa.rser description, don't define token names for the single-character
tokens like ";". just use their character value for the token code. There won't be a conflict with the
l e x assigned token codes because the codes assigned by l e x are all outside the ASCII character range.

/* One %token l i n e f o r every token
* you def ine . Here i s an example:
* /

%token IDENT

/* One dummy r u l e , so that yacc thinks
* t h i s i s r e a l l y a parser de f in i t i on .
* There i s a tab before : and ; .
* /

dummy : IDENT

Figure 2: Dummy yacc input file

When looking at l e x . yy. c for compile-time errors, be sure to make the corrections to the input file,
not the 1 e x . y y . c file. A good way to make sure you don't slip up is to have make turn off write
permission on the file as soon as it is created.

If you keep your strings a.nd identifiers in the same table be sure to differentiate between the identifier
index and the string constant "index". Similar problems arise if you maintain your character or
numeric constants as strings.

The yywrap() routine is defined in /u sr / l ib / l ib l . a . You can link it with your lexical analyzer by
including the -11 option at the end of the cc command that builds your final executable.

For small changes, using make can save you as much as five minutes per compile by the end of the
project. Why not start using it now?

2.4 Deliverables and Due Dates

Week 5 Submit a detailed description of the symbol table organization you intend to use. lnclude a discussion
of why you have chosen this organization over others, where you intend to store the various classes of
symbols (identifiers, string literals, etc.) and C declara.t,ions for a.ny structures or a.rrays.

Submit a list of regular expressions that you intend to use to represent each class of token. The regular
expressions can be given in the notation of 33.3 of [ASU86], and need not be in a form acceptable to
l e x .

Week 7 Construct a main0 function that accepts the input file name as a single parameter, and calls lax
repeatedly to break the input up into tokens. Run your lexical analyzer, driven by this main routine,
on a test file to be made available shortly before the due date.

You are to submit the source for your lexical analyzer description file and any support routines along
with the output from the test run. If you made any simplifying assumptions in constructing your
lexical analyzer, describe them in a written summary. If your lexical analyzer failed to scan the test
file correctly, describe t,he nature of your problems in a written summary. Make any notations on your
test run output necessary to explain the format of your trace and dump output.

3 The Parser

You will use the yacc parser generator tool (or the G N U version, bison if you prefer) described in lecture,
on-line in the yacc (i) man' pa.ge, briefly in [KP84], and in detail in [LMB92]. In addition to designing the
yacc input specification for the language grammar, you will also be augmenting your symbol table to retain
attributes of identifiers and constants defined by the program being parsed, and constructing an intermediate
representation of the parsed statements in the form of binary trees.

3.1 Project Gralninar

The grammar defining the syntax of CS is shown in Figure 3. In the grammar specification, typewriter
font is used to represent tokens and the normal Roman font is used for non-terminal symbols. The ident ,
icon, f con, ccon and scon tokens represent identifiers, integer constants, floating point constants, character
constants, and string constants respectively, as defined in section 2.2.

The grammar as presented is not LALR(l), and consequently you will have to make several adjustments
before yacc will generate a useful parser. It also does not correctly represent operator precedence in all
cases, and steps will have to be taken to describe the precedence in terms that make the 1a.nguage described
by your parser consistent with the operator precedences defined in $A7 of [KR88].

You are free to alter the productions of the grammar in any way you like, provided your grammar accepts
the same syntax as the grammar of Figure 3, and implements the appropriate C semantics.

3.2 Semantic Actioi~s

Once your grammar specification is complete, you will augment most of your productions with semantic
actions. The purpose of these act,ions is to record information related to identifier attributes that are
specified by declarations, and to construct an internal representation of the source statements using binary
trees. The identifier attributes to be recorded in the syn~bol table will require you to add fields to your
existing symbol table data structures.

3.3 Debug Directives

In addition to augmenting your symtabdump code to output any fields you add to your symbol table entries,
you should also implement the following new directives:

variabledump-List variable names, function names, and array names, and their scopes, types, di-
mensions, and parameter types, etc., as appropriate.

statementdump-Print each syntax tree for all statements fully parsed a.t the point this directive is
encountered. The output needn't be pretty, just complete eilougll that you can verify the internal
representation.

3.4 Food for Thought
Be sure to record every detail of each declaration in your symbol table, and every detail of each
statement's syntax in your trees, because once the parse is complete you won't be able to refer to the
input file for additional data.

program
external-decls
declaration
modifier
type-name
var-list
var-item
array-var
scalar-var
function-def
function-hdr

parm-type-list
parm-list
parm-decl
function-body
internal-decls
statement-list
statement

compoundstmt
nullstmt
expression-stmt
i f s tmt

for-st mt
while-stmt
dowhilestmt
return-stmt
expression
assignment-expr
binary-expr
binary-op
boolean-op
rel-op
arith-op
unary-expr
unary-op
postfix-expr

primary-expr
constant
argument-list

external-decls
declaration external-decls I function-def
modifier type-name varlist ;
extern I r e g i s t e r I c
void I i n t I f l o a t I char
varlist , var-item 1 varitem
array-var (scalar-var 1 * scalar-var
ident [icon]
ident I ident (parm-type-list)
functionhdr { function-body)
type-name ident (parm-type-list)
type-name * ident (parm-type-list)
ident (parm-type-list)
void I parmlist
parmlist , parm-decl I parm-decl
type-name ident I type-name * ident
internal-decls statement-list
declaration internal-decls I 6

statement statement-list I 6

compoundstmt 1 nullstmt I expression-stmt (i fs tmt
forstnlt 1 whilestmt (dowhile-stmt I return-stmt
{ statement-list)
1

expression ;
i f (expression) statement
i f (expression) statement e l s e statement
f o r (expression ; expression ; expression) statement
while (expression) statement
do statement while (expression) ;
r e tu rn expression ; 1 r e tu rn ;
assignment-expr
unary-expr = expression (binary-expr
bit1a.r~ -expr bitmry-op unary-expr I unary-expr
boolean-op I rel-op I arith-op

I I /
-- - - I ! = l < l > (< =) > =

+ I - l * l / l %
unary-op unary-expr I postfix-expr
! / + I - I + + \ - - / & I *
postfix-expr [expression]
ident (argumentlist)
ident ()
postfix-expr ++
postfix-expr --
primary-expr
ident I constant I (expression)
icon (f con (ccon I scon
argument-list , expression I expression

Figure 3: BNF description of project. grammar

Each unique node type you create in your intermediate representation is going t o require unique code
during the code generation phase. The fewer node types you have, the fewer different code templates
you will have to generate. One way to reduce the number of unique nodes is to identify operators or
statements that can be redefined in terms of other, more basic operators or statements. Section 149.5
of [KR88] offers a hint for one possible reduction. There are others.

Beware of redefining ++ or -- in terms of assignment. If you must, consider an expression like
(*p + +) + +, where p is a pointer to an integer, before attempting an implementation.

If you corrupt yacc's private data structures at run time, it will occasionally be reported as a syntax
error.

Scopes of identifiers turn out to be a little more difficult to manage than you might expect. Consider
them carefully before you start coding, and make sure you have a plan to (1) identify the point in the
parse when scopes change, and (2) accommodate name clashes between internal and external declara-
tions. Also plan how you will handle the names of parameters that appear in function declarations,
and what scope they should have.

3.5 Deliverables and Due Dates
Week 8 Submit a copy of the final LALR(1) gramma.r you intend to use as input to yacc. Describe in writing

all changes you made, including how you eliminated the conflicts in the original grammar, and how
you enforced the appropriate precedences. If any conflicts remain, explain why yacc's default action
for resolving conflicts is appropriate.

Week 10 Submit a detailed description of the data structure you intend to use for the internal representation
of statements. Your description should include a copy of the C declarations of your node and leaf
types and any supporting structures. You should also include a complete description of how your trees
are used to represent each expression and statement type. For example, Figure 4 shows the type of
diagram you might use to represent i f / e l se ~tat~ements , and % expressions.

/\
expession <=-- /\
/\ expression expression

statement statement

Figure 4: Sample syntax trees

Week 11 Construct a main() function that accepts the input file name as a single parameter, and calls yacc
to parse the input. Run your parser, driven by this main routine, on a test file to be made available
shortly before the due date.

You are t o submit the source for your pa,rser description file and any supporting routines along with
the output from the test run. If you made any simplifying assumptions in constructing your parser,
describe them in a written summary. If your parser failed to interpret the test file correctly, describe the
nature of your problems in a written summary. Make any notations on your test run output necessary
to explain the format of your trace and dump output.

4 Semantics and Data Type Checking

In this phase of your project you will write functions to analyze your syntax trees. You will report any
semantic errors to the user with appropriate messages written to the standard output, and you will augment
the syntax trees with any type conversions necessary to make the expressions and statements consistent with
respect to data types.

The semantic rules that you are expected to enforce are as follow:

1. CS is strongly typed. All variables, arrays, and functions must be appropriately defined.

2. Names may not be overloaded. That is, if there is an integer variable named "f", there cannot be
another variable, array, or function of the same scope also named "f".

3. Arguments specified in function calls must agree in number and type with the function's prototype,
either directly or through conversion.

4. The value of any expression returned by a function must agree in type with the declared type of the
function, either directly or through conversion.

5. The types of arguments and results for unary and binary arithmetic operators are defined in 5A6.5 of
[KR88].

6. You may ignore the special case for conversion of NULL pointer values described in 5A6.6 of [KR88].

7. The & and unary * operators should have their usual meaning, except that CS does not allow the &
operator to be applied to an expression tha.t is already a pointer type.

8. The left hand side of all assignment sta,temerlts should be checked to verify that any expressions are
in fact Ivalue's, as discussed in §A5 of [I<R88].

9. Arrays will be represented as pointers to appropriately sized blocks of storage. Therefore array names
should be treated as pointers t,o the a~propriat~e type.

In order to preparc for the code generation phase, you should also allocate local, temporary variables for
each intermediate node in the trees representing expressions. Allocate the temporaries in the symbol table
as you would ordinary automatic variables, assigning names such that they do not conflict with existing
variables. Assign the temporaries the appropriate data type and any other attributes you deem necessary.

4.1 Debug Directives

In addition to augmenting your symtabdump and variabledump code to output any fields you add to your
symbol table entries, and verifying that your statementdump code is capable ofoutputting any type coercion
nodes you add, you should also implement the following new directive:

a trace-types-Trace the type checking of expressions and statements. For example, when type-
checking a + operator with integer and floating point operands, you might output the following:

Types: + i n t f l o a t -> f l o a t

When type-checking an integer function named "f" that a,ccepts two float arguments that were provided
as an integer and char respectively, you might output the following:

Types: f (i n t , char) -> (f l o a t , f l o a t)

4.2 Food for Thought
Before you go to the trouble of converting float's to int's for use in the boolean operands of i f , &&,

etc., take a look at some code generated by gcc -S. You may be surprised to learn that the semantics
described in 5A9.4 of [KR88] (and elsewhere) are meant to be taken quite literally.

Don't forget that adding integers to pointers requires scaling the integer operand by the size of items
of the data type referred to by the pointer operand.

4.3 Deliverables and Due Dates
Week 12 Submit tables describing type conversions and errors resulting from every combination of operator and

operands. For each operator provide a matrix showing what conversions are performed and what the
resulting type is for every possible pair of operands. See Figure 5 for an example.

Figure 5: Type matrix for binary + operator

Week 13 Run your parser and semantic checker on several test files to be made available shortly before the due
date.

pointer

error
int -+ pointer

pointer

error
char -+ pointer

pointer

pointer

+
void

int

float

char

pointer

You are to submit annotated output for each of the test runs. If you made any simplifying assumptions
in your semantic checking, describe them in a written summary. If your semantic checker failed to check
the test file correctly, or failed to perform any appropriate type conversions, describe the nature of
your problems in a written summary. Make any notations on your test run output necessary to explain
the format of your trace and dui l~p output.

5 The Code Generator

void

error

error

error

error

error

The final phase of your compiler is the code generator, which will convert the abstract syntax trees con-
structed during the parse into SPARC assembler code. We will not be gened ing an intermediate represen-
tation such as three address code, since it would involve an extra translation step that is unnecessary given
that we won't be performing any optimizations.

int

error

int

int --, float
float

char -+ int

int

int --+ pointer
pointer

float

error
int -+ float

float

float
char -+ float

float

error

char

error

char + int
int

char -+ float
float,

char

char -+ pointer
pointer

There are several different issues to be addressed during code generation, including allocation of storage
for automatic, temporary, and global variables; establishment of the appropriate linkage from the callee of
the compiled function, and t o any called functions; efficient register allocation; allocation of constants and
literals; and, finally, generation of executable code to correspond to the control structures and expressions
in the input program.

The key to simplifying the generation of actual executable code is carefully designing and implementing
your register allocator. If you define a concise, minimal interface that works correctly, the most difficult part
of generating code will be all the typing involved. Take the time to plan your register allocator carefully
and the entire code generation phase will be the least challenging of the project. If your register allocator
is constantly requiring attention, code generation can turn out to be the most time consuming part of the
project.

5.1 Debug Directives

In addition t o insuring that your previous debugging flags can produce meaningful output for any new fields
added to the symbol table and syntax trees, provide the following new debugging flags:

t r a c e ~ e g s - L i s t register allocation requests, deallocation requests, purge actions, and spill actions as
they occur. Identify by name the t,emporary, variable, or constant that the al l~cat~ion or deallocation
involved.

registerdump-Print the content,s of the register alloca.tion table a t termination.

5.2 Food for Thougl~t

Design, code, and test your register allocator first. Once it is working, then start working on generating
assembler output. Start small, generating the prologue, return instruction, and epilogue for a program
consisting entirely of:

void nu l l (vo id) { r e t u r n ;)

Once you've got the skeleton of your output progra.ms done, st,a.rt working on generatring code to
compute expressions by adding an expression to your return statement. Once you can compute simple
constant expressions, start pa,ssiag variables in. And so on, continually growing the complexity of the
inputs your program ca,n process. This way errors are easily diagnosed and tracked down.

Very few people are going to be able to implement code generation for all the features of the entire
language, so start out by setting realistic goals for yourself. Limit the incoming and outgoing parameter
count to six or fewer so that all parameters can be passed in registers. Select a subset of the control
structures to implement first, and ilnplement the rest once your original goal is achieved. Select a
subset of the operators to implement first, and implement the rest once your original goal is achieved.
If you try to implement the entire language all a t once, you'll probably end up with a compiler that
can't compile anything. If you grow the set of programs you can compile, from the very small to the
very complex, you're likely to be able to compile a sigllificant subset of CS by the time you're finished.

a Use the -S option of the C compiler to see how others have attacked t.hese problems before.

Generating nested fu~lctioil calls on an architecture that passes parameters in fixed registers can be
tricky. If you attempt to tackle this problem, remember that some innocent looking expressions generate
implicit function calls.

5.3 Deliverables and Due Dates
Week 14 You will be provided with source for a short CS program called n u l l . c. This source file will include

variable declarations that will use extern storage from another program, allocate its own global vari-
ables, and allocate parameters and automatic variables on the stack. The function n u l l () will consist
of exactly one expressionless return statement.

You are t o run your compiler with n u l l . c as the input, and produce an error-free SPARC assembler
output file for the program. Submit a printed copy of the results of your compilation. If your code
generator fails to generate correct output, provide a written explanation of any problems.

Week 15 Code, compile, and run two non-trivial algorithms of your choice. Good candidates would be (1) use
Newton's method to find roots of a polynomial, (2) Quick Sort, (3) Bubble Sort, etc. You may use
separately compiled C programs to drive your CS programs and produce printed results if you wish.

Code, compile, and run a third test program that demonstrates all the control structures and expres-
sions your compiler is capable of generating correct code for. The program needn't produce any useful
results.

Submit a printed report coiltailling a,ll of the following:

- CS source, assembler output, and an execution script from your three test programs.

- A summary describing what works, and what doesn't in your compiler. For those things that
don't work, explain why each particular feature in question was omitted, or why it doesn't work.

- A source listing for the entire compiler.

References

[ASU86] A. V. Aho, R. Sethi, and J . D. Ullman. Compilers, Principles, Techniques and Tools. Addison
Wesley, 1986.

[KP84] B. W. Kernighan and R. Pike. The UNIX Programming Environment. Prentice Hall, 1984.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, second
edition, 1988.

[LMB92] J. Levine, T. Mason, and D. Brown. Lex and Yacc. O'Relly and Associates, Inc., 1992.

[MAG+88] S. S. Muchnick, C. Aoki, V. Ghodssi, M. Helft, M. Lee, R. Tuck, D. Weaver, and A. Wu.
Optimizing compilers for the sparc architecture. In Proceedings of COMPCON '88, March 1988.

[Pau94] R. P. Paul. SPARC Architecture, Assembly Language Programming, and C. Prentice Hall, 1994.

A Test Strings

A. l Lexical Analyzer (Week 7)

/* Lexical Analyzer Test Stream */

/* Before you run the test, sit down and work through it with paper and
* pencil marking off all of the lexemes and errors. If you wait and just
* glance through your output you'll be fooled into believing that a lot
* of things that are really wrong are correct. Pay attention to the running
* commentary--it provides clues regarding what should be happening.
*
* There are a lot of tests here. If it doesn't all work on the first try,
* choose which cases to fix carefully. Attend to the common cases first, and
* leave the truly pathological for last. For example, correct output from
* section 15 is much more important than handling escaped newlines in your
* character strings, or octal integers containing digits 8 or 9.
*
* Your debug directives must work correctly. Your score on the project will
* be based in large part on the output they generate.
*
* Good luck.
*/

/* I. A single-line comment */
/* 2. A multi-line comment, beginning here

and
ending here */

/* 3. Check instrumentation */
/*debug(token-list ing-on) */
identifier
/*debug(symtab-dump) */
"If you see this, things can't be all bad." float + ++ 1066 3.141592653598 'cl ?
/*debug(token-listing-off) */

4.0 these should pass by without being echoed but they had better
find their way into the symbol table once and only once

/* 5. identifiers */

i j k simple sim-ple sim--ple sim-ple- -illegal
simple simple 3just-checking
an~insanely~l0ng~identifier~that~had~better~nOt~1Ose~any~characters
an~insaneiy~l0ng~identifier~that~had~better~nOt~iOse~any~characterz

/* 6. delimiters */

6 . 1 one-token 6 . 2 two tokens
6.3 two tokens 6.4 two
tokens
6 .5 th ree ; tokens 6.6 three!=tokens
6.7 two/**/tokens

/* 7. Reserved words */

char do f l o a t e l s e ex te rn f o r i f i n t r e t u r n void while r e g i s t e r
/* *not* reserved words: */ goto Return in t ege r r e g i s t e f o r t

/* 8. Specia l cha rac t e r s */

/* 9. In t ege r s */

/* decimal */ 0 1 2 3 9 13 840 908566 119918 21557922523136343405
/* o c t a l */ 00 05 07 0711 0177777
/* hex */ Ox0 0x1066 Oxface Oxcafe Oxfeed Oxf f f f f f f f
/* t r i c k i n e s s */ Ox 0908566 Oxbeadgcf

/* 10. F loa t s */

/* 11. Characters */

/* 12. S t r ings */

"Make su re t h e fol lowing l i n e generates *TWO* s t r i n g s : "
"a simple s t r i n g " "a simple s t r i n g "
,,<,, ,I1 I 1 I1 i l l "warned you . . . "
"\ \ tab\ tover\nW "" "\\" "\\\\" "\\\"\nu
" s t r /* what do you suppose t h i s does? */ ingU
"a s t r i n g with an embedded newline \
how d i d you do?"

"a s t r i n g with an erroneous newline
how d i d you do?"

"a s t r i n g with an embedded \"quote\""
"IBM would c a l l t h i s : "" an embedded quote. We don ' t . "

/* 13. I l l e g a l */

@#$̂ -".\"OK string"

/* 14. whatzit? */

/* 16. Enough of the pathological; now for the mundane: */

extern int *keys;

int printf (char *si, int il) ;

int bubble-sort(int key-count)
C /*debug(token-listing-off) Enough already! */

int i,j,swaps;
register int temp;

swaps = 0;

for(i=o;i<key-count-l;i++)
for(j=i+l;j<key-count;j++)

if (keys[il > keys [jl)
{ temp = keys[i] ;
keys[i] = keys[j] ;
keys[jl = temp;

printf("Sort complete, %d swaps\n",swaps);

return swaps;
1

/* 16. finis */

/*debug(token-listing-on) */ "You've gone too far!"

A.2 Parser (Week 11)

/* Hacked up quick sort, from 2nd ed. KBR, page 87. */

float left; /* Should be hidden by parameter left */
char i; /* Should be hidden by internal declaration */
int ext.ext2; /* Should not be hidden by anything * /
void dummy(void);
void swap(int *v, int i, int j) ;

void qsort(.int *v,int leftpint right)
€
register int i,last;
int new-partition-element;
int *ext-ptr ;
int everything-a-ok, bad-news;
float array C641;

if (left >= right)
return;

/*debug(token-listing-on) */
new-partition-element = (left+right)/2;

/*debug(token-list ing-of f) */
swap(v,left,new-partition-element);
last = left;
for (i=left+l;i<=right;i++)
if (vCil < vCleft1)

swap(v,++last . i) ;
swap(v,left ,last) ;
qsort(v,left,last-1);
qsort (v,last+l ,right) ;

return ;

/* Some hokey statements: */

ext = 34;
while(--ext)

(/* do nothing */
3

everything-a-ok = bad-news = 0;
if (ext == ext-ptrC01)
everything-a-ok = 1;

else
bad-news = 1;

if (5*(bad_news > 9-13-64+68))
return dummy () ;

/*debug(symtab-dump)*/
1

/*debug(variable-dump)*/
/*debug(statement-dump)*/

A.3 Semantic Checking (Week 13)

A.3.1 First Test

/* quick sort. from 2nd ed. KRR, page 87. */

void swap(int *v, int i, int j) ;

void qsortcint *v,int left,int right)
<
int islast;
int new-partition-element;

if (left >= right)
return;

new-partition-element = (left+right)/2;
swap(v,left,new-partition-element);
last = left;
for (i=left+i;i<=right;i++)
if (v[i] < vCleft])

swap(v,++last,i);
swap(v,left ,last) ;
qsort(v,left,last-I);
qsort (v, last+l ,right) ;

1
/*debug(trace-types)*/

A.3.2 Second Test

float f(f1oat x);
float f-prime(f1oat x) ;
int dprint (char *s ,float d) ;

float newton(f loat start)
€
float x C1001;
int i;

i = 0;
x[i] = start;
for(i=l;i<100;i++)

<
x[i] = x [i-I] - f (x [i-I])/f -prime(x Ci-11) ;

1

return x Ci-I] ;
1

/*debug(trace-types)*/

A.3.3 Third Test

void foo(void);

int bar(int i ,float f , char c) ;
float baz(int *ip,float *fp,char *cp);
char qux (int i ,float f) ;

int quux C321;
float corge C641;
char grault [I281 ;

float garply(int ivar,float fvar,char cvar,int *ipvar,float *fpvar)
< int i,j,k,l,m,n;
float f ,g,h;
char a,b;

cvar = ivar = 'x' * I * 3.5;
cvar = ivar = cvar * ivar * fvar;
cvar = ivar = ivar * cvar * fvar;

/* 2. A-OK
* /

/* 3. (i,f ,c)\(c,i,f)->(i,f ,c)\((c->i),(i->f), (f->c))
and result is ignored.

*/

/* 4. A-OK
*/

if ((0.5 && i) - I)
< /* 4.1 (i->f)

*/
return 0;

3
else

(/* 4.2 (c-c)->((c->i)-(c->i))->(((c->i)-(c->i))->f)
*/
return '0'-'0';

3

/* 5. A-OK
* /

while(qux(bar(*quux,*corge,*grault),baz(&ivar,&fvar,&cvar)))
(/* 5.1 A-OK

ivar++ ;
++f var ;
/* ++cvar++; */

/* 5.2 lhs: (*((fp+i)->fp))->f
rhs: (((&i)->ip) [I i)->i
(f =i)->f

* /

/* X . 0-ton-o errors. Catch at least one and halt.
* /

return 1+2.0+foo(ipvar % 10.0);
1

/*debug(trace-types)*/

A.4 Code Generation (Week 14)

/* null .c
*
* You are expected to generate:
* i. Declarations for the external variables
* ii. A .global declaration for the entry point
* iii. Appropriate code to adjust the stack upon entry, taking into
* account the space needed for automatic variables
* iv. A ret/return instruction pair
*
* In fact, just run gcc -S on it, and that's [very] roughly what you're
* expected to produce.
*
* /

int a,c; /* Some simple definitions */
char b,e,g;
char *h;

extern int shared; /* Declare, but don't define */

int arrayC641; /* Allocate pointer, and array */
char stringLi61;

void null(int i,char k)
€
int 1;

char array2 C1281;
int m,n,o;
char *p,q;

return;
>

	A Compiler Project for Translating a C Subset to SPARC Assembly Language
	Recommended Citation

	A Compiler Project for Translating a C Subset to SPARC Assembly Language
	Abstract
	Disciplines
	Comments

	tmp.1184690470.pdf.kHEXH

