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Abstract

This paper describes a method for automatic generation of tests from specifications written in
Statecharts. These tests are to be applied to an implementation to validate the consistency of the
implementation with respect to the specification. For test coverage, we adapt the notions of control-flow
coverage and data-flow coverage used traditionally in software testing to Statecharts. In particular, we
redefine these notions for Statecharts and formulate test generation problem as finding a
counterexample during the model checking of a Statecharts specification. The ability to generate a
counterexample allows test generation to be automatic.

To illustrate our approach, we show how to translate Statecharts to SMV, after defining the semantics of
Statecharts using Kripke structures. We, then, describe how to formulate various test coverage criteria in
CTL, and show how the SMV model checker can be used to generate only executable tests.
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1 Introduction

Testing is the most common validation technique and is one of the most time-consuming activities in
the development of software or hardware systems. Therefore, techniques for automated construction
of high-quality test suites are important to ascertain the correctness of implementations with respect
to specifications and decrease the development time and cost.

In this paper, we address the problem of test generation from formal specifications written in
Statecharts [13] that have been widely used for specifying reactive systems. Statecharts can be
regarded as extended finite state machines (EFSM) that support the hierarchical and concurrent
structure on states and the communication mechanism through event broadcasting. Among several
variants of Statecharts considered in the literature [3], this paper concentrates on the STATEMATE
semantics for Statecharts [14]. Our approach, however, can be immediately applied to other variants
of Statecharts semantics, for example, the UML Statecharts [28].

A Statecharts specification typically allows an infinite number of executions and hence exhaus-
tive testing is impossible, which requires all the possible executions be performed. The prevalent
testing practice is to construct a test suite, that is, a finite set of test sequences according to some
selection criteria, called coverage criteria. This paper considers a family of test coverage criteria
based on the flow information of both control and data described in Statecharts. Since manual
construction of test suites is time-consuming and error-prone, automatic generation of test suites is
desirable to improve the quality and productivity of testing. This paper presents an approach that
involves the application of the temporal logic CTL [9] and its symbolic model checker SMV [23] to
test generation from Statecharts. Given a Kripke structure model of a system and a temporal logic
formula, CTL model checking provides either a claim that the formula is satisfied in the model or
else a counterexample falsifying the formula.

An overview of our approach is shown in Figure 1. The problem of test generation is formulated
as a CTL model checking problem. A given coverage criterion is expressed as a parameterized
collection of formulas in CTL that are instantiated for a given Statecharts specification. Each
formula describes a test sequence in abstract terms in such a way that the formula is true if and
only if a statechart specification does not allow the test sequence. If the specification has finite
state space, we can use a model checking tool to check each formula against the specification. If
the test sequence described by the formula can be performed by the specification, model checking
will fail and the tool will generate a counterexample giving an execution sequence that explains
why the formula cannot be satisfied. This counterexample is easily mapped into the test sequence
by projecting it onto the observable events of the specification.

The contributions of this paper can be summarized as follows. We give a formal semantics
for Statecharts consistent with the STATEMATE informal interpretation. We apply a family of
control-flow and data-flow coverage criteria to Statecharts and give a CTL characterization of each
coverage criterion. Finally, we demonstrate how to use SMV, an off-the-shelf CTL model checking
tool, for the purpose of automatic generation of test suites from a statechart specification with
respect to a given coverage criterion.

Related work. Widely-used models for reactive systems found in the testing literature include
finite state machines (FSM), especially in hardware testing and protocol conformance testing. FSM-
based testing methods primarily focus on the control-flow oriented test generation such as transition
tour, unique-input-output sequence, distinguishing sequence, and characterizing sequence (see [4,
20] for survey). In protocol conformance testing, these methods have been extensively applied to
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Figure 1: Overview of test generation

formal description techniques [17] such as SDL and Estelle, and a number of automated tools have
been developed (for survey, see [10]). Compared to these methods, we are able to provide explicit
coverage criteria for data-dependent behaviors.

EFSMs extend FSMs with variables to support the specification of a system with data variables
and operations on them. If the state space of an EFSM is finite, one can obtain the equivalent
FSM by unfolding the EFSM. Thus testing based on EFSMs with finite state space is reduced in
principle to testing based on ordinary FSMs. This approach, however, suffers from the well-known
state explosion problem which makes test generation often impractical. Even when test generation
is feasible, this approach is often impractical because of the test explosion problem, i.e., the number
of constructed tests might be too huge to be applied to implementations under test.

A promising alternative is to apply conventional software testing techniques to the generation
of tests from EFSMs. In this approach, an EFSM is transformed into a flow graph that models
both the control and data flow of the EFSM and then tests are generated by identifying control
and data flow information such as definitions and uses of variables in the flow graph [30]. The flow-
graph test generation method is also applied to Statecharts [16]. This approach abstracts from the
values of variables and hence it can be applicable even if the state space is infinite. The approach,
however, requires posterior analysis such as symbolic execution or constraint solving to determine
the executability of tests and for the the selection of variable values which make tests executable.

The approach we advocate here is based on translating Statecharts into Kripke structures and
also suffers from the state explosion problem. However, the formulation of test generation as model
checking in our approach enables the use of symbolic model checking [6], a technique that has been
proven successful for controlling the state explosion problem. Second, our approach overcomes
the test explosion problem by using the flow information of both control and data described in
specifications like the flow-graph approach. Finally, our approach can be seen as complementary
to the flow-graph approach. On the one hand, flow graphs can be constructed for systems that are
not finite-state. On the other hand, our approach has the advantage that only executable tests are
produced.

Connections between test generation and model checking has been considered previously in
the literature. A tool that uses test generation algorithms inspired by model checking algorithms
is described in [18]. Test generation using counterexamples constructed by a model checker has
been applied in several contexts. Mutation analysis is used in the approach of [1]. In [7], test
generation is performed from user-specified temporal formulas, while in [11] testing purposes are
used to generate tests. No consideration is given to coverage criteria. Several control-flow coverage
criteria are considered in [12]. We are not aware of any work that considers the model checking
approach to data-flow oriented test generation.



Organization of the paper. Section 2 reviews preliminaries of Statecharts and CTL model
checking. Section 3 gives a formal definition of the STATEMATE semantics for Statecharts in terms
of Kripke structures. Section 4 introduces the notion of test sequences for Statecharts and Section 5
discusses a family of coverage criteria suitable for the generation of test sequences from Statecharts.
Section 6 introduces a method to generate tests suites for a given Statecharts specification for several
coverage criteria. Finally, Section 7 concludes the paper with a description of future work.

2 Preliminaries

This section provides a brief introduction to statecharts and CTL model checking.

2.1 Statecharts

A statechart is a tuple Z = (S, II, V, ©, T) where S, II, V, and T are sets of states, events,
variables, and transitions. © is an interpretation of V' which assigns to each variable its initial
value. The statechart in Figure 2, which specifies a simple coffee vending machine, will be used as
the running example in this paper. The variable m in Figure 2 is of integer subrange [0,10] and its
initial value is defined by ©(m) = 0.
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Figure 2: Example of statecharts

One of the main features of statecharts is the hierarchical and concurrent structure on states. A



state is either basic or composite. A composite state is classified as either OR-state or AND-state.
An OR-state has substates related by exclusive-or-relation and has exactly one default substate.
For example, the OR-state cvM in Figure 2 consists of OFF and ON with OFF as its default substate.
Being in ¢vM implies being in OFF or in ON, but not in both. An AND-state has substates related
by and-relation. Being in the AND-state ON implies being in COFFEE and MONEY at the same time.
There is a unique state called the root at the highest level on the state hierarchy, say cvM.

For a state s, define children(s) as the set of substates of s and children® as the reflexive-
transitive closure of children. For two states s; and sg, $1 is an ancestor of sy if so € children™(s1).
If, in addition, s1 # so, we say that s is a strict ancestor of so.

A configuration is a maximal set of states in which a system can be simultaneously. Precisely,
C C S is called a configuration if (i) C contains the root state; (ii) for every AND-state s, either
s and all substates of s are in C or they are all not in C; (iii) for every OR-state s, either s and
exactly one substate of s are in C or s and all substates of s are not in C. Each configuration can
be uniquely characterized by its basic states. In Figure 2, we have the following configurations with
{OFF} as the initial configuration: {OFF}, {IDLE, EMPTY}, {IDLE, NOTEMPTY}, {BUSY, EMPTY},
{BUSY, NOTEMPTY}.

Similar to I/O automata [22] and reactive modules [2], we partition the set II of events into
three disjoint subsets 117, II;, and IIp comprising input, local, and output events, respectively. The
occurrence of input events is determined by the environment of a system while local and output
events are generated by the system itself. Local events are used for internal communications and are
assumed to be invisible to the environment. Input and output events are visible to the environment
and constitute the observables of a statechart. In Figure 2, we have II; = {power-on, power-off,
coffee, done, inc}, I, = {dec}, and [1p = {light-on, light-off, start, stop}.

A transition t is a tuple (source(t), trigger(t) guard(t), action(t), target(t)) where source(t),
target(t) € S, trigger(t) is a predicate on II, guard(t) is a predicate on V', action(t) consists of a
set of assignments to V', denoted by assignments(t), and a set of events in II;, U Ilp, denoted by
generated(t).

For a transition t, define Ezits(t) (resp. Enters(t)) as the set of states that a system exits (resp.
enters) on taking transition ¢. For example, we have that Ezits(t;) = {OFF} and Enters(t;) = {ON,
COFFEE, IDLE, MONEY, EMPTY}. The formal definition for Ezits(t) and Enters(t) can be found in
[8]. The scope of a transition t, denoted by scope(t), is defined as the lowest OR-state in the state
hierarchy that is a proper ancestor of both source(t) and target(t). For example, scope(ty) = CVM
and scope(t3) = COFFEE. Two transitions ¢ and ¢’ conflict if scope(t) is an ancestor of scope(t’)).
For example, to and t3 conflict because CVM is an ancestor of COFFEE.

2.2 CTL Model Checking

Symbolic model checking [6] is a proven successful technique for the automatic verification of finite
state systems. A widely-used temporal logic for symbolic model checking is the branching time
temporal logic CTL [9]. Let AP be the underlying set of atomic propositions. The syntax for CTL
is defined by the following grammar:

pu=pl-p|dNd |EXP|AX¢ | E[U]| AlpUd']

where p € AP and ¢, ¢’ range over CTL formulas. The remaining temporal operators are defined
by the equivalence rules: EF¢ = E[falseU¢|; AF¢p = AltrueU¢|; EGp = ~AF(—¢); AGp =
~EF(~).



The semantics of CTL is defined with respect to a Kripke structure M = (Q, Qo, L, R) where Q
is a finite set of states; Qg C @ is the set of initial states; L: Q — 24F is the state-labeling function;
and R C @ x @ is the set of transitions. A sequence qq, 1, go, ... of states is a path if (¢;,¢i+1) € R
for all 1 > 0. A path p is a ¢g-path if p(0) = ¢g. The satisfaction relation = is inductively defined as
follows:

cqlpiffpeL(qqgkE—¢iff =(gF=¢);a=¢A¢ iff ¢ =¢and q = ¢';
e g = EX¢ (resp. AX¢) iff for some (resp. all) g-path p, p(1) E ¢;

e q = E[pU¢'] (resp. A[pU¢']) iff for some (resp. all) g-path p, there exists ¢ > 0 such that
p(i) E ¢ and p(j) E ¢ for all 0 < j < 1.

SMV [23] is a symbolic model checker for CTL which represents the state space and transition
relation of Kripke structures using OBDDs [5]. An SMV program contains a set of variable dec-
larations to determine its state space and descriptions of the initial states and transition relation,
as well as a list of CTL formulas to be checked. Given a system model and a CTL formula, SMV
automatically provides either a claim that the formula is satisfied in the system model or else a
counterexample falsifying the formula.

Let V be a set of variables. We call v’ as the primed version of a variable v € V and use V'
to denote the set of primed versions of all variables in V. For a predicate g on V, we denote by
g’ the predicate obtained by replacing each variable v in g by v'. We define a SMV program as a,
tuple (V, Init, Trans) where V is a finite set of variables; Init is a predicate on V; and Trans is a
predicate on V U V',

Let (V) be the set of all interpretations of V. We say that a SMV program (V, Init, Trans)
defines the Kripke structure (Q, Qo, L, R) such that

* Q=2%(V);
e Qo ={o €%V |0 it
e L(o) = {v=0(v) | v € V}, for each 0 € £(V);

e (0,0') € Rif and only if (0,0') |= Trans, where (o, 0’) is the joint interpretation that assigns
o(v) tov €V and o'(v) to v € V.

3 A Formal Definition of the STATEMATE Semantics

This section formally defines a statechart Z as a Kripke structure M (Z) based on the STATEMATE
semantics. Several formalizations of the STATEMATE semantics have been given in terms of
labeled transition systems [24, 25]. We chose an alternative approach, since we use CTL model
checking to generate tests. We call each element in @ of a Kripke structure (Q, Qo, L, R) a global
state to distinguish it from a state of Statecharts. Similarly we call each element in R as a global
transition. The formalization is used as the semantic foundation of the test coverage criteria and
test generation method presented in the following sections.

The STATEMATE semantics uses the set of nonnegative integers N as the time domain and
provides two models of time: synchronous and asynchronous. The main notion of the STATEMATE
semantics is a step. Intuitively, a step represents the response of a system to the input events



generated by the environment or the local events generated by the system itself. Both time models
assume that the execution of a step takes zero time and differ in the way of how time is advanced
relative to the execution of steps. In the former model, time is incremented by one time unit after
the execution of each step. This time model is mainly used for highly synchronous systems such
as synchronous circuits. In the latter, several steps are allowed to take place within a single point
in time and time is incremented only when the system becomes stable. Intuitively, stability means
that further steps are impossible without new input events. This paper focuses on the asynchronous
time model.

3.1 State Space

We give a set of rules that identify each component of a Kripke structure from a given statechart.
First we represent the state space of a statechart Z = (S, II, V, ©, T') using the following set of
global states.

Q = Config x B(V) x 211 x 2TVIT

where Config is the set of all configurations of Z, (V) is the set of all interpretations of V', and IT
is the set of implicit transitions which shall be discussed in the next section. The set @) of global
states captures the following information about a statechart: (i) the states in which a system is;
(ii) the values of variables; (iii) the events generated; (iv) the transitions taken.

The set of initial global states is defined as follows: (Cy, 09, Eg,79) € Qo if Cp is the initial
configuration, oy = O, Eg € II;, and 79 = (. The requirement of “Ey € II;” states that only
input events can be generated and “7g = ()7 states that there is no transition taken at the system
initialization.

The definition of the label of each global state (C, o, E, 7) is straightforward:
L((C,0,E,T)) = in(C) U {v=0(v) |lveVI}UEUT

where in(C) is a set of propositions defined as {in(s) | s € C}.

3.2 Transition Relation

In the asynchronous time model, input events can be introduced to a system only when the system
becomes stable. Once input events are introduced, a sequence of steps is executed until the system
becomes stable again. A global state (C, o, E, 7) is stable if there exists no generated input or local
event, i.e., E N (II; UIIL) = (), and there exists no transition that may occur at that state.

We represent the transition relation of a statechart by the set of global transitions R = R U Ry,
where each global transition in R; (resp. Rg) is called step (resp. tick). A step transition starts from
a non stable global state and manipulates configurations, variables and local and output events,
while a tick transition start from a stable global state and manipulates input events.

Definition 3.1 Let (C,0,E,7) and (C',0',E',7") be global states. We say that ((C,o, E, 1),
(C', o', E', ")) is a step transition if and only if

1. (not stable) (C, o, E,T) is not stable;

2. (configurations) C' = (C — Uyep Exits(t)) U U, Enters(t);



3. (variables) ¢’ = a(o), where a = ;c» assignments(t);
4. (events) E' = Uy, generated(t);
5. (transitions)

(a) (may occur) each transition ¢t € 7’ is enabled at (C, o), i.e., source(t) € C and o
guard(t), and is triggered by E, i.e., trigger(t) evaluates to true for E;

(b) (no conflict) no two transitions in 7/ conflict;

(c) (maximal) 7' is maximal, i.e., each transition not in 7/ but triggered by E and enabled
at (C,o) conflicts with some transition in 7’.

Intuitively, a step transition ((C,a, E,7), (C',0', E',7")) corresponds to the execution of the tran-
sitions in 7'.

Definition 3.2 Let (C,0,E,7) and (C',0',E',7") be global states. We say that ((C,o, E, 1),
(C',d',E', ")) is a tick transition if and only if

1. (stable) (C, o, E, T) is stable;
2. (configurations) C' = C;

3. (variables) o' = o;

4. (events) E' C Ily;

5. (transitions) 7/ = 0.

A tick transition corresponds to the introduction of input events to a system.

4 Test Sequences for Statecharts

This section introduces some necessary terminology.

Runs. Let Z = (S,II,V,0,T) be a statechart. We refer to a finite word i = 4;...i,, over 2
as input sequence and a finite word 0 = o01...0, over 20 as output sequence. A simple approach
to characterizing the behavior of a statechart is to use all the finite paths of its Kripke structure
M(Z). This approach, however, is of little use because a path ending at a non stable global state
may not provide the information of the output sequence that is supposed to be generated as the
response to an input sequence. Therefore we are concerned about only finite paths ending at a
stable global state, which we call runs. Figure 3 shows a run of the coffee vending machine in
which double rectangles represent stable global states. The run corresponds to the execution of the
transition sequence t1, t5, t3, tg in Figure 2.

A subsequence ((C;, 0, Ei, 7i), ..., (Cj,05,E;,7;)) of a run ((Cy, 00, Eo, 70), -, (Cn,0n, En,Tn))
is a superstep if (Ci_1,0i—1, E;j_1,7i—1) is stable, (Cy, ok, Ex, 7x) is not stable for i < k < j, and
(Cj, 04, Ej, 7;) is stable. We refer to E; as the input of the superstep and IIoN U, <4< Bk as the
output of the superstep. For example, the following shows the three supersteps in Figure 3.

superstep input output

981, gs2 {power-on} || {light-on}

9583, 954 {inc} 1]
985, 986, 987 { coffee} {start}




gs1: ({oFr}, m=0, {power-on}, ()

step

gs2: ‘({IDLE, EMPTY}, m=0, {light-on}, {tl})‘

tick

gss: ({ibLE, EMPTY}, m=0, {inc}, §)

step

g84: ‘ ({iDLE, NOTEMPTY}, m=1, 0, {t5}) ‘

tick

985 | ({IDLE, NOTEMPTY}, m=1, {coffee}, 0)

step

9se: ({BUSY, EMPTY}, m=1, {start, dec}, {t3}

step

gst: ‘ ({Busy, EMPTY}, m=0, 0, {ts}) ‘

Figure 3: A run for ({power-on},{inc},{coffee} | {light-on},0.{start})

Traces. We say that a pair of input and output sequences, written as i/0, is a trace if there is
a run such that 7; and o; are the input and output of the j-th superstep of the run, respectively.
For example, from the run in Figure 3 we have the trace ({power-on},{inc},{coffee} | {light-
on},0,{start}).

Completion. Often we need to test that the system does not produce any output in response
to some input. For example, the coffee vending machine in configuration {IDLE, EMPTY} when
m = 0 does not respond to input {coffee} simply because there are no enabled transitions in the
corresponding global state. However, if we want to generate a test for such quiescent behavior using
the same technique as for observable behaviors, we need to make the absence of output explicit. For
this, we extend the set of transitions of the statechart with implicit transitions. Implicit transitions
are always self-loops with the empty set of output events.

The following shows the implicit transitions for the coffee vending machine.

ity = it(OFF,power-off) = (OFF, power-off, true, ), OFF)

ity = it(OFF,coffee) = (OFF, coffee, true, ), OFF)

it3 = it(OFF,done) = (OFF, done, true, (), OFF)

ity = it(OFF,inc) = (OFF, inc, true, (), OFF)

its = it(OFF,dec) = (OFF, dec, true, (), OFF)

itg = it(ON,power-on) = (ON, power-on, true, (), ON)

it; = it(IDLE,coffee) = (IDLE, coffee, —(m > 0), (), IDLE)

itg = 1t(BUSY,coffee) = (BUSY, coffee, true, (), BUSY)

ity = it(IDLE, done) = (IDLE, done, true, (), IDLE)

it19p = it(NOTEMPTY, inc) = (NOTEMPTY,inc, —(m < 10), §, NONEMPTY)



it1; = it(EMPTY,dec) = (EMPTY,dec, true, (), EMPTY)
it1o = it(NOTEMPTY, dec) = (NOTEMPTY,dec, =(m > 1V m = 1), ), NONEMPTY)

An input sequence i is explicit if there exists a trace 7/6 such that each step transition of its run
corresponds to the execution of an explicit transition. Otherwise, it is implicit. For example, the
input sequence ({power-on}, {inc}, {coffee}) is explicit (see Figure 3), while ({power-on}, {coffee})
is implicit because the step transition (gss, gss) in Figure 4 corresponds to the execution of it7.

gs1: ({oFF}, m=0, {power-on}, 0)

step

gsa: ‘({IDLE, EMPTY}, m=0, {light-on}, {tl})‘

tick

9s3: | ({IDLE, EMPTY}, m=1, {coffee}, 0)
step

gsa: ‘ ({ipLE, EMPTY}, m=0, 0, {it7}) ‘

Figure 4: A run for ({power-on},{coffee} | {light-on},0)

Nondeterminism. A statechart Z is deterministic with respect to an input sequence i if there
exists only one output sequence 6 such that i/6 is a trace of Z. Otherwise, it is nondeterministic
with respect to i. For example, the coffee vending machine is deterministic with respect to ({power-
on},{inc},{coffee}), while it is nondeterministic w.r.t. ({power-on},{inc},{power-off,coffee}) be-
cause there are two possible output sequences: ({light-on},0,{light-off}) and ({light-on},0,{start}).

In order to resolve certain classes of nondeterminism, the STATEMATE semantics provides a
priority scheme based on the scope of transitions. Let ¢ and ¢’ be transitions conflicting each other.
If scope(t) is a strict ancestor of scope(t'), then ¢ has priority over ¢'. If scope(t) is equivalent to
scope(t'), t and ¢’ have the same priority. For example, in Figure 2 t5 has priority over t3, t4, 5,
tg, t7, and tg, while tg and t; have the same priority. With this priority scheme, the coffee vending
machines becomes deterministic with respect to ({ power-on},{inc},{ power-off,coffee}) because now
we have ({light-on},0,{light-off}) as the only possible output sequence.

Test sequences. For an input sequence i of a statechart Z, we denote by Z(i) the set of all
output sequences 6 such that /0 is a trace of Z. Intuitively Z (i) is the set of expected or required
responses of implementations under test to the input sequence 3.

Definition 4.1 A test sequence of a statechart Z, written as i/Z (i), is a pair of an input sequence
1 and its corresponding set Z (i) of output sequences. A test suite is a set of test sequences.

We compare the nature of test sequences for reactive systems with those for transformational
systems. Most of analysis and testing models for transformational systems, e.g., flow graphs[15]
and program dependency graphs[19], contain a distinguished node called exit node to model the
terminating behavior of such systems. Test sequences in such graphs are naturally defined in terms
of paths whose first node is the entry node and last node is the exit node of the graphs. On



the other hand, there is no corresponding notion in reactive system models, e.g., FSMs, EFSMs,
and statecharts, because the behavior of reactive systems is characterized by their non-terminating
computations that maintain an ongoing interaction with the environment.

In Definition 4.1, we do not put any constraints on input sequences and thus allow the execution
of test sequences may end at any stable global state. That is, we regard each stable global state as a
pseudo-exit node. There are, however, more elaborate approaches to defining exit nodes. A widely
used approach in FSM or EFSM-based testing is to require that the execution of test sequences
end at an initial state from which another test sequence can be applied. In this approach a special
input called reset, which takes a system to its initial state from any state of the system, is often
used when the system is not fully connected.

In general, testers may want to designate an arbitrary state as an exit node. An interesting
notion is marker state in the supervisory control theory by Ramadge and Wonham|[26]. This theory
distinguishes the paths ending at a state designated as a marker from others and interprets such
paths as completed tasks of the modeled system. For example, a tester may want to designate
the configuration {IDLE, EMPTY} as a marker for the coffee vending machine and require that the
execution of every test sequence end at the marker. In this case, the input sequences in Figure 3
and Figure 4 can be extended with {done} and {inc}, {coffee}, {done}, respectively, in order to
guarantee that the machine ends at the marker.

Finally we present a conformance relation between specifications written in statecharts and
implementations under test. For an implementation I, we denote by I(i) the set of actual responses
of I to an input sequence 1.

Definition 4.2 Let Z be a statechart and I be an implementation under test. We say that I
weakly conforms to Z if for all explicit input sequences i, I{i) C Z(i). We say that I strongly
conforms to Z if for all input sequences i, I{(i) C Z(i).

5 Test Coverage Criteria for Statecharts

Obviously the strongest test coverage criteria is path coverage which requires that all the runs of
a statechart be traversed, or equivalently all the input sequences of the statechart be applied to
implementations under test. Because there is an infinite number of input sequences, it is impos-
sible to achieve exhaustive testing and we need to have systematic coverage criteria that select a
reasonable number of test sequences satisfying certain conditions. This paper proposes a family of
test coverage criteria based on the flow information of both control and data in statecharts.

5.1 Control-Flow Oriented Test Coverage Criteria

State coverage. We say that a run covers a state s if it contains a global state (C, o, E, 7) such
that s € C. A test sequence i/Z (i) covers a state s if there exists a trace 1/o0 whose run covers s.
A test suite P satisfies state coverage if each state is covered by a test sequence in P.

Configuration coverage. A stronger criterion than state coverage may be defined for statecharts
which requires the traversal of each configuration. A test suite P satisfies configuration coverage if
each configuration is covered by a test sequence in P.
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Transition coverage. We say that a run covers a transition ¢ if it contains a step transition
corresponding to the execution of . A test sequence i/Z (i) covers a transition ¢ if there exists
a trace 7/0 whose run covers t. A test suite P satisfies weak transition coverage if each explicit
transition is covered by a test sequence in P. A test suite P satisfies strong transition coverage if
each explicit and implicit transition is covered by a test sequence in P.

5.2 Data-Flow Oriented Test Coverage Criteria

We adopt the following convention which classifies each variable occurrence of a transition as being
a definition, computation use (c-use), and predicate use (p-use). Let v be a variable and ¢ be a
transition. v is defined at t if assignments(t) includes an assignment that defines v; v is c-used at ¢
if assignments(t) includes an assignment that references v; v is p-used at t if guard(t) references v.
We denote by def(v), c-use(v), and p-use(v) the sets of transitions that define, c-use, and p-use v,
respectively. Table 1 shows the def, c-use, and p-use sets for the variable m of the coffee vending
machine.

Table 1: The def, c-use, and p-use sets for the coffee vending machine

def(m) c-use(m) p-use(m)
tl) t57 tﬁ) t77 tg t67 t7 t3; tﬁa t7; tg

Let ¢ and ' be transitions and gso,..., gs, be a run. Suppose that the step transitions (gs;,
gsi+1) and (gs;, gsj+1) such that 0 <+ < j < n correspond to the execution of ¢ and #', respectively.
The run is a definition-clear run with respect to v from ¢ to ¢’ if each step transition (gsk, gski1)
does not correspond to the execution of any transition at which v is defined, for i < k < j.

We define associations between definitions and uses of a variable as follows: a tuple (v,t,t') is a
def-c-use association (resp. def-p-use association) if t € def(v), t' € c-use(v) (resp. t' € p-use(v)),
and there exists a definition-clear run with respect to v from ¢ to t'. A def-use association is either
a def-c-use association or def-p-use association. Table 2 shows the def-use associations for the coffee
vending machine. Consider the def-p-use association (m,t5,t3). The definition of m at t5 can reach
the use of m at t3 through the definition-clear run shown in Figure 3.

Table 2: The def-use associations for the coffee vending machine

def-c-use associations def-p-use associations
(m, ts, te) (m, ts, t3), (m, ts, ts), (m, ts, tg)
(m; t6; tG); (m; t67 t7) (ma t65 t3)5 (ma t65 tG); (ma tGa t7)
(ma t75 tG); (ma t77 t7) (ma t7a t3)a (ma t75 tG)a (ma t75 t7)5 (ma t77 t8)

Now we discuss the data flow caused by implicit transitions. Let v be a variable and it be an
implicit transition. We say that v is implicitly p-used at it if guard(it) references v and denote
by implicit-p-def(v) the set of implicit transitions at which v is p-used. Note that definitions and
c-uses cannot occur at an implicit transition because the action of an implicit transition is defined
to be empty, A tuple (v,t,4t) is an implicit def-p-use association if t € def(v), it' € p-use(v), and
there exists a definition-clear run with respect to v from ¢ to i¢. Table 3 shows the data flow caused
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by implicit transitions the coffee vending machine. The run shown in Figure 3 is a definition-clear
run for (m,ty,it7).

Table 3: The implicit p-uses and def-p-use associations for the coffee vending machine

implicit-p-use(m) implicit def-p-use associations
it7: ith: it12 (ma tl; it7)7 (ma t6; ith): (ma t87 /Lt7)

In general there are three types of associations between definitions and uses in statecharts. The
first type includes associations which occur within an OR-state, e.g., (m, t5, tg). Associations
occurring in ordinary EFSMs belong to this type. The second type is caused by the hierarchical
structure on states, e.g., (m, t1, it7). The third type is caused by the concurrent structure on
states, e.g., (m, ts, t3).

We say that a test sequence i/Z(i) covers a def-use association (v,t,t') if there exists a trace
i/0 whose run is a definition-clear run with respect to v from ¢ and ¢'.

All-def coverage. A test suite P satisfies weak all-def coverage if for each variable v and each
transition ¢ such that ¢ € def(v), some def-use association (v,t,t') is covered by a test sequence in
P. A test suite P satisfies strong all-def coverage if for each variable v and each transition ¢ such
that ¢ € def(v), some explicit def-use association (v,t,t') or implicit def-use association (v, t,it) is
covered by a test sequence in P.

All-use coverage. A test suite P satisfies weak all-use coverage if for each variable v and each
transition ¢ such that ¢ € def(v), each def-use association (v,t,t’) is covered by a test sequence in
P. A test suite P satisfies strong all-use coverage if for each variable v and each transition ¢ such
that ¢ € def(v), each explicit def-use association (v,t,t') and implicit def-use association (v,t,it) is
covered by a test sequence in P.

6 Test Generation Methods for Statecharts

This section shows that test generation from Statecharts can be automatically performed by using
the SMV’s ability to generate counterexamples. Briefly, the generation of a test suite from a
statechart and a test coverage criterion consists of the following steps.

e An SMV program is constructed from the statechart.
e A set of CTL formulas is constructed from the criterion.

e A test suite is constructed by model-checking the CTL formulas against the SMV program
and projecting the obtained counterexamples onto the observable events of the trace.

The following subsections describe the details of the three steps.

12



6.1 Statecharts as SMV Programs

This section gives a method that translates a statechart Z into a SMV program. The correctness
of the translation method is shown by proving that the SMV program is isomorphic to the Kripke
structure M(Z).

6.1.1 State Space

Recall that a global state (C,o, E,7T) consists of a configuration, an interpretation of V, and a
set of events. A simple approach to encoding configurations in SMV is to use a Boolean variable
for each state of a statechart. This requires a number of Boolean variables and can be improved
by associating with an OR-states s a Boolean variable that ranges over children(s), the set of
substates of s. For example, we use CVM: {off, on}, COFFEE: {idle, busy}, and MONEY: {empty,
notempty} for the coffee vending machine. Note that each configuration of a statechart is uniquely
characterized in terms of interpretations of such variables. For each state s, define an auxiliary
predicate in(s) to indicate whether a system is in s or not.

in(s) n=1 if s is the root state;
in(s) ::= in(ps) if s is a substate of an AND-state ps
in(s) == in(ps) A ps=s if s is a substate of an OR-state ps

We associate a Boolean variable with each event to represent the occurrence of the event. We
also associate a Boolean variable with each explicit and implicit transition to represent the execution
of the transition. In summary we declare and initialize the following SMV variables to encode the
global states of a statechart.

for each OR-state s, VAR s: children(s); INIT s=default(s)
for each variable v, VAR v: range(v); INIT v=0(v)

for each input event e, VAR e: boolean; INIT 1

for each local or output event e, VAR e: boolean; INIT e=0

for each explicit transition ¢, VAR t: boolean; INIT =0

for each implicit transition i, VAR it: boolean; INIT t=0

6.1.2 Transition Relation

Recall that the transition relation of a statechart consists of two types of global transitions: step
and tick. First we represent step transitions using the following predicate.

Step ::= StepFEzxplicit A StepImplicit A\ StepConfig A Step Variable A StepEvent

The sub-predicate StepExplicit is used to select a set 7/ C T of explicit transitions satisfying the
requirements from 5.(a) to 5.(c) in Definition 3.1.

StepExplicit == Ny StepEzplicit(t)

StepEzplicit(t) == [t' = mayoccur(t) A —conflicting(t)]

mayoccur(t) = in(source(t)) A guard(t) A trigger(t)

conflicting(t) == Vgecrq) ¢’ where CT(t) is the set of transitions

that conflict ¢ and have priority over t.
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The correctness of StepEzplicit can be understood as follows. mayoccur(t) and —conflicting(t)
fulfill the requirement of 5.(a) and 5.(b), respectively. StepEzplicit combines its sub-predicates by
conjunction and hence fulfills the requirement of 5.(c), i.e., maximality.

We represent the execution of implicit transitions as follows:

StepImplicit = Ny StepImplicit(it)
StepImplicit(it) == [it' = mayoccur(it) A in(target(it))']

The other three sub-predicates of Step are used to capture the changes of configurations, vari-
ables, and events, respectively. For an OR-state s, we denote by T'(s) the set of transitions ¢ such
that children(t) N Enters(t) # (). The substates of s can be changed by a transition ¢ € T'(s) and
the structural characteristics of statecharts guarantees that children(t) N Enters(t) is a singleton.
For a variable v € V, we denote by T'(v) the set of transitions ¢ such that assignments(t) contains
an assignment v:=ezp. For an event e € II, we use T'(e) to denote the set of transitions ¢ such that
generated(t) contains e.

StepConfig = Aseos StepConfig(s)
StepConfig(s) = [Ner) F'=1 = s'=ns)] A [(Aser(e) t'=0) — s'=s]
where children(s) U Enters(t) = {ns}

Step Variable = A,ey StepVariable(v)
Step Variable(v) = [Ayer() (t'=1 = v'=ezp))] A [(Aer() t'=0) — v'=1]

StepEvent = Aeenr StepEvent(e)
StepEvent(e) == [¢/=0] if e is an input event
[/\tET(e) (t’zl — 6’21))] A [(/\tET(e) t’ZO) — 6,:0] otherwise

Second we represent tick transitions using the following predicate.

Tick ::= Nyer(t'=0) A Nigerr(it'=0) A Ascos(s'=s) A Ayey (v'=v) A TickEvent
TickEvent == A.cn TickEvent(e)
TickEvent(e) ::= 1 if e is an input event, (¢/=0) otherwise

Finally we define the transition relation Trans for a statechart using the predicates Step and
Tick as follows:

Trans ::= [~Stable — Step] A [Stable — Tick]
Stable ::= A.enum, (€=0) A Ayer ~mayoccur(t)

For a statechart Z = (S,II,V,0,V), we use AP(Z) to denote the following set of atomic
propositions.

{in(s) | s€e S} U {v=0(v) |veV,oeE(V)} UEUT UIT

To illustrate the translation, we show the complate SM'V program for the coffee vending machine
specification in Appendix A.

Correctness of the translation is proved by the following argument. Let Z = (S,II,V,0,V) be
a statechart. We use AP(Z) to denote the following set of atomic propositions.
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{in(s) | s€ S} U {v=0(v) |[veV,oeE(V)}UEUT UIT

Let M; be the Kripke structure M(Z) and My be the Kripke structure defined by the SMV
program (V, Init, Trans) for a statechart Z. We deifne f to be the bijection from the set of global
states of M; to the set of global states of M, such that for each atomic proposition p in AP(Z),

fla1) =g ifandonly if s EFp & q2 = p.

Lemma 6.1 Let q; and q| be states of My. Then (q1, q}) is a step transition of M if and only if
(f(q1), f(4})) = —Stable — Step.

Lemma 6.2 Let q1 and ¢} be states of M. Then (q1, q1) is a tick transition of My if and only if
(f(q1), f(d})) = Stable — Tick.

Lemma 6.3 Let g1 and g} be states of M. Then (q1, ¢}) is a global transition of My if and only
if (f(q1), f(q})) E Trans.

Proof: a direct consequence of Lemma 1 and Lemma 2.
Theorem 6.1 M; is ismorphic to M.

Proof:

e ¢ is an initial global state of M iff f(g) is an initial global state of M (Z) (by definition).

e (g, ¢') is a global transition of M iff (f(q), f(¢')) is a global transition of M(Z) (by Lemma 3).

6.2 Test Coverage Criteria as CTL Formulas

Each coverage criterion is represented as a set of CTL templates. For a given statechart, the set of
templates is instantiated into a set of CTL formulas with the predicates defined for the statechart.
The resulting set of CTL formulas captures exactly the coverage criterion for the given statechart.

6.2.1 CTL Formulas for Control-Flow Coverage Criteria

We begin with the state coverage criteria which requires that for each state s, there exists at least
one run covering s. A Kripke structure M has a run covering s if and only if (i) there exists global
state gs; which is reachable from an initial global state gsy and at which in(s) is satisfied and
(ii) there exists a global state gs; which is reachable from gs; and at which stable is satisfied (see
Figure 5). We express the requirement using the CTL formula EF (in(s) A EF stable).

in(s) stable

Figure 5: A run covering a state s
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Now we take the negation of the above formula and run SMV against the negated formula
—EF (in(s) A EF stable) because we are interested in generating runs covering s instead of check-
ing the satisfiability of the original formula. If there exists a run covering s, SMV generates a
counterexample which corresponds to a run covering s. Otherwise, SMV provides the result of
true. There are two cases in which SMV provides true against the negated formula. First, the
global state gs; is not reachable from any initial global state, i.e., EF in(s) is not satisfied. Second,
a statechart does not terminate and hence cannot reach a global state at which stable is satisfied,
i.e., EF stable is not satisfied. For example, consider =EF (in(B) A EF stable) whose purpose is to
cover the state B in Figure 6. Although B is reachable from an initial global state, there is no run
covering B because there is an infinite sequence consisting of only step transitions

({A}am =1, {a}v @), ({B}a m =1, {/B}a {tl })7 ({A}7 m =1, {Oé}, {tQ})" .-

and hence the statechart cannot reach a stable global state.

t1: a/Bim:=1

t2: B[m=1]/a

Figure 6: A non-terminating statechart
As mentioned before, it may be required that each run ends at an initial state or an arbitrary
state marked by testers. Let exit be a predicate defined as stable if there is no marker, and stable
A in(C) if C is a configuration designated as a marker. We can simply express the requirement of
markers using EF (in(s) A EF ezit).
Let BS C S be the set of basic states. We note that a test suite covering all basic states covers

all states because of the state hierarchy of Statecharts. To generate test sequences satisfying state
coverage, we use the following set of CTL formulas.

Definition 6.1 The CTL formulas for state coverage
{=EF (in(s) A\ EF ezit) | s € BS}
We can define the CTL formulas for other control-flow oriented criteria in a similar way.
Definition 6.2 The CTL formulas for configuration coverage
{—=EF (in(c) A\ EF ezit) | c € Config}
Definition 6.3 The CTL formulas for weak transition coverage

{-EF (t\NEF ezxit) |t € T}

Definition 6.4 The CTL formulas for strong transition coverage

{-EF (t\NEF exit) |t € T} U{-EF (it N EF ezit) | it € IT}
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6.2.2 CTL Formulas for Data-Flow Coverage Criteria

We use the following predicates to encode the information of definitions and uses of a variable v in
SMV.

d(v) == Vtedef(v) t
u(v) == Vtep—use(v)uc—use(v) t

im—u(v) = Vitez'mplicit-p-use(v) u

For example, for the coffee vending machine we have d(m) ::= t1 Vt5 Vg V t7 V tg, u(m) ==
t3 V t6 \% t7 \ tg, and zm—u(m) H= ’it7 \% ’itlo \% ’it12.

The requirement for a def-use association (v,t,t') can be stated as follows: (i) there exists a
global state gs; which is reachable from an initial global state gsg and at which ¢ is satisfied; (ii)
there exists a path gsy ... gs3 which starts from a successor of gsi, and contains no definition of
v until gsy at which ¢’ is satisfied; (iii) there exists a global state reachable gs; which is from the
global state gs; and at which ezit is satisfied (see Figure 7). We express this requirement using
EF (t NEX E[-d(v)U (t' A\ EF exzit)]).

t —d(v) exit

Figure 7: A run covering a def-use association (v,t,t")

We determine whether each tuple (v,t,t') such that ¢t € def(v) and t' € use(v) is a def-use
association or not by associating the negation of the above formula =EF (t A EX E [-d(v)U (t' A
EF ezit)]) with the tuple. If SMV generates the result of true against the negated formula, the
tuple is not a def-use association. Otherwise, the counterexample generated by SMV corresponds
to a run covering the def-use association (v,t,t').

Definition 6.5 The CTL formulas for weak all-def coverage

{-EF (t NEX E[~d(v) U (u(v) A EF ezit)]) | v € V,t € def (v)}

Definition 6.6 The CTL formulas for strong all-def coverage

{mEF (t NEX E[~d(v) U ((u(v) V im-u(v)) A EF ezit)]) | v € V,t € def (v)}

Definition 6.7 The CTL formulas for weak all-use coverage

{=EF (t N\EX E[~d(v)U (t' A EF ezit)]) | v € V,t € def (v),t' € use(v)}
Definition 6.8 The CTL formulas for strong all-use coverage
{=EF (t N\EX E[~d(v) U (t' A EF ezit)]) | v € V,t € def (v),t € use(v) U implicit-p-use(v)}
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6.3 Test Generation as CTL Model Checking

We consider deterministic statecharts for test generation. We can determine the determinacy of a
statechart by model-checking A7 AG (mayoccur(t) — AX t) against the Kripke structure M (Z).
The following shows our test generation method for deterministic statecharts.

TestSuite = ()
for each CTL formula f for a test coverage criterion
model-check f against M (Z);
if SMV generates a counterexample
map the counterexample into a trace i/0;
TestSuite := TestSuite U {i/{0}};
end;

It is straightforward to map a counterexample into a trace by projecting it on the input and
output events of the statechart. For example, Appendix B shows the result of model-checking
—EF (t3 N EF stable) against the coffee vending machine. The counterexample is the symbolic rep-
resentation of the run in Figure 3 and covers the transition ¢3. When generating counterexamples,
SMYV describes an initial state by providing the values of all variables and predicates. Other states
are described in terms of only the values that are changed from one state to the next. The coun-
terexample is mapped into the trace {power-on},{inc},{coffee} | {light-on},0,{start}. Appendix C
shows a set of test suites for the coffee vending machine.

7 Conclusions and Future Work

We described a method for automatic test generation for Statecharts specifications. Tests are
selected according to a set of commonly used coverage criteria based on control and data flow in
the specification. Each coverage criterion is described as a set of formulas in the temporal logic
CTL. Each formula defines one test in such a way that the formula is satisfied by the specification
if and only if the test is infeasible in the specification. Otherwise, the model checker produces a
counterexample for the formula. The counterexample, projected onto the observable events of the
specifications, yields a test.

The advantage of the approach is that only feasible tests are generated. We have applied the
test generation method to several examples. Our future work includes larger case studies to assess
effectiveness and scalability of the approach.

Extensions. In this paper, we did not consider several important features of Statecharts such as
actions associated with states, transitions with multiple source and target states, compound tran-
sitions, histories, and real-time constructs such as timeout events and scheduled actions. However,
it is fairly simple to extend our test generation method once we have a formal definition for these
features in terms of Kripke structures.

Many variants of semantics have been proposed for Statecharts [3]. The RSML semantics
proposed by Leveson et al. [21] is close to the asynchronous time model of the STATEMATE
semantics. The method presented in this paper would apply to the RSML semantics with only
slight modifications. For other Statecharts semantics, significant changes would be necessary to
reflect the peculiarities of step construction methods in these semantics. However, the differences
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between such semantics affect only the translation method from Statecharts into the input to
a model checker. Our representation of test coverage criteria as collections of CTL formulas is
language-independent and is applicable with only minor modifications to any kind of specification
languages based on EFSMs including UML Statecharts and formal description techniques such as
SDL and Estelle.

Other coverage criteria. A number of other coverage criteria based on control and data flow
analysis have been proposed in the software testing literature (see, for example, [27]). Some of these
coverage criteria cannot be handled using SMV, because their CTL properties contain universal
path quantifiers. For example, all-du-paths coverage criterion requires that all paths for a definition-
use pair, all definition-clear runs must be traversed. To generate tests for this criterion correctly,
SMV would have to produce all counterexamples to each CTL formula. Such coverage criteria can
be handled by extending SMV to produce multiple counterexamples for a formula, or by using a
different model checker that has this facility.

Nondeterminism. In this work, we generated tests only from deterministic statecharts. If a
statechart is non-deterministic, there may be more than one possible output sequence for a given
input sequence. In this situation, a single counterexample produced by the model checker is not
enough, since it will identify a single output sequence. A possible solution to this problem is to
treat the counterexample as prescribing only the input sequence. An extra step is then needed to
find all output sequences corresponding to this input sequence. If we have a model checker that
produces multiple counterexamples to a formula, as discussed in the previous paragraph, we can
express the input sequence as a CTL formula and give its negation to the model checker. The set
of counterexamples produced by the model checker will contain all feasible output sequences.

Symbolic Test Generation. As a technical convenience, we implicitly assumed that each vari-
able appearing in a statechart is local, i.e., it is defined and used only by the modeled system.
Similar to the set of events, we can partition the set of variables into the set of input, local, and
output variables. Or equivalently, we can associate parameters with input and output events. The
values of local and output variables are determined by the system itself, while input variables can
be assigned any value nondeterministically by the environment of a system. Therefore, we are
interested in a set of possible values for an input variable instead of a specific value when the value
of the input variable is changed by the environment.

This problem cannot be solved by the current implementaion of SMV which generates a coun-
terexample by randomly selecting one value among all the possible values. Recently, Rusu et al. [29]
discussed the problem of symbolic test generation from EFSMs in the realm of theorem proving.
We believe that in the finite-state setting this problem can be formulated as a model checking by
problem extending the SMV’s ability to generate counterexamples so that it can provide a set of
predicates over variables and parameters which describe the possible values instead of a specific
value.

Optimizations. Often, the test suite produced by the described approach will contain redundant
tests. For example, in the transition coverage test suite for the coffee vending machine, the test
to cover transition t7: ({power-on},{inc},{inc},{dec} | {light-on},0,0,0) will also cover transitions
t1,t5, and tg. Therefore, we need to find heuristics to minimize the number of generated tests
without sacrificing the coverage they provide.
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A The SMV Program for the Coffee Vending Machine

MODULE main conflict-t1 := 0;
conflict-t2 := 0;
VAR conflict=-t3 := next(t2)=1;
-- configurations conflict-t4 := next(t2)=1;
CVM: {off, on}; conflict-t5 := next(t2)=1;
COFFEE: {idle, busy}; conflict-t6 := next(t2)=1 | next(t7)=1 | next(t8)=1;
MONEY: {empty, notempty}; conflict-t7 := next(t2)=1 | next(t6)=1 | next(t8)=1;
-- events conflict-t8 := next(t2)=1 | next(t6)=1 | next(t7)=1;
power-on: boolean; -- stable
power-off: boolean; stable := power-on=0 & power-off=0 & coffee=0 &
coffee: boolean; done=0 & inc=0 & dec=0 &
done: boolean; mayoccur-t1=0 & mayoccur-t2=0 &
inc: boolean; mayoccur-t3=0 & mayoccur-t4=0 &
dec: boolean; mayoccur-t5=0 & mayoccur-t6=0 &
light-on: boolean; mayoccur-t7=0 & mayoccur-t8=0;
light-off: boolean; == def
start: boolean; def-m := t1 | t56 | t6 | t7 | t8;
stop: boolean; == cuse
-- variables cuse-m := t6 | t7;
m: 0..10; -- puse
-- explicit transitions puse-m := t3 | t6 | t7 | t8 | it7 | it10 | it12;
t1l: boolean; -- use
t2: boolean; use-m := cuse-m | puse-m;
t3: boolean;
t4: boolean; ASSIGN
t5: boolean; -- INIT
t6: boolean; -- configurations
t7: boolean; init(CVM) := off;
t8: boolean; init (COFFEE) := idle;
-- implicit transitions init(MONEY) := empty;
itl: boolean; -- events
it2: boolean; init(dec) := 0;
it3: boolean; init(light-on) := 0;
it4: boolean; init(light-off) := 0;
it5: boolean; init(start) := 0;
it6: boolean; init(stop) := 0;
it7: boolean; -- variables
it8: boolean; init(m) := 0;
it9: boolean; -- explicit transitions
it10: boolean; init(tl) := 0;
it11: boolean; init(t2) := 0;
it12: boolean; init(t3) := 0;
init(t4) := 0;
DEFINE init(t5) := 0;
-- in(s) init(t6) := 0;
in-cvm := 1; init(t7) := 0;
in-off:= in-cvm & CVM=off; init(t8) := 0;
in-on := in-cvm & CVM=on; -- implicit transitions
in-coffee := in-on; init(itl) := 0;
in-idle := in-coffee & COFFEE=idle; init(it2) := 0;
in-busy := in-coffee & COFFEE=busy; init(it3) := 0;
in-money := in-on; init(it4) := 0;
in-empty := in-money & MONEY=empty; init(it5) := 0;
in-notempty := in-money & MONEY=notempty; init(it6) := 0;
-- mayoccur(t) init(it7) := 0;
mayoccur-tl := in-off & 1 & power-on=1; init(it8) 0;
mayoccur-t2 := in-on & 1 & power-off=1; init(it9) := 0;
mayoccur-t3 := in-idle & m > 0 & coffee=1; init(it10) := 0;
mayoccur-t4 := in-busy & 1 & done=1; init(it11) := 0;
mayoccur-t5 := in-empty & 1 & inc=1; init(it12) := 0;
mayoccur-t6 := in-notempty & m < 10 & inc=1;
mayoccur-t7 := in-notempty & m > 1 & dec=1; == NEXT
mayoccur-t8 := in-notempty & m = 1 & dec=1; -- configurations
-- conflict(t) next(CVM) := case
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next(t1)=1: on;
next (t2)=1: off;
1: CVM;

esac;

next (COFFEE) := case
next(tl)=1: idle;
next(t3)=1: busy;
next(t4)=1: idle;
1: COFFEE;

esac;

next (MONEY) := case
next(t1)=1: empty;
next(t5)=1: notempty;
next(t6)=1: notempty;
next(t7)=1: notempty;
next(t8)=1: empty;
1: MONEY;

esac;

-- events

next(power-on) := case
stable=0: 0;
1: {0,1};

esac;

next(power-off) := case
stable=0: 0;
1: {0,1};

esac;

next (coffee) := case
stable=0: 0;
1: {0,1};

esac;

next(done) := case
stable=0: 0;
1: {0,1};

esac;

next(inc) := case
stable=0: 0;
1: {0,1};

esac;

next(dec) := case
next(t3)=1: 1;
1: 0;

esac;

next(light-on) := case
next (t1)=1:
1: 0;

esac;

next (light-off) := case
next (t2)=1: 1
1: 0;

esac;

next(start) := case
next (t3)=1: 1;
1: 0;

esac;

next(stop) := case
next(t4)=1: 1;
1: 0;

esac;

-- variables

next(m) := case
next(t1)=1: 0;
next(t5)=1: 1;
next(t6)=1 & m < 10: m + 1;
next(t7)=1 & m > 0: m - 1;
next(t8)=1: 0;
1: m;

esac;

[y

-- explicit tramsitions

next(tl) := case
mayoccur-tl & !conflict-tl: 1;
1: 0;

esac;

next(t2) := case
mayoccur-t2 & !conflict-t2: 1;
1: 0;

esac;

next(t3) := case
mayoccur-t3 & !conflict-t3: 1;
1: 0;

esac;

next(t4) := case
mayoccur-t4 & !conflict-t4: 1;
1: 0;

esac;

next(tb) := case
mayoccur-t5 & !conflict-t5: 1;
1: 0;

esac;

next(t6) := case
mayoccur-t6 & !conflict-t6: 1;
1: 0;

esac;

next(t7) := case
mayoccur-t7 & !conflict-t7: 1;
1: 0;

esac;

next(t8) := case
mayoccur-t8 & !conflict-t8: 1;
1: 0;

esac;

-- implicit transitions

next(itl) := case

in-off & 1 & power-off=1 &
next (in-off): 1;
1: 0;
esac;
next(it2) := case
in-off & 1 & coffee=1 &
next (in-off): 1;
1: 0; esac;
next(it3) := case
in-off & 1 & done=1 &
next (in-off): 1;
1: 0;
esac;
next(it4) := case
in-off & 1 & inc=1 &
next (in-off): 1;
1: 0;
esac;
next(itb) := case
in-off & 1 & dec=1 &
next (in-off): 1;
1: 0;
esac;
next(it6) := case
in-on & 1 & power-on=1 &
next(in-on): 1;
1: 0;
esac;
next(it7) := case
in-idle & !(m > 0) & coffee=1
next(in-idle): 1;
1: 0;
esac;
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next(it8) := case
in-busy & 1 & coffee=1 &
next(in-busy): 1;

1: 0;
esac;
next(it9) := case

in-idle & 1 & done=1 &

next(in-idle): 1;

1: 0;
esac;
next(it10) :=

in-notempty & !(m < 10) & inc=1 &

next(in-notempty): 1;

1: 0;
esac;
next(itil) := case

in-empty & 1 & dec=1 &

next(in-empty): 1;

1: 0;
esac;
next(it12) := case

in-notempty & m <= 0 & dec=1 &

next(in-notempty): 1;

1: 0;

esac;

case

-- control flow oriented test coverage
-- state coverage

SPEC ! EF (in-off & EF stable)

SPEC ! EF (in-idle & EF stable)
SPEC ! EF (in-busy & EF stable)
SPEC ! EF (in-empty & EF stable)
SPEC ! EF (in-notempty & EF stable)

-- configuration coverage

SPEC ! EF (in-off & EF stable)

SPEC ! EF (in-idle & in-empty & EF stable)
SPEC ! EF (in-idle & in-notempty & EF stable)
SPEC ! EF (in-busy & in-empty & EF stable)
SPEC ! EF (in-busy & in-notempty & EF stable)
-- strong transition coverage

SPEC ! EF (t1 & EF stable)

SPEC ! EF (t2 & EF stable)

SPEC ! EF (t3 & EF stable)

SPEC ! EF (t4 & EF stable)

SPEC ! EF (t5 & EF stable)

SPEC ! EF (t6 & EF stable)

SPEC ! EF (t7 & EF stable)

SPEC ! EF (t8 & EF stable)

SPEC ! EF (itl & EF stable)

SPEC ! EF (it2 & EF stable)
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-- data flow oriented test coverage
coverage

-- strong all-def
SPEC ! EF(tl1 & EX
SPEC ! EF(t5 & EX
SPEC ! EF(t6 & EX
SPEC ! EF(t7 & EX
SPEC ! EF(t8 & EX
-- strong all-use
SPEC ! EF(t1 & EX
SPEC ! EF(t1 & EX
SPEC ! EF(t1 & EX
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SPEC ! EF(t7 & EX
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SPEC ! EF(t7 & EX
SPEC ! EF(t7 & EX
SPEC ! EF(t7 & EX
SPEC ! EF(t7 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
SPEC ! EF(t8 & EX
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B The counterexample for -EF(t3AEFstable)

-- specification !EF (t3 & EF stable) is false

-- as demonstrated by the following execution sequence

state 1.1:

stable=0

CVM=off COFFEE=idle MONEY=empty

in-notempty=0 in-empty=0 in-money=0 in-busy=0 in-idle=0 in-coffee=0 in-on=0 in-off=1 in-cvm=1
m=0

power-on=1 power-off=0 coffee=0 done=0 inc=0 dec=0 light-on=0 light-off=0 start=0 stop=0
conflict-t8=0 conflict-t7=0 conflict-t6=0 conflict-t5=0

conflict-t4=0 conflict-t3=0 conflict-t2=0 conflict-t1=0

mayoccur-t8=0 mayoccur-t7=0 mayoccur-t6=0 mayoccur-t5=0

mayoccur-t4=0 mayoccur-t3=0 mayoccur-t2=0 mayoccur-ti=1

t1=0 t2=0 t3=0 t4=0 t5=0 t6=0 t7=0 t8=0

it1=0 it2=0 it3=0 it4=0 it5=0 it6=0 it7=0 it8=0 it9=0 it10=0 it11=0 it12=0

state 1.2:

stable=1

CVM=on in-empty=1 in-money=1 in-idle=1 in-coffee=1 in-on=1 in-off=0
power-on=0 light-on=1

mayoccur-t1=0 ti=1

state 1.3:
stable=0

inc=1 light-on=0
mayoccur-tb6=1 t1=0

state 1.4:

stable=1

MONEY=notempty in-notempty=1 in-empty=0
inc=0 m=1

mayoccur-t5=0 t5=1

state 1.5:
stable=0

coffee=1
mayoccur-t3=1 t5=0

state 1.6:

COFFEE=busy in-busy=1 in-idle=0
coffee=0 dec=1 start=1
mayoccur-t8=1 mayoccur-t3=0 t3=1

state 1.7:

stable=1

MONEY=empty in-notempty=0 in-empty=1
m=0

dec=0 start=0

mayoccur-t8=0 t3=0 t8=1

resources used:

user time: 0.36 s, system time: 0.03 s

BDD nodes allocated: 14070

Bytes allocated: 1376256

BDD nodes representing transition relation: 4496 + 6
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C Test Suites for the Coffee Vending Machine

State Coverage

state result
OFF 0/0
IDLE {power-on} | {light-on}
BUSY {power-on},{inc},{ coffee} | {light-on},0,{start}
EMPTY {power-on} | {light-on}
NOTEMPTY {power-on},{inc},{inc} | {light-on},0,0

Configuration Coverage

state result
{oFF} 0/0
{IDLE, EMPTY} {power-on} | {light-on}
{IDLE, NOTEMPTY} {power-on} {inc},{inc} | {light-on},0,0
{BUSY, EMPTY} {power-on} {inc},{coffee} | {light-on},0,{start}
{BUSY, NOTEMPTY} | {power-on},{inc},{coffee} | {light-on},0,{start}

Strong Transition Coverage

transition

result

{power-on} | {light-on}
{power-on},{power-off} | {light-on},{light-off}
{power-on} {inc},{coffee} | {light-on},0,{start}

{power-on},{inc},{coffee},{done} | {light-on},0,{start},{stop}
{power-on},{inc} | {light-on},)

{power-on} {inc},{inc} | {light-on},0,0
{power-on} {inc},{inc},{dec} | {light-on},0,0,0
{power-on},{inc},{dec} / {light-on},0,0
{power-off} | 0
{coffee} / 0
{done} / 0
{inc} / 0
infeasible
{power-on},{power-on} | {light-on},D
{power-on} { coffee} | {light-on},0
{power-on},{inc},{coffee},{ coffee} | {light-on},0,{start},D
{power-on},{done} | {light-on},D
{power-on} {inc},{inc},{inc},{inc},{inc},

{inc} {inc},{inch,{inc},{inc} {inc} /
{light-o’fl},@,@,@,@,@,@,@,@,@,@,@
infeasible
infeasible
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Strong all-use coverage

tuple result
(m, t1, t3) infeasible
(m, t1, te) infeasible
(m, t1, t7) infeasible
(m, t1, tg) infeasible
(m, t1, ity) {power-on},{ coffee} /{light-on},)
(m, t1, it1o) infeasible
(m, t1, it12) infeasible

(ma t55 t3)
(ma t55 tG)
(m, t5, t7)
(m, t5, ts)
(ma ts, 7/t7)
(m, ts, it1o)
(m, t5, ’I:tlz)

{power-on},{inc},{coffee} | {light-on},0,{start}
{power-on},{inc},{inc} | {light-on},0,0
infeasible
{power-on} {inc},{dec} | {light-on},0,D
infeasible
infeasible
infeasible

(m, te, t3)
(ma t65 tG)
(ma t65 t7)
(m, ts, ts)
(m, te, itr)
(m, t(j, itlo)

(m, tg, it12)

{power-on} {inc},{inc}{ coffee} | {light-on},0,0,{start}
{power-on}{inc},{inc},{inc} / {light-on},0,0,0
{power-on},{inc},{inc},{dec} | {light-on},0,0,0

infeasible
infeasible
{power-on} {inc},{inc},{inc},{inc},{inc},
{inc},{inc},{inc} {inc},{inc} {inc} /
{light'on}a@ama@ama@ama@ama@ama@

infeasible

(m, t7, t3) || {power-on},{inc},{inc},{dec},{coffee} | {light-on},0,0,0,{start}
(m, tr, tg) {power-on},{inc},{inc},{dec},{inc} | {light-on},0,0,0,0
(m, t7, t7) || {power-on},{inc},{inc},{inc},{dec},{dec} | {light-on},0,0,0,0,0
(ma t77 tS) {power-on},{inc},{inc},{dec},{dec} / {ligh’t'on}7@7®7@7®
(m, tr, ity) infeasible

(m, t7, it10) infeasible

(m, ty, itis) infeasible

(m, tg, t3) infeasible

(m, tg, te) infeasible

(m, tg, t7) infeasible

(m, ts, ts) infeasible

(m, ts, it7) {power-on},{inc},{dec},{coffee} | {light-on},0,0,0

(m, ts, it10) infeasible

(m, tg, it12) infeasible
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