
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

8-1-1981

Real Time Control of a Robot Tacticle Sensor Real Time Control of a Robot Tacticle Sensor

Jeffrey A. Wolfeld
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Robotics Commons

Recommended Citation Recommended Citation
Jeffrey A. Wolfeld, "Real Time Control of a Robot Tacticle Sensor", . August 1981.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-81-04.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/678
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fcis_reports%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/678
mailto:repository@pobox.upenn.edu

Real Time Control of a Robot Tacticle Sensor Real Time Control of a Robot Tacticle Sensor

Abstract Abstract
The goal of the Experimental Sensory Processor project is to build a system which employs both visual
and tactile senses, and then explore their interaction in a robotic environment. Here we describe the
software involved in the low level control of the tactile branch of this system, and present results of some
simple experiments performed with a prototype tactile sensor.

Disciplines Disciplines
Robotics

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-81-04.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/678

https://repository.upenn.edu/cis_reports/678

UNIVERSIrI OF PENNSYLVPu~IA

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

REAL TIME CONTROL OF A ROBOT TACTILE SENSOR

Jeffrey A. Wolfeld

Philadelphia, Pennsylvania

August, 1981

A thesis presented ~o the Faculty of Engineering and Applied
Science in partial fulfillment of the requirements for the
degree of Master of Science in Engineering for graduate work
in Computer and In£~rmation Science.

Ruzena Bajcsy

Aravind K. Joshi

The work reported he~e was supported in part by NSF grant
number MCS-78-07466.

Jeffrey A. Wolfeld
Ma~te~s·Thes~s

REAL TIME CONTROL OF A ROBOT TACTILE SENSOR

Jeffrey A. Wolfeld

Phil~delphia, Pennsylvania

August 1981

Abstract

--

The goal of the Experimental Sensory Processor project is to

build a system which employs both visual and tactile senses,

and then explore their interaction in a robotic environment.

Here we describe the software involved in the low level

control of the tactile branch of this system, and present

results of some simple experiments performed with a

prototype tactile sensor.

ii

Acknowledgments

I would like to thank the following people:

Jim Korein, my office mate, with whom I had many fascinating
discussions between 9:00 and 5:00 on weekdays;

Gerry Radack, who occasionally dragged me away from my
terminal in order to play music;

Clayton Dane, who helped keep my feet on the ground:

Jeff Shrager, without whom I. might never have gotten pas·t
the Abstract;

Taylor Adair, who kept the computer running when it really
wanted to crash;

Ira Winston, who seTve~ as the local oracleJ

Jack Rebman of the Lord Corporation, without whom this
thesis would have been entirely speculation;

David Brown, who got me into this mess in the first place;

and my advisor, Ruzena Bajcsy, mother to us all.

iii

- - .-. - -~

Table of Contents PAGE

1. Introduction • • • • • • • .. • • • • • 2

1.1 Motivation. • • • • • • • • • • • • • 2

1.2 Project Overview. • • • • • • • • • • • 4

2. Proposed Microprocessor Software • • • • • • 9

2.1 Processors. • • • • • • • .' • • • • 10
2.1.1 Tactile Sensing Processor • • .. • • • 11
2.1 •.2 Motor Control Processor • • • • • 13

2.2 Cross-Sectional Scan Command. • • • • • 17

3. The Implemented Software · • • • • • • 22

3.1 Environmental De.t~il~ .. • • • • • • • • 22

3.2 Command Format and Interpretation • • • • • 23

3.3 Motor Control. • • • • • • • • • 26

3.4 Tactile- Data Acquisition · • • • • • • • 33·

4. Experiments and Results • • • • • • • • 35

4.1 Calibration • • • • • • • • • • • • • 35

4.2 Static Tactile Image Analysis • • • • • • 37
4.2.1 Single Image. • • • • • • • • • 37
4.2.2 Spatial Resolution. • • • • • • • • 39
4.2.3 Multiple Images. • • • • • • • 40
4.2.4 Large Objects • • • • • • • • 41
4.2.5 Small Angle Measurement • • • • • • • 42

4.3 Dynamic Texture Analysis · • • • • • • • 44

4.4 Conclusions • • • • • • • • • • • • • 48

s. Further Work . • • • • • • • • • • • • 50

iv

Copyright 1981 by Jeffrey Wolfeld

Chapter 1: Introduction

. 1.1 Motivation

Artificial Intelligence researchers have worked

extensively with vision systems in an attempt to give

computers, and eventually robots, a sense of sight. A great

deal of this research has been directed toward overcoming

certain basic inadequ~~ies in our current technology. For

example, imperfect light sensors dictate that noise must be

eliminated or tolerated. Insufficient spatial resolution

requires routines which will interpolate below the pixel

level.

One of the most important problems is that a camera

produces a two-dimensional image ·of a three-dimensional

scene. This invalidates an assumption which one would like

to rely upon -- that two adjacent points in the image are

adjacent in the scene. Therefore, substantial effort has

been devoted to reproducing 3-D data from one or several

visual images. Tactile sensors can .be used to aid the

process.

An imaging tactile sensor, by its very nature, does not

have the problem. Since it produces a two-dimensional image

2

of a two-dimensional scene, it does not provide as much

information, but it yields useful information clearly,

without the need for complicated heuristics.

We can take this one step further. Suppose a tactile

sensor is mounted on some kind of computer controlled 3-D

positioning device. Then, by moving the sensor to different

points on a target object, the computer can actually obtain

3-D data directly, and much more selectively. If this

information is used to supplement and augment visual data, a

great deal of processing may be avoided.

One can come up with many other uses for varying kinds of

tactile sensors. Briot [BRIOT-7~ demonstrated that tactile

sensors mounted on the fingers of a robot hand can be used

to determine the position, orientation, and perhaps even the

identity of an obje~t which it has grasped. He also showed

that a grid of pressure sensitive sites on a table can tell

a robot the location, orientation, and again, the identity

of a part. It should be possible with multi-valued pressure

sensors, as opposed to binary sensors, to determine the mass

of the object. When the angle is small, a tactile sensor

can be used to compute the angle between it and the object

being grasped, possibly with a view toward improving the

grip. Also, if the device is sensit"ive enough, it can be an

invaluable aid to a robot attempting to grasp a fragile

object without breaking it. Finally, a-tactile sensor makes

it possible to incorporate the properties of surface texture

3

and resilience into the object recognition process.

1.2 Project Overview

The design and development of the tactile system has

proceeded with two different sensors in mind.

Unfortunately, there are so many disparities between the two

that we had difficulty keeping the system general enough to

handle both. Let this serve as a demonstration of the

variety of characteristics that must be considered for a

given application.

The first sensor is about five inches long, with an

octagonal cross section about 3/4 inches in diameter. Each

of the eight rectangular faces is connected "to a tapered

piece, which is in turn connected to a common tip piece.

There are a total of 133 sensitive sites -- 16 on each main

face, one on each alternate taper, and one on the tip.

Because of the the vague resemblance, we will refer to this

sensor as the Finger.

The second sensor, the Pad, is a flat rubber square

about two and one half inches on a side. An 8 x 8 grid of

conical protrusions identify the 64 pressure sensitive

sites. The pad is mounted on a square metal pi~ce, about

three and one half inches on a side, which is in turn

connected. to another similar piece by four metal posts.

These posts have strain gauges on them which measure the

force parallel to the object's surface.

4

Initially, we only considered the finger. Because of

its shape and organization, o. the sensor is best sui ted to

applications involving probing and' tracing. This includes

testing for resiliency, e~amining surface texture, and

tracing cross-sections of an object. In our view, texture

would be thought of as a kind of microscopic contour, while

the cross-section tracings would yield a macroscopic

contour. Taken together, we would be able to acquire an

extremely detailed description of very selective parts of

the object in question.

Unfortunately, this rather vague idea has not been

developed. We have instead dealt with the two descriptions

independently with the assumption that they can both be

incorporated into a general object recognition system.

For his Master's Thesis, David Brown [BROWN-SO]

developed a three-dimensional positioning device for the

finger. Basically,· it is a square horizontal metal frame

mounted on four legs. Moving forward and backward on this

is a second, vertical square frame. A vertical track rides

left to right on that, and a rod moves up and down in the

track. The finger would be mounted with its tip downward at

the bottom of the rod.

Thus, we have three degrees of freedom -- the X, Y and

Z axes -- each positioned by a stepper motor driving a lead

screw. This gives us the capability of examining, from the

top, any object or objects placed on a table below the

5

horizontal frame, in a total working volume of about 18

cubic inches. Since the degrees of freedom are strictly

-positional, as opposed to rotational, we are not c'apable of

reaching under an overhanging lip, or sideways below a

-"covering section. This places certain restrictions on the

kind of object we can examine. If we think of the

horizontal axes as X and y~ then the object must be

describable as a strict function of those two variables.

Needless to say, this is not a robot arm, but we felt it

would suffice, temporarily at least, for our research.

The positioning device and tactile sensor are directly

controlled by a pair of zao microprocessors, which are in

turn under the command of a PDP-ll/60 minicomputer •. Of the

Z80's, one (the Motor Control Processor, MCP) is responsible

for driying and p/)si tioning the stepper motors, and the

other (the Tactile Sensing Processor, TSP) .is dedicated to

tactile data acquisition and compression. The MCP and TSP

-communicate with each other via a 14-bit wide parallel data

path. The PDP-ll/60 issues high level commands, and

receives positional information, through a serial connection

-to the MCP. Finally, tactile data is passed to the 11/~O

through a DMA link from the TSP.
O

One of the aforementioned high le-vel commands would

request the microprocessors to trace the cross-section of ~n

-object in any arbi trary plane in space, ··passing the sequence

of 3-D coordinates back to the host computer. A great deal

6

of thought went into the implementation of this command, and

it is, to some extent, responsible for the architecture

described above. The procedure will be described in detail

in a later section. It is a good example of how tactile

sensory feedback can be used in a real time, closed loop

fashion.

The finger was designed and fabricated at L.A.A.S., the

major robotics establishment of the French government.

Because of a severe lack of communication, many of the

finger's details were not known to us when the software was

being designed. This had a positive affect in that we were

forced to be as general as possible. However, due to a

number of unexpected delays, we still do not have the finger

in our possession.

We arranged to borrow the pad sL<nsor from Lord

Corporation in Erie, Penna.* They traditionally deal with

blending rubbers and bonding rubber to metal. This sensor,

still in the prototype stage, is an attempt to expand their

business.

At any rate, we had the pad sensor in our possession

for three very long days. In preparation for that ordeal,

we planned a number of different experiments. The Lord

people were very helpful in this, and they provided us with

the appropriate wooden test objects.

* Lord has since moved to Cary, South Carolina.

7

The characteristics of the pad sensor are very

different than those of the finger. In particular, there is

only one sensitive face. This makes the pad much less

suited to contour tracing. We therefore decided to

and measurement

on some of theconcentrate

sensing --

recognition,

dynamic texture

other aspects of tactile

analysis, static pattern

of small angles between the

object and sensor surfaces.

The ensuing sections will describe in detail the work

performed.

8

Chapter 2: The Proposed Microprocessor Software

In anticipation of the arrival of the finger, a great

deal of software was planned. Then, when the delays became

apparent, work on those aspects not directly applicable to

the pad sensor screeched to a halt. As a result, some of

the design described here has not yet been implemented. In

a later section we will discuss in detail exactly what the

existing software does.

One of the important features of the Experimental

Sensor Processor is its delegation of low level tasks to

other processors. ~his helps to diminish the computational

load on the host pdp-ll/60. The tactile branch, in keeping

with this principle, would have a set of commands which

could be invoked by the host to perform various I/O and

timing intensive operations, or functions involving real

time feedback. Following are some of the c.ommands that were

considered:

1. Reset the machine.

2. Move to absolute coordinates (x, y, z), stop on
collision with an object. This can be used as a
nfind something in this direction" command.

9

contour of an
in 3-space.

step vectors

3. Scan Cross-section -- Trace the
object in an arbitrary plane
Returns to the host a list of
describing the finge·r' spath.

4. Local Texture -- Trace around a small circle on
the surface of an object and produce a
description of the texture. This could be in
terms of degree of roughness, degree of
compliance, or something as crude as a list of
pressure values for each point in the path.

5. Search (in an as yet unspecified manner) for
either a concave or a convex edge. It is
assumed that the finger is already in contact
with a surface.

6. Follow the contour of a concave or convex edge.
Passes a list of step vectors to the host
describing the finger's path.

The first command, Reset, is trivial. It simply

involves the reinitialization of variables. The move

command, due to its fundamental nature, has been implemented

for use with the pad sensor. The cros~-sectional scan

command has rec'eived a great deal of atter -.:ion·, but has not

been completely implemented because of its incompatibility

with a single-face sensor. The final three commands, Local

Texture, Find Edge, and Follow Edge, have to date received

very little serious consideration. They are quite

tentative, and may never be implemented.

2.1 Processors

As described in other sections of this thesis, the

tactile branch consists of two microprocessors, the Tactile

Sensing Processor (TSP) , and the Motor Control Processor

(MCP). A different program runs in the firmware of each

10

processor. Both are entirely interrupt driven using the

Z-80 vectored interrupt system. From the host computer's

point of view, the TSP provides data for texture analysis,

and the MCP provides data for contour analysis.

2.1.1 Tactile Sensing Processor

The TSP program consists of a single loop in which each

of the sensors is interrogated for its a-bit pressure value.

Each value is thrown into one of three categories with

respect to a low and a high threshold. the category

indicates whether the sensor is not touching anything, is in

contact with an object, or is pressing the object too hard.*

The sensors are then grouped by finger face, and a face

status is computed for each face using the following rules:

If any sensor J~S over range, the face is over range;
If all sensors are below range, the face is below range~

Otherwise, the face is within range.

If there were any face status changes since the last pass,

the Motor Control Processor is informed.

It is worth noticing that this condensation algorithm

is independent of the particular organization of the finger.

The number of faces, the faces' orientations, and even the

* We hope that the sensors have enough compliance of their
own so we can arrange the thresholds successfully. We
would like to guarantee that for any movement toward an
object, there is at least one position in which the
leading sensor is "in contact" before it exceeds the upper
threshold.

11

mapping of sensor number to face number are stored in

tabular form, and may be altered according to the parameters

of a different sensor. It will be obvious later that the

more faces we have, the easier it is to k~ep in contact with

an object. In the ideal case, we would like a hemispherical

finger with many sensors, each on its own face. Such an

organization can be accommodated just as well as the current

finger.

In addition to providing this condensed status

information for the sister processor, the TSP must send some

data to the host, for the texture analysis. How much· data

does the host need? If we send it all we can -- 133 a-bit

bytes per step, 125 steps per second -- we would need the

equivalent of 20 9600 baud serial commu~ication lines to

handle the load! The bottleneck is removed by using a Direct

Memory Access (DMA) interface. But even so, we cannot

expect the PDP-ll(60 to analyze data arriving at such an

incredible rate, and still be able to keep up with the other

sensory branches, and perform the higher level recognition

tasks at the same time. It simply does not have the

computational power.

The answer, of course, is to filter or condense the

data before sending it. We have several possibilities in

mind. FirstJ a sensor is only considered -valid if its

pressure value is "within range". This filter is always in

effect. Other possibilities include averaging sensor

12

readings over time and only reporting after a fixed number

of steps, or combining somehow the readings from all sensors

on each face which is "within range" to produce a single

face pressure value. A final possibility is to arrive at

some kind of measure of roughness for the surface under

consideration, and only pass that number back to the host

com~uter. This decision has not been made.

2.1.2 Motor Control Processor

The Motor Control Processor's basic job is to control

and coordinate the three stepping motors which position the

finger. When it is necessary that the host computer know

the path that the finger follows during the execution of a

command, the MCP provides it.

Steps are taken in a synchronous fashion. That is, if

the step rate is set to 125 steps per second (the default

case), the processor is interrupted every eight milliseconds

to determine which motors are to be stepped, and in which

direction.

So, after each interval, the MCP may pulse any

combination of the three motors, and each can be in one of

two directions. This leads to 26 possible directions in

which a single step can move (ignoring the case where no

step is taken at all). We represent. this direction as a

13

6-bit "step vector", organized as follows:

bit 5 4 3 2 1 o

1 Z 1 Z 1 Y 1 Y! X 1 X !
1 dir.ection ! step ! direction ! step 1 direction ! .step !

Since this fits easily in an a-bit byte, it is very

convenient now for the MCP to g-ive a path to the host

computer. It simply sends a one-byte step vector over the

serial line for each step taken. The host collects the

sequence of step vectors in a buffer, and the exact path can

be reconstructed very quickly at any time.

There are, of course, situations in which it is

necessary to give an absolute coordinate. For example, when

the absolute move command is aborted due to collision with

an object, it is necessary to inform the bost what the new

position is. A mechanism is provided for t, his, too.

Notice that tne MCP returns (effectively) a sequence of

points. It does not try to fit them to curves, surface

patches, generalized cylinders, etc. This is left to the

host computer.• It is unreasonable to _expect an 8-bit

microprocessor which lacks even a multiply instruction to do

these in real time.

When moving from one position to another in 3-space, it

is desirable to do so in a straight line. This requires

varying the speeds of the individual motors so that they all

arrive at their destinations simultaneously. The following

14

example shows how we would like to arrange the steps in a

sample situation.

x
y
Z

A
steps

===~=~=

17
21

5

B
desired time between steps
===~~====~================

9.88 milliseconds
8.00 milliseconds

33.6 milliseconds

The values in column B were arrived at by dividing the

column A values into the greatest column A value, and

multiplying the result by 8 millisecs. (8 millisecs is the

speed at which we would like the fastest motor to operate) •

This is a lot of work for an a-bit microprocessor to

perform. Also, if the precision of these calculations is

not great enough, it becomes virtually impossible to predict

exactly where the finger will be at any given point in time.

Fortunately, the synchronous stepping scheme makes

matters much simpl~r. The overall line of motion is a line

in 3-space. This is described and stored in terms of three

direction components. There are also two accumulating

counters, one for the mid direction, and one for the min

direction. (The mid direction is the dimension which has

the second-largest number of steps to take. Min direction

is defined similarly.) Both are preset to zero.

After each a-millisecond interval, a step vector is

created, and the motors are stepped accordingly. The max

direction is always stepped. For each of the other two

15

directions, the accumulating counter is incremented by the

corresponding direction component value, and the result .is

taken modulo the max direction component. If an overflow

occured, a step is-taken.

Applying the algorithm to the above example results in

the following sequence of steps.

Step X Y Z 1 Step X Y Z
==================1==================

1 * 1 11 *
2 * * 1 12 * *
3 * * 1 13 * * *
4 * * ! 14 * *
5 * * * 1 15 * *
6 * 1 16 *
7 * * 1 17 * * *
8 * * 1 18 * *
9 * * * 1 19 * *

10 * * 1 20 * *
1 21 * * *

When a step is taken, two corolla:~.. y actions occur.

First, if the MCP is providing path information, the step

vector is sent to the host. Second, a termination test is

made. For the absolute move command, termination occurs

when the finger reaches its destination.

This command also terminates if the Tactile Sensing

Processor indicates that the finger has come in contact with

an object. Primarily, this is to protect the finger from

damage. However, it also makes it possible for the host to

say, "look in this direction for an object." In that sense,

this command can be used as an object finder.

16

2.2 Cross-Sectional Scan Command

This command is invoked by the host to trace the

contour of an object's cross-section in any arbitrary plane

in 3-space.* The arguments include the coefficients a, band

c in the equation of the plane ax + by + cz = 0, and a pair

of special 3-D points which define the search volume. The

finger must already be touching an object, and the plane is

assumed to pass through the finger's current position.

Consider a conical object and a slicing plane parallel

to the x-y plane. The MCP will drive the finger in the

plane such that it remains in contact with the surface of

the cone. All the while, it passes its path back to the

host. Later, the host will analyze the path, and discover

that it describes a circle.

The search volume is included to limit the finger's

range of motion. Suppose, for example, the host wanted to

construct a 3-D bicubic surface patch. It could do this by

requesting four cross-sectional scans using vertical planes

whose y-z projection is a rectangle. Then it could fit

curves to each of the four point sequences, and perhaps fit

a patch to these four curves.

* My terms will be very confusing unless I define them at
the outset. "Plane" generally refers to the arbitrary
cross-sectional plane given by the host. "Surface" is the
(possibly curved) surface of the object. "Face" refers to
one of the faces of the finger on which sensors are
mounted. "Search volume" means the physical volume in
which the finger is allowed to move.

17

Unless we provide some mechanism for limiting the

search space, there is no way to prevent the finger from

doing a complete scan of the o·bject' s cross-section, when

only a small portion of that scan is needed.

The search volume is a rectangular parallelepiped with

diagonally opposed corners defined by two arbitrary points

in 3-space. The arbitrary points are chosen by the host

computer and passed to the MCP as arguments to this command.

Very often, the points may contain special coordinate values

of 0 or 'max'. These may be used to effectively leave one

or more dimensions completely unconstrained.

In the surface patch example, we would like to

constrain the x and y position to the projection of the four

slicing planes onto the x-y plane. The z position should

not be constrained at all. Thus, the two arbitrary points

might be (Xl, Yl,O) and (X2, Y2, max)'.*

The scan will terminate when the finger either exceeds

one of the bounds, or returns to its initial position. This

second termination condition is useful if the host is

interested in producing a contour map of the object. It

could do this._ by requesting a series of scans I using

cross-secti9n planes parallel to the x-y plane, but at

varying z values. In this case we would like the finger to

* In addition to this
maximum search volume
device.

18

constraint,
given by

there is an
the dimensions

implicit
of the

completely circumscribe the object, continuing until it

returns to its starting point.

A problem which has not yet been mentioned is that of

keeping in contact with the surface of an object. It turns

out that in most situations, this is relatively simple. The

method requires three kinds of information.

As described earlier, the finger has a number of

distinct faces. The present structure of the positioning

device does not allow for rotation or re-orientation of any

kind. Hence, .except for possible translation, these faces

are fixed. Their equations, as well as those of the planes

perpendicular to them, are predefined as constants in the

MCP program.

Second, we have the equation of the ~=ross-sectioning

plane. All motion of the finger is to be rt:stricted to that

plane. By intersecting this plane with either the plane of

a face of the plane perpendicular to a face, we can

calculate a line of motion. This can then be fed to the

absolute move routine to effect the movement.

Finally, there is the data from the Tactile Sensing

Processor. This indicates whether each face is below range,

within range, or above range. Typically, there will be only

one face which is within range. This is labelled the

"active face," because it is the one which is in contact

with the surface. There are exceptions, and we will see

19

shortly how we can account for them.

The objective in keeping in contact with a surface is

to keep the active face within range. Recalling that by

definition of the command, the active face is initially

within range, we have the following cases:

(1) Active face is within range;
(2) Active face is below range;
(3) Active face is above range; and
(4) A second face comes within or above range.

In case (1), the finger is in contact with the surface.

Our best estimate of the shape of the object at this point

is a plane parallel to the active face. Calculate the line

of motion (if it has not been calculated already) as the

intersection between the active face and the

cross-sectioning plane.

host, and take a st~p.

Send the current position to the

In cases (2) and (3), the finger either has lost

contact, or is pressing the surface too hard. Calculate a

line of motion as the intersection between the

cross-sectioning plane and the plane perpendicular to the

active face. Then take a step along it away -from or toward

the finger's cente~, respectively. Do not send this step

vector to the host, because it is not part of the surface

contour.

Case (4) could result from several different

situations. Take the scenario in which the finger hit a

20

~ -. ~ .. - ...

concave corner. In this case, the appropriate action is to

make the new face the active face, and then act according to

its status.

Another scenario in which case (4) could occur involves

reaching either a convex corner, or a point at which the

surface curves away from the curr~ntly active face. Again,

the appropriate action is to declare ·the new face as the

active face, and act according to its status.

There are a number of other situations in which a

second face could come within or above range. The

appropriate action is not always the same as above. In

fact, one could imagine situations ~n whicp ~ third and

perhaps a fourth face must be considered. Though these

cases have not yet been adequately resolved, we do not

expect them to be o~'erly troublesome.

21

Chapter 3: The Implemented Software

We noted earlier that although the software was

designed for the finger, it was eventually implemanted for

the pad sensor. The most notable difference between design

and implementation was the fact that in the end, we only

used one microprocessor. All those commands which required

multiple face sensing -- trace contour, follow edge, etc.

-- were eliminated because the pad sensor in fact has only

one face. It happened that these commands coincided with

the ones which required real time feedback. Therefore, the

requirements of the tactile data acquisition software became

almost trivial, and. could be handled easily and much more

simply by the Motor Control Processor.

3.1 Environmental Details

The microprocessor software is written in Z80 assembly

language. It resides on the PDP-ll/60, which runs under the

RSX-IlM operating system. We use a primitive Z80 assembler,

written in C, which produces Intel hex-format object code.

This we download to the microprocessor' via the 1200 baud

serial line which connects the two systems. As it turned

22

out, 1200 baud was as fast as the 11/60 could reliably

receive and store data.

The microprocessor system is.made up of a California

Computer Systems 5-100 bus and mainframe, 8K of RAM; and a

Cromemco Single Card Computer (SeC) with lK RAM and room for

8K of PROM, 1K of which is taken ~p by a modified form of

Cromemco's power-on monitor. The sec has five timers, three

parallel ports (input/output), and a serial port. Since the

AID converter built into the pad sensor produced CMOS output

levels, we decided to temporarily add our own converter, a

Cromemco D+7A board.

In the following sections we give a complete

description of the software as it currently stands.

3.2 Command Format and Interpretation

The command language was to be a permanent part of the

software. It would"be used initially by a 'humari user to

control the pad sensor's movement and data acquisition.

Eventually, however, it would become the Experimental

Sensory Processor's way of driving its tactile branch.

Thus we had three goals in· mind. First, the command

language should be versatile. It should be able to handle

the commands described in the previous chapter as well as

the simple placement and data acquisition commands we needed

for the pad sensor experiments. Second, it should be

23

concise enough, and easy enough to interpret, to be used for

interprocessor communication. Finally, it had to be

legible, so that the user could issue commands from his

keyboard.

We settled on a syntax with mnemonic, single character

commands, optionally preceded by an ascii-coded positive or

negative integer which defaults to +1 if omitted, and

optionally followed by any special arguments required by the

command. The preceding integer is decoded by the parser.

It generally refers to the multiplicity, though its

interpretation is up to the individual command routines.

The trailing arguments are parsed and interpreted completely

by the individual command routines.

Commands may be strung together to form a command

sequence. Execution will not begin until a carriage return

is received. The sequence is, of course, stered in a buffer

until execution is complete. A key advantage to this is

that it makes loops possible. In the syntax, a subsequence

may be grouped by parentheses, which in turn may optionally

be preceded by a mUltiplicity M. The entire subsequence

will be repeated M times. Subsequences may be nested to any

reasonable depth.

There is one more rather important feature. While the

command sequence is incomplete, the Motor Control Processor

completely disables interrupts. Since the motors are driven

by periodic timer interrupts, all movement must stop.

24

- - ,

Similarly, characters coming from the serial line during

command execution are ignored. This generally does not

matter, because execution will have terminated before a new

command sequence arrives. However, should it become

necessary for the host computer (or user) to abort

exec'ution, it (h'e) may send an ESC'ape ch·aracter.. . This

causes a non-local subroutine return to the command sequence

input routine, which immediately disables interrupts.

The following is a list of the commands currently available.

B

nX

nY
nZ
@x,y,z
n(
)

=

Q

18

-is

as
G

space

Home -- return to inner, upper left corner,
and reset the current position to (0,0,0).
Move n steps in the X direction (n may be
positive or negative, and defaults to +1 if
omitted) •
Move n steps in the Y direction.
Move n steps in the Z direction.
Move to absolute position (x,y,z).
Begin nest.
End nest.
Return current position as x,y,z
coordinates, ascii-coded decimal values
separated by commas.
Quit the program return to power-on
monitor •.
Take a snapshot of the sensor, store data in
memory, increment frame count.
Take as many snapshots as possible until the
completion of the current motor step.
Clear the frame memory.
Send the contents of the frame memory to the
host, beginning with the frame count. All
data is in ascii-coded hexadecimal. Then
clear the ·frame memory.
Null operation.

These commands are obviously very simple. 'However,

they can be very powerful when grouped together. For

example, the sequence

@lOO,lOO,lOO SO(3(20X 20Z S -2QZ) 20Y -60X) G

25

takes 150 snapshots, in a 50 by 3 grid, beginning at

<,100,100,100), then sends all the collected data to the host

computer. Since optical limit switches prevent the motors

from moving past the ends of travel, one could find the

maximum limits in all directions by issuing

@lOOOO,lOOOO,lOOOO =

(the actual range is roughly 1200 steps per axis). This

would move the sensor to the corner opposite the home

position and report the actual coordinates.

This list will eventually be enhanced to include the

commands described in the previous chapter. We expect to be

able to continue to denote each command with one mnemonic

character.

3.3 Motor Control

It is not surprising that the most complicated task

performed by the Motor Control Processor is, in fact, motor

control. The complexity arises for two reasons. First, it

is intended to be a permanent part of the MCP software, and

is therefore very general in design. Second and most

important, the step service routines effectively and

completely insulate the higher· level command execution

processes from the hardware.

At the top level, an individual command routine uses

26

the step services in the following fashion:

Set the direction components in LINE
Call SCFILL to fill the step control table
Do until termination-condition:

Call STEP to initiate a step when ready
Call NEWPOS to update current position
Call NEXTPO to prepare the next step

End

Note that it does not concern itself with timing in any

way, nor does it have to take into account the physical

limits of the device. The STEP routine guarantees a minimum

pulse width (maximum step rate), and even modifies the step

request if such an action would drive a motor past its end

of travel.

Also note that the routine must actively request that a

step be taken. If, for some reason, the evaluation of the

termination conditicn is very time consuming, the motors

will simply run slow~r. This has another advantage. Should

the program Qe damaged by an unusually high incidence of

cosmic rays, the motors will not go out of control. They

will simply stop, because nothing is calling the STEP

routine.

Before we take a closer look at these routines, we must

discuss the data structures involved. The first one that

was mentioned is LINE. It takes three numbers to define the

direction of a line in 3-space: delta-x, delta-y, and

delta-z. These are the line's direction components. Simply

put, when we take delta-x steps in the x direction, we must

27

also take delta-y steps in the y direction, and delta-z

steps in the z direction. Within the MCP, these values are

stored and manipulated as unrestricted 16-bit integers.

However, should it later become necessary to compare line

directions, these may have to be restricted to relatively

prime integers. LINE is a three word array which defines

the desired path to the step routines.*

A commonly accepted canonical form for these values is

a list of direction cosines. This requires that the values

be real numbers, and that the sum of their squares equal

unity. Fortunately, we have not found this form necessary.

The second data structure is the Step Control Table

(SCTAB). This lS-byte table is basic to the operation of

the step service routines.

contents.

Following is a layout of its

SCTAB+ 0: (byte) Next port image
1: (byte) Port image skeleton (direction bits)
2: (word) Max direction component
4: (word) Mid direction component
6: (word) Min direction component
8: (word) Mid accumulating counter

10: (word) Min accumulating counter
12: (byte) Max direction's motor pulse and power bits
13: (byte) Mid direction's motor pulse and power bits
14: (byte) Min direction's motor pulse and power bits

Let us digress a moment before we explain SCTAB.

Instructions are passed to the stepper motors via an a-bit

* The zeo, of course, does not really have any distinct
concept of a .lword.·1 However, being an "old PDP-ll man, I
always have and always will refer to a 2-byte quantity as
a word.

28

output port, which looks like this:

bit 7 6 5 4 3 2 1 a

1 Z 1 Z ! Y-Z 1 Y 1 Y 1 X ! X ! X 1
1 dir lstep Ipower! dir !step !power! dir lstep 1

The three direction bits indicate which direction the

corresponding motor is to move. One implies the negative

direction, zero implies the positive. The step bits, when

pulsed, cause their corresponding motors to take a step in

the indicated direction. Due to a low-pass filter which is

applied to these bits for noise immunization purposes, there

is a minimum pulse width. The MCP uses a separate timer for

this, as will be described later.

Finally, the power bits, when on, cause drive power to

be applied to the corresponding motors. For now, the reader

need only understand that a motor must have power in order

to .operate.

Now we should be able to make sense out of the Step

Control Table. The first item, the "next port imagen is

exactly that -- the 8-bit quantity that is to be sent by the

STEP subroutine to the motor drive output port at the next

opportunity. It is very important to note that this value

is, in general, calculated concurrently-with the previous

step, by a call to NEXTPO.

The second item, the "port image ~keleton," contains

the three direction bits. These bits are applied with every

29

step. The SCFILL routine sets them according

of the three direction components in LINE, and

change again until a new line is chosen.

to the signs

they do not

The next three items, the Max, Mid and Min direction

components, are actually the magnitudes of the numbers that

appeared in the LINE array, but in sorted order. These are

used in conjunction with the Mid and Min accumulating

counters to determine which motors to step at the next

timing interval.

Finally, the mapping from the sorted order to the x-y-z

order is given by the last three items. Each of these bytes

has exactly two bits set, corresponding to the appropriate

motor's step and power bits.

The NEXTPO routine first decides which motors are to be

stepped, and then adJs together the corresponding mapping

bytes, along with the direction bits from the skeleton. The

resulting value is the next motor port image.

Let us now return to the . high level control loop given

at the beginning of this section. First of all, note that

the values passed in the LINE array indicate a direction

only. They do not completely describe a line segment in

3-space. It is assumed that the line of motion will begin

at the current position, and the control loop is responsible

for knowing when to stop.

Once the LINE table is set, SCFILL is called to fill

30

the Step Control Table. All values are calculated

independent of the previous contents. The NEXTPO routine is

then called automatically to use the new table- to compute

the first port image and place it in the zeroth location.

Since a step is never taken unless specifically

requested by the control loop, it is·perfectly reasonable to

completely change direction at any time by simply changing

LINE and calling SCFILL, before calling STEP again. One

need not be concerned with the timing considerations.

Within the control loop itself, the first action is a

call to the STEP routine. This routine waits, if necessary,

for the previous step to complete. Then it calls CHECK to

check the .optical end-of-travel limit switches and, if

necessary, modify the candidate port image. Finally, the

routine outputs the image to the motor port and returns to

the calling control loop.

Internally, one of the five on-board timers is also set

to cause an interrupt after a time equal to half the minimum

step pulse width'has elapsed. The routine which handles

that interrupt will clear the motor step bits and set the

timer to interrupt again after another equal interval. At

that point, an entire step has completed. The STEP routine,

if it is waiting, is allowed to proceed with another step.

In this way, something like an open ended squa-re wave is

generated on the motor. pulse bits.

31

This brings us to the other subroutine calls in the

main control loop. During the timing delays, the CPU is

free to do quite a substantial amount of processing. Recall

that the STEP routine has the power to modify the candidate

port image. This modified image is returned to the control

loop, where it is passed again to the NEWPOS routine.

NEWPOS, based on the direction and step bits which were

actually sent, updates the current coordinate counters.

The calculation of the next port image is then

accomplished by a call to NEXTPO, which proceeds as follows.

1. Begin with the motor port skeleton, which
defines the direction bits.

2. Add in the Max direction's pulse and power bits.
That motor is to move at the maximum rate, and
will therefore always take a step.

3. Add the Mid direction component to the Mid
accumulating counter, and take the result modulo
the Max direction component. If there was an
overflow, we want to step the Mid motor. Add in
its pulse and power bits.

4. Repeat step 3 for the Min direction.

The resulting value is placed in the first byte. of the Step

Control Table. An example of this algorithm in operation

was given in chapter 2.

There is one final item to discuss. Conceptually, a

stepper motor has a series of magnetic coils arranged in a

circle around an iron core. As steps are taken, each coil

in succession is energized, drawing the core around the

circle. During normal operation, a given coil is only

32

energized for a brief period before its successor takes

over. However, when the motor is standing still, one coil

is energized continuously for a long period of time. It can

generate quite a bit of heat -- enough, perhaps, to burn

itself out.*

To solve this problem we imp~emented the following

scheme. Every time a motor is stepped, its power is

automatically turned on. At the same time, its

corresponding usage counter is reset to some constant.

Periodically, another of the on-board timers interrupts the

processor to decrement all the usage counters. When anyone

reaches zero, the corresponding power bit is turned off.

The effect of this is to power down any motor that has

not been stepped in the last two seconds. The action is so

completely transparent to the higher level control software

that we refer to it a~, the "burnout protection demon."

3.4 Tactile Data Acquisition

Due to its temporary . status, the tactile data

acquisition is perhaps the least important p~rt of the

software. As soon a~ the finger arrives, these routines

will be removed from the Motor Control Processor and

rewritten completely for the Tactile Sensing Processor,

* I don't know whether motors would actually burn out, but
when I found I could fry eggs on them, I did not want to
take chances.

33

according to the plans given in chapter 2. Therefore, as

might be expected, the current code is far from general. It

is entirely driven by the Sand G commands described

earlier. Nothing happens asynchronously.

The entire unused portion of the MCP's memory board is

used as a buffer for tactile data. Upon MCP initialization,

the frame count is reset to zero. Then, each time a

snapshot is requested, the data record is placed in the next

position in the buffer, and .the frame count is incremented.

When the readout is requested (via the G command), the

program simply types it all out, one line per record,

beginning with a line consisting solely of the frame count.

The information is transmitted in ascii coded hexadecimal,

as an optimization of both transmission time and coding

time.

34

Chapter 4: Experiments and Results

In this chapter w~ will discuss the experiments w~.ich

were actually performed using the pad sensor. We will

consider the methods, the goals, the problems, and the

results. When possible and appropriate, we will refer to

figures which illustrate the results.

The pad sensor consists of an 8 x 8 array of sensitive

sites whose analog output values are fed into an analog

multiplexer, and finally into an analog to digital

converter. All this circuitry is part of the sensing

device. Unfortunat~ly, since the AID converter emits CMOS

voltage levels, and our parallel ports use TTL inputs, we

had to bypass the internal AID and use our own. This

resolved the incompatibility, but gave vent to another

problem. The pressure signals coming out of the multiplexer

ranged roughly from +2.0 to +2.5 volts, and our AID

converter expected a range of -2.5 to +2.5. As a result,

the digital pressure readings never went below about 235,

out of a maximum 255.

In other words, the fact that we can exhibit only a

35

little over four bits of precision is not a reflection on

the device, but on the interface. With the right interface,

we would estimate upwards of six bits of valid data.

Each of the 64 pressure sensitive sites puts out a

slightly different range of voltage levels. They therefore

required individual calibration. The most straightforward

way of doing this is to press the sensor down hard on a flat

surface, take a snapshot, release the sensor entirely, and

take another snapshot. This yields a matrix of minimum and

maximum pressure values, to which all subsequent data would

be scaled in a linear transformation.

Of course, nothing is ever so simple. Each pressure

sensitive site requires roughly 1.3 pouOds of pressure to

completely depress it. Multiplying that by 64 sites, we

find that we need over 80 pounds of pressure t.o acquire the

maximum readings. Our Z-axis motor is not capable of this.

The solution was to depress each site individually, and

then combine the data into a single matrix of maximum

pressure values. 'Fortunately, the Motor Control Processor's

command language was flexible and powerful enough to do this

painlessly in one command sequence, with two loops for X and

Y positioning.

Once the minima and maxima were obtained, it was a

simple matter to map all input data into ~ uniform range of

o - 255. It is worth mentioning here that throughout the

36

entire testing period, these ranges never changed more than

one unit. In addition, we never had any problem with

spurious data being generated where there was no contact.

Those points always mapped to zero. We were quite impressed

with the robustness of the pad sensor.

4.2 Static Tactile Image Analysis

4.2.1 Single Image

The obvious first step in analyzing tactile images is

to lay the sensor down on a" known object, take a snapshot,

and ·:see whether it is re~o9·nizable.

results are depicted in fig. 1.

This we aia, and the

In fig. 1£ we uEed a one inch square, set off-center,

but oriented orthogonally with the sensor's grid axes.

There is no question as to the identity of that object. A

simple threshold operation would clearly distinguish it from

the background.

Fig. Ie and fig. Id show the same square rotated

counterclockwise 30 degrees and 45 degrees, respectively.

Fig. ole shows an equi-lateraI triangle, point downward, and

fig- Ib depicts the same triangle rotated clockwise about 75

degrees. Notice how some pixels are much lighter than

others in the images with non-orthogonal edges. This

phenomenon arises when the object covers less than half the

area of a site. Since the site is conical in shape, the

37

edge must be pressing on the wall of the cone. It cannot

depress the cone as far as it could if it were pressing on

the apex.

In theory, it should be possible in some cases to

determine exactly how much of the cone is actually covered

by the object. However, we must assume the following:

1) that the object surface, particularly the edge in

question, is smooth, 2) that the object surface is in a

plane parallel to that of the pad sensor, 3) that the

individual sites on the sensor are in fact conical, with

bases that meet the pases of-their n~ighbors, and 4) that we

know how to calcul"at'e the actual"" depression as a f"unction of'

output pressure value.

Unfortunately, neither of the last two assumptions are

valid in our case. The cones are actually cut off before

they reach the apex,* and we do not have the data to perform

the" depression calculation.

Finally, fig. la shows a one inch diameter circle.

Notice that it appears to be · identical to the square in

fig. lc. This is a question of resolution. Clearly, if the

spatial resolution were doubled or quadrupled, the

distinction would be obvious.

'.---* My offi"ce-mate tells me that the technical term for this
shape is "frustum."

38

4.2.2 Spatial Resolution

How do variations in sensor resolution effect the

image? The simplest way to tackle this question is to vary

the size of the features on the test objects. We used a set

of disks with rai~ed concentric cir~les projec~ing from them

in relief. The variations consisted of two amplitudes and

three frequencies, totalling six disks.

Fig. 2 shows the images obtained. As might be

expected, those disks in which the spacing between the

circles approach the spacing between the sensitive sites

(figs.• 2a and 2d). a.~e c.lear.. . As th~e ...f~equency.·incr.eases,

the shape becomes less obvious, until it is completely

unintelligible at the highest frequency.

The effect of amplitude is also fairly pr~dictable. At

low amplitude, the circles are wider, and tl·erefore more

sites are in contact with the surface. This can be seen

most clearly (again) in figs. 2a and 2d. Also, the inner

circle is more distinct in fig. 2e than in fig. 2b. This is

because at the lower amplitude, the depth of a trough is

considerably less than the height of a conical site, and

therefore some trough sites come in contact with the

surface.

Theoretically, it should be possible to compare

pressure values and determine where the troughs and crests

occur. However, here we run into the limitation in our 3-D

39

positioning device which we alluded to in the Calibration

section. The Z-axis motor, which supplies the normal force,

is a bit too weak for this pad sensor. Each sensitive site

requires a certain amount of force to depress it, and the

motor must be able to exert the sum of these forces in order

to obtain a reliable reading. Therefore, as more sites

contact the surface, each one receives less pressure.

Furthermore, if the surface is not uniform, neither are the

reductions in pressure.

4.2.3 Multiple Images
... -:-'

How can we improve the spatial resolution with the

equipment available to us? One simple way to double the

number of data points on each dimension is ~o take a reading

at each of the four corners of a small s~lare, whose sides

are half the length of the distance between sites. This we

did, using the same six disks, and the results are visible

in fig. 3.

The images are slightly clearer, but not as much as we

had hoped. Again, the disappointment is indirectly caused

b~ the defic_i~nt Z-axis motor. When taking a snapshot, we

try to depress the sensitive cones as much as possible,

since we are not capable of depressing any of them

completely. To do this, we simply instruct the Motor

Control Processor to lower the Z-axis motor until it won't

go any further.

40

This works quite well in general. However, consider

the following hypothetical cas·e. Suppose the test object is

a single sine wave and the sensor is a single cone. First,

we lower the cone onto the crest of the wave as far as it

will go, and take a snapshot. Then we move the cone to the

trough and repeat ·;the ·ope"ration. The two images look

identical! In both cases, the cone was depressed as far as

it would go, and it is in fact the cone depression which

determines the image. This, we believe, is the root of the

mUltiple image problem.*

The solution, of course, is to strengthen the Z-axis

motor. Then, instead of simply lowering the sensor until it

stops, we would lower it to a consistent Z-coordinate. The

resulting set of images would be much clearer.

4.2.4 Large Objects

Can we examine· objects which are much larger than the

sensor? For this experiment we used a flat surface about 12

inches long an~ three inches wide -- slightly wider than the

sensor pad itself. A set of eight grooves were cut into

this surface in order to form a pattern of diverging lines

By taking a s~ri~s of snapshots at

successive lengthwise positions, we should be able to

reconstruct the entire image, in spite of the fact that it

* Or, "Aye, there's the rub!"

41

-is much longer than the sensor.

The Motor Control Processor's command language again

made this a simple task. We took fifty images, stepping

about five millimeters between each. The reconstruction,

shown in fig. 4b, was accomplished by superimposing the

images in the appropriate positions relative to each other.

As before, when the distance between features approaches the

distance between sensitive sites, the pattern becomes

clearer.

Can we use our multiple image trick to improve the

resolution? We repeated the same procedure, except that this

time we took three snapshots, four millimeters apart

widthwise, for each of the fifty steps lengthwise. The

reconstruction, fig. 4c, shows the angled edges much more

clearly at lower frequencies than does fig. 4b. At higher

frequencies, however, both reconstructions are equally

unintelligible. Once again, we blame the failure on the

Z-axis motor, and our method of maximizing pressure.

4.2.5 Small Angle Measurement

When a robot hand grasps an object, does it have a good

grip? Very often, a "good grip" i~ one in which the flat

surfaces of the object are wholly in contact with the flat

faces of the fingers. The question can then be answered

very simply by measuring, for each finger, the angle between

these two planes.

42

This experiment proved'to be extremely successful.

Using the one inch square as our test object, we took four

snapshots. In the first image we layed the pad sensor flat

on the square, as usual, giving us a zero degree standard.

For the three subsequent images, we lowered the left end of

the table by 1.0, 1.25, and 1.5 inches respectively,

producing angles of 3.3, 4.1, and 4.9 degrees.

The results are shown in table 1. For each image we

arrived at a single number describing the slant. The number

was calculated simply by averaging all the pressure

differences between horizontally adjacent sites. In theory

the ratio of the third slant value to the second should be
1.25,* and the fourth to the the second should be 1.5. This

was not the case.

However, the first image, whose slant should have been

zero, did exhibit a small slant value. If we take this as

an error, we can produce a correction factor by dividing it

by the slant value for the second frame. When that

percentage is subtracted from each of the two ratios arrived

at earlier, we get remarkable results. The corrected ratios

differ from the expected values by less than two percent!

* Proof is obvious from the geometry, as long as we assume a
linear relationship between depression distance and output
value.

43

4.3 Dynamic Texture Analysis

We believe that until tactile sensors can be fabricated

with extremely fine resolution, information about' the

texture of a surface would best be obtairted by moving the

sensor along the surface, and examining the changes in

pressure readings, as opposed to the pressure readings

themselves.

Toward this end, we tried several times to make the

positioning device -drag the pad sensor along different

surfaces, but failed each time. The sensitive cones,

because they ·were designed to .grasp an object without

allowing it to slip, were made out of-high friction rubber.

This, of course, directly hindered the experiment. The

stepper motors werF not powerful enough to pull the sensor

and still maintain enough contact pressure to yield a

significant reading.

In the end we performed a singularly unscientific

experiment. We dismounted the pad sensor from the

positioning device and dragged it by hand along a flat

wooden surface, taking 100 snapshots over a period of about

five seconds. This may not have been so bad, except that we

neglected to measure the exact distance traversed, or

anything that could directly or indirectly give us the

velocity.

The analysis is interesting, though quite inconclusive.

44

The sensor is made up of an 8 by 8 grid of sensitive cones.

Let us define a column as the series of cones lined up in

the X-dir,ection, and a row as the cones lined up in the

Y-direction. Given that the sensor was dragged in the

positive X~direction, we contend that there should be some

aspect of the data which is consistent down a column, but"

different across a row. Furthermore, there should be a

small but constant time delay between the features exhibited

by one site and those exhibited by the next site down the

column.

The motivation for this hypothesis is as follows.

Picture a textured surface as a terrain of bumps and ridges.

As the sensor grid passes over this terrain, the cones

across a row will collect entIrely unrelated data. However,

those down a columr will encounter the exact same bumps and

ridges that were ~ncountered by their predecessors, but a

little bit later. Thus we have eight instances of

eight-fold redundant data. We should be able to find some

consistency somewhere.

Initially, we plotted the raw pressure data from each

of the 64 cones as a function of time. Fig. 5 is a

reproduction of this, with each plot placed in the same grid

position as the corresponding cone. We expect to be able to

look down a column and see some consistency that does not

occur across a row. Unfortunately, no such consistencies

were immediately obvious.

45

The next step was to try to home in on the changes in

pressure, as opposed to the pressures themselves. However,

a simple pairwise difference derivative (see fig. 6) was no

more enlightening than the raw data.

Well, what about the Fourier transform? Surely the

frequency domain is closer to our goal than the time domain.

Unfortunately, applying this transform meant giving up our

time delay information, which we needed for comparing

curves.

What we really needed was some smooth measure of

frequency as a function of time. A colleague* suggested the

following procedure. First, tak~ the pairwise difference

derivative. Then, pass a window along the time axis. For

each point in timf, count the number of zero crossings in

the window, and di~ide by the width of the window. A window

n units wide would have a maximum of n zero crossings, and

thus the ratio would be unity. No crossings would produce a

ratio of zero. Note that the operator is valid, and

produces the same range of values, independent of the window

size. The only difference is in the precision.

We ~sed a win~ow wi~h. a~ ~dd number of points, so it

could be symmetric about the point under consideration. If

the distance to one margin or the other was smaller than

half the window size, the window was shrunk accordingly, so

* Thank you, Gerry Radack.

46

that symmetry was maintained. We tried various window sizes

in order to obtain the smoothest curve possible without

~osing too many features. The optimal size was about 25

units (out of 100), shown in fig. 7a. A 15 unit window is

shown in fig. 7b for comparison.

There are (finally) some definitely visible

similarities among the resultant curves of fig. 7a.

Examine, for example, the troughs in rows 6, 7 and 8 of

column 1. Notice how similar they are, and how a small,

constant time delay occurs between each curve and its

successor. The same phenomenon is visible in rows 1, 3, 5

and 6 of the third column, and in rows 1 and 3 of column 7.

As one looks up and down a column, there seems to be

some kind of topological similarity. This is exactly what

-we want to find. However, identifying it mathematically is

no simple task. The obvious operator to apply would be the

cross correlation. ·This compares two graphs and produces a

-number describing the closeness of the match, then shifts

one graph relative to the other and repeats the calculation.

One correlation value is generated for each possible shift.

The resulting curve shows not only how well the two graphs

match, but at what time delay value the match is optimal.

Unfortunately, the results were very disappointing. No

matter which pair of graphs we compared, the cross

correlation never went substantially higher than zero, and

the best match always occured at zero shift.

47

Needless to

say, at least one more level of processing is called for.

4.4 Conclusions

First, it is clear that an 8 by 8 grid of pressure sensitive

sites i-s generally not enough for pattern recogni tion of

single static images. In most real applications, either the

objects will be larger than the pad, or the features will be

below the pad's resolution.

With reasonably good positioning

resolution can be significantly improved,

the area under consideration considerably

taking multiple images. However, this is

consuming, and therefore infeasible.

equipment, the

and the size of

increased, by

often too time

The straightforward solution 4is ·to inc~ease the spatial

resolution, the number of sites, or both. We have shown

that when feature dimensions are comparable to resolution,

shape recognition can be quite simple. This has also been

demonstrated by Hillis (HILLIS-al], using a sensor recently

developed at the MIT A.I. Laboratory, and of course by Briot

[BRIOT-79], who used an array of binary sensors. One

typical application for this might be the table sensor which

was described in the introduction.

A more novel approach might be to build multijointed

fingers for the robot gripper, such as the three fingered

hand developed by Ken Salisbury (SALISBURY-81] at the

48

Stanford A.I. Laboratory. This would enable the robot to

manipulate the object while transporting it, in such a way

-that it becomes riot only feasible, but a matter of course to

take multiple tactile images.

In the experiment concerning measurement of small

-angles, we obtained impressive results. The computed values

were even more accurate than we had hoped. From this we

conclude that a tactile sensor with properties similar to

those of the pad sensor is eminently suited to applications

involving small angle measurement, such as grip improvement.

As far as texture analysis is concerned, we believe our

approach is a good one. Visually, it is apparent that we

are on the right track. However, the experiment must be

repeated in a mucl more controlled fashion, and different

surfaces must be examined and compared. Then, we hope we

will eventually be able to manipulate the data in such a way

that we can use it to iden~~fy the surface.

49

Chapter 5: Further Work

As was mentioned earlier, the pad sensor was in our

possession for only a short time, by no means long enough

for exhaustive experimentation. In fact, many of the more

interesting ideas occured to us after the sensor was

returned, when we began to analyze the data.

It should be possible to calculate the coefficient of

friction between various surfaces and the rubber face of the

sensor. First, one must know the force as a function of

digital output for each sensitive site, as well as for the

strain gauges on tl.e metal posts. Then, one would drag the

sensor along the surface in question, and take force

measurements. The normal force N is simply the sum of the

forces on all the sites, and the frictional force F is

derived from the horizontal forces given by the strain

gauges. By plugging these numbers into the equation

F = uN one can calculate u, the coefficient of friction.

This might be usable as a distinguishing characteristic

between surfaces.

It might also be useful to measure granularity. This

could be done simply by placing the sensor onto the surface

50

and counting the number of sensitive sites which exhibit

significant pressure. Of course, the grains in the test

surfaces must be comparable in size to the resolution of the

sensor.

Certainly the dynamic texture analysis tests should be

repeated and extended. Once that data has been hashed out,

it should be possible to identify surfaces based on pressure

response to friction.

Finally, there are two aspects of tactile sensing which

we have not experimented with because they are better suited

to the -finger than the pad sensor. First, the finger should

be capable of poking a surface and comparing predicted

pressure with actual pressure in order to measure of surface

resilience. Second, there is the whole qu~stion of tracing

cross sections and producing, essentially, ~l 3-D description

of the contour of an object.

Thus we have shape based on both static images and

contour descriptions, granularity, coefficient of friction,

and surface resilience and texture. These features, when

they are better understood, should be incorporated as

distinguishing characteristics into the Experimental Sensory

Processor.

51

a) 1- diameter circle

e) 1" square rotated 30 0

Fig- 1. Single Image Shape Recognition

r -•._--

c) 1.5" triangle rotated 75 0

52

DDD~~DDD'
DDtJ·_ [·~w·_·::~~· 0... .,. ..- 'j t =::-i: ..-.. t a •. _. - - . _... ...

. ~.:. ... J l~::d t .:-':: f:.::~~.~1 : .

O lliTI ...--~-O·~·D~'~:: ::'~':"';:-': ~ :~ :
~~-~-j r;'::J 8==.. :==t. .-E

D~ODD~~f@ .
D~=;:qDDDDD· ~.@l*-3 L. .
DC~~DD·~~DI8:3 t:±.~:-:

--I bL___ • --l ~-=...~ l. .
DDD~~OOO
DOOOOODO

DDCJDDDDCl
OOt]["'n"'--'~..... DO~. - _. . ~ - - i • - • '. 01._. -- ~ - .- t L. - • t. . .:{ :.:.. :. -; [1-;! [~~j'l .. i• • - ::'::! __1 _ _. __..

O fB] c=:-:-.d[l r--Ic=--t0 11.. - L..:.- • • .,

;~;j t:=.:~ .-l LJ~ L. l.~

[J~Ir-JD~9n~.=t L.-.L ._l. t1-~ L.....j
D~DnODn[l~ - ~---J. L. L-....~

O EE~ ,r-l0 gf=l~O·t-=. - =:,j --~~ f....=.:.J ~.---' ___._ L. P_ t:-_ ._'

DDF:::::J~~~l~-'D'.• '_:'"--::1 -t...::..~ I

~...::J ~.3 god b"3.~ I

DDD'·-lOC-.r-lO- ~UL_ -lL-.. I
a) One circle, low amplitude d) One circle,

high amplitude
Fig. 2. Single Image Recognition

Varying Frequency and Amplitude

OO~::;:I:~~DDD~::::t l:;.: ~rl ~~ ~1

~'O ~. f:~: .,; ~ ~;;2:J':'.
~ ._~t:•.;.:,-.----- -~ ~-::- .. a......_

D~~nD~~O~
~~~:;:::Jl ~~~3 •:=:l t-::-~ ~=.: ==.----...~. .• __ t:::=:: -----' __~

D~n~~nDD.. . r-=-tr-=- .L ~..3l~ t":""..=.:.J r::--....: LJ .

~'DDDD~D~
:- . E::-:d: .-.: ~-::.--= ~:
~ _t ._ _ _ p:.ia== _ =.=-~

~D~[lDDD~
DDDDD'I~D. L L L...J.~

Dn~DO~~DDU~ .JL L@Jl
DDD~DODD

b) Two circles, low amplitude

~Five CirCl[~ low amolitude

LJD[]D ODD
OD~LJD5:~D~- Dg§fJ=~~§8DD~

t;t3 P.::;;;~3 t:;=~ .•. ~

DD~r-1EPODO. . L LJ P-_=3 L..~~ l.
~DDDD~DD
DD

rlDr,~..1t~~
· l--1 _ L_I.~3 fii1~~

DDL1DODDD
DDO-,r--:lO·~DD

~:a t~:-3
S3

e) Two circles,
high amplitude

·f) Five circles,
high amplitude

DOITJ[JOnDD
rl~~D'ln~n~L__ ~_-:-; t":-=. __I r:-....:::...: t-:=..::...:

~~~~0 ~ lr-llr--J~~~10~~...:..J l-:.':_.~.~_

~'l[lDt8~D' [l~~_L~ _ _ t=::--..I l~:.=:r • --J

~~LJDLJDDD
·DC1DDOfALJM
Db8l[JDDLJDLJ
DC-1Df.@D[JL]D

· m
I2Sl t8I8l..-mm

a) One circle, low amplitude

Fig. 3. Multiple Image Recognition
Varying Frequency and Amplitude

b) Two circles, low amplitude e) Two circles, high amplitude

55

Fig. 4a.
Drawing of the
Large Test Object

0.

U1
o

tnl's3c:
O...a
n •m
tJ)~

mer....
<
(1)

H\
t'1

m
(1)

In

d
til
~.

:3
\Q

"" I'" "'" II' "'I , ..[-J

'-L..u.~~-I • , .[_[_]

• .., •• •• 41·

i --.11 l' " II " II l' " l' " " " " - •111I11I11I1111I111111I111I11I t1l1l11ll11rTlfllf °1 I' n " " " " " " II " " .. 'I I' ~o []

m -' ,..
•• 0-:. " "" J Lmrrrrn

°1
l

I t!j!i1Tj.l!J1L 1 ' "' u."
._~Llllaa.illJ. ' l r;rm

[nnrrn '. ' lliUl·.. tLll.!.!U I ~IIP I'P t'i.·:r ·1. ~w..uu.:. I .' c
[CiillETIBntIIlllIBIIJlIllIIIIIIIIil

I' '[-rr'[~II!! 1111111!1II111" III jUllJLllJWIt.~JI1IIlllnUHnHfi.lm[nrIfib¥[[[[[[IIf[i.iiilllllnIUIIIJIIIIIWI(llIIWllllllllllllilll1111 lUI

. 'i~ -", I IilJ.IWJL I Illrl1llllllll'llll '
l. Ul Ull~ ; I l11lTIIfOOillillllilllilOtJ! .

LJ

. ['[-1
, . J

[-iT-ir-l._ u. tt, -'
r"1ml
1..~lJLjJ
r-1'1
1.. L.. J

UI
0\

U1
otIJ.....
EJ\Q
aJ •
rt
t1~

....·0
X

o
H\

t-h
t1
nl
EJ
(1)

UI

d
en....
='
~

w
)(

, . t1 11 n ~ 11 ;:
• •. : •. =•• " t I. 'I II '. :" !. fl f, ~ I... t. I, " '. r, •• f' t.:.

f: t:.r t"C·tt:t11t:=l~tO::%.1a.1~:t.:~r1::J111:(r,Cllljr, ,ttl fJn ,a~tl:::JJtt.JtI:D Jt]::C11:r.tr.Jn::t:rtt:tct:r.:lttt:t.t:tt:tI:~tet!Jt:nlttJc::ll:ttJ:::tn:tJ!tJ:1l!t.. t,
,. _ ~ !\-~.;. ~.!:: ~~':''''' :. " !" II I. n II II:J III' n 'III n tJ 0 n [1 U COO D C [J D U U CIiU II C LCrr,c rClI'tl llj~lJ: I,
.. • ~: t-.:. ~ r: I; ~. :: ~.. :. .." :- 'i .:' =- tit~ :. ! ~ I, =:~ :: ::- =r; := t: 0 cell C 0 [J C 11 C =t1 t1 =II ~ ~.. ~~
:- ~: r: =t1~n ,~: .: · r f'~ ~,~:: :.'=~ t"~ ~~:-t .f I .1 f 1~114!' ;~: "::.r C , j .,-.

•. t~ t1 : l ~·t ~ te::l to, r·~....:::-.··::t~:~tllt ~t:t III ttl 'tnt 01 f 1:1)1 1"111 Jrl i:utc:C J:11t C'l;:.~::t]::-~ ~
~ ,.. n n ~.. ft~l·.::" •.'c:..lr.:::'f.jlllllll~llJll~II.Jl'lJn)rrJII.laUCa.jt'Cn::aj=~~:::J~1J:..""'Ct •.:~:"!;!l~ f; ~::

:- :-:: ~':"" ! ~ e :'7..-': :-: -= ~ :~ ,: =! ~~ ,·1 Cn;::1;1 r:1l"J::t.1 r::=~nr::!I::::1)C!JI IJXCI:rnC:1I:0CDtDCCtDtDCIJCC:DC:CDroa:a:U.DtYl':O::rJ=:J (1 0 11 ! i t:
. =- ~o :.: ~... ~: : ...~::r-= ::'" =:"=:~·:11:1:1t. :.. ;~:. =r't"-:~::L':-·~~i ;: ri.~:l~=~~t!~C:=:~C":c:'c::c::ccc::tt:rn=a::m[!:ja:lI::r.JlI:CnXtO:O=C::~=::i I:

::.:!~. tJ fJ:~ :: ti:1." 'i :. ~.fIJl:i~· "'111:-11 ~J It :.=::r;:--:..:"~":: :: ::. :. :::::;:C:..C"'~c::..c:=c=..:~c::c:::t:C=:;t::::tlJwtDt1J::JJrt.ilJJcraX]";Lrc.; "

It:. ~ t" =:.:1 '=... :4O f1 " f I !; :. ,. I, f' :. !! !, I J tl :: [1 f • (' :::~:; tJ 0 0 tJ D D I J 0 a.n D a:a aDO D D 11 =C :: !; !:=:. !, :~i~' : r;:t. :: :: ==.tt::. :. ~. :'!':ti rJ·,:i (1 II fJ C Ii II tJ':': tl :: :: 0 :J :; !j fi ti !; :; :4 t; !i :~ :: :; (j I~ =~ :- ,.
n :;:~ !.r: fi C n::,c; =~.= t! ~='.:-.~Sl-:n 0 II n ,[.ll:'If.r ..ll-tCtI:n'":"a,tI:r~tI~;:::::L;:::;£~!t:rcti Ii .; fi !,~; ri fi !~ " ~; !. tJ C: :: "
•• • I :;~ ~,' I t f I' ~ • t ~.. or, " It l,l , J:? t t ·f , 10 .~ I ,f til ,.: :';' tit, I~ ,
:, !. " t1 f,.tt"~."r:.:nitl~ ...tt.t::ttl!:4~tlnl!t;ltJl"rf;:1,~J,:, f. I. ::
:- ~:·!.~t::'I,:·:.'::r,:·.:·.'''·:· ':.tL. ',.'i·. :'.!' '., '.

~ -----------...--~._._----.....- .. ~

t

TABLE 1 -- Measurement of Small Angles
==~=======~~=======~=~=~~=====~=~=====

Table Horiz. Avg.
Slant Data Difference Diff. Ratio*
===== ---- ====::::::=::= ===== =====
on 45 64 80 19 16 12.625

42 48 64 6 16
48 60 75 12 15
34 56 51 22 -5

1" 15 64 160 49 96 78 1.00
28 80 192 52 112
16 7S 195 59 120
17 85 153 68 68

1.25" 48 160 112 114 1.23
48 192 144
6.0 180 120
56 136 80

1.5" 48 160 11·2 142 1.53
48 240 192
60 225 165
71 170 99

* Ratio is calculated as the vertical averag~ divided by the
vertical average at 1" slant, multiplied by one minus the
ratio of the 1" s~·ant to the 0" slant. The closer this
value is to the table slant, the better the results. As
the reader can see, the results are exceedingly good.

57

•

L
+~

Fig. 5. Raw pressure data as a function of time.
Each plot is in the same grid position as
the corresponding cone. Sensor was dragged
toward +X, with Row 1 in the lead •.

58

_L':
-,

~h

=J.=.
~_.--

=c
~-

=-~
-=---=
~
==-f~
~

::=:-~~
~-==- ;

L~
~.
~

-==2!

I i
~:-:..__-.i
~:"!-I----

=.,~~

~~t=
=~_-:4.~

, ~

UU.. __:;::=.=
=:~-- _-

I ~
---:::~

-----=.:.L-::-:...::{==--.
--===~:~

---1: . __

.J~
_.~~-~--

--r.-:.: _~-------...-----:-......
~;r;::r'l.'-_.....~

--;--.~:~;~

~-«J-i

-- -oa.;;

~
--.-.i.·f.~
--~

~Fa": -.-

~a-..,

... ,.

L
-t.--

~.-

~

~'f:~
~-.:..-.-'= 4

..~~~ .

--==-. .
.. -

L

:±:
:E
-t

f-.-.:-
=== .J:::::iI=
~

..1.
I

~

_L
:t.-.--

.-

•

Fig. 6. Pairwise Difference Derivative

59

•

Fig- 7a_ Frequency as a Function of Time
Window = 25 Units

60

.~ . ~.. ~./. ..

•

..

Fig. 7b. Frequency as a Function of Time
Window = 15 Units

60a

[

References

[BOYKIN-SO] Boykin, W. H., and Diaz, Gary., "The
Application of Robotic Sensors -- a Survey and
Assessment," ASME Century 2 Conference, August 12-15,
1980. -

[BRIOT-79] Briot, Maurice, "Utilization of an 'Artificial
Skin' Sensor for the Identification of Solid Objects,"
Proc. of 9th International Symposium on Industrial
Rohots,1WaSfiIngton, D.C., March 12-1s,-r979.

[BROWN-SO] Brown, David J., "Computer Architecture for
Object Recognition and Sensing," Master's Thesis,
Department of Computer and Information Science,
University of Pennsylvania, December, 1980.

[DANE-al] Dane, Clayton, Forthcoming PhD. Dissertation,
Department of Computer and Information Science,
University of Pennsylvania, 1981.

[HILL-73] Hill, John W., and Sword, Antony J., "Touch
Sensors and Control," in Remotely Manned Systems -
Exploration and Operation in Space, ed. by Ewald Heer,
California Institute of Technology Press, Pasadena,
California, 1973.

(HILLIs-a1) Hillis, William Daniel, "Active Touch Sensing,"
Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 629, April, 1981.

[IVANCEVIC-74] Ivancevic, Nebojsa S., "Stereometric Pattern
Recognition by Artificial Touch," Pattern Recognition,
Vol. 6 pp. 77-83, 1974.

[KINOSHITA-7S] Kinoshita, Gen-ichiro, "A Pattern
Classification by Dynamic Tactiie Sense Info.
Processing," Pattern Recognition, Vol. 7 pp. 243-251,
1975.

(NITZAN-80'] Ni tzan, David , "Assessment of Robotic Sensors, I'

Workshop on the Research Needed to Advance the State of
Knowledge-rn~otics,April lS-I7 1980.

61

(OKADA-77] Okada, T., and Tsuchiya, S., "Object Recognition
by Grasping," Pattern Recognition, Vol. 9 pp. 111-119,
1977.

(PURBRICK-8l] Purbrick, John A., "A Force Transducer
Employing Conductive Silicone Rubber," Prec. 1st
International Conference on Robot Vision and Sensory
Controls, Stratford-upon-Avon, UK., IFS (Publications>
Ltd., April 1-3, 1981.

(SALISBURy-a1] Salisbury, Ken, Stanford Artificial
Intelligence Laboratory, Personal Communication, May,
1981, and, Proc. of 1981 Joint Automatic Control
Conference, Charlotsville, Virginia, June, 1981.

62

	Real Time Control of a Robot Tacticle Sensor
	Recommended Citation

	Real Time Control of a Robot Tacticle Sensor
	Abstract
	Disciplines
	Comments

	tmp.1193849116.pdf.4d13D

