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A-Optimality for Active Learning of Logistic Regression Classifiers∗

Andrew I. Schein and Lyle H. Ungar

Department of Computer and Information Science
Levine Hall, 3330 Walnut Street
Philadelphia, PA 19104-6389
{ais,ungar}@cis.upenn.edu

Abstract

Over the last decade there has been growing
interest in pool-based active learning tech-
niques, where instead of receiving an i.i.d.
sample from a pool of unlabeled data, a
learner may take an active role in selecting
examples from the pool. Queries to an ora-
cle (a human annotator in most applications)
provide label information for the selected ob-
servations, but at a cost. The challenge is
to end up with a model that provides the
best possible generalization error at the least
cost. Popular methods such as uncertainty
sampling often work well, but sometimes fail
badly. We take the A-optimality criterion
used in optimal experimental design, and ex-
tend it so that it can be used for pool-based
active learning of logistic regression classi-
fiers. A-optimality has attractive theoretical
properties, and empirical evaluation confirms
that it offers a more robust approach to active
learning for logistic regression than alterna-
tives.

1 INTRODUCTION

A recent trend in machine learning has focused on
pool-based settings where unlabeled data is inexpen-
sive and available in large supply, but the labeling task
is expensive. Pool-based active learning methods at-
tempt to reduce the “cost” of learning in a pool-based
setting by using a learning algorithm trained on the
existing data and selecting the portion of the remain-
ing data with the greatest expected benefit. In clas-
sification settings benefit is measured in terms of the
generalization accuracy (or error) of the final model.

∗The University of Pennsylvania Department of Com-
puter and Information Science Technical Report No. MS-
CIS-04-07

In this paper we derive an objective function, called
A-optimality, for measuring the expected benefit of
labeling an example for logistic regression. In the de-
sign of experiments (DOE) literature (Fedorov, 1972;
Chaloner & Verdinelli, 1995), other special cases of the
same function have proven useful for designing linear
regression and location/scale logistic regression experi-
ments. We will evaluate A-optimality in training more
general forms of logistic regression models in classifi-
cation settings where the goal (or “experimental ob-
jective”) is to build a classifier with the least general-
ization error.

Active learning methods are typically implemented as
a greedy procedure that iteratively pick a new exam-
ple from a pool for labeling according to a black box
scoring function. Since the distinguishing character-
istic between active learning methods is the function
used to pick the next example, we will frequently refer
to alternative active learning methods in terms of their
example-scoring functions. Scoring functions may ex-
plicitly attempt to maximize an objective function, as
is the case for A-optimality. Alternatively, they may
consist of heuristics with no explicit objective func-
tion, as is the case for uncertainty sampling and (most)
query by committee methods of active learning.

There are many possible example scoring functions
with varying performance characteristics and compu-
tational costs. In evaluating the quality and risks of
an active learning method we look for two important
traits:
1. The method must, in general, lead to attractive per-
formance gains over random sampling from the pool.
2. The method must, in almost all cases, give perfor-
mance that is at worst the quality of random sampling
from the pool.
Our empirical evaluations on four data sets demon-
strate that A−optimality for logistic regression satis-
fies both of these desiderata. We derive and evalu-
ate A−optimality in training binary logistic regression
classifiers, however the method generalizes to multi-



category classifiers.

2 BACKGROUND AND RELATED

WORK

Hasenjäger (Hasenjäger, 2000) divides active learning
methods into heuristic approaches and optimization
(or objective function) approaches, a categorization
scheme we will follow in this section. The most of-
ten employed methods are the heuristic methods: un-
certainty sampling and query by committee. In the
uncertainty sampling method proposed by Lewis and
Gale (Lewis & Gale, 1994), the existing model pre-
dicts class labels over the unlabeled pool and takes
the example with the least certain classification for la-
beling. In probabilistic classifiers, uncertainty can be
measured by the entropy of the predictions.

The query by committee method (Seung et al. , 1992)
generates a committee of classifiers and picks examples
with high committee disagreement for human labeling.
The query by committee method is derived along with
analytical performance bounds for Gibbs classifiers in
noise-free classification domains, however it is mostly
evaluated as a heuristic method in domains where the
theory does not apply, for example, document classifi-
cation using naive Bayes (McCallum & Nigam, 1998).
Since the seminal work, several researchers have pro-
posed alternative measures of disagreement and alter-
native methods for building an ensemble of classifiers,
for instance (McCallum & Nigam, 1998).

The optimization strain of research attempts to derive
objective functions from the underlying assumptions
of specific machine learning algorithms. This is the
approach we take in this paper in defining an objec-
tive function that minimizes the variance of a logistic
regression model’s predictions. An analogous criteria
was derived for reducing the variance portion of er-
ror in a feedforward neural networks (MacKay, 1991;
Cohn, 1994), as well as the variance of other statisti-
cal models (Cohn et al. , 1996). These techniques may
all be classified under the rubric of “prediction vari-
ance minimization methods,” and they appear widely
applicable to methods that use error as an objective
function (e.g. neural networks) and maximum likeli-
hood methods (e.g. logistic regression). Minimizing
the variance is one of a handful of objective functions
used to derive a criterion for active learning for vari-
ous classifier algorithms (c.f. (MacKay, 1991; Roy &
McCallum, 2001)).

In recent years, optimization and heuristic approaches
have been applied to a broader array of models and
learning tasks including learning: large margin clas-
sifiers (Schohn & Cohn, 2000; Tong & Koller, 2000),

graphical model structure (Tong & Koller, 2001) and
probabilistic models for information retrieval (Zhang
& Chen, 2002). Space limitations will prevent us from
exploring these strains of research in detail.

3 FROM SCIENTIFIC MODELING

TO CLASSIFICATION

Experimental design research for logistic regression
has focused on the two parameter, single predictor
model (Chaloner & Larntz, 1989; Davis & Prieditis,
1999):

P(y = 1|x, α, µ) =
1

1 + exp(−α(x− µ))
, (1)

α ∼ U(a, b) (2)

µ ∼ U(a′, b′) (3)

where the response variable y takes on the class labels
{0, 1}. This is a Bayesian model with a uniform distri-
bution on the parameters. The parameter µ is called
the ‘location parameter’, and it takes on the value of
x s.t. P(y = 1|x, α, µ) = 0.5. The parameter α, called
the “scale parameter,” encodes the change in probabil-
ity with respect to x. Chaloner and Larntz (Chaloner
& Larntz, 1989) generalize several of the classic exper-
imental design objective functions for linear regression
to this class of models for answering such questions
as: For what value x does P(y = 1|x) = γ, where

γ ∈ (0, 1).

Note that the goal of the experiment described above
is to learn something about x and therefore the under-
lying model that generates the response variable. In
contrast, the goal of active learning is to build a model
with the best generalization accuracy/error. This sub-
tle difference in emphasis between the optimal experi-
mental design community and the active learning com-
munity boils down to the observation that the optimal
design researchers believe their models actually gen-
erate the response variable when deriving criteria for
designing experiments, and therefore they can learn
something about a natural process by conducting an
experiment.

For our experiments in active learning, the logistic re-
gression uses more than two parameters. The para-
metric form of the model is :

P(y = 1|x, β) = σ(x′β), where (4)

σ(θ) =
1

1 + exp(−θ)
(5)

β ∼ N (0, σ2

pI). (6)

The term x′β denotes the dot product of two vectors:
x, the predictors, and β, the model parameters.



In the two-parameter case, Equations 1 and 4 are
equivalent, modulo the different choice of priors.
Defining the shorthand σn = σ(x′nβ) for observation
n, the log-likelihood of the model we use for training
classifiers is given by:

L =

[

∑

n

yn log σn + (1− yn) log(1− σn)

]

(7)

−
1

2σ2
p

||β||2.

The penalized log likelihood of Equation 7 can be
viewed as a consequence of the prior on β, or equiva-
lently the prior can be viewed as the Bayesian inter-
pretation of the regularization term 1

2σ2
p
||β||2. In ex-

perimental design it is necessary to take the Bayesian
viewpoint in order to start with a model with no train-
ing data and pick a training set. In active learning we
do not necessarily begin biased sampling with the first
observation; we can start with a random seed of exam-
ples. In this paper we take the regularization view of
the model (c.f. (Cessie & Houwelingen, 1992)) rather
than the Bayesian view. Our Gaussian priors over pa-
rameters build in no domain knowledge, but are in-
stead a potential interpretation of the parametric form
of the regularization.

4 A-OPTIMALITY FOR LOGISTIC

REGRESSION

We now derive an objective function for active learn-
ing of logistic regression classifiers. Denote by β the
true parameter values and by β̂ the maximum likeli-
hood (ML) estimates of the model parameters. Since
we believe by and large that the response distributions
are not parameterized by the model, true parameters
β can be viewed as the values the parameters take in
the limit as the training set increases. A consequence
of the representation of logistic regression in its expo-
nential family form is that:

θ̂ ∼ N (θ, I(X, θ̂)−1) asymptotically, (8)

where I(X, θ̂) denotes the observed Fisher information
matrix of the regularized logistic regression model:

I(X, θ̂) =

[

∑

n

xnx
′

nσn(1− σn)

]

+
[

σ2

pI
]−1

(9)

and X denotes the training set predictor matrix, often
called the design matrix. The observations xn are vec-
tors formed from the rows of the training set matrix
X.

The objective function we seek to minimize when

choosing which examples to label is defined as:

∑

n∈Pool

Var(σ(x′nβ̂)) =
∑

n∈Pool

E[σ(x′nβ̂)− σ(x′nβ)]
2. (10)

In other words, we want the model predictions over the
entire pool to be as close as possible to the predictions
of the “true” model, in the squared loss sense.

We approximate Equation 10 using two steps of a Tay-
lor expansion around σ(x′β):

σ(x′nβ̂) ' σ(x′nβ) + c′n(β̂ − β), where (11)

cn = (
∂

∂β1

σn, . . . ,
∂

∂βd
σn)

′ (12)

is the gradient vector for σn. Using the Taylor series
approximation we have:

Var(σ(x′nβ̂)) ' Var(c′n(β̂ − β)) (13)

' c′nI(X, β̂)
−1cn from (8) (14)

Equation 14 is known as c-optimality, which mini-
mizes the prediction variance over a single observa-
tion. Defining An = cnc

′
n and A =

∑

nAn we derive a
formula for minimizing the variance over the pool:

∑

n∈Pool

c′nI(X, β̂)
−1cn =

∑

n∈Pool

tr
{

AnI(X, β̂)
−1

}

= tr
{

AI(X, β̂)−1

}

(15)

.
= φ(X,y). (16)

Equation 15 is the A−optimality objective function
for logistic regression with the A matrix that gives the
method its name. Frequently the A matrix will be no-
tated in the literature as A(θ̂) in order to make explicit
the dependency of the matrix on the model parame-
ters (or equivalently the labeling of the training set)
that we have left implicit in our own notation. We use
instead the φ(X,y) notation to show the dependency
of the criterion on the response value of the training
set in what follows.

Equation 15 shows how to compute the utility of a
labeled training set. We now need to derive a quan-
tity that describes the expected benefit of labeling a
new observation. We denote the labels of the training
set by y and the training set predictors (encoded by a
design matrix X) by T . Then using the current esti-

mated model P̂(y|x), the expected benefit of labeling
observation xn is:

φ(T ,y, xn) = P̂(yn = 1|xn)φ(T ∪ {xn} ,y ∪ {1})

+ P̂(yn = 0|xn)φ(T ∪ {xn} ,y ∪ {0}).

(17)



Ignoring model-fitting, the worst-case computational
cost associated with picking a new example is:
O(KND2+KD3)1, where N is the number of pool ex-
amples used to create the A matrix, K is the number
of candidates evaluated for inclusion in the training set
and D are the number of predictors in the model. The
N term may be reduced using Monte Carlo sampling
from the pool.

5 ALTERNATIVE ACTIVE

LEARNING METHODS

We evaluate A−optimality against two alternative
methods: uncertainty sampling and expected log loss
reduction (ELLR).

5.1 UNCERTAINTY SAMPLING

Uncertainty sampling (introduced in Section 2) in our
implementation uses prediction entropy to select ex-
amples for labeling. The motivation for the approach
is that observations with uncertain predicted label-
ings are more likely to be misclassified than obser-
vations with certain predicted labelings. As pointed
out by Lewis and Gale, the method has several the-
oretical failings including: “underestimation of true
uncertainty, and biases caused by nonrepresentative
classifiers” (Lewis & Gale, 1994). In the Evaluation
section we demonstrate an additional failing of the un-
certainty sampling: that even a model that has been
trained with large representative data sets may diverge
towards an inferior model when fed additional exam-
ples by this method.

Using uncertainty sampling, the computational cost
of picking an example from K candidates is: O(KD)
where D is the number of predictors.

5.2 EXPECTED LOG LOSS REDUCTION

Expected log loss reduction (ELLR), advocated
by (Roy & McCallum, 2001), is a technique for more
directly minimizing a loss function of interest than the
uncertainty sampling or query by committee heuris-
tics. The technique is general to a large class of loss
functions, however the authors demonstrate success
with the log loss function:

L(X,y) = −
∑

x∈Pool

P(y|x) log P̂(y|x) (18)

where P(y|x) denotes the probability of the hypothet-

ical “true” model, and P̂(y|x) denotes the probability
using the current model. Unfortunately, the “true”

1We assume the most naive of implementations for the
matrix calculations.

probabilities P(y|x) are unknown and so an ad-hoc

approximation of using the current model P̂(y|x) is
employed instead:

L̂(X,y) = −
∑

x∈Pool

P̂(y|x) log P̂(y|x). (19)

Measuring the benefit of adding an observation is com-
puted by an expectation similar to Equation 17.

Using the current model probabilities P̂(y|x) may
cause problems for ELLR due to variance in predic-
tions, causing and early bias that takes a partially
trained model astray early in the learning curve. Roy
and McCallum introduce bagging to cut down the vari-
ance affect in naive Bayes. MacKay proposes an ob-
jective function equivalent to Equation 19 for active
learning of logistic regression classifiers, but with vari-
ance handled analytically (in a Bayesian framework) at
the expense of implementation complexity (MacKay,
1991). A−optimality takes the alternative approach
of making minimization of this variance the objective
function for active learning.

Excluding the cost of model fitting, implementation of
ELLR is at worst: O(BKND), where B is the number
of classifiers in the bag, N is the number of observa-
tions from the pool used to compute the benefit of
adding an observation, D is the number of predictors,
and K is the number of candidates evaluated for la-
beling. An approximation that is used for ELLR as in
computing the A matrix of A−optimality is the sum
over the pool; Monte Carlo sampling reduces this bur-
den.

5.3 METHOD RELATIONSHIPS

The ELLR method can be interpreted as a cousin to
uncertainty sampling. Uncertainty sampling chooses
examples with the most entropic prediction values.
ELLR on the other hand picks examples such that the
predictions of the pool remainder are least entropic.

A−optimality can be interpreted as a method that
combines components of both example uncertainty and
prediction certainty. Example uncertainty plays a role
in A−optimality because uncertain examples have a
larger impact in defining I(X,β) (see Equation 9), so
uncertain examples have a tendency to decrease the
function φ(X,β) when all other factors held constant.
The probabilities of the predictions play a role as well
since the elements of the A matrix have a tendency to
decrease as Equation 19 decreases. As the entries of
A decrease in magnitude so does the criterion φ(X,y)
when all other factors are held constant.



Table 1: Descriptions of the data sets used in the
evaluation. Included are counts of: the number of
observations (OBS), the number of predictors (PRED)
and the number of observations in the majority class
(MAJ)

DATA SET OBS PRED MAJ

FCT 20,000 54 10,210
WDBC 569 30 357
TD 711 21 400
SJGS 3190 36 1655

6 EVALUATION

We evaluate the method on four data sets chosen
from the UC Irvine data repository (Blake & Merz,
1998): Forest Cover Type (FCT), Wisconsin Diagnos-
tic Breast Cancer (WDBC), Splice Junction Gene Se-
quence (SJGS), and Thyroid Domain (TD). The data
sets were converted to a binary classification task by
merging all but the most representative class label into
a single class. Table 1 describes the data set character-
istics after formatting while the individual processing
steps are described below.

In all evaluations we train a binary logistic regres-
sion including a bias term using the regularization
σ2
p = 1 until convergence. For computation of the
A−optimality score we use the same prior (i.e. our
model for active learning exactly matches the model
we train). ELLR was trained without bagging. A
bag size of 5 dramatically slowed down the evaluation,
sometimes helping but also increasing the number of
cases where ELLR performs worse than random sam-
pling. We suspect that stability of logistic regression
(compared to decision trees or naive Bayes) in combi-
nation with a small bag size was behind the case where
bagging hurt performance. Since a bag size of 20 or
30 was impractical, we eliminated bagging from the
experiments altogether.

6.1 DATA SET PREPARATION

The Forest Cover Type (FCT) data set consists of mea-
surements of 30x30 meter cells of forest land conducted
by the US Forest Service. The task associated with the
data set is to predict, using the measurements, which
of 7 tree categories is growing in the cell. According to
the data only one type of tree grows in each cell. The
original number of records, 581, 012, is massive and
so we randomly sampled the data set to reduce it to
20,000 observations. The number of predictors in the
data set is 54. The lodgepole pine variety of tree hap-
pens to represent about 50% of the observations and

so we merge all other tree types into a single category.

The Wisconsin Diagnostic Breast Cancer (WDBC)
data set consists of evaluation measurements (predic-
tors) and final diagnosis for 569 patients. The goal is
to predict the diagnosis using the measurements. The
number of predictors is 30.

The Thyroid Domain (TD) data set (called “thyroid-
ann” in the repository) consists of patient evaluation
measures and three classes: underactive thyroid, over-
active thyroid and normal thyroid. We merge the un-
deractive and overactive thyroid classes into a single
class. The number of predicts is 21 and the number of
observations is: 711.

The Splice Junction Gene Sequences (SJGS) consists
of 3190 short sequences of DNA. The goal is to pre-
dict the presence of an intron/exon boundary (IE),
an exon/intron boundary (EI) or no boundary. We
merge the IE and EI classes into a single class. The
sequences are converted into 6 predictors consisting of
nucleotides plus the two other descriptors used in the
data set, where the predictors are the number of times
the nucleotide occurred in the sequence. We add the
30 interaction terms for these sequences to create a
data set with 36 predictors.

6.2 PRIMARY EVALUATION DESIGN

We perform evaluation over 100 train/test splits on
each of the four data sets comparing the A−optimality
criterion against uncertainty and ELLR methods. We
decided on 100 repetitions since many of the data sets
have a generalization accuracy in the high 50’s, and
such a low generalization accuracy can be associated
with higher variance of the learning curve. Train/test
splits were created by splitting the entire data sets
(described in Table 1) in half at random.

On each of the 100 runs, 10 random examples were
given as “seed examples” to each learner which pro-
ceeded to use their example scoring function to select
the next 90 examples. The 10 seed examples contained
at least 2 examples from each category label, ensuring
a reasonable starting point for active learning. Though
the pool sizes vary across data sets, 100 training exam-
ples is equal to less than half the pool in each case. At
each iteration of observation selection, 10 candidates
were chosen at random from the pool and scored ac-
cording to the active learning scoring function. Ties
in the scores of candidate observations were broken at
random. We report accuracy as a measure of perfor-
mance since in these data sets the marginal counts of
the different classes are roughly equal (illustrated in
Table 1).



6.3 PRIMARY EVALUATION RESULTS

Evaluations took under 24 hours for the longest ex-
periment of the four data sets, FCT, to run. We used
Monte Carlo sampling of 1000 observations from the
pool in computing the A matrix and ELLR objective
function in order to speed up the evaluation. This was
only necessary for the FCT data set since the pool sizes
for the other data sets were already relatively small.

Figure 1 shows the learning curves of the three active
learning methods on all four data sets. Random sam-
pling from the pool supplies a baseline. On all four
data sets, A−optimality outperforms random notice-
ably, demonstrating that the method gives attractive
performance. In contrast, uncertainty sampling di-
verges radically below random on the SJGS and FCT
data sets. A−optimality and ELLR both appear to
match or beat random performance in these evalua-
tions. By the end of the learning curves the standard
deviations of the accuracy were below 0.035 on all data
sets for all methods, so at 100 trials the 95% confi-
dence intervals had size less than 0.007 at the right
hand side of the curve. The confidence intervals are
larger for smaller training set sizes.

6.4 LIMIT PERFORMANCE

EVALUATION

In addition to the primary evaluation, we explore the
possibility that each of the active learning methods
will cause a well-trained model to diverge towards a
weaker performing model. We built an artificial data
set shown in Table 2 consisting of two binary predic-
tive features plus a bias term (a predictor that always
takes the value 1). Feature 2 determines whether we
enter a region of feature space with good predictive
ability. When feature 2 is off, feature 1 determines the
outcome with high probability. When feature 2 is on
feature 1 has no predictive ability over the outcome.
This is an example of a data set that does not match
the distribution of a maximum likelihood logistic re-
gression model.

In creating the training, pool, and test sets from Ta-
ble 2, we used expected counts of each of the rows and
outcomes of the table in what would otherwise be a
random sample of 400 (train), 40 (pool), and 40 (test)
respectively. The pool is sampled with replacement
during evaluation to imitate having an infinite pool of
data. Also, during evaluation we randomly break any
ties in the estimated benefit of labeling examples to
prevent deterministic outcomes due to ordering of ob-
servations in the pool. Using 40 examples in the test
set with the expected values of each row/outcome com-
puted from the table mimics the expected proportions
of a very large sample from the table.
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Figure 1: Empirical evaluation of A−optimality, un-
certainty sampling, ELLR, and random sampling on
four data sets.



Table 2: An artificial data set to test whether an ac-
tive learning scheme can actually cause a well-trained
model to diverge dramatically. Each row of the table
is given equal weight in creating seed, pool and test
sets that truly represent the underlying distribution
of the data. The top two rows encode signal, the
bottom two rows encode no signal.

OUTCOMES PREDICTORS

P(y = 1|x) P(y = 0|x) x1 x2 bias
0.1 0.9 0 0 1
0.9 0.1 1 0 1
0.5 0.5 0 1 1
0.5 0.5 1 1 1

6.5 LIMIT PERFORMANCE RESULTS

Figure 2 shows the results of performing the limit per-
formance evaluation averaged over 25 runs. Initializ-
ing the model with 400 observations, we add 600 ad-
ditional observations according to the active learning
criteria, with random sampling included as a base-
line. Here we measure the sum of squared errors of
prediction from the true class label. Examining Fig-
ure 2, we see that A−optimality performs on par with
random sampling. Uncertainty sampling has a ten-
dency to pick the “noisy” examples which, in turn,
drag the parameters associated with feature 1 and the
bias feature from their optimal values. The squared er-
ror using the uncertainty sampling rises monotonically
achieving a 3.0% increase at 1000 observations. ELLR
also exhibits a noticeable increase in squared error,
though not as large. Examining the choice of examples
picked by ELLR we saw that observations from row 1
of Table 2 was grossly overrepresented while row 3 was
grossly underrepresented. It is attempting to attribute
the results of Table 2 to the use of squared error as the
evaluation metric, however the same qualitative effect
is observed if log-likelihood is employed instead.

7 DISCUSSION

Based on the empirical evaluation we see that
A−optimality is a very attractive objective function
for active learning. The method always performs
about as well as random sampling from the pool at
a minimum. In most cases, A−optimality leads to
substantial performance improvements. For instance,
on the forest cover data set, the improvement of
the method indicates that one example picked with
A−optimality is worth almost two random examples.
In contrast, uncertainty sampling has two data sets in
the evaluation (FCT, SJGS) where the performance
drops below random in a dramatic fashion. Compar-
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Figure 2: Sum of squared error (SSE) empirical eval-
uation of A-optimality, uncertainty sampling, ELLR,
and random sampling on a data set consisting of an
infinite pool sampled from Table 2.

isons to ELLR on the natural data evaluations do not
lead to conclusions about the performance of the two
methods in relation to each other.

One might wonder why ELLR performs worse than
random sampling on the synthetic data when Equa-
tion 18 appears to more correctly reflect the true ob-
jective function of interest: matching the predictions
of the true model. Equation 18 is minimized when the
KL divergence KL(P(y|x)||P̂(y|x)) is minimized. How-
ever, the approximation made in Equation 19 is min-
imized when the predictions over the pool are closest
to 0 and 1. Equation 19 may potentially bi-pass the
true model P(y|x) in its effort to make its probabilistic
predictions close to 0 and 1, and this is either a good or
bad idea depending on the quality of the initial model
with respect to the complexity of the learning task.

In contrast, the A−optimality criterion of Equation 15
is much more conservative; it attempts to make the
model predictions as close to the “true” model as possi-
ble, according to the squared loss function. The great-
est impediment to applying A−optimality to arbitrary
data sets is the computational cost of picking the next
example. Parallelism, numerical optimization and nu-
merical approximation can all play a role in reducing
the computational cost of employing A-optimality. Fu-
ture work will look at methods for making evaluations
on larger data sets more practical.

In the evaluations of this paper, the single largest com-
putational cost was model fitting. It was model fitting
computational time that prevented us from employ-
ing bagging in the ELLR method. We expect this
cost might be significantly diminished by seeding pa-
rameters with a previous solution rather than starting



model fitting from scratch. If model fitting could be
reduced to constant time, we would expect computa-
tion of the A−optimality criterion to be the bottleneck
of the evaluation.

8 SUMMARY

We have presented a novel method for active learn-
ing of logistic regression classifiers based on the
A-optimality objective function from the optimal
experimental design literature. Empirical evaluations
on four data sets demonstrate that A-optimality gives
attractive performance gains, and does not perform
worse than random sampling. We believe that active
learning methods must offer solid performance gains
in addition to robust performance in the worst case in
order to be accepted in industrial applications. The
performance of A−optimality suggests that expected
variance reduction objective functions for regression
models contain both of these properties.
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