
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2010

Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel

Distributed Computing Platform Distributed Computing Platform

Linh T.X. Phan
University of Pennsylvania

Zhuoyao Zhang
University of Pennsylvania

Saumya Jain
University of Pennsylvania

Godfrey Tan
Intel Corporation

Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Linh T.X. Phan, Zhuoyao Zhang, Saumya Jain, Godfrey Tan, Boon Thau Loo, and Insup Lee, "Cost-Based
Dynamic Job Rescheduling: A Case Study of the Intel Distributed Computing Platform", . January 2010.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-14.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/923
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/923
mailto:repository@pobox.upenn.edu

Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel Distributed Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel Distributed
Computing Platform Computing Platform

Abstract Abstract
We perform a trace-driven analysis of the Intel Distributed Computing Platform (IDCP), an Internet-scale
data center based distributed computing platform developed by Intel Corporation for massively parallel
chip simulations within the company. IDCP has been operational for many years, and currently is deployed
“live” on tens of thousands of machines that are globally distributed at various data centers. Our analysis
is performed on job execution traces obtained over a one year period collected from tens of thousands of
IDCP machines from 20 different pools. Our analysis demonstrates that job completion time can be
severely impacted due to job suspension when higher priority jobs preempt lower priority jobs. We then
develop cost-based dynamic job rescheduling strategies that adaptively restart suspended jobs, which
better utilize system resources and improve completion times. Our trace-driven evaluation results show
that dynamic rescheduling enables IDCP to significantly reduce job completion times.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-14.

Author(s) Author(s)
Linh T.X. Phan, Zhuoyao Zhang, Saumya Jain, Godfrey Tan, Boon Thau Loo, and Insup Lee

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/923

https://repository.upenn.edu/cis_reports/923

Cost-based Dynamic Job Rescheduling: A Case Study of
the Intel Distributed Computing Platform

Linh T.X. Phan Zhuoyao Zhang Saumya Jain Harrison Duong
University of Pennsylvania

{linhphan,zhuoyao,saumyaj,hduong}@seas.upenn.edu

Godfrey Tan
Intel Corporation
godfrey.tan@intel.com

Boon Thau Loo Insup Lee
University of Pennsylvania
{boonloo,lee}@cis.upenn.edu

ABSTRACT
We perform a trace-driven analysis of the Intel Distributed Comput-
ing Platform (IDCP), an Internet-scale data center based distributed
computing platform developed by Intel Corporation for massively
parallel chip simulations within the company. IDCP has been oper-
ational for many years, and currently is deployed “live” on tens of
thousands of machines that are globally distributed at various data
centers. Our analysis is performed on job execution traces obtained
over a one year period collected from tens of thousands of IDCP
machines from 20 different pools. Our analysis demonstrates that
job completion time can be severely impacted due to job suspen-
sion when higher priority jobs preempt lower priority jobs. We then
develop cost-based dynamic job rescheduling strategies that adap-
tively restart suspended jobs, which better utilize system resources
and improve completion times. Our trace-driven evaluation results
show that dynamic rescheduling enables IDCP to significantly re-
duce job completion times.

1. INTRODUCTION
We present a trace-driven analysis of a distributed computing

platform for performing compute-intensive operations within a large
enterprise. Our main driving application is the Intel Distributed
Computing Platform (IDCP) developed by Intel Corporation for
running concurrently tens of thousands of chip simulations. IDCP
has been operational for many years but constantly evolving from
a pure job execution engine into a distributed grid computing plat-
form [10] and now a service-oriented computing cloud for Intel.
The IDCP cloud at Intel consists of tens of thousands of machines
that are globally distributed at dozens of data centers. IDCP en-
ables Intel engineers to focus more on their primary job of design-
ing chips and validating through simulations and less on how the
computing service is delivered. By pooling together machines all
over the enterprise network and coordinating the scheduling of jobs
over those machines, IDCP strives to meet the demands of jobs with
varying priorities while keeping the system utilization high.

Our study is motivated by the practical needs of IDCP within
Intel. Our longer-term vision is to develop a holistic understanding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

of the resource management challenges of similar computational
clouds at the global scale. As data center computing environments
mature, there will be a need for such infrastructures to gracefully
handle multiple classes of jobs with different priorities and SLAs
(Service Level Agreements).

Intel’s IDCP platform resembles what is described as a private
cloud [2]. These are internal data centers operated by a business
or an enterprise for internal use. The difference between public
and private clouds is that public clouds, such as Amazon’s EC2 [1],
are available to any user with a credit card. Private clouds like
IDCP share with many recent cloud computing efforts similar char-
acteristics and challenges, including deployment at Internet-scale,
supporting a large group of heterogeneous concurrent applications,
and supporting different quality of service guarantees for different
classes of users. To put the relevance in context, the IDCP deploy-
ment today is estimated to involve hundreds of machine clusters
called pools, distributed globally at dozens of data centers with
varying wide-area network characteristics, utilizing tens of thou-
sands of heterogeneous multi-core compute machines. At any mo-
ment, there are thousands of concurrent jobs with varying priorities
and requirements being dispatched by engineers through Intel, and
in aggregate, hundreds of millions of jobs per year.

One important challenge that IDCP faces today is the need to
accommodate jobs with varying priorities and goals while keeping
both the system utilization high and latency low. Specifically, there
are two primary job classes sharing common resources but hav-
ing differing goals: i) high-priority jobs and ii) low priority jobs.
High priority jobs typically are used for time-sensitive workload
and hence, they can pre-empt lower priority jobs by suspending
them so that they can complete as quickly as possible. Low priority
jobs are typically less time-sensitive but users of low priority jobs
also need to get the simulation results from those jobs in a timely
fashion. Based on our analysis of a year-long trace data, we find
that high priority jobs can significantly impact the completion time
of low priority jobs even when the overall system utilization is rel-
atively low. We study this issue in depth and present preliminary
work to improve the completion time of lower priority jobs that get
suspended, thereby improving the average job completion time of
the entire system.

Our contributions are as follows:
Trace-driven analysis: We present an analysis of job execu-
tion traces obtained over a year long period collected from tens of
thousands of machines deployed in 20 IDCP pools. To our best
knowledge, this is one of the first trace-driven efforts at empirically
understanding the infrastructure requirements of an Internet-scale
distributed computing platform deployed in various data centers for
use by a global enterprise.

1

Performance bottlenecks: The focus of our analysis is on good-
put (useful work) achievable in the entire system. From our IDCP
traces, we observe that despite only utilizing around 40% of com-
puting resources on average during that period, the IDCP is not
currently designed to handle flash crowds. There have been severe
cases of slow turnaround of jobs during peak times at certain pools,
primarily caused by high priority jobs preempting low priority jobs.
The introduction of high priority jobs tends to be bursty, isolated to
particular pools at a few sites, and can last for several days; i.e., the
overall resource utilization at each pool can be highly diverse.
Dynamic cost-based rescheduling: Using a trace-driven sim-
ulator developed in-house at Intel, we perform an initial feasibil-
ity study on the potential benefits of selectively and dynamically
rescheduling preempted (and hence suspended) jobs to available re-
sources elsewhere. We adopt a cost-based approach, where reschedul-
ing decisions are made based on expected job completion time in
each candidate pool. The completion time of a job is the time from
when the job enters the system until it completes. Our trace-driven
evaluation results suggest that dynamic rescheduling enables IDCP
to significantly reduce job completion times.

2. ARCHITECTURE AND MOTIVATION
We provide an architectural overview of IDCP and highlight its

performance insights gathered from traces.

2.1 IDCP Architecture
As shown in Figure 1, IDCP is designed as a hierarchical sys-

tem consisting of several dozens of physical pools, each of which
consists of hundreds or thousands of multi-core machines. Intel
has many sites of operation across the globe. Each typical site has
many physical pools that are often located in multiple data centers.
To simplify computing operations and make the geography of phys-
ical pools transparent to the users, IDCP deploys a virtual pool at
each site. A virtual pool accepts job submissions from users at that
site, and then distributes jobs across one or more physical pools lo-
cated at the same site or different sites according to resource avail-
ability and IDCP configurations. Thus, IDCP inherently supports
remote execution of jobs in a manner that is transparent to the users.
In practice, chip simulation jobs are also I/O intensive, and they re-
quire access to a large amount of data. Data synchronization and
large data transfers are typical handled through out-of-band mech-
anisms and are out of scope for this paper.

Jobs that arrive at a physical pool are immediately queued. The
decision on when to dispatch a job and to which machine depends
on the job requirements (e.g., OS and memory), resource availabil-
ity and the priority of the job relative to that of other jobs in the
queues.

2.2 Priority-based Preemption
In IDCP, priority-based job preemption is enforced at the host

level of each physical pool. When a job is dispatched by the vir-
tual pool manager for execution at one of the physical pools, if the
physical pool has no available cores and there is a lower priority
job running on a particular host of the pool, the lower priority job
can be suspended to allow the new job (with higher priority) to ex-
ecute. When a pool is highly utilized, low priorities jobs may get
suspended more than once. Such a priority-based job preemption
is necessary for the IDCP environment due to the business need to
periodically run a large amount of jobs in a relatively short time.

Preemption may also arise in cases even where the system is not
overloaded, due to resource bottlenecks for specific types of re-
sources such as machines with large physical memory. In addition,
latency sensitive jobs may be configured to only run in specific sets

Figure 1: IDCP High-level System Components.

of physical pools so that desired results can be achieved.
To illustrate the impact of higher priority jobs on lower priority

ones, Figure 2 shows the CDF of job suspension time (in seconds)
collected from a large site with 20 physical pools, for a time period
of roughly 10 weeks or 100,000 minutes. We focus on this partic-
ular period where a large number of job suspensions occurred due
to the presence of high-priority jobs. We note that 20% of all jobs
are suspended for more than 5000 seconds (83 minutes), and the
median suspension time is 275 seconds (4.6 minutes). In addition,
we observe a long-tailed distribution of jobs that require more than
100k seconds to complete.

The impact in some cases goes beyond the higher completion
times experienced by suspended jobs and can impact the engineer-
ing productivity. For example, some classes of chip simulation
work has logical notions of tasks, each of which represents a set of
jobs completing a specific function. Typically, 100% or a high per-
centage of jobs associated with a particular task needs to complete
before the task result (combined from the results of those jobs) can
be useful. Often when one or more of those low priority jobs can-
not complete in a timely fashion, engineers lose productivity and/or
system resources are wasted since the same task execution needs to
be manually repeated at a different time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

P
er

ce
nt

ag
e

of
 J

ob
s

Job Suspension Time (s)

Figure 2: CDF of job suspension time.

We further note that high suspensions of jobs can occur even
when there are resources available to execute the jobs. Figure 3
shows the IDCP utilization (darker line) in terms of cores that are
in use for job execution, and the number of suspended jobs over
a period of 500,000 minutes (roughly a year) of IDCP traces. We

2

Utilzation And Suspended Jobs Over 1 year

0 8

1

1.2

6000

7000

8000

Jo
bs

0.4

0.6

0.8

Ut
ili

za
tio

n
2000

3000

4000

5000

of
 S

us
pe

nd
ed

0

0.2

0 100000 200000 300000 400000 500000 600000

Time

0

1000 #
o

Time

Utilization Suspended Jobs

4 Intel Confidential

Figure 3: Utilization and Suspension over a one year period.

observe that overall system utilization averages around 40%, and
is typically in the range of 20%-60%. However, during the same
period, higher priority jobs can preempt lower priority jobs, leading
to a large number of suspended jobs and hence a poor utilization of
resources.

Given that overall system utilization is only 40%, better tech-
niques need to be developed to ensure faster turnaround of jobs. We
observe from our traces that higher priority jobs tend to be bursty
and hence, job suspension happens in burst and lasts for several
hours up-to a week. Furthermore, when global resources are spread
out across multiple data centers, it is not practical for any scheduler
to make perfect scheduling decisions. As a result, utilization is un-
even across different pools. By adapting our job scheduling to such
situations, we are able to improve the utility of low priority jobs
with little or no adverse impact to high priority jobs.

3. DYNAMIC RESCHEDULING
Our approach in this section is based on two major observations.

First, as explained in detail in the previous section, even when there
were many suspended jobs in some physical pools, there were still
available computing resources at other physical pools. This leads
us to our approach of dynamically restarting (i.e., rescheduling) of
suspended jobs at different pools, including remote pools, which
may have more availability of the type of resources required by the
suspended jobs.

Second, the job arrival patterns in the IDCP environment cannot
be easily predicted in advance. As shown in Figure 3, the utilization
of the system over the two-week period varied widely as a result of
highly-random job arrivals. In fact, we were involved in an effort
lasting several months to develop an analytical model of the arrival
process of jobs using this same trace and was unable to do so. We
conclude that it is impractical for virtual or physical pool managers
to have apriori knowledge of job arrivals and to schedule jobs in
such a way that suspensions of low priority jobs are largely avoided
when system still has resources available (at other pools).

Under our restart-based approach, it is clear that there will be
wasted work already completed by the suspended and then restarted
jobs. One valid question to ask is why process migration (e.g., as
used in Condor [3]) or VM migration approaches (e.g., as used in
VMWare [7]) are not used. Prior work [3] has shown that process
migration does not work well when multiple threads are involved
and thus not suitable for the IDCP environment. VM migration
approaches are practical but require virtualized environments in
which virtual machine monitors are present on the servers. How-

ever, our internal experiments have shown that for many chip sim-
ulation workloads, the overhead of running those workloads on vir-
tualized hosts often lead to performance overhead between 10% to
20% [8]. This is a primary reason why we explore the restart-based
approach. Nonetheless, we discuss in Section 5 how the VM migra-
tion methods could be employed within the context of job-driven
dynamic scheduling framework that we plan to work in the near
future. The rest of this section describes our dynamic cost-based
rescheduling method in detail.

3.1 Cost-based Decision
When a job is preempted and suspended by a higher priority job,

a decision has to be made whether to keep the suspended job in its
current pool (and resume when consecutive higher priority jobs are
completed), or restart the job at another pool with the goal of reduc-
ing completion time. The choice of an alternate pool is achieved via
cost-based decisions.

For each job, j running in a given pool, i, we identify the follow-
ing measures:

• RTj,i: The run time of job j in pool i

• STj,i: The suspend time of job j in pool i (when it is sus-
pended by a higher priority job)
• WTj,i: The wait time of job j spent in the queue of pool i

before it starts running
• CTj,i: The completion time of job j computed as the time

between when the job enters the system and when it com-
pletes

We also use a superscript to denote each partial component of the
measure. For example, when a low priority job, lj, gets suspended
once before completion, there will be two run time components,
RT 1

lj,i and RT 2
lj,i.

Figure 4 illustrates how a decision can be made when a low pri-
ority job, lj, is first suspended at a pool i by a high priority job
hj1 at time t1 . If the system decides to keep job lj in pool i, it
will remain suspended until hj1 completes. lj will then continue
executing until another high priority job, hj2, suspends it again.
Assuming that the system decides to keep job lj in i, the job will
complete at t3, note that:

STlj,i = RThj1 + RThj2 (1)

Alternatively, the system may decide to send lj to another pool
k, where it may need to wait in the queue for a certain amount of
time (WTij,k) before beginning to run. Note that by queuing lj

3

at another pool k, we preserve the first-in-first-out (FIFO) queu-
ing principle typically used in systems like IDCP. In fact, while
running, the job may get suspended by a high priority job, hj3,
before running to completion at time t2. In this example, since
CTlj,k < CTlj,i and thus the system should have chosen to restart
lj in k.

Figure 4: Timeline with and without scheduling a low priority job that
has been preempted in pool i under high utilization.

In fact, at any decision point upon suspension, the system chooses
a candidate pool that leads to lowest remaining completion time
(RCT), resulting in lowest completion time for the job (if every
decision till completion is correct). It is also important to note that
when a job is restarted all work done thus far by the job will be
wasted. Thus, we call RT 1

lj,i wasted run time. For convenience, we
call the sum of RT 2

lj,i and RT 3
lj,i the remaining run time, RRTlj,i.

3.2 Computing Expected Completion Times
In practice, we do not know the future arrival time of jobs and

their run time in each pool to be able to make an ideal decision
about remaining completion time. Thus, for each job lj that gets
suspended at a pool, i, we compute expected remaining completion
time, E[RCTlj,i] as follows:

E[RCTlj,i]← E[STlj,i] + E[RRTlj,i] (2)

Similarly, we compute E[RCTlj,k 6=i] for any pool k other than
i as follows:

E[RCTlj,k 6=i]← E[WTlj,k] + E[STlj,k] + E[RTlj,k] (3)

An ideal algorithm will choose a pool, p, such that E[RCTlj,p]
is lowest. If p = i then the job will remain suspended in the pool.
Otherwise, the job will get restarted at p 6= i.

For simplicity, we assume that a job’s priority does not change
even when it moves from one pool to another. We estimate E[STlj,i]
based on the recent statistics of suspend time observed by similar
jobs, i.e., low priority jobs. Specifically, the average suspend time
of low priority jobs, ST avg

low,i, is obtained by averaging the suspend
time observed by each completed low priority job over a sliding
window, W .

We compute the average wait time of low priority jobs at pool
k, WT avg

low,k, in a similar manner and use it to estimate E[WTlj,k].
The expected remaining run time, E[RRTlj,i], can be computed
by subtracting the amount of time that the job had run so far from
the expected run time. Finally, the expected run time, E[RTlj,k],
can be estimated for major workload types within the IDCP envi-
ronment. Figure 5 shows the average run time of jobs completed
at each sampled hour aggregated by the simulation activity type of
the jobs. Over the course of 24-hours, we observe that the average
run time of jobs that are associated with a specific activity tends

to remain stable and vary little. One reason for this relatively sta-
ble run time trend is because many simulation jobs associated with
a particular function tend to have similar computational complex-
ities and hence run time. These computational complexities may
change with new chip model release, which typically happens ev-
ery few days or weeks. Therefore, over a period of hours or days,
the run time of jobs associated with a specific activity tend to be
very similar. It is therefore practical to estimate them based on
recent historic trends (in a similar way we are estimating expected
wait time). We plan to do this as our next step. However, as our ini-
tial focus is to develop a simple dynamic rescheduling scheme and
investigate its impact on job completion times and overall utiliza-
tion, for the experiments presented in the next section, we simply
assume that RT avg

lj,k is known by the system.

Figure 5: Average run time of jobs aggregated by their activity at each
sampled hour in one of the largest physical pools.

We can now rewrite Equations 2 and 3 as follows:

E[RCTlj,i]← ST avg
low,i + RRT known

lj (4)

E[RCTlj,k 6=i]←WT avg
low,k + ST avg

low,k + RRT known
low,k (5)

4. TRACE-DRIVEN EVALUATION
We present a feasibility analysis of the potential benefits of dy-

namic rescheduling of suspended jobs based on the approach de-
scribed in the previous section. Our evaluation is carried out in
a hybrid event-based and agent-based simulator called ASCA (for
Agent-based Simulator for Compute Allocation) developed at In-
tel [11]. In order to accurately map the operational capabilities of
IDCP, the simulator was developed to model various fine-grained
components of IDCP such as sites, pools, queues, job requirements
and priorities, virtual and physical pool managers, weighted fair-
queueing, round-robin physical pool scheduling. We incorporated
in ASCA our implementation of the cost-based dynamic reschedul-
ing strategies described in Section 3.

The simulator takes as input IDCP traces, first introduced in
Section 2.1, from a large IDCP site with 20 physical pools, col-
lected over a period of one year. Note that jobs landing at this
site are originated from several sites across the globe. The traces
include machine configuration information across all machines in-
cluding machine CPU type/speed and memory, and the state (run-
ning, suspended, etc) of every job in the system and its resource
usage. The simulator samples at each minute the current states of
all IDCP components and executing jobs, which are then output as
logs for post-analysis. Tan et al. describe the implementation of
this simulator in greater detail and provide detailed analysis results

4

to demonstrate that the simulator achieves the performance charac-
teristics of the actual IDCP deployment in terms of utilization and
job completion times [11].

4.1 Aggregate Analysis

Restart-Off Restart-On
Jobs Suspended 36459 59875
% Completed 97.3% 99.2%

Avg Suspend Time 1432.6 44.9
Avg Completion Time 1824.6 466.9

Table 1: Execution statistics under Restart-on and Restart-off
with respect to only suspended jobs.

Restart-Off Restart-On
Jobs Completed 840552 841074

Avg Completion Time 305.6 259.6
Utilization (%) 42.3 43.4

Table 2: Execution statistics under Restart-on and Restart-off
with respect to all jobs.

For our simulations, we focus on a 2-week period which charac-
terizes a typical burst period in the IDCP environment, when jobs
observe long completion time due to suspension. Several such pe-
riods, lasting from a few days to a few weeks typically occur within
each quarter. During this period, the average system utilization is
42.3%.

Table 1 summarizes the completion and suspension times of jobs
that are suspended at least once within that 2-week period for two
scenarios: i) Restart-Off, the baseline scenario without the reschedul-
ing method implemented and ii) Restart-On, the scenario with the
rescheduling method implemented. The averaging window size for
collecting statistics for expected suspension and wait time within
each pool (for making cost-based decisions on rescheduling) is set
to 100 minutes. The Avg Completion Time is the average comple-
tion time (in minutes) over all jobs completed within this period.
The Avg Suspend Time is the average suspension time (in minutes)
of finished jobs that have been suspended (and subsequently re-
sumed) within this period. When compared to Restart-Off, Restart-
On achieves a 75% reduction (from 1824.6 minutes to 466.9 min-
utes) in average completion times of all jobs that have been sus-
pended at least once. Note that Restart-On does not reduce the
number of suspensions. This is because by rescheduling suspended
jobs, Restart-On increases the likelihood that the same job can get
suspended multiple times (at different pools). However, Restart-On
does significantly reduce the suspension time over the job’s lifes-
pan on average since in most cases the rescheduled jobs would be
able to complete execution in another pool.

Table 2 summarizes under both scenarios the average completion
times of all jobs including those that were never suspended. Ob-
serve that the fraction of jobs suspended is 4.3%, however, these
jobs observe a high average completion time of 1824.6 minutes
compared to 305.6 minutes for all jobs (see Table 2). By reschedul-
ing only a small fraction of jobs, Restart-On improves upon the
average completion time (per completed job) by 15% over Restart-
Off. Restart-On achieves this by utilizing available resources at
other pools but the resulting increase in overall system utilization
is marginal (only 1.1%). The results demonstrates improving job
mobility (upon suspension) can significantly improve observed la-

tency of both suspended and non-suspended jobs even when only a
small fraction of jobs is involved in rescheduling.

To explore the limits of our techniques, we emulated a high load
scenario, where computing resources are reduced by half, hence
increasing the occurrence of resource contention and preemption.
Under the high load scenario, we observe that the average comple-
tion time for all jobs (795.6 minutes) is more than doubled com-
pared to the actual scenario (305.6 minutes) due to increased sys-
tem utilization (80.5%). Nevertheless, the rescheduling techniques
are still effective at reducing completion times, resulting in 71%
reduction in average completion time for all jobs that have been
suspended at least once. In addition, they also outperform the orig-
inal Restart-Off in terms of overall completion time of all jobs. In
short, our rescheduling techniques are well-suited for both high and
low load scenarios.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20
C

D
F

(%
)

Completion Time (x1000 mins)

Restart-Off
Restart-On

Figure 6: CDF of completion times (x1000 minutes) of top 5% of long-
running jobs.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
D

F
(%

)

Completion Time (x1000 mins)

Restart-Off
Restart-On

Figure 7: CDF of completion times (x1000 minutes) of top 5% of long-
running jobs that have been suspended.

4.2 Per-job Analysis
While aggregate statistics are useful indications of the benefits

of rescheduling, the actual benefits are best observed by analyzing
individual jobs, especially pathological cases where jobs exhibit
long completion times due to frequent suspensions.

Our next analysis focuses on per-job reduction in completion
time. Focusing on long-running jobs (top 5% of jobs with high-
est completion times), Figure 6 and 7 show the CDF of completion
times for all jobs (corresponding to the aggregate statistics in Ta-
ble 2), and previously suspended jobs (Table 1).

5

In both cases, the reductions in completion times under Restart-
On are significant: in terms of median completion times, the reduc-
tions are 602 minutes (25%) and 5370 minutes (65%) respectively.
When considering the longest running jobs (at 95% percentile), the
reductions in completion times are 2268 minutes (29%) and 7154
minutes (48%) respectively. All in all, we note that our restart strat-
egy is able to reduce completion times of long running jobs, and
the impact on jobs that would otherwise remain suspended under
Restart-Off is particularly significant.

5. RELATED WORK
IDCP can be viewed as a real-world deployment of an Internet-

scale grid computing [4] infrastructure. Condor [3, 6] batch pro-
cessing system provides a transparent middle-ware for executing
jobs on shared computational resources. To our best knowledge,
IDCP’s scale of deployment is larger than any existing Condor
pools, both in terms of the number of jobs and machines. IDCP’s
scale is closer to that of p2p computational platforms such as
SETI@Home, with much more stringent requirements on job com-
pletion times.

In addition to our use of job restarts, popular techniques for
resource management that are potentially applicable to IDCP in
future include the use of virtual machine migration [3] and re-
dundant executions [5, 12] to trade-off utilization and completion
time. Our approach is orthogonal to these techniques, and our
choice of rescheduling is largely driven by current practical con-
cerns outlined in Section 3. In addition, our recent internal eval-
uation of IDCP typical workloads have shown that although VM
performance have improved significantly over the years [7], it has
yet to go down to a low single digit before it becomes a viable op-
tion from both performance and cost perspective for the IDCP en-
vironment, where jobs tend to be memory and I/O intensive. Nev-
ertheless, it is interesting future work to explore ways to integrate
dynamic rescheduling approaches with VMs within the context of
the IDCP platform.

We also note recent work around adaptive job execution tech-
niques after the job is already executed [9]. Unlike our work, Shan
et al. focus on opportunistic job migration when a “better” resource
is discovered and do not discuss about suspended jobs. Our IDCP
workloads and scale will enable us to study these issues in depth in
a realistic yet challenging setting.

6. CONCLUSION AND FUTURE WORK
In this paper, we perform a trace-driven analysis of the Intel Dis-

tributed Computing Platform (IDCP), an Internet-scale data center
based distributed computing platform developed by Intel Corpo-
ration for running hundreds of thousands of chip simulation jobs
daily. Our initial results are promising: by performing cost-based
rescheduling on suspended jobs, the average job completion time is
reduced by 15% over all jobs, and 75% for previously suspended
jobs. Our results also illustrate that our cost-based rescheduling
techniques are robust to various load conditions.

These results also have positive implications for productivity and
efficiency of the IDCP environment since all jobs associated with
a specific task can be completed in a reasonable fashion reducing
the likelihood of incomplete tasks and resulting in improved pro-
ductivity and/or efficiency.

We plan to continue with additional trace-driven simulation stud-
ies, where we investigate the benefits of job duplication, the rela-
tionship between utilization and job completion as a result of the in-
teraction between our rescheduling scheme and global job schedul-
ing schemes (e.g., at the virtual pool level). We are also explor-
ing various techniques for predicting run time via a combination

of sliding window averaging and other statistical techniques. Ulti-
mately, we plan to evaluate our results on the IDCP platform itself.

In the public cloud computing environments like Amazon’s, we
think that the workload arrival process will be hard to model and
predict at a fine granularity necessary for master schedulers tradi-
tionally employed to manage a set of compute servers. Just as Intel
needs multiple classes of jobs, public clouds will soon need to ac-
commodate jobs of different SLAs and thus pricing. When dealing
with problems like job suspensions or various inefficiencies of the
grid scheduling algorithms (largely because of the lack of work-
load predictability), one practical and effective approach is to make
intelligent decisions from the perspective of individual jobs. Our
approach for suspended jobs is just one example. Waiting jobs
may decide to remove themselves from the current queues and per-
haps re-queue at different pools based on their expected completion
times observed at that time. In other words, scheduling decisions
traditionally made exclusively by each master scheduler responsi-
ble for a set of resources could prove ineffective or detrimental to
jobs a few moments later. The sheer scale of emerging computation
clouds coupled with the tremendous diversity in workloads could
demand us more responsive scheduling approaches that can adapt
to changing conditions whenever appropriate. This may mean more
intelligent jobs and less intelligent cluster schedulers, or a combi-
nation of intelligent jobs and master schedulers. We hope that our
work inspires a lot more research in this area.

7. REFERENCES
[1] AMAZON ELASTIC COMPUTE CLOUD, VIRTUAL GRID

COMPUTING. http://aws.amazon.com/ec2.
[2] ARMBRUST, M., FOX, A., GRIFFITH, R., AND ET AL.

Above the Clouds: A Berkeley View of Cloud Computing.
Tech. Rep. UCB/EECS-2009-28, UC Berkeley, Feb. 2009.

[3] ET. AL., M. L. Checkpoint and migration of UNIX
processes in the Condor distributed processing system. Tech.
Rep. UW-CS-TR-1346, UW-Madison, 1997.

[4] FOSTER, I., AND KESSELMAN, C., Eds. The Grid 2:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 2004.

[5] KOOLE, G., AND RIGHTER, R. Resource allocation in grid
computing. J. of Scheduling 11, 3 (2008), 163–173.

[6] LITZKOW, M., LIVNY, M., AND MUTKA, M. Condor - A
Hunter of Idle Workstations. In ICDCS (1988).

[7] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast
transparent migration for virtual machines. In USENIX
(2005).

[8] SAMMANNA, S., TANG, T., AND LAL, V. Server
virtualization using xen based vmm. In Intel IT Technical
Leadership Conference (2008).

[9] SHAN, H., OLIKER, L., AND BISWAS, R. Job
superscheduler architecture and performance in
computational grid environments. SC Conference (2003).

[10] SRINIVAS NIMMAGADDA ET AL. High-End Workstation
Compute Farms Using Windows NT. In 3rd USENIX
Windows NT Symposium (1999).

[11] TAN, G., DUZEVIK, D., BUNCH, E., ASHBURN, T.,
WYNN, E., AND WITHAM, T. Agent-based simulator for
compute resource allocation. In Intel IT Technical
Leadership Conference (2008).

[12] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ,
R., AND STOICA, I. Improving mapreduce performance in
heterogeneous environments. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI)
(2008).

6

http://aws.amazon.com/ec2

	Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel Distributed Computing Platform
	Recommended Citation

	Cost-Based Dynamic Job Rescheduling: A Case Study of the Intel Distributed Computing Platform
	Abstract
	Comments
	Author(s)

	Introduction
	Architecture and Motivation
	IDCP Architecture
	Priority-based Preemption

	Dynamic Rescheduling
	Cost-based Decision
	Computing Expected Completion Times

	Trace-driven Evaluation
	Aggregate Analysis
	Per-job Analysis

	Related Work
	Conclusion and Future Work
	References

